1
|
Noureldein M, Grigorakis S, Kellil A, Nenadis N. White rice enrichment with phenols upon cooking in olive leaf infusion: a preliminary study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7403-7410. [PMID: 37384660 DOI: 10.1002/jsfa.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND White rice is poor in health-promoting phytochemicals; therefore, the production of a phenol-enriched commodity is highly desirable. Recent findings on its enrichment via cooking in plant extracts are promising, yet studies employing aqueous extracts of olive leaves (OLs), containing well-recognized bioactive phenols (e.g. oleuropein) are absent. In addition, little is known about the levels of phenols that are maintained after rice drying and rehydration, an important aspect for the future design of 'ready-to-eat' functional rice. RESULTS The examination, for the first time, of white rice adsorption capacity of phenols from OLs upon cooking in infusions containing different levels of phenols, after freeze-drying and rehydration, showed the following: (i) the total phenol content, the antioxidant activity (assessed via 2,2-diphenyl-1-picrylhydrazyl radical and ferric reducing antioxidant power assays), the oleuropein and luteolin-7-O-glucoside levels increased dose dependently; (ii) upon rehydration, the average decrease of total phenol content and antioxidant activity values was significantly lower when an exact volume of water was used compared with an excess (~10% versus 63%). A similar trend was observed for oleuropein (36% versus 83%) and the luteolin-7-O-glucoside (24 versus 82%) levels; (iii) the dried enriched kernels were less bright with a hay-yellow hue (CIELab coordinates). CONCLUSION White rice enrichment with biophenols from OLs, a by-product of olive tree cultivation, was successful using a simple approach. Despite leaching upon freeze-drying/rehydration, sufficient amounts were maintained to obtain a functional rice that could serve as an alternative dietary source of OLs phenols to non-traditional olive tree product consumers or those refraining from sodium and fats. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mai Noureldein
- Department of Food Quality & Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (M. A. I. Ch.), International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), Chania, Greece
| | - Spyros Grigorakis
- Department of Food Quality & Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (M. A. I. Ch.), International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), Chania, Greece
| | - Abdessamie Kellil
- Department of Food Quality & Chemistry of Natural Products, Mediterranean Agronomic Institute of Chania (M. A. I. Ch.), International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM), Chania, Greece
| | - Nikolaos Nenadis
- Laboratory of Food Chemistry and Technology, Aristotle University of Thessaloniki, School of Chemistry, Thessaloniki, Greece
| |
Collapse
|
2
|
A Review of the Effects of Olive Oil-Cooking on Phenolic Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030661. [PMID: 35163926 PMCID: PMC8838846 DOI: 10.3390/molecules27030661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
Abstract
The fate of phenolic compounds in oil and food during cooking vary according to the type of cooking. From a nutritional point of view, reviews largely suggest a preference for using extra-virgin olive oil at a low temperature for a short time, except for frying and microwaving, for which there appears to be no significant advantages compared to olive oil. However, due to the poorly pertinent use of terminology, the different protocols adopted in studies aimed at the same objective, the different type and quality of oils used in experiments, and the different quality and quantity of PC present in the used oils and in the studied vegetables, the evidence available is mainly contradictory. This review tries to reanalyse the main experimental reports on the fate, accessibility and bioavailability of phenolic compounds in cooking oils and cooked vegetables, by considering different cooking techniques and types of oil and foods, and distinguishing experimental findings obtained using oil alone from those in combination with vegetables. The re-analysis indicates that incomplete and contradictory observations have been published in the last few years and suggests that further research is necessary to clarify the impact of cooking techniques on the phenolic compounds in oil and vegetables during cooking, especially when considering their nutritional properties.
Collapse
|
3
|
Difonzo G, Squeo G, Pasqualone A, Summo C, Paradiso VM, Caponio F. The challenge of exploiting polyphenols from olive leaves: addition to foods to improve their shelf-life and nutritional value. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3099-3116. [PMID: 33275783 DOI: 10.1002/jsfa.10986] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/18/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Olive leaves represent a waste from the olive oil industry which can be reused as source of polyphenols. The most representative phenolic compound of olive leaves is the secoiridoid oleuropein, followed by verbascoside, apigenin-7-O-glucoside, luteolin-7-O-glucoside, and simple phenols. The attention towards these compounds derives above all from the large number of studies demonstrating their beneficial effect on health, in fact olive leaves have been widely used in folk medicine in the Mediterranean regions. Moreover, the growing demand from consumers to replace the synthetic antioxidants, led researchers to conduct studies on the addition of plant bioactives in foods to improve their shelf-life and/or to obtain functional products. The current study overviews the findings on the addition of polyphenol-rich olive leaf extract (OLE) to foods. In particular, the effect of OLE addition on the antioxidant, microbiological and nutritional properties of different foods is examined. Most studies have highlighted the antioxidant effect of OLE in different food matrices, such as oils, meat, baked goods, vegetables, and dairy products. Furthermore, the antimicrobial activity of OLE has been observed in meat and vegetable foods, highlighting the potential of OLE as a replacer of synthetic preservatives. Finally, several authors studied the effect of OLE addition with the aim of improving the nutritional properties of vegetable products, tea, milk, meat and biscuits. Advantages and drawbacks of the different use of OLE were reported and discussed. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Vito M Paradiso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
Wu G, Chang C, Hong C, Zhang H, Huang J, Jin Q, Wang X. Phenolic compounds as stabilizers of oils and antioxidative mechanisms under frying conditions: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Ramírez-Anaya JDP, Castañeda-Saucedo MC, Olalla-Herrera M, Villalón-Mir M, Serrana HLGDL, Samaniego-Sánchez C. Changes in the Antioxidant Properties of Extra Virgin Olive Oil after Cooking Typical Mediterranean Vegetables. Antioxidants (Basel) 2019; 8:E246. [PMID: 31357494 PMCID: PMC6719931 DOI: 10.3390/antiox8080246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil (EVOO), water, and a water/oil mixture (W/O) were used for frying, boiling and sautéeing Mediterranean vegetables (potato, pumpkin, tomato and eggplant). Differences in antioxidant capacity (AC) (2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric iron (FRAP), 2,2-azinobis-(3-ethylbensothiazoline)-6-sulphonic acid (ABTS)), total phenolic content (TPC) and individual phenols (high-performance liquid chromatography (HPLC)) in unused and used EVOO and water were determined. The water used to boil tomatoes showed the highest TPC value, whilst the lowest was found in the EVOO from the W/O used for boiling potatoes. After processing, the concentrations of phenols exclusive to EVOO diminished to different extents. There was a greater transfer of phenols from the vegetable to the oil when eggplant, tomato and pumpkin were cooked. W/O boiling enriched the water for most of the phenols analysed, such as chlorogenic acid and phenols exclusive to EVOO. The values of AC decreased or were maintained when fresh oil was used to cook the vegetables (raw > frying > sautéing > boiling). The water fraction was enriched in 6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid (Trolox) equivalents following boiling, though to a greater extent when EVOO was added. Phenolic content and AC of EVOO decreased after cooking Mediterranean diet vegetables. Further, water was enriched after the boiling processes, particularly when oil was included.
Collapse
Affiliation(s)
- Jessica Del Pilar Ramírez-Anaya
- Department of Nutrition and Bromatology, Pharmacy Faculty UGR, Campus Cartuja s/n, C.P. 10871 Granada, Spain
- Department of Computational Sciences and Technological Innovation, Centro Universitario del Sur (UdeG), Av. Enrique Arreola Silva 883, Ciudad Guzmán C.P. 49000, Jalisco, México
| | - Ma Claudia Castañeda-Saucedo
- Department of Nature Sciences, Centro Universitario del Sur (UdeG), Av. Enrique Arreola Silva 883, Ciudad Guzmán C.P. 49000, Jalisco, Mexico
| | - Manuel Olalla-Herrera
- Department of Nutrition and Bromatology, Pharmacy Faculty UGR, Campus Cartuja s/n, C.P. 10871 Granada, Spain
| | - Marina Villalón-Mir
- Department of Nutrition and Bromatology, Pharmacy Faculty UGR, Campus Cartuja s/n, C.P. 10871 Granada, Spain
| | | | - Cristina Samaniego-Sánchez
- Department of Nutrition and Bromatology, Pharmacy Faculty UGR, Campus Cartuja s/n, C.P. 10871 Granada, Spain.
| |
Collapse
|
6
|
Monitoring of Chlorogenic Acid and Antioxidant Capacity of Solanum melongena L. (Eggplant) under Different Heat and Storage Treatments. Antioxidants (Basel) 2019; 8:antiox8070234. [PMID: 31330814 PMCID: PMC6680626 DOI: 10.3390/antiox8070234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
Solanum melongena L., also known as eggplant, is a widely consumed vegetable and it is well-known for its beneficial antioxidant properties, due to phenolic compounds. In this work, the influence of different cooking procedures on the content of chlorogenic acid was evaluated on eggplant samples of different geographic origin by high-performance liquid chromatography (HPLC). An easy and quick extraction procedure with 50% methanol as the extraction solvent was optimized for the first time by means of a design-of-experiment and applied to heat treated samples of eggplant. The antioxidant capacity of eggplant extracts was also evaluated by using the ABTS assay and it was correlated with the data obtained by the HPLC method. The content of chlorogenic acid was different in each heat-treated eggplant sample and it depended on the temperature applied during the cooking procedure. In particular, an increase of chlorogenic acid content with rising temperature was observed. Conversely, a very high temperature (250 °C) caused a decrease of chlorogenic acid amount. The influence of storage on the content of chlorogenic acid was also monitored. While the level of chlorogenic acid in fresh samples decreased during four weeks of storage, an increase in its content in heat treated eggplant was observed within the same period. Multivariate data analysis was used to classify eggplant samples into different groups, according to the country of origin and heat treatment procedure. This study provides new insights to preserve the antioxidant properties of eggplant phenolics during different thermal and storage treatments in order to highlight their health promoting effects.
Collapse
|
7
|
Sadgrove NJ. The new paradigm for androgenetic alopecia and plant-based folk remedies: 5α-reductase inhibition, reversal of secondary microinflammation and improving insulin resistance. JOURNAL OF ETHNOPHARMACOLOGY 2018; 227:206-236. [PMID: 30195058 DOI: 10.1016/j.jep.2018.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/05/2018] [Accepted: 09/04/2018] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Research in the past half a century has gradually sketched the biological mechanism leading to androgenetic alopecia (AGA). Until recently the aetiological paradigm has been too limited to enable intelligent commentary on the use of folk remedies to treat or reduce the expression of this condition. However, our understanding is now at a point where we can describe how some folk remedies work, predict how effective they will be or why they fail. RESULTS The new paradigm of AGA is that inheritance and androgens (dihydrotestosterone) are the primary contributors and a secondary pathology, microinflammation, reinforces the process at more advanced stages of follicular miniaturisation. The main protagonist to microinflammation is believed to be microbial or Demodex over-colonisation of the infundibulum of the pilosebaceous unit, which can be ameliorated by antimicrobial/acaricidal or anti-inflammatory therapies that are used as adjuvants to androgen dependent treatments (either synthetic or natural). Furthermore, studies reveal that suboptimal androgen metabolism occurs in both AGA and insulin resistance (low SHBG or high DHT), suggesting comorbidity. Both can be ameliorated by dietary phytochemicals, such as specific classes of phenols (isoflavones, phenolic methoxy abietanes, hydroxylated anthraquinones) or polycyclic triterpenes (sterols, lupanes), by dual inhibition of key enzymes in AGA (5α-reductase) and insulin resistance (ie., DPP-4 or PTP1B) or agonism of nuclear receptors (PPARγ). Evidence strongly indicates that some plant-based folk remedies can ameliorate both primary and secondary aetiological factors in AGA and improve insulin resistance, or act merely as successful adjuvants to mainstream androgen dependent therapies. CONCLUSION Thus, if AGA is viewed as an outcome of primary and secondary factors, then it is better that a 'multimodal' or 'umbrella' approach, to achieve cessation and/or reversal, is put into practice, using complementation of chemical species (isoflavones, anthraquinones, procyanidins, triterpenes, saponins and hydrogen sulphide prodrugs), thereby targeting multiple 'factors'.
Collapse
|
8
|
Raczyk M, Bonte A, Matthäus B, Rudzińska M. Impact of Added Phytosteryl/Phytostanyl Fatty Acid Esters on Chemical Parameters of Margarines upon Heating and Pan-Frying. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marianna Raczyk
- Faculty of Food Sciences and Nutrition Poznań University of Life Sciences; 60-624 Poznań Poland
| | - Anja Bonte
- Department for Safety and Quality of Cereals Max Rubner-Institut (MRI) Federal Research Institute for Nutrition and Food; 32756 Detmold Germany
| | - Bertrand Matthäus
- Department for Safety and Quality of Cereals Max Rubner-Institut (MRI) Federal Research Institute for Nutrition and Food; 32756 Detmold Germany
| | - Magdalena Rudzińska
- Faculty of Food Sciences and Nutrition Poznań University of Life Sciences; 60-624 Poznań Poland
| |
Collapse
|
9
|
Chiou A, Kalogeropoulos N. Virgin Olive Oil as Frying Oil. Compr Rev Food Sci Food Saf 2017; 16:632-646. [PMID: 33371562 DOI: 10.1111/1541-4337.12268] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/06/2023]
Abstract
Frying is one of the oldest cooking procedures and is still among the most popular ones for food preparation. Due to their unique sensory characteristics, fried foods are consumed often and with pleasure. During frying, part of the oil is absorbed by the food, thereby becoming part of our diet; most interestingly, in the Mediterranean area approximately 50% of total fat intake is provided by cooking fats. Olive oil is the key lipid component of the Mediterranean diet, the health-promoting effects of which have been largely attributed to olive oil intake. Olive oil is unique among vegetable oils due to its desirable lipid profile and some of its minor components. Scientific evidence now indicates that during frying olive oil behavior is usually equal or superior to that of refined vegetable oils. Herein, an overview of virgin olive oil performance under frying is given, with special reference to the fate of olive oil microconstituents. The compositional changes of foods fried in olive oil are also reviewed and discussed in detail.
Collapse
Affiliation(s)
- Antonia Chiou
- Laboratory of Chemistry - Biochemistry - Physical Chemistry of Foods, Dept. of Dietetics and Nutrition, Harokopio Univ., 70 El. Venizelou Ave., Kallithea, 176 71, Athens, Greece
| | - Nick Kalogeropoulos
- Laboratory of Chemistry - Biochemistry - Physical Chemistry of Foods, Dept. of Dietetics and Nutrition, Harokopio Univ., 70 El. Venizelou Ave., Kallithea, 176 71, Athens, Greece
| |
Collapse
|
10
|
Jiménez P, García P, Bustamante A, Barriga A, Robert P. Thermal stability of oils added with avocado (Persea americana cv. Hass) or olive (Olea europaea cv. Arbequina) leaf extracts during the French potatoes frying. Food Chem 2017; 221:123-129. [DOI: 10.1016/j.foodchem.2016.10.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
|
11
|
Nunes MA, Pimentel FB, Costa AS, Alves RC, Oliveira MBP. Olive by-products for functional and food applications: Challenging opportunities to face environmental constraints. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.04.016] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Zribi A, Jabeur H, Flamini G, Bouaziz M. Quality assessment of refined oil blends during repeated deep frying monitored by SPME-GC-EIMS, GC and chemometrics. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akram Zribi
- Laboratoire d’Électrochimie et Environnement; École Nationale d'Ingénieurs de Sfax; Université de Sfax; B.P. 1173 3038 Sfax Tunisia
| | - Hazem Jabeur
- Laboratoire d’Électrochimie et Environnement; École Nationale d'Ingénieurs de Sfax; Université de Sfax; B.P. 1173 3038 Sfax Tunisia
| | - Guido Flamini
- Dipartimento di Farmacia; via Bonanno 33 56126 Pisa Italy
| | - Mohamed Bouaziz
- Laboratoire d’Électrochimie et Environnement; École Nationale d'Ingénieurs de Sfax; Université de Sfax; B.P. 1173 3038 Sfax Tunisia
- Institut Supérieur de Biotechnologie de Sfax; Université de Sfax; B.P. 1175 3038 Sfax Tunisia
| |
Collapse
|
13
|
Wang SN, Sui XN, Wang ZJ, Qi BK, Jiang LZ, Li Y, Wang R, Wei X. Improvement in thermal stability of soybean oil by blending with camellia oil during deep fat frying. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sheng-Nan Wang
- College of Food Science; Northeast Agricultural University; Harbin P. R. China
| | - Xiao-Nan Sui
- College of Food Science; Northeast Agricultural University; Harbin P. R. China
| | - Zhong-Jiang Wang
- College of Food Science; Northeast Agricultural University; Harbin P. R. China
| | - Bao-Kun Qi
- College of Food Science; Northeast Agricultural University; Harbin P. R. China
| | - Lian-Zhou Jiang
- College of Food Science; Northeast Agricultural University; Harbin P. R. China
| | - Yang Li
- College of Food Science; Northeast Agricultural University; Harbin P. R. China
| | - Rui Wang
- College of Food Science; Northeast Agricultural University; Harbin P. R. China
| | - Xun Wei
- China Rural Technology Development Center; Beijing P. R. China
| |
Collapse
|
14
|
Amelioration of oxidative and inflammatory status in hearts of cholesterol-fed rats supplemented with oils or oil-products with extra virgin olive oil components. Eur J Nutr 2015; 55:1283-96. [PMID: 26058880 DOI: 10.1007/s00394-015-0947-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/31/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The contribution of extra virgin olive oil (EVOO) macro- and micro-constituents in heart oxidative and inflammatory status in a hypercholesterolemic rat model was evaluated. Fatty acid profile as well as α-tocopherol, sterol, and squalene content was identified directly in rat hearts to distinguish the effect of individual components or to enlighten the potential synergisms. METHODS Oils and oil-products with discernible lipid and polar phenolic content were used. Wistar rats were fed a high-cholesterol diet solely, or supplemented with one of the following oils, i.e., EVOO, sunflower oil (SO), and high-oleic sunflower oil (HOSO) or oil-products, i.e., phenolics-deprived EVOO [EVOO(-)], SO enriched with the EVOO phenolics [SO(+)], and HOSO enriched with the EVOO phenolics [HOSO(+)]. Dietary treatment lasted 9 weeks; at the end of the intervention blood and heart samples were collected. RESULTS High-cholesterol-diet-induced dyslipidemia was shown by increase in serum total cholesterol, low-density lipoprotein cholesterol, and triacylglycerols. Dyslipidemia resulted in increased malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α) levels, while glutathione and interleukin 6 levels remained unaffected in all intervention groups. Augmentation observed in MDA and TNF-α was attenuated in EVOO, SO(+), and HOSO(+) groups. Heart squalene and cholesterol content remained unaffected among all groups studied. Heart α-tocopherol was determined by oil α-tocopherol content. Variations were observed for heart β-sitosterol, while heterogeneity was reported with respect to heart fatty acid profile in all intervention groups. CONCLUSIONS Overall, we suggest that the EVOO-polar phenolic compounds decreased MDA and TNF-α in hearts of cholesterol-fed rats.
Collapse
|
15
|
Ramírez-Anaya JDP, Samaniego-Sánchez C, Castañeda-Saucedo MC, Villalón-Mir M, de la Serrana HLG. Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques. Food Chem 2015; 188:430-8. [PMID: 26041214 DOI: 10.1016/j.foodchem.2015.04.124] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 01/29/2023]
Abstract
Potato, tomato, eggplant and pumpkin were deep fried, sautéed and boiled in Mediterranean extra virgin olive oil (EVOO), water, and a water/oil mixture (W/O). We determined the contents of fat, moisture, total phenols (TPC) and eighteen phenolic compounds, as well as antioxidant capacity in the raw vegetables and compared these with contents measured after cooking. Deep frying and sautéing led to increased fat contents and TPC, whereas both types of boiling (in water and W/O) reduced the same. The presence of EVOO in cooking increased the phenolics identified in the raw foods as oleuropein, pinoresinol, hydroxytyrosol and tyrosol, and the contents of vegetable phenolics such as chlorogenic acid and rutin. All the cooking methods conserved or increased the antioxidant capacity measured by DPPH, FRAP and ABTS. Multivariate analyses showed that each cooked vegetable developed specific phenolic and antioxidant activity profiles resulting from the characteristics of the raw vegetables and the cooking techniques.
Collapse
Affiliation(s)
- Jessica Del Pilar Ramírez-Anaya
- Departamento de Desarrollo Regional, Centro Universitario del Sur (UdeG), Av. Enrique Arreola Silva 883, C.P. 49000 Ciudad Guzmán, Jalisco, Mexico.
| | - Cristina Samaniego-Sánchez
- Departamento de Nutrición y Bromatología, Facultad de Farmacia UGR, Campus Cartuja s/n, C.P. 10871 Granada, Spain.
| | - Ma Claudia Castañeda-Saucedo
- Departamento de Sociedad y Economía, Centro Universitario del Sur (UdeG), Av. Enrique Arreola Silva 883, C.P. 49000 Ciudad Guzmán, Jalisco, Mexico.
| | - Marina Villalón-Mir
- Departamento de Nutrición y Bromatología, Facultad de Farmacia UGR, Campus Cartuja s/n, C.P. 10871 Granada, Spain.
| | | |
Collapse
|
16
|
Rahmanian N, Jafari SM, Wani TA. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2014.12.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|