1
|
Sohn JS, Choi JS. Development and evaluation of febuxostat solid dispersion through screening method. Saudi Pharm J 2023; 31:101724. [PMID: 37559865 PMCID: PMC10406859 DOI: 10.1016/j.jsps.2023.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Febuxostat (Febux) is a BCS II drug and has a very low solubility. In order to overcome this shortcoming, the purpose of study is to increase the in vitro dissolution (%) and drug release (%) of Febux by using a screening method. The Febux-SD formulation was prepared by screening solubilizers, pH agents, and carriers using with a solvent evaporation method. The novel Febux SD formulation was successfully developed. The dissolution (%) of Febux of optimal formulation (SD3) was higher than that of Feburic® tab in pH 1.2, distilled water (DW), and pH 6.8 buffer by 6.3-, 2.6-, and 1.1-fold, respectively, at 60 min. The in vitro drug release (%) and permeability (μg/cm2) of SD3 formulation were improved compared to those of Feburic® tab in the pH shifting method and PBS (7.4), respectively. The SD3 formulation was well maintained the stability for 6 months, and that of physicochemical properties were altered. In conclusion, the Febux solubilization study with meglumine was first attempted and successfully performed. Through the improved dissolution (%) of Febux, high bioavailability of SD3 formulation is expected in animal and human studies.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- College of General Education, Chosun University, Gwangju 61452, Republic of Korea
| | - Jin-Seok Choi
- Department of Medical Management, Chodang University, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, Republic of Korea
| |
Collapse
|
2
|
Sakamuru S, Huang R, Xia M. Use of Tox21 Screening Data to Evaluate the COVID-19 Drug Candidates for Their Potential Toxic Effects and Related Pathways. Front Pharmacol 2022; 13:935399. [PMID: 35910344 PMCID: PMC9333127 DOI: 10.3389/fphar.2022.935399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
Currently, various potential therapeutic agents for coronavirus disease-2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are being investigated worldwide mainly through the drug repurposing approach. Several anti-viral, anti-bacterial, anti-malarial, and anti-inflammatory drugs were employed in randomized trials and observational studies for developing new therapeutics for COVID-19. Although an increasing number of repurposed drugs have shown anti-SARS-CoV-2 activities in vitro, so far only remdesivir has been approved by the US FDA to treat COVID-19, and several other drugs approved for Emergency Use Authorization, including sotrovimab, tocilizumab, baricitinib, paxlovid, molnupiravir, and other potential strategies to develop safe and effective therapeutics for SARS-CoV-2 infection are still underway. Many drugs employed as anti-viral may exert unwanted side effects (i.e., toxicity) via unknown mechanisms. To quickly assess these drugs for their potential toxicological effects and mechanisms, we used the Tox21 in vitro assay datasets generated from screening ∼10,000 compounds consisting of approved drugs and environmental chemicals against multiple cellular targets and pathways. Here we summarize the toxicological profiles of small molecule drugs that are currently under clinical trials for the treatment of COVID-19 based on their in vitro activities against various targets and cellular signaling pathways.
Collapse
|
3
|
Stammes MA, Lee JH, Meijer L, Naninck T, Doyle-Meyers LA, White AG, Borish HJ, Hartman AL, Alvarez X, Ganatra S, Kaushal D, Bohm RP, le Grand R, Scanga CA, Langermans JAM, Bontrop RE, Finch CL, Flynn JL, Calcagno C, Crozier I, Kuhn JH. Medical imaging of pulmonary disease in SARS-CoV-2-exposed non-human primates. Trends Mol Med 2022; 28:123-142. [PMID: 34955425 PMCID: PMC8648672 DOI: 10.1016/j.molmed.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Chest X-ray (CXR), computed tomography (CT), and positron emission tomography-computed tomography (PET-CT) are noninvasive imaging techniques widely used in human and veterinary pulmonary research and medicine. These techniques have recently been applied in studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-exposed non-human primates (NHPs) to complement virological assessments with meaningful translational readouts of lung disease. Our review of the literature indicates that medical imaging of SARS-CoV-2-exposed NHPs enables high-resolution qualitative and quantitative characterization of disease otherwise clinically invisible and potentially provides user-independent and unbiased evaluation of medical countermeasures (MCMs). However, we also found high variability in image acquisition and analysis protocols among studies. These findings uncover an urgent need to improve standardization and ensure direct comparability across studies.
Collapse
Affiliation(s)
- Marieke A Stammes
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands.
| | - Ji Hyun Lee
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| | - Lisette Meijer
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands
| | - Thibaut Naninck
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Lara A Doyle-Meyers
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - H Jacob Borish
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amy L Hartman
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pitt Public Health, Pittsburgh, PA 15261, USA
| | - Xavier Alvarez
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | | | - Deepak Kaushal
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Rudolf P Bohm
- Tulane National Primate Research Center, Covington, LA 70433, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Roger le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, 92260 Fontenay-aux-Roses, France
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jan A M Langermans
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands; Department Population Health Sciences, Division of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Ronald E Bontrop
- Biomedical Primate Research Centre (BPRC), 2288 GJ, Rijswijk, The Netherlands; Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Courtney L Finch
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Claudia Calcagno
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), Division of Clinical Research (DCR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
4
|
Li CX, Noreen S, Zhang LX, Saeed M, Wu PF, Ijaz M, Dai DF, Maqbool I, Madni A, Akram F, Naveed M, Li JH. A critical analysis of SARS-CoV-2 (COVID-19) complexities, emerging variants, and therapeutic interventions and vaccination strategies. Biomed Pharmacother 2022; 146:112550. [PMID: 34959116 PMCID: PMC8673752 DOI: 10.1016/j.biopha.2021.112550] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 01/11/2023] Open
Abstract
Coronavirus is a family of viruses that can cause diseases such as the common cold, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). The universal outbreak of coronavirus disease 2019 (COVID-19) caused by SARS coronaviruses 2 (SARS-CoV-2) has become a global pandemic. The β-Coronaviruses, which caused SARS-CoV-2 (COVID-19), have spread in more than 213 countries, infected over 81 million people, and caused more than 1.79 million deaths. COVID-19 symptoms vary from mild fever, flu to severe pneumonia in severely ill patients. Difficult breathing, acute respiratory distress syndrome (ARDS), acute kidney disease, liver damage, and multi-organ failure ultimately lead to death. Researchers are working on different pre-clinical and clinical trials to prevent this deadly pandemic by developing new vaccines. Along with vaccines, therapeutic intervention is an integral part of healthcare response to address the ongoing threat posed by COVID-19. Despite the global efforts to understand and fight against COVID-19, many challenges need to be addressed. This article summarizes the current pandemic, different strains of SARS-CoV-2, etiology, complexities, surviving medications of COVID-19, and so far, vaccination for the treatment of COVID-19.
Collapse
Affiliation(s)
- Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Pei-Feng Wu
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Faizan Akram
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
5
|
Farnoosh G, Akbariqomi M, Badri T, Bagheri M, Izadi M, Saeedi-Boroujeni A, Rezaie E, Ghaleh HEG, Aghamollaei H, Fasihi-Ramandi M, Hassanpour K, Alishiri G. Efficacy of a Low Dose of Melatonin as an Adjunctive Therapy in Hospitalized Patients with COVID-19: A Randomized, Double-blind Clinical Trial. Arch Med Res 2022; 53:79-85. [PMID: 34229896 PMCID: PMC8220995 DOI: 10.1016/j.arcmed.2021.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/09/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Melatonin has been known as an anti-inflammatory agent and immune modulator that may address progressive pathophysiology of coronavirus disease 2019 (COVID-19). AIM OF THE STUDY To evaluate the clinical efficacy of adjuvant, use of melatonin in patients with COVID-19. METHODS This single-center, double-blind, randomized clinical trial included 74 hospitalized patients with confirmed mild to moderate COVID-19 at Baqiyatallah Hospital in Tehran, Iran, from April 25, 2020-June 5, 2020. Patients were randomly assigned in a 1:1 ratio to receive standard of care and standard of care plus melatonin at a dose of 3 mg three times daily for 14 d. Clinical characteristics, laboratory, and radiological findings were assessed and compared between two study groups at baseline and post-intervention. Safety and clinical outcomes were followed up for four weeks. RESULTS A total of 24 patients in the intervention group and 20 patients in the control group completed the treatment. Compared with the control group, the clinical symptoms such as cough, dyspnea, and fatigue, as well as the level of CRP and the pulmonary involvement in the intervention group had significantly improved (p <0.05). The mean time of hospital discharge of patients and return to baseline health was significantly shorter in the intervention group compared to the control group (p <0.05). No deaths and adverse events were observed in both groups. CONCLUSIONS Adjuvant use of melatonin has a potential to improve clinical symptoms of COVID-19 patients and contribute to a faster return of patients to baseline health.
Collapse
Affiliation(s)
- Gholamreza Farnoosh
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Akbariqomi
- Applied Microbiology Research Center, Systems Biology and poisonings Institute, Baqiyatallah university of Medical Sciences, Tehran, Iran
| | - Taleb Badri
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Bagheri
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Izadi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Saeedi-Boroujeni
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ehsan Rezaie
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kazem Hassanpour
- Department of Pediatric, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - GholamHossein Alishiri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Cavanna L, Citterio C. Randomised clinical trials on outpatient treatment of SARS-COV-2 infection: Light and shadows. Int J Clin Pract 2021; 75:e14896. [PMID: 34965649 DOI: 10.1111/ijcp.14896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Luigi Cavanna
- Oncology and Hematology Department, Oncology Unit, Piacenza General Hospital, Piacenza, Italy
| | - Chiara Citterio
- Oncology and Hematology Department, Oncology Unit, Piacenza General Hospital, Piacenza, Italy
| |
Collapse
|
7
|
Inflammatory but not respiratory symptoms are associated with ongoing upper airway viral shedding in outpatients with uncomplicated COVID-19. Diagn Microbiol Infect Dis 2021; 102:115612. [PMID: 34974350 PMCID: PMC8627385 DOI: 10.1016/j.diagmicrobio.2021.115612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 01/08/2023]
Abstract
Although the vast majority of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections are uncomplicated, our understanding of predictors of symptom resolution and viral shedding cessation remains limited. We characterized symptom trajectories and oropharyngeal viral shedding among 120 outpatients with uncomplicated Coronavirus Disease of 2019 (COVID-19) enrolled in a clinical trial of Peginterferon Lambda, which demonstrated no clinical or virologic benefit compared with placebo. In the combined trial cohort, objective fever was uncommon, inflammatory symptoms (myalgias, fatigue) peaked at 4 to 5 days postsymptom onset, and cough peaked at 9 days. The median time to symptom resolution from earliest symptom onset was 17 days (95% confidence interval 14-18). SARS-CoV-2 IgG seropositivity at enrollment was associated with hastened resolution of viral shedding (hazard ratio 1.80, 95% confidence interval 1.05-3.1, P = 0.03), but not with symptom resolution. Inflammatory symptoms were associated with a significantly greater odds of oropharyngeal SARS-CoV-2 RNA detection; respiratory symptoms were not. These findings have important implications for COVID-19 screening approaches and trial design.
Collapse
|
8
|
Honarmand K, Penn J, Agarwal A, Siemieniuk R, Brignardello-Petersen R, Bartoszko JJ, Zeraatkar D, Agoritsas T, Burns K, Fernando SM, Foroutan F, Ge L, Lamontagne F, Jimenez-Mora MA, Murthy S, Yepes-Nuñez JJ, Vandvik PO, Ye Z, Rochwerg B. Clinical trials in COVID-19 management & prevention: A meta-epidemiological study examining methodological quality. J Clin Epidemiol 2021; 139:68-79. [PMID: 34274489 PMCID: PMC8280397 DOI: 10.1016/j.jclinepi.2021.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To describe the characteristics of Covid-19 randomized clinical trials (RCTs) and examine the association between trial characteristics and the likelihood of finding a significant effect. STUDY DESIGN We conducted a systematic review to identify RCTs (up to October 21, 2020) evaluating drugs or blood products to treat or prevent Covid-19. We extracted trial characteristics (number of centers, funding sources, and sample size) and assessed risk of bias (RoB) using the Cochrane RoB 2.0 tool. We performed logistic regressions to evaluate the association between RoB due to randomization, single vs. multicentre, funding source, and sample size, and finding a statistically significant effect. RESULTS We included 91 RCTs (n = 46,802); 40 (44%) were single-center, 23 (25.3%) enrolled <50 patients, 28 (30.8%) received industry funding, and 75 (82.4%) had high or probably high RoB. Thirty-eight trials (41.8%) reported a statistically significant effect. RoB due to randomization and being a single-center trial were associated with increased odds of finding a statistically significant effect. CONCLUSIONS There is high variability in RoB among Covid-19 trials. Researchers, funders, and knowledge-users should be cognizant of the impact of RoB due to randomization and single-center trial status in designing, evaluating, and interpreting the results of RCTs. REGISTRATION CRD42020192095.
Collapse
Affiliation(s)
- Kimia Honarmand
- Division of Critical Care, Department of Medicine, Western University, 1151 Richmond Street London, Ontario, N6A 3K7, Canada.
| | - Jeremy Penn
- Faculty of Health Sciences, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4L8, Canada
| | - Arnav Agarwal
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4L8, Canada; Department of Medicine, University of Toronto, 27 King's College Circle, Toronto, Ontario, M5S 1A1, Canada
| | - Reed Siemieniuk
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4L8, Canada
| | - Romina Brignardello-Petersen
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4L8, Canada
| | - Jessica J Bartoszko
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4L8, Canada
| | - Dena Zeraatkar
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4L8, Canada; Department of Biomedical Informatics, Harvard Medical School, Boston, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Thomas Agoritsas
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4L8, Canada; Division General Internal Medicine, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4 1205, Geneva, Switzerland
| | - Karen Burns
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4L8, Canada; Unity Health Toronto, St. Michael's Hospital, Li Ka Shing Knowledge Institute, 30 Bond St, Toronto, Ontario, M5B 1W8, Canada
| | - Shannon M Fernando
- Division of Critical Care, Department of Medicine, University of Ottawa, 75 Laurier Ave. E, Ottawa, Ontario, K1N 6N5, Canada
| | - Farid Foroutan
- Ted Rogers Centre for Heart Research, University Health Network, Toronto General Hospital, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Long Ge
- Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, 222 Tianshui S Rd, Chengguan District, Lanzhou, Gansu, China
| | - Francois Lamontagne
- Department of Medicine and Centre de recherche du CHU de Sherbrooke, 12e Avenue N Porte 6, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Mario A Jimenez-Mora
- School of Medicine, Universidad de los Andes, Cra. 1 #18a-12, Bogotá D.C, Colombia
| | - Srinivas Murthy
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Juan Jose Yepes-Nuñez
- School of Medicine, Universidad de los Andes, Cra. 1 #18a-12, Bogotá D.C, Colombia; Pulmonology Service, Internal Medicine Section, Fundación Santa Fe de Bogotá University Hospital, Cra. 7b (#)12390, Bogotá D.C, Colombia
| | - Per O Vandvik
- Department of Health and Society, Faculty of Medicine, University of Oslo, Problemveien 7, 0315, Oslo, Norway
| | - Zhikang Ye
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4L8, Canada
| | - Bram Rochwerg
- Department of Health Research Methods, Evidence and Impact, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4L8, Canada; Department of Medicine, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4L8, Canada
| |
Collapse
|
9
|
Cavanna L, Cremona G, Citterio C, Nunzio CD, Muroni M, Andena AM, Cattadori E, Gubbelini M, Muroni L, Schiavo R, Nolli M, Codeluppi M, Maniscalco P, Pedrazzini G. COVID-19 Outbreak in Italy: Report on the First 124 Consecutive Patients Treated at Home. TOHOKU J EXP MED 2021; 255:61-69. [PMID: 34588347 DOI: 10.1620/tjem.255.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
North Italy emerged as an epicenter of COVID-19 in the Western world. The majority of studies of patients with COVID-19 have focused on hospitalized patients, and data on early outpatient treatment are limited. This research retrospectively examines consecutive symptomatic adults who did not present to a hospital but who experience laboratory confirmed (nasopharyngeal swabs) or probable COVID-19 infection. From March 12 to April 12, 2020, 124 consecutive patients with laboratory-confirmed COVID-19 infection (84%) or with epidemiologically linked exposure to a person with confirmed infection (16%) were managed at home. The diagnosis of pneumonia was made with a portable ultrasound. COVID-19 treatment was based on low-dose hydroxychloroquine with or without darunavir/cobicistat or azithromycin and enoxaparine for bedridden patients. The patients were monitored by telemedicine. The primary endpoints were clinical improvement or hospitalization, and the secondary endpoints were mortality at day 30 and at day 60. Forty-seven (37.9%) patients had mild COVID-19 infection, 44 (35.5%) had moderate COVID-19 infection, and 33 (26.6%) had severe COVID-19 infection. Four patients (3.2%) were hospitalized and there were no deaths at day 30 and at day 60. Only mild side effects were reported. Early home treatment of COVID-19 patients resulted in a low hospitalization rate with no deaths, with the limitations of the small sample size and that it was conducted within a single geographic area. We believe that this model may be easily reproduced in both cities and rural areas around the world to treat COVID-19 infection.
Collapse
Affiliation(s)
- Luigi Cavanna
- Oncology and Hematology Department, Oncology Unit, Piacenza General Hospital
| | - Gabriele Cremona
- Oncology and Hematology Department, Oncology Unit, Piacenza General Hospital
| | - Chiara Citterio
- Oncology and Hematology Department, Oncology Unit, Piacenza General Hospital
| | - Camilla Di Nunzio
- Oncology and Hematology Department, Oncology Unit, Piacenza General Hospital
| | - Monica Muroni
- Oncology and Hematology Department, Oncology Unit, Piacenza General Hospital
| | | | | | | | - Lara Muroni
- Nurse Directory Unit, Piacenza General Hospital
| | | | | | | | | | | |
Collapse
|
10
|
Davoodi L, Jafarpour H, Oladi Z, Zakariaei Z, Tabarestani M, Ahmadi BM, Razavi A, Hessami A. Atorvastatin therapy in COVID-19 adult inpatients: A double-blind, randomized controlled trial. IJC HEART & VASCULATURE 2021; 36:100875. [PMID: 34541293 PMCID: PMC8437805 DOI: 10.1016/j.ijcha.2021.100875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Efficacious therapies are urgently required to tackle the coronavirus disease 2019 (COVID-19). This trial aims to evaluate the effects of atorvastatin in comparison with standard care for adults hospitalized with COVID-19. METHODS We conducted a randomized controlled clinical trial on adults hospitalized with COVID-19. Patients were randomized into a treatment group receiving atorvastatin + lopinavir/ritonavir or a control group receiving lopinavir/ritonavir alone. The primary outcome of the trial was the duration of hospitalization. The secondary outcomes were the need for interferon or immunoglobulin, receipt of invasive mechanical ventilation, and O2 saturation (O2sat), and level of C-reactive protein (CRP) which were assessed at the onset of admission and on the 6th day of treatment. RESULTS Forty patients were allocated and enrolled in the study with a 1 to 1 ratio in atorvastatin + lopinavir/ritonavir and lopinavir/ritonavir groups. Clinical and demographic characteristics were similar between the two groups. CRP level was significantly decreased in the lopinavir/ritonavir + atorvastatin group (P < 0.0001, Cohen's d = 0.865) so that there was a significant difference in CRP level on the 6th day between the two groups (P = 0.01). Nevertheless, there was no significant difference in O2sat on day 6. Although the duration of hospitalization in the lopinavir/ritonavir + atorvastatin group was significantly reduced compared to the control group (P = 0.012), there was no significant difference in the invasive mechanical ventilation reception and the need for interferon and immunoglobulin. CONCLUSION Atorvastatin + lopinavir/ritonavir may be more effective than lopinavir/ritonavir in treating COVID-19 adult hospitalized patients.
Collapse
Affiliation(s)
- Lotfollah Davoodi
- Department of Infectious Diseases, School of Medicine, Antimicrobial Resistance Research Center, Communicable Diseases Research Institutes, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamed Jafarpour
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ziaeddin Oladi
- Department of Internal Medicine, School of Medicine, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakaria Zakariaei
- Department of Emergency Medicine, School of Medicine, Orthopedic Research Center, Ghaem Shahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Tabarestani
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Alireza Razavi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Hessami
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
11
|
Bokharee N, Khan YH, Khokhar A, Mallhi TH, Alotaibi NH, Rasheed M. Pharmacological interventions for COVID-19: a systematic review of observational studies and clinical trials. Expert Rev Anti Infect Ther 2021; 19:1219-1244. [PMID: 33719819 DOI: 10.1080/14787210.2021.1902805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Currently, there is no approved therapeutic entity for coronavirus disease 2019 (COVID-19) and clinicians are primarily relying on drug repurposing. However, findings across studies are widely disparate, making it difficult to draw firm conclusions. Since clinicians need accurate evidence to treat COVID-19, this manuscript systematically analyzed the published and ongoing studies evaluating the pharmacological interventions for COVID-19.Areas Covered: A systematic search of observational studies and Clinical Trials on the treatment and prevention of COVID-19 was performed by using various databases from inception to 2 December 2020.Expert Opinion: A total of 460 studies met the inclusion criteria. Of these, 37 were research studies, 386 were ongoing trials, and 37 were completed trials. Anti-virals, steroids, anti-malarial, plasma exchange, and monoclonal antibodies were the most common treatment modalities used alone or in combination in these studies. However, tocilizumab, plasma exchange, and steroids have shown significant improvements in patient's clinical and radiological status. Tocilizumab reported minimum hospital stay of 2 days along with maximum recovery and patient's stability rate. Existing literature demonstrate promising results of tocilizumab, plasma exchange, and steroids among COVID-19 patients. Nevertheless, these studies are accompanied by several methodological disparities which should be considered while interpreting the results.
Collapse
Affiliation(s)
- Nida Bokharee
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Yusra Habib Khan
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Aisha Khokhar
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Tauqeer Hussain Mallhi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Maria Rasheed
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
12
|
Nugrahani I, Parwati RD. Challenges and Progress in Nonsteroidal Anti-Inflammatory Drugs Co-Crystal Development. Molecules 2021; 26:molecules26144185. [PMID: 34299458 PMCID: PMC8303568 DOI: 10.3390/molecules26144185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
Co-crystal innovation is an opportunity in drug development for both scientists and industry. In line with the “green pharmacy” concept for obtaining safer methods and advanced pharmaceutical products, co-crystallization is one of the most promising approaches to find novel patent drugs, including non-steroidal anti-inflammatory drugs (NSAID). This kind of multi-component system improves previously poor physicochemical and mechanical properties through non-covalent interactions. Practically, there are many challenges to find commercially viable co-crystal drugs. The difficulty in selecting co-formers becomes the primary problem, followed by unexpected results, such as decreased solubility and dissolution, spring and parachute effect, microenvironment pH effects, changes in instability, and polymorphisms, which can occur during the co-crystal development. However, over time, NSAID co-crystals have been continuously updated regarding co-formers selection and methods development.
Collapse
|
13
|
Park JJH, Mogg R, Smith GE, Nakimuli-Mpungu E, Jehan F, Rayner CR, Condo J, Decloedt EH, Nachega JB, Reis G, Mills EJ. How COVID-19 has fundamentally changed clinical research in global health. Lancet Glob Health 2021; 9:e711-e720. [PMID: 33865476 PMCID: PMC8049590 DOI: 10.1016/s2214-109x(20)30542-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/07/2023]
Abstract
COVID-19 has had negative repercussions on the entire global population. Despite there being a common goal that should have unified resources and efforts, there have been an overwhelmingly large number of clinical trials that have been registered that are of questionable methodological quality. As the final paper of this Series, we discuss how the medical research community has responded to COVID-19. We recognise the incredible pressure that this pandemic has put on researchers, regulators, and policy makers, all of whom were doing their best to move quickly but safely in a time of tremendous uncertainty. However, the research community's response to the COVID-19 pandemic has prominently highlighted many fundamental issues that exist in clinical trial research under the current system and its incentive structures. The COVID-19 pandemic has not only re-emphasised the importance of well designed randomised clinical trials but also highlighted the need for large-scale clinical trials structured according to a master protocol in a coordinated and collaborative manner. There is also a need for structures and incentives to enable faster data sharing of anonymised datasets, and a need to provide similar opportunities to those in high-income countries for clinical trial research in low-resource regions where clinical trial research receives considerably less research funding.
Collapse
Affiliation(s)
- Jay J H Park
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Robin Mogg
- Bill & Melinda Gates Medical Research Institute, Boston, MA, USA
| | - Gerald E Smith
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | | | - Fyezah Jehan
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Craig R Rayner
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Certara, Princeton, NJ, USA
| | - Jeanine Condo
- School of Public Health, University of Rwanda, Kigali, Rwanda
| | - Eric H Decloedt
- Department of Medicine, Division of Clinical Pharmacology, Stellenbosch University, Cape Town, South Africa
| | - Jean B Nachega
- Department of Medicine and Center for Infectious Diseases, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Department of Epidemiology and Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA; Department of Epidemiology and Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gilmar Reis
- Departamento de Medicina, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil
| | - Edward J Mills
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada; Cytel, Vancouver, BC, Canada; School of Public Health, University of Rwanda, Kigali, Rwanda.
| |
Collapse
|
14
|
Kashour Z, Kashour T, Gerberi D, Tleyjeh IM. Mortality, viral clearance, and other clinical outcomes of hydroxychloroquine in COVID-19 patients: A systematic review and meta-analysis of randomized controlled trials. Clin Transl Sci 2021; 14:1101-1112. [PMID: 33606894 PMCID: PMC8013604 DOI: 10.1111/cts.13001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Many meta-analyses have been published about the efficacy of hydroxychloroquine (HCQ) in coronavirus disease 2019 (COVID-19). Most of them included observational studies, and few have assessed HCQ as a prophylaxis or evaluated its safety profile. We searched multiple databases and preprint servers for randomized controlled trials (RCTs) that assessed HCQ for the treatment or prevention of COVID-19. We summarized the effect of HCQ on mortality, viral clearance, and other clinical outcomes. Out of 768 papers screened, 21 RCTs with a total of 14,138 patients were included. A total of 9 inpatient and 3 outpatient RCTs assessed mortality in 8596 patients with a pooled risk difference of 0.01 (95% confidence interval [CI] 0.00-0.03, I2 = 1%, p = 0.07). Six studies assessed viral clearance at 7 days with a pooled risk ratio (RR) of 1.11 (95% CI 0.86-1.42, I2 = 61%, p = 0.44) and 5 studies at 14 days with a pooled RR of 0.96 (95% CI 0.89-1.04, I2 = 0%, p = 0.34). Several trials showed no significant effect of HCQ on other clinical outcomes and. Five prevention RCTs with 5012 patients found no effect of HCQ on the risk of acquiring COVID-19. Thirteen trials showed that HCQ was associated with increased risk of adverse events. We observed, with high level of certainty of evidence, that HCQ is not effective in reducing mortality in patients with COVID-19. Lower certainty evidence also suggests that HCQ neither improves viral clearance and other clinical outcomes, nor prevents COVID-19 infection in patients with high-risk exposure. HCQ is associated with an increased rate of adverse events.
Collapse
Affiliation(s)
| | - Tarek Kashour
- Department of Cardiac SciencesKing Fahad Cardiac CenterKing Saud University Medical CityRiyadh Saudi Arabia
| | | | - Imad M. Tleyjeh
- Infectious Diseases SectionDepartment of Medical Specialties King Fahad Medical CityRiyadhSaudi Arabia
- Division of Infectious DiseasesMayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
- Division of EpidemiologyMayo Clinic College of Medicine and ScienceRochesterMinnesotaUSA
- College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
| |
Collapse
|
15
|
Chen Y, Li MX, Lu GD, Shen HM, Zhou J. Hydroxychloroquine/Chloroquine as Therapeutics for COVID-19: Truth under the Mystery. Int J Biol Sci 2021; 17:1538-1546. [PMID: 33907517 PMCID: PMC8071775 DOI: 10.7150/ijbs.59547] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
The outbreak of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly evolved into a global pandemic. One major challenge in the battle against this deadly disease is to find effective therapy. Due to the availability and proven clinical record of hydroxychloroquine (HCQ) and chloroquine (CQ) in various human diseases, there have been enormous efforts in repurposing these two drugs as therapeutics for COVID-19. To date, substantial amount of work at cellular, animal models and clinical trials have been performed to verify their therapeutic potential against COVID-19. However, neither lab-based studies nor clinical trials have provided consistent and convincing evidence to support the therapeutic value of HCQ/CQ in the treatment of COVID-19. In this mini review we provide a systematic summary on this important topic and aim to reveal some truth covered by the mystery regarding the therapeutic value of HCQ/CQ in COVID-19.
Collapse
Affiliation(s)
- Yao Chen
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China, 530021
| | - Mei-Xiu Li
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China, 530021
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi Province, China, 530021
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China, 530021.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
16
|
Welte T, Ambrose LJ, Sibbring GC, Sheikh S, Müllerová H, Sabir I. Current evidence for COVID-19 therapies: a systematic literature review. Eur Respir Rev 2021; 30:30/159/200384. [PMID: 33731328 PMCID: PMC9489065 DOI: 10.1183/16000617.0384-2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/10/2021] [Indexed: 01/09/2023] Open
Abstract
Effective therapeutic interventions for the treatment and prevention of coronavirus disease 2019 (COVID-19) are urgently needed. A systematic review was conducted to identify clinical trials of pharmacological interventions for COVID-19 published between 1 December 2019 and 14 October 2020. Data regarding efficacy of interventions, in terms of mortality, hospitalisation and need for ventilation, were extracted from identified studies and synthesised qualitatively. In total, 42 clinical trials were included. Interventions assessed included antiviral, mucolytic, antimalarial, anti-inflammatory and immunomodulatory therapies. Some reductions in mortality, hospitalisation and need for ventilation were seen with interferons and remdesivir, particularly when administered early, and with the mucolytic drug, bromhexine. Most studies of lopinavir/ritonavir and hydroxychloroquine did not show significant efficacy over standard care/placebo. Dexamethasone significantly reduced mortality, hospitalisation and need for ventilation versus standard care, particularly in patients with severe disease. Evidence for other classes of interventions was limited. Many trials had a moderate-to-high risk of bias, particularly in terms of blinding; most were short-term and some included low patient numbers.This review highlights the need for well-designed clinical trials of therapeutic interventions for COVID-19 to increase the quality of available evidence. It also emphasises the importance of tailoring interventions to disease stage and severity for maximum efficacy.
Collapse
Affiliation(s)
- Tobias Welte
- Dept of Pulmonary and Infectious Diseases, Hannover University School of Medicine, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Juul S, Nielsen EE, Feinberg J, Siddiqui F, Jørgensen CK, Barot E, Holgersson J, Nielsen N, Bentzer P, Veroniki AA, Thabane L, Bu F, Klingenberg S, Gluud C, Jakobsen JC. Interventions for treatment of COVID-19: Second edition of a living systematic review with meta-analyses and trial sequential analyses (The LIVING Project). PLoS One 2021; 16:e0248132. [PMID: 33705495 PMCID: PMC7954033 DOI: 10.1371/journal.pone.0248132] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND COVID-19 is a rapidly spreading disease that has caused extensive burden to individuals, families, countries, and the world. Effective treatments of COVID-19 are urgently needed. This is the second edition of a living systematic review of randomized clinical trials assessing the effects of all treatment interventions for participants in all age groups with COVID-19. METHODS AND FINDINGS We planned to conduct aggregate data meta-analyses, trial sequential analyses, network meta-analysis, and individual patient data meta-analyses. Our systematic review was based on PRISMA and Cochrane guidelines, and our eight-step procedure for better validation of clinical significance of meta-analysis results. We performed both fixed-effect and random-effects meta-analyses. Primary outcomes were all-cause mortality and serious adverse events. Secondary outcomes were admission to intensive care, mechanical ventilation, renal replacement therapy, quality of life, and non-serious adverse events. According to the number of outcome comparisons, we adjusted our threshold for significance to p = 0.033. We used GRADE to assess the certainty of evidence. We searched relevant databases and websites for published and unpublished trials until November 2, 2020. Two reviewers independently extracted data and assessed trial methodology. We included 82 randomized clinical trials enrolling a total of 40,249 participants. 81 out of 82 trials were at overall high risk of bias. Meta-analyses showed no evidence of a difference between corticosteroids versus control on all-cause mortality (risk ratio [RR] 0.89; 95% confidence interval [CI] 0.79 to 1.00; p = 0.05; I2 = 23.1%; eight trials; very low certainty), on serious adverse events (RR 0.89; 95% CI 0.80 to 0.99; p = 0.04; I2 = 39.1%; eight trials; very low certainty), and on mechanical ventilation (RR 0.86; 95% CI 0.55 to 1.33; p = 0.49; I2 = 55.3%; two trials; very low certainty). The fixed-effect meta-analyses showed indications of beneficial effects. Trial sequential analyses showed that the required information size for all three analyses was not reached. Meta-analysis (RR 0.93; 95% CI 0.82 to 1.07; p = 0.31; I2 = 0%; four trials; moderate certainty) and trial sequential analysis (boundary for futility crossed) showed that we could reject that remdesivir versus control reduced the risk of death by 20%. Meta-analysis (RR 0.82; 95% CI 0.68 to 1.00; p = 0.05; I2 = 38.9%; four trials; very low certainty) and trial sequential analysis (required information size not reached) showed no evidence of difference between remdesivir versus control on serious adverse events. Fixed-effect meta-analysis showed indications of a beneficial effect of remdesivir on serious adverse events. Meta-analysis (RR 0.40; 95% CI 0.19 to 0.87; p = 0.02; I2 = 0%; two trials; very low certainty) showed evidence of a beneficial effect of intravenous immunoglobulin versus control on all-cause mortality, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm or reject realistic intervention effects. Meta-analysis (RR 0.63; 95% CI 0.35 to 1.14; p = 0.12; I2 = 77.4%; five trials; very low certainty) and trial sequential analysis (required information size not reached) showed no evidence of a difference between tocilizumab versus control on serious adverse events. Fixed-effect meta-analysis showed indications of a beneficial effect of tocilizumab on serious adverse events. Meta-analysis (RR 0.70; 95% CI 0.51 to 0.96; p = 0.02; I2 = 0%; three trials; very low certainty) showed evidence of a beneficial effect of tocilizumab versus control on mechanical ventilation, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm of reject realistic intervention effects. Meta-analysis (RR 0.32; 95% CI 0.15 to 0.69; p < 0.00; I2 = 0%; two trials; very low certainty) showed evidence of a beneficial effect of bromhexine versus standard care on non-serious adverse events, but trial sequential analysis (required information size not reached) showed that the result was severely underpowered to confirm or reject realistic intervention effects. Meta-analyses and trial sequential analyses (boundary for futility crossed) showed that we could reject that hydroxychloroquine versus control reduced the risk of death and serious adverse events by 20%. Meta-analyses and trial sequential analyses (boundary for futility crossed) showed that we could reject that lopinavir-ritonavir versus control reduced the risk of death, serious adverse events, and mechanical ventilation by 20%. All remaining outcome comparisons showed that we did not have enough information to confirm or reject realistic intervention effects. Nine single trials showed statistically significant results on our outcomes, but were underpowered to confirm or reject realistic intervention effects. Due to lack of data, it was not relevant to perform network meta-analysis or possible to perform individual patient data meta-analyses. CONCLUSIONS No evidence-based treatment for COVID-19 currently exists. Very low certainty evidence indicates that corticosteroids might reduce the risk of death, serious adverse events, and mechanical ventilation; that remdesivir might reduce the risk of serious adverse events; that intravenous immunoglobin might reduce the risk of death and serious adverse events; that tocilizumab might reduce the risk of serious adverse events and mechanical ventilation; and that bromhexine might reduce the risk of non-serious adverse events. More trials with low risks of bias and random errors are urgently needed. This review will continuously inform best practice in treatment and clinical research of COVID-19. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020178787.
Collapse
Affiliation(s)
- Sophie Juul
- Copenhagen Trial Unit–Centre for Clinical Intervention Research,
Rigshospitalet, Copenhagen University Hospital, Copenhagen,
Denmark
| | - Emil Eik Nielsen
- Copenhagen Trial Unit–Centre for Clinical Intervention Research,
Rigshospitalet, Copenhagen University Hospital, Copenhagen,
Denmark
- Department of Internal Medicine–Cardiology Section, Holbæk Hospital,
Holbæk, Denmark
| | - Joshua Feinberg
- Copenhagen Trial Unit–Centre for Clinical Intervention Research,
Rigshospitalet, Copenhagen University Hospital, Copenhagen,
Denmark
| | - Faiza Siddiqui
- Copenhagen Trial Unit–Centre for Clinical Intervention Research,
Rigshospitalet, Copenhagen University Hospital, Copenhagen,
Denmark
| | - Caroline Kamp Jørgensen
- Copenhagen Trial Unit–Centre for Clinical Intervention Research,
Rigshospitalet, Copenhagen University Hospital, Copenhagen,
Denmark
| | - Emily Barot
- Copenhagen Trial Unit–Centre for Clinical Intervention Research,
Rigshospitalet, Copenhagen University Hospital, Copenhagen,
Denmark
| | - Johan Holgersson
- Department of Clinical Sciences Lund, Anesthesia & Intensive Care,
Helsingborg Hospital, Lund University, Lund, Sweden
| | - Niklas Nielsen
- Department of Clinical Sciences Lund, Anesthesia & Intensive Care,
Helsingborg Hospital, Lund University, Lund, Sweden
| | - Peter Bentzer
- Department of Clinical Sciences Lund, Anesthesia & Intensive Care,
Helsingborg Hospital, Lund University, Lund, Sweden
| | - Areti Angeliki Veroniki
- Department of Primary Education, School of Education, University of
Ioannina, Ioannina, Greece
- Knowledge Translation Program, Li Ka Shing Knowledge Institute, St.
Michael’s Hospital, Toronto, Ontario, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence, and Impact, McMaster
University, Hamilton, ON, Canada
| | - Fanlong Bu
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese
Medicine, Beijing, China
| | - Sarah Klingenberg
- Copenhagen Trial Unit–Centre for Clinical Intervention Research,
Rigshospitalet, Copenhagen University Hospital, Copenhagen,
Denmark
| | - Christian Gluud
- Copenhagen Trial Unit–Centre for Clinical Intervention Research,
Rigshospitalet, Copenhagen University Hospital, Copenhagen,
Denmark
| | - Janus Christian Jakobsen
- Copenhagen Trial Unit–Centre for Clinical Intervention Research,
Rigshospitalet, Copenhagen University Hospital, Copenhagen,
Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense,
Denmark
| |
Collapse
|
18
|
Bayraktar Y, Özyılmaz A, Toprak M, Işık E, Büyükakın F, Olgun MF. Role of the Health System in Combating Covid-19: Cross-Section Analysis and Artificial Neural Network Simulation for 124 Country Cases. SOCIAL WORK IN PUBLIC HEALTH 2021; 36:178-193. [PMID: 33369535 DOI: 10.1080/19371918.2020.1856750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the fight against Covid-19, developed countries and developing countries diverge in success. This drew attention to the discussion of how different health systems and different levels of health spending are effective in combating Covid-19. In this study, the role of the health system in the fight against Covid-19 is discussed. In this context, the number of hospital beds, the number of doctors, life expectancy at 60, universal health service and the share of health expenditures in GDP were used as health indicators. In the study, firstly 2020 data was estimated by using the Artificial Neural Networks simulation method and this year was used in the analysis. The model, with the data of 124 countries, was estimated using the cross-sectional OLS regression method. The estimation results show that the number of hospital beds, number of doctors and life expectancy at the age of 60 have statistically significant and positive effects on the ratio of Covid-19 recovered/cases. Universal health service and share of health expenditures in GDP are not significant statistically on the cases and recovered. Hospital bed capacity is the most effective variable on the recovered/case ratio.
Collapse
Affiliation(s)
| | | | - Metin Toprak
- Economics, İstanbul Sabahattin Zaim University, İstanbul, Turkey
| | - Esme Işık
- Optician, Turgut Özal University, Malatya, Turkey
| | | | | |
Collapse
|
19
|
Singh B, Ryan H, Kredo T, Chaplin M, Fletcher T. Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19. Cochrane Database Syst Rev 2021; 2:CD013587. [PMID: 33624299 PMCID: PMC8094389 DOI: 10.1002/14651858.cd013587.pub2] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has resulted in substantial mortality. Some specialists proposed chloroquine (CQ) and hydroxychloroquine (HCQ) for treating or preventing the disease. The efficacy and safety of these drugs have been assessed in randomized controlled trials. OBJECTIVES To evaluate the effects of chloroquine (CQ) or hydroxychloroquine (HCQ) for 1) treating people with COVID-19 on death and time to clearance of the virus; 2) preventing infection in people at risk of SARS-CoV-2 exposure; 3) preventing infection in people exposed to SARS-CoV-2. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, Current Controlled Trials (www.controlled-trials.com), and the COVID-19-specific resources www.covid-nma.com and covid-19.cochrane.org, for studies of any publication status and in any language. We performed all searches up to 15 September 2020. We contacted researchers to identify unpublished and ongoing studies. SELECTION CRITERIA We included randomized controlled trials (RCTs) testing chloroquine or hydroxychloroquine in people with COVID-19, people at risk of COVID-19 exposure, and people exposed to COVID-19. Adverse events (any, serious, and QT-interval prolongation on electrocardiogram) were also extracted. DATA COLLECTION AND ANALYSIS Two review authors independently assessed eligibility of search results, extracted data from the included studies, and assessed risk of bias using the Cochrane 'Risk of bias' tool. We contacted study authors for clarification and additional data for some studies. We used risk ratios (RR) for dichotomous outcomes and mean differences (MD) for continuous outcomes, with 95% confidence intervals (CIs). We performed meta-analysis using a random-effects model for outcomes where pooling of effect estimates was appropriate. MAIN RESULTS 1. Treatment of COVID-19 disease We included 12 trials involving 8569 participants, all of whom were adults. Studies were from China (4); Brazil, Egypt, Iran, Spain, Taiwan, the UK, and North America (each 1 study); and a global study in 30 countries (1 study). Nine were in hospitalized patients, and three from ambulatory care. Disease severity, prevalence of comorbidities, and use of co-interventions varied substantially between trials. We found potential risks of bias across all domains for several trials. Nine trials compared HCQ with standard care (7779 participants), and one compared HCQ with placebo (491 participants); dosing schedules varied. HCQ makes little or no difference to death due to any cause (RR 1.09, 95% CI 0.99 to 1.19; 8208 participants; 9 trials; high-certainty evidence). A sensitivity analysis using modified intention-to-treat results from three trials did not influence the pooled effect estimate. HCQ may make little or no difference to the proportion of people having negative PCR for SARS-CoV-2 on respiratory samples at day 14 from enrolment (RR 1.00, 95% CI 0.91 to 1.10; 213 participants; 3 trials; low-certainty evidence). HCQ probably results in little to no difference in progression to mechanical ventilation (RR 1.11, 95% CI 0.91 to 1.37; 4521 participants; 3 trials; moderate-certainty evidence). HCQ probably results in an almost three-fold increased risk of adverse events (RR 2.90, 95% CI 1.49 to 5.64; 1394 participants; 6 trials; moderate-certainty evidence), but may make little or no difference to the risk of serious adverse events (RR 0.82, 95% CI 0.37 to 1.79; 1004 participants; 6 trials; low-certainty evidence). We are very uncertain about the effect of HCQ on time to clinical improvement or risk of prolongation of QT-interval on electrocardiogram (very low-certainty evidence). One trial (22 participants) randomized patients to CQ versus lopinavir/ritonavir, a drug with unknown efficacy against SARS-CoV-2, and did not report any difference for clinical recovery or adverse events. One trial compared HCQ combined with azithromycin against standard care (444 participants). This trial did not detect a difference in death, requirement for mechanical ventilation, length of hospital admission, or serious adverse events. A higher risk of adverse events was reported in the HCQ-and-azithromycin arm; this included QT-interval prolongation, when measured. One trial compared HCQ with febuxostat, another drug with unknown efficacy against SARS-CoV-2 (60 participants). There was no difference detected in risk of hospitalization or change in computed tomography (CT) scan appearance of the lungs; no deaths were reported. 2. Preventing COVID-19 disease in people at risk of exposure to SARS-CoV-2 Ongoing trials are yet to report results for this objective. 3. Preventing COVID-19 disease in people who have been exposed to SARS-CoV-2 One trial (821 participants) compared HCQ with placebo as a prophylactic agent in the USA (around 90% of participants) and Canada. Asymptomatic adults (66% healthcare workers; mean age 40 years; 73% without comorbidity) with a history of exposure to people with confirmed COVID-19 were recruited. We are very uncertain about the effect of HCQ on the primary outcomes, for which few events were reported: 20/821 (2.4%) developed confirmed COVID-19 at 14 days from enrolment, and 2/821 (0.2%) were hospitalized due to COVID-19 (very low-certainty evidence). HCQ probably increases the risk of adverse events compared with placebo (RR 2.39, 95% CI 1.83 to 3.11; 700 participants; 1 trial; moderate-certainty evidence). HCQ may result in little or no difference in serious adverse events (no RR: no participants experienced serious adverse events; low-certainty evidence). One cluster-randomized trial (2525 participants) compared HCQ with standard care for the prevention of COVID-19 in people with a history of exposure to SARS-CoV-2 in Spain. Most participants were working or residing in nursing homes; mean age was 49 years. There was no difference in the risk of symptomatic confirmed COVID-19 or production of antibodies to SARS-CoV-2 between the two study arms. AUTHORS' CONCLUSIONS HCQ for people infected with COVID-19 has little or no effect on the risk of death and probably no effect on progression to mechanical ventilation. Adverse events are tripled compared to placebo, but very few serious adverse events were found. No further trials of hydroxychloroquine or chloroquine for treatment should be carried out. These results make it less likely that the drug is effective in protecting people from infection, although this is not excluded entirely. It is probably sensible to complete trials examining prevention of infection, and ensure these are carried out to a high standard to provide unambiguous results.
Collapse
Affiliation(s)
- Bhagteshwar Singh
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Diseases Unit, Royal Liverpool University Hospital, Liverpool, UK
- Department of Infectious Diseases, Christian Medical College, Vellore, India
| | - Hannah Ryan
- Department of Clinical Pharmacology, Royal Liverpool University Hospital, Liverpool, UK
| | - Tamara Kredo
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
| | - Marty Chaplin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tom Fletcher
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
20
|
Juul S, Nielsen EE, Feinberg J, Siddiqui F, Jørgensen CK, Barot E, Nielsen N, Bentzer P, Veroniki AA, Thabane L, Bu F, Klingenberg S, Gluud C, Jakobsen JC. Interventions for treatment of COVID-19: A living systematic review with meta-analyses and trial sequential analyses (The LIVING Project). PLoS Med 2020; 17:e1003293. [PMID: 32941437 PMCID: PMC7498193 DOI: 10.1371/journal.pmed.1003293] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a rapidly spreading disease that has caused extensive burden to individuals, families, countries, and the world. Effective treatments of COVID-19 are urgently needed. METHODS AND FINDINGS This is the first edition of a living systematic review of randomized clinical trials comparing the effects of all treatment interventions for participants in all age groups with COVID-19. We planned to conduct aggregate data meta-analyses, trial sequential analyses, network meta-analysis, and individual patient data meta-analyses. Our systematic review is based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) and Cochrane guidelines, and our 8-step procedure for better validation of clinical significance of meta-analysis results. We performed both fixed-effect and random-effects meta-analyses. Primary outcomes were all-cause mortality and serious adverse events. Secondary outcomes were admission to intensive care, mechanical ventilation, renal replacement therapy, quality of life, and nonserious adverse events. We used Grading of Recommendations Assessment, Development and Evaluation (GRADE) to assess the certainty of evidence. We searched relevant databases and websites for published and unpublished trials until August 7, 2020. Two reviewers independently extracted data and assessed trial methodology. We included 33 randomized clinical trials enrolling a total of 13,312 participants. All trials were at overall high risk of bias. We identified one trial randomizing 6,425 participants to dexamethasone versus standard care. This trial showed evidence of a beneficial effect of dexamethasone on all-cause mortality (rate ratio 0.83; 95% confidence interval [CI] 0.75-0.93; p < 0.001; low certainty) and on mechanical ventilation (risk ratio [RR] 0.77; 95% CI 0.62-0.95; p = 0.021; low certainty). It was possible to perform meta-analysis of 10 comparisons. Meta-analysis showed no evidence of a difference between remdesivir versus placebo on all-cause mortality (RR 0.74; 95% CI 0.40-1.37; p = 0.34, I2 = 58%; 2 trials; very low certainty) or nonserious adverse events (RR 0.94; 95% CI 0.80-1.11; p = 0.48, I2 = 29%; 2 trials; low certainty). Meta-analysis showed evidence of a beneficial effect of remdesivir versus placebo on serious adverse events (RR 0.77; 95% CI 0.63-0.94; p = 0.009, I2 = 0%; 2 trials; very low certainty) mainly driven by respiratory failure in one trial. Meta-analyses and trial sequential analyses showed that we could exclude the possibility that hydroxychloroquine versus standard care reduced the risk of all-cause mortality (RR 1.07; 95% CI 0.97-1.19; p = 0.17; I2 = 0%; 7 trials; low certainty) and serious adverse events (RR 1.07; 95% CI 0.96-1.18; p = 0.21; I2 = 0%; 7 trials; low certainty) by 20% or more, and meta-analysis showed evidence of a harmful effect on nonserious adverse events (RR 2.40; 95% CI 2.01-2.87; p < 0.00001; I2 = 90%; 6 trials; very low certainty). Meta-analysis showed no evidence of a difference between lopinavir-ritonavir versus standard care on serious adverse events (RR 0.64; 95% CI 0.39-1.04; p = 0.07, I2 = 0%; 2 trials; very low certainty) or nonserious adverse events (RR 1.14; 95% CI 0.85-1.53; p = 0.38, I2 = 75%; 2 trials; very low certainty). Meta-analysis showed no evidence of a difference between convalescent plasma versus standard care on all-cause mortality (RR 0.60; 95% CI 0.33-1.10; p = 0.10, I2 = 0%; 2 trials; very low certainty). Five single trials showed statistically significant results but were underpowered to confirm or reject realistic intervention effects. None of the remaining trials showed evidence of a difference on our predefined outcomes. Because of the lack of relevant data, it was not possible to perform other meta-analyses, network meta-analysis, or individual patient data meta-analyses. The main limitation of this living review is the paucity of data currently available. Furthermore, the included trials were all at risks of systematic errors and random errors. CONCLUSIONS Our results show that dexamethasone and remdesivir might be beneficial for COVID-19 patients, but the certainty of the evidence was low to very low, so more trials are needed. We can exclude the possibility of hydroxychloroquine versus standard care reducing the risk of death and serious adverse events by 20% or more. Otherwise, no evidence-based treatment for COVID-19 currently exists. This review will continuously inform best practice in treatment and clinical research of COVID-19.
Collapse
Affiliation(s)
- Sophie Juul
- Copenhagen Trial Unit–Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emil Eik Nielsen
- Copenhagen Trial Unit–Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Internal Medicine–Cardiology Section, Holbæk Hospital, Holbæk, Denmark
| | - Joshua Feinberg
- Copenhagen Trial Unit–Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Faiza Siddiqui
- Copenhagen Trial Unit–Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Caroline Kamp Jørgensen
- Copenhagen Trial Unit–Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emily Barot
- Copenhagen Trial Unit–Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niklas Nielsen
- Lund University, Helsingborg Hospital, Department of Clinical Sciences Lund, Anesthesia & Intensive Care, Lund, Sweden
| | - Peter Bentzer
- Lund University, Helsingborg Hospital, Department of Clinical Sciences Lund, Anesthesia & Intensive Care, Lund, Sweden
| | - Areti Angeliki Veroniki
- Department of Primary Education, School of Education, University of Ioannina, Ioannina, Greece
- Knowledge Translation Program, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Fanlong Bu
- Centre for Evidence-based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Sarah Klingenberg
- Copenhagen Trial Unit–Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Gluud
- Copenhagen Trial Unit–Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Janus Christian Jakobsen
- Copenhagen Trial Unit–Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
21
|
Rai SN, Qian C, Pan J, Seth A, Srivastava DK, Bhatnagar A. Statistical design of Phase II/III clinical trials for testing therapeutic interventions in COVID-19 patients. BMC Med Res Methodol 2020. [PMID: 32867708 DOI: 10.21203/rs.3.rs-30558/v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Because of unknown features of the COVID-19 and the complexity of the population affected, standard clinical trial designs on treatments may not be optimal in such patients. We propose two independent clinical trials designs based on careful grouping of patient and outcome measures. METHODS Using the World Health Organization ordinal scale on patient status, we classify treatable patients (Stages 3-7) into two risk groups. Patients in Stages 3, 4 and 5 are categorized as the intermediate-risk group, while patients in Stages 6 and 7 are categorized as the high-risk group. To ensure that an intervention, if deemed efficacious, is promptly made available to vulnerable patients, we propose a group sequential design incorporating four factors stratification, two interim analyses, and a toxicity monitoring rule for the intermediate-risk group. The primary response variable (binary variable) is based on the proportion of patients discharged from hospital by the 15th day. The goal is to detect a significant improvement in this response rate. For the high-risk group, we propose a group sequential design incorporating three factors stratification, and two interim analyses, with no toxicity monitoring. The primary response variable for this design is 30 day mortality, with the goal of detecting a meaningful reduction in mortality rate. RESULTS Required sample size and toxicity boundaries are calculated for each scenario. Sample size requirements for designs with interim analyses are marginally greater than ones without. In addition, for both the intermediate-risk group and the high-risk group, the required sample size with two interim analyses is almost identical to analyses with just one interim analysis. CONCLUSIONS We recommend using a binary outcome with composite endpoints for patients in Stage 3, 4 or 5 with a power of 90% to detect an improvement of 20% in the response rate, and a 30 day mortality rate outcome for those in Stage 6 or 7 with a power of 90% to detect 15% (effect size) reduction in mortality rate. For the intermediate-risk group, two interim analyses for efficacy evaluation along with toxicity monitoring are encouraged. For the high-risk group, two interim analyses without toxicity monitoring is advised.
Collapse
Affiliation(s)
- Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Biostatistics and Bioinformatics, University of Louisville, Louisville, KY, 40202, USA.
| | - Chen Qian
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Biostatistics and Bioinformatics, University of Louisville, Louisville, KY, 40202, USA
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Anand Seth
- SK Patent Associates, LLC, Dublin, OH, 43016, USA
| | - Deo Kumar Srivastava
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Aruni Bhatnagar
- Department of Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
22
|
Rai SN, Qian C, Pan J, Seth A, Srivastava DK, Bhatnagar A. Statistical design of Phase II/III clinical trials for testing therapeutic interventions in COVID-19 patients. BMC Med Res Methodol 2020; 20:220. [PMID: 32867708 PMCID: PMC7456751 DOI: 10.1186/s12874-020-01101-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Because of unknown features of the COVID-19 and the complexity of the population affected, standard clinical trial designs on treatments may not be optimal in such patients. We propose two independent clinical trials designs based on careful grouping of patient and outcome measures. METHODS Using the World Health Organization ordinal scale on patient status, we classify treatable patients (Stages 3-7) into two risk groups. Patients in Stages 3, 4 and 5 are categorized as the intermediate-risk group, while patients in Stages 6 and 7 are categorized as the high-risk group. To ensure that an intervention, if deemed efficacious, is promptly made available to vulnerable patients, we propose a group sequential design incorporating four factors stratification, two interim analyses, and a toxicity monitoring rule for the intermediate-risk group. The primary response variable (binary variable) is based on the proportion of patients discharged from hospital by the 15th day. The goal is to detect a significant improvement in this response rate. For the high-risk group, we propose a group sequential design incorporating three factors stratification, and two interim analyses, with no toxicity monitoring. The primary response variable for this design is 30 day mortality, with the goal of detecting a meaningful reduction in mortality rate. RESULTS Required sample size and toxicity boundaries are calculated for each scenario. Sample size requirements for designs with interim analyses are marginally greater than ones without. In addition, for both the intermediate-risk group and the high-risk group, the required sample size with two interim analyses is almost identical to analyses with just one interim analysis. CONCLUSIONS We recommend using a binary outcome with composite endpoints for patients in Stage 3, 4 or 5 with a power of 90% to detect an improvement of 20% in the response rate, and a 30 day mortality rate outcome for those in Stage 6 or 7 with a power of 90% to detect 15% (effect size) reduction in mortality rate. For the intermediate-risk group, two interim analyses for efficacy evaluation along with toxicity monitoring are encouraged. For the high-risk group, two interim analyses without toxicity monitoring is advised.
Collapse
Affiliation(s)
- Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
- Department of Biostatistics and Bioinformatics, University of Louisville, Louisville, KY, 40202, USA.
| | - Chen Qian
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
- Department of Biostatistics and Bioinformatics, University of Louisville, Louisville, KY, 40202, USA
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Anand Seth
- SK Patent Associates, LLC, Dublin, OH, 43016, USA
| | - Deo Kumar Srivastava
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Aruni Bhatnagar
- Department of Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
23
|
Siemieniuk RA, Bartoszko JJ, Zeraatkar D, Kum E, Qasim A, Martinez JPD, Izcovich A, Lamontagne F, Han MA, Agarwal A, Agoritsas T, Azab M, Bravo G, Chu DK, Couban R, Devji T, Escamilla Z, Foroutan F, Gao Y, Ge L, Ghadimi M, Heels-Ansdell D, Honarmand K, Hou L, Ibrahim Q, Khamis A, Lam B, Mansilla C, Loeb M, Miroshnychenko A, Marcucci M, McLeod SL, Motaghi S, Murthy S, Mustafa RA, Pardo-Hernandez H, Rada G, Rizwan Y, Saadat P, Switzer C, Thabane L, Tomlinson G, Vandvik PO, Vernooij RW, Viteri-García A, Wang Y, Yao L, Zhao Y, Guyatt GH, Brignardello-Petersen R. Drug treatments for covid-19: living systematic review and network meta-analysis. BMJ 2020; 370:m2980. [PMID: 32732190 PMCID: PMC7390912 DOI: 10.1136/bmj.m2980] [Citation(s) in RCA: 516] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To compare the effects of treatments for coronavirus disease 2019 (covid-19). DESIGN Living systematic review and network meta-analysis. DATA SOURCES WHO covid-19 database, a comprehensive multilingual source of global covid-19 literature, up to 3 December 2021 and six additional Chinese databases up to 20 February 2021. Studies identified as of 1 December 2021 were included in the analysis. STUDY SELECTION Randomised clinical trials in which people with suspected, probable, or confirmed covid-19 were randomised to drug treatment or to standard care or placebo. Pairs of reviewers independently screened potentially eligible articles. METHODS After duplicate data abstraction, a bayesian network meta-analysis was conducted. Risk of bias of the included studies was assessed using a modification of the Cochrane risk of bias 2.0 tool, and the certainty of the evidence using the grading of recommendations assessment, development, and evaluation (GRADE) approach. For each outcome, interventions were classified in groups from the most to the least beneficial or harmful following GRADE guidance. RESULTS 463 trials enrolling 166 581 patients were included; 267 (57.7%) trials and 89 814 (53.9%) patients are new from the previous iteration; 265 (57.2%) trials evaluating treatments with at least 100 patients or 20 events met the threshold for inclusion in the analyses. Compared with standard care, three drugs reduced mortality in patients with mostly severe disease with at least moderate certainty: systemic corticosteroids (risk difference 23 fewer per 1000 patients, 95% credible interval 40 fewer to 7 fewer, moderate certainty), interleukin-6 receptor antagonists when given with corticosteroids (23 fewer per 1000, 36 fewer to 7 fewer, moderate certainty), and Janus kinase inhibitors (44 fewer per 1000, 64 fewer to 20 fewer, high certainty). Compared with standard care, two drugs probably reduce hospital admission in patients with non-severe disease: nirmatrelvir/ritonavir (36 fewer per 1000, 41 fewer to 26 fewer, moderate certainty) and molnupiravir (19 fewer per 1000, 29 fewer to 5 fewer, moderate certainty). Remdesivir may reduce hospital admission (29 fewer per 1000, 40 fewer to 6 fewer, low certainty). Only molnupiravir had at least moderate quality evidence of a reduction in time to symptom resolution (3.3 days fewer, 4.8 fewer to 1.6 fewer, moderate certainty); several others showed a possible benefit. Several drugs may increase the risk of adverse effects leading to drug discontinuation; hydroxychloroquine probably increases the risk of mechanical ventilation (moderate certainty). CONCLUSION Corticosteroids, interleukin-6 receptor antagonists, and Janus kinase inhibitors probably reduce mortality and confer other important benefits in patients with severe covid-19. Molnupiravir and nirmatrelvir/ritonavir probably reduce admission to hospital in patients with non-severe covid-19. SYSTEMATIC REVIEW REGISTRATION This review was not registered. The protocol is publicly available in the supplementary material. READERS' NOTE This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This is the fifth version of the original article published on 30 July 2020 (BMJ 2020;370:m2980), and previous versions can be found as data supplements. When citing this paper please consider adding the version number and date of access for clarity.
Collapse
Affiliation(s)
- Reed Ac Siemieniuk
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Joint first authors
| | - Jessica J Bartoszko
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Joint first authors
| | - Dena Zeraatkar
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Joint first authors
| | - Elena Kum
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Anila Qasim
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Juan Pablo Díaz Martinez
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Ariel Izcovich
- Servicio de Clinica Médica del Hospital Alemán, Buenos Aires, Argentina
| | - Francois Lamontagne
- Department of Medicine and Centre de recherche du CHU de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mi Ah Han
- Department of Preventive Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Arnav Agarwal
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Thomas Agoritsas
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Division of General Internal Medicine & Division of Clinical Epidemiology, University Hospitals of Geneva, Geneva, Switzerland
| | - Maria Azab
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Gonzalo Bravo
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Derek K Chu
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Rachel Couban
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Tahira Devji
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Zaira Escamilla
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Farid Foroutan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Ted Rogers Center for Heart Research, Toronto General Hospital, ON, Canada
| | - Ya Gao
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Long Ge
- Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
- Joint first authors
| | - Maryam Ghadimi
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Diane Heels-Ansdell
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Kimia Honarmand
- Department of Medicine, Western University, London, ON, Canada
| | - Liangying Hou
- Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Quazi Ibrahim
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Assem Khamis
- Wolfson Palliative Care Research Centre, Hull York Medical School, Hull, UK
| | - Bonnie Lam
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Christian Mansilla
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Mark Loeb
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Anna Miroshnychenko
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Maura Marcucci
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Shelley L McLeod
- Schwartz/Reisman Emergency Medicine Institute, Sinai Health, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Sharhzad Motaghi
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Srinivas Murthy
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Reem A Mustafa
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Hector Pardo-Hernandez
- Iberoamerican Cochrane Centre, Sant Pau Biomedical Research Institute (IIB Sant Pau), Barcelona, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Gabriel Rada
- Epistemonikos Foundation, Santiago, Chile
- UC Evidence Center, Cochrane Chile Associated Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yamna Rizwan
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Pakeezah Saadat
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Charlotte Switzer
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Lehana Thabane
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - George Tomlinson
- Department of Medicine, University Health Network, Toronto, ON, Canada
| | | | - Robin Wm Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Andrés Viteri-García
- Epistemonikos Foundation, Santiago, Chile
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Ying Wang
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Liang Yao
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Yunli Zhao
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| | - Gordon H Guyatt
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Romina Brignardello-Petersen
- Department of Health Research Methods, Evidence, and Impact, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|