1
|
Lima GVS, Moura FG, Gofflot S, Pinto ASO, de Souza JNS, Baeten V, Rogez H. Targeted metabolomics for quantitative assessment of polyphenols and methylxanthines in fermented and unfermented cocoa beans from 18 genotypes of the Brazilian Amazon. Food Res Int 2025; 211:116394. [PMID: 40356107 DOI: 10.1016/j.foodres.2025.116394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/19/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
The bioactive compounds present in cocoa, such as polyphenols and methylxanthines, are known for their health benefits. The concentration of these compounds in cocoa beans is influenced by genotype and post-harvest processing. This study utilized a targeted metabolomics approach using UPLC-MS/MS to quantify polyphenols (flavan-3-ols, anthocyanins, flavonols, and phenolic acids) and methylxanthines in fermented and unfermented cocoa beans from 18 genotypes largely cultivated in the Brazilian Amazon region. The major compounds identified were theobromine, (-)-epicatechin, procyanidin C1, procyanidin B2, and caffeine. Fermentation significantly reduced the concentration of most compounds, except for protocatechuic acid, which increased. Principal component analysis revealed that chemical differences between fermented and unfermented cocoa beans are more pronounced than those between genotypes, mainly due to flavan-3-ols and anthocyanins. The concentrations of bioactive compounds varied significantly among the 18 genotypes both before and after fermentation. The fermented beans were grouped into three distinct clusters, the genotype CAB214 exhibited the lowest concentrations of bioactive compounds, while CCN51 had the highest. The observed chemical diversity has important implications for the selection of genotypes aimed at producing chocolate with high levels of bioactive compounds and for formulating products in other industries.
Collapse
Affiliation(s)
- Giulia Victória Silva Lima
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Universidade Federal do Pará (UFPA), Belém, PA, Brazil.
| | - Fábio Gomes Moura
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Sébastien Gofflot
- Walloon Agricultural Research Centre (CRA-W), Maurice Henseval Building, Knowledge and Valorization of Agricultural Products Department, Gembloux, Belgium
| | | | - Jesus Nazareno Silva de Souza
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| | - Vincent Baeten
- Walloon Agricultural Research Centre (CRA-W), Maurice Henseval Building, Knowledge and Valorization of Agricultural Products Department, Gembloux, Belgium
| | - Hervé Rogez
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Universidade Federal do Pará (UFPA), Belém, PA, Brazil
| |
Collapse
|
2
|
Disca V, Jaouhari Y, Carrà F, Martoccia M, Travaglia F, Locatelli M, Bordiga M, Arlorio M. Effect of Carbohydrase Treatment on the Dietary Fibers and Bioactive Compounds of Cocoa Bean Shells (CBSs). Foods 2024; 13:2545. [PMID: 39200472 PMCID: PMC11353957 DOI: 10.3390/foods13162545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Cocoa bean shells (CBSs) are a byproduct of the chocolate production process, representing the external layer of the cocoa bean. CBSs exhibit many interesting chemical and nutritional characteristics resulting in a very rich content of dietary fiber (DF) and antioxidant compounds such as phenolic acids and flavan-3-ols. The DF fraction of CBSs is notably rich in soluble dietary fibers (SDFs), which may be associated with fermentability and prebiotic properties. The objective of this study was the valorization of CBSs through enzymatic treatments, thereby increasing the solubility of DF and potentially augmenting fermentability. CBSs were treated both raw and defatted. Three sets of carbohydrases were used in order to impact the dietary fiber profile. Cellulase, xylanase, pectinase and their combinations were used to perform enzymatic treatments. The application of cellulase, xylanase and a combination of both enzymes proved effective in achieving a high SDF destructuring of the insoluble dietary fiber (IDF) fraction in both defatted and raw CBSs. Notably, the SDF/IDF ratio was significantly elevated in the enzymatically hydrolyzed samples (1.13-1.33) compared to the untreated CBSs (0.33). Furthermore, the various treatments did not affect the antioxidant activity or the content of the main bioactive compounds. These results provide a foundation for new opportunities in the biovalorization of CBSs through green techniques for a range of potential industrial applications in the food and nutraceutical sectors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; (V.D.); (Y.J.); (F.C.); (M.M.); (F.T.); (M.L.); (M.A.)
| | | |
Collapse
|
3
|
Silva JM, Peyronel F, Huang Y, Boschetti CE, Corradini MG. Extraction, Identification, and Quantification of Polyphenols from the Theobroma cacao L. Fruit: Yield vs. Environmental Friendliness. Foods 2024; 13:2397. [PMID: 39123588 PMCID: PMC11312112 DOI: 10.3390/foods13152397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The cacao fruit is a rich source of polyphenols, including flavonoids and phenolic acids, which possess significant health benefits. The accurate identification and quantification of these bioactive compounds extracted from different parts of the cacao fruit, such as pods, beans, nibs, and cacao shells, require specific treatment conditions and analytical techniques. This review presents a comprehensive comparison of extraction processes and analytical techniques used to identify and quantify polyphenols from various parts of the cacao fruit. Additionally, it highlights the environmental impact of these methods, exploring the challenges and opportunities in selecting and utilizing extraction, analytical, and impact assessment techniques, while considering polyphenols' yield. The review aims to provide a thorough overview of the current knowledge that can guide future decisions for those seeking to obtain polyphenols from different parts of the cacao fruit.
Collapse
Affiliation(s)
- Juan Manuel Silva
- Institute of Biotechnological and Chemical Processes (IPROByQ-CONICET), National University of Rosario (UNR), Rosario 2000, SF, Argentina; (J.M.S.); (C.E.B.)
- Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Fernanda Peyronel
- Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Yinan Huang
- Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Carlos Eugenio Boschetti
- Institute of Biotechnological and Chemical Processes (IPROByQ-CONICET), National University of Rosario (UNR), Rosario 2000, SF, Argentina; (J.M.S.); (C.E.B.)
| | - Maria G. Corradini
- Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Arrell Food Institute, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Chóez-Guaranda I, Maridueña-Zavala M, Quevedo A, Quijano-Avilés M, Manzano P, Cevallos-Cevallos JM. Changes in GC-MS metabolite profile, antioxidant capacity and anthocyanins content during fermentation of fine-flavor cacao beans from Ecuador. PLoS One 2024; 19:e0298909. [PMID: 38427658 PMCID: PMC10906890 DOI: 10.1371/journal.pone.0298909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/31/2024] [Indexed: 03/03/2024] Open
Abstract
The fermentation of fine-flavor cacao beans is a key process contributing to the enhancement of organoleptic attributes and monetary benefits for cacao farmers. This work aimed to describe the dynamics of the gas chromatography-mass spectrometry (GC-MS) metabolite profile as well as the antioxidant capacity and anthocyanin contents during fermentation of fine-flavor cacao beans. Samples of Nacional x Trinitario cacao beans were obtained after 0, 24, 48, 72, 96, and 120 hours of spontaneous fermentation. Total phenolic content (TPC), ferric reducing antioxidant power (FRAP), and total anthocyanin content were measured by ultraviolet-visible (UV-Vis) spectrophotometry. Volatiles were adsorbed by headspace solid phase microextraction (HS-SPME) while other metabolites were assessed by an extraction-derivatization method followed by gas chromatography-mass spectrometry (GC-MS) detection and identification. Thirty-two aroma-active compounds were identified in the samples, including 17 fruity, and 9 floral-like volatiles as well as metabolites with caramel, chocolate, ethereal, nutty, sweet, and woody notes. Principal components analysis and Heatmap-cluster analysis of volatile metabolites grouped samples according to the fermentation time. Additionally, the total anthocyanin content declined during fermentation, and FRAP-TPC values showed a partial correlation. These results highlight the importance of fermentation for the improvement of the fine-flavor characteristics of cacao beans.
Collapse
Affiliation(s)
- Ivan Chóez-Guaranda
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - María Maridueña-Zavala
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Adela Quevedo
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - María Quijano-Avilés
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Patricia Manzano
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida (FCV), ESPOL Polytechnic University, Guayaquil, Ecuador
| | - Juan M. Cevallos-Cevallos
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), ESPOL Polytechnic University, Guayaquil, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida (FCV), ESPOL Polytechnic University, Guayaquil, Ecuador
| |
Collapse
|
5
|
Darwish AG, El-Sharkawy I, Tang C, Rao Q, Tan J. Investigation of Antioxidant and Cytotoxicity Activities of Chocolate Fortified with Muscadine Grape Pomace. Foods 2023; 12:3153. [PMID: 37685084 PMCID: PMC10487172 DOI: 10.3390/foods12173153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Muscadine grape pomace and mixed products with chocolate extracts from three muscadine genotypes exhibiting different berry skin colors (black and bronze) were investigated for total phenolic content (TPC), total flavonoid content (TFC), DPPH, FRAP antioxidant activity, and anticancer activity using MDA-MB-468 (MM-468; African American) breast cancer cells. Muscadine berry extracts and mixed products showed cytotoxicity activities of up to 70% against MM-468 breast cancer cells. Cell growth inhibition was higher in 'macerated Floriana' with an IC50 value of 20.70 ± 2.43 followed by 'Alachua' with an IC50 value of 22.25 ± 2.47. TPC and TFC in macerated MGP powder were (1.4 ± 0.14 and 0.45 ± 0.01 GAE/g FW, respectively), which was significantly higher than those in cocoa powder. Data analysis showed a high association between DPPH, FRAP antioxidant activities, and TPC content and a positive high correlation between anticancer activity and antioxidant capacity and between TPC and anticancer activity. The anticancer and antioxidant effects of muscadine grape pomace and chocolate extracts are attributed to the TPC of extracts, which showed a stronger positive correlation with growth inhibition of African American breast cancer cells. This study would be of great value for food industries as well as other manufacturers who are interested in new food blends.
Collapse
Affiliation(s)
- Ahmed G. Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (I.E.-S.)
- Department of Biochemistry, Faculty of Agriculture, Minia University, Minia 61519, Egypt
| | - Islam El-Sharkawy
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32308, USA; (A.G.D.); (I.E.-S.)
| | - Chunya Tang
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Qinchun Rao
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Juzhong Tan
- Department of Animal and Food Science, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
6
|
Spada FP, Lazarini JG, Batista PS, de Oliveira Sartori AG, Saliba ASMC, Pedroso Gomes do Amaral JE, Purgatto E, de Alencar SM. Cocoa powder and fermented jackfruit seed flour: A comparative cell-based study on their potential antioxidant and anti-inflammatory activities after simulated gastrointestinal digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4956-4965. [PMID: 36960787 DOI: 10.1002/jsfa.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Jackfruit seed flour can be used as a cocoa aroma replacer with similar technological properties. The purpose of this study was to investigate the in vivo toxicity and in vitro antioxidant activity of fermented jackfruit seed flour (Fjs) and non-alkaline cocoa powder (Nac). RESULTS Fjs and Nac extracts (Fjs-E and Nac-E) were produced and submitted to in vitro gastrointestinal digestion producing digested fractions named Fjs-D and Nac-D, respectively. Nac-E showed over two-fold higher oxygen radical absorbance capacity (ORAC) than Fjs-E. However, after simulated gastrointestinal digestion (in vitro), there were no significant differences between Nac-D and Fjs-D (P < 0.01). Similarly, the cellular antioxidant activity (CAA) of Nac-D and Fjs-D was not significantly different (P < 0.01). The anti-inflammatory assay in transgenic RAW 264.7 murine macrophages showed that Fjs-E did not affect cell viability up to 300 μg mL-1 (P > 0.05) and reduced by 15% the release of TNF-α (P < 0.05). Fjs-D did not affect cell viability up to 300 μg mL-1 (P > 0.05) and showed 58% reduction of NF-κB activation (P < 0.05), with no effects on TNF-α levels. Treatment with Nac-E up to 300 μg mL-1 did not decrease cell viability (P > 0.05) and reduced the release of TNF-α levels by 34% and 66% at 100 and 300 μg mL-1 , respectively (P < 0.05). Nac-D did not reduce the NF-κB activation or TNF-α levels at any tested concentration. CONCLUSION Collectively, these findings indicate that Fjs is a safe and promising functional ingredient with biological activities even after gastrointestinal digestion. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernanda Papa Spada
- Department of Food and Experimental Nutrition, Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
- Department of Agri-Food Industry, Food and Nutrition, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ), São Paulo, Brazil
| | - Josy Goldoni Lazarini
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
- Faculty of Medicine, Anhembi Morumbi University, Piracicaba, Brazil
| | | | - Alan Giovanini de Oliveira Sartori
- Department of Agri-Food Industry, Food and Nutrition, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ), São Paulo, Brazil
| | | | | | - Eduardo Purgatto
- Department of Food and Experimental Nutrition, Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ), São Paulo, Brazil
| |
Collapse
|
7
|
Effect of Cocoa Roasting on Chocolate Polyphenols Evolution. Antioxidants (Basel) 2023; 12:antiox12020469. [PMID: 36830027 PMCID: PMC9952295 DOI: 10.3390/antiox12020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Cocoa and chocolate antioxidants might contribute to human health through, for instance, blood flow improvement or blood pressure and glycemia reduction, as well as cognitive function improvement. Unfortunately, polyphenol content is reduced during cocoa fermentation, drying, roasting and all the other phases involved in the chocolate production. Here, we investigated the evolution of the polyphenol content during all the different steps of chocolate production, with a special emphasis on roasting (3 different roasting cycles with 80, 100, and 130 °C as maximum temperature). Samples were followed throughout all processes by evaluating the total polyphenols content, the antioxidant power, the epicatechin content, and epicatechin mean degree of polymerization (phloroglucinol adducts method). Results showed a similar trend for total polyphenol content and antioxidant power with an unexpected bell-shaped curve: an increase followed by a decrease for the three different roasting temperatures. At the intermediate temperature (100 °C), the higher polyphenol content was found just after roasting. The epicatechin content had a trend similar to that of total polyphenol content but, interestingly, the mean degree of polymerization data had the opposite behavior with some deviation in the case of the highest temperature, probably due to epicatechin degradation. It seems likely that roasting can free epicatechin from oligomers, as a consequence of oligomers remodeling.
Collapse
|
8
|
Subroto E, Andoyo R, Indiarto R, Lembong E, Rahmani F. Physicochemical properties, sensory acceptability, and antioxidant activity of chocolate bar fortified by solid lipid nanoparticles of gallic acid. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Edy Subroto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Robi Andoyo
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Elazmanawati Lembong
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Fani Rahmani
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
9
|
Balcázar-Zumaeta CR, Castro-Alayo EM, Medina-Mendoza M, Muñoz-Astecker LD, Torrejón-Valqui L, Rodriguez-Perez RJ, Rojas-Ocampo E, Cayo-Colca IS. Physical and Chemical Properties of 70% Cocoa Dark Chocolate Mixed with Freeze-Dried Arazá ( Eugenia stipitata) Pulp. Prev Nutr Food Sci 2022; 27:474-482. [PMID: 36721755 PMCID: PMC9843710 DOI: 10.3746/pnf.2022.27.4.474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/01/2022] [Accepted: 10/01/2022] [Indexed: 01/04/2023] Open
Abstract
This work aimed to determine the chemical and physical properties of 70% dark cocoa chocolate, including freeze-dried Arazá (Eugenia stipitata) pulp (FDAP). We studied chocolates incorporating three FDAP concentrations (1.0, 1.5, and 2.0%). No statistical differences were found in total polyphenol content, antioxidant capacity, and total catechin and epicatechin content. The dark chocolates' moisture and texture were unaffected by the FDAP. The Casson yield stress increased to 19.67±1.35 Pa, while the Casson plastic viscosity reduced to 1.68±0.03 Pa·s, Also, the particle size increased. The dark chocolates' flow behavior corresponded to a non-Newtonian fluid. Finally, the dark chocolate's properties were unaffected by a 2% FDAP concentration.
Collapse
Affiliation(s)
- César R. Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú,
Correspondence to César R. Balcázar-Zumaeta, E-mail:
| | - Efraín M. Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| | - Marleni Medina-Mendoza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| | - Lucas D. Muñoz-Astecker
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| | - Llisela Torrejón-Valqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| | - Roxana J. Rodriguez-Perez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| | - Elizabeth Rojas-Ocampo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| | - Ilse S. Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Amazonas 01001, Perú
| |
Collapse
|
10
|
Theobroma cacao and Theobroma grandiflorum: Botany, Composition and Pharmacological Activities of Pods and Seeds. Foods 2022; 11:foods11243966. [PMID: 36553708 PMCID: PMC9778104 DOI: 10.3390/foods11243966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cocoa and cupuassu are evergreen Amazonian trees belonging to the genus Theobroma, with morphologically distinct fruits, including pods and beans. These beans are generally used for agri-food and cosmetics and have high fat and carbohydrates contents. The beans also contain interesting bioactive compounds, among which are polyphenols and methylxanthines thought to be responsible for various health benefits such as protective abilities against cardiovascular and neurodegenerative disorders and other metabolic disorders such as obesity and diabetes. Although these pods represent 50-80% of the whole fruit and provide a rich source of proteins, they are regularly eliminated during the cocoa and cupuassu transformation process. The purpose of this work is to provide an overview of recent research on cocoa and cupuassu pods and beans, with emphasis on their chemical composition, bioavailability, and pharmacological properties. According to the literature, pods and beans from cocoa and cupuassu are promising ecological and healthy resources.
Collapse
|
11
|
Cocoa based beverages – Composition, nutritional value, processing, quality problems and new perspectives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Peña-Correa RF, Ataç Mogol B, Fogliano V. The impact of roasting on cocoa quality parameters. Crit Rev Food Sci Nutr 2022; 64:4348-4361. [PMID: 36382628 DOI: 10.1080/10408398.2022.2141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Roasting is an essential process in cocoa industry involving high temperatures that causes several physicochemical and microstructural changes in cocoa beans that ensure their quality and further processability. The versatility in roasting temperatures (100 - 150 °C) has attracted the attention of researchers toward the exploration of the effects of different roasting conditions on the color, proximal composition, cocoa butter quality, concentration of thermolabile compounds, formation of odor-active volatile organic compounds, generation of melanoidins, production of thermal processes contaminants in cocoa nibs, among others. Some researchers have drowned in exploring new roasting parameters (e.g., the concentration of water steam in the roasting chamber), whilst others have adapted novel heat-transfer techniques to cocoa nibs (e.g., fluidized bed roasting and microwaves). A detailed investigation of the physicochemical phenomena occurring under different cocoa roasting scenarios is lacking. Therefore, this review provides a comprehensive analysis of the state of art of cocoa roasting, identifies weak and mistaken points, presents research gaps, and gives recommendations to be considered for future cocoa studies.
Collapse
Affiliation(s)
- Ruth Fabiola Peña-Correa
- Department of Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| | - Burçe Ataç Mogol
- Hacettepe Üniversitesi, Department of Food Engineering, Food Quality and Safety (FoQuS) Research Group, Beytepe, Ankara, Turkey
| | - Vincenzo Fogliano
- Department of Food Quality and Design, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
13
|
Farag MA, Hariri MLM, Ehab A, Homsi MN, Zhao C, von Bergen M. Cocoa seeds and chocolate products interaction with gut microbiota; mining microbial and functional biomarkers from mechanistic studies, clinical trials and 16S rRNA amplicon sequencing. Crit Rev Food Sci Nutr 2022; 64:3122-3138. [PMID: 36190306 DOI: 10.1080/10408398.2022.2130159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, gut microbiome has evolved as a focal point of interest with growing recognition that a well-balanced gut microbiota is highly relevant to an individual's health status. The present review provides a mechanistic insight on the effects of cocoa chemicals on the gut microbiome and further reveals in silico biomarkers, taxonomic and functional features that distinguish gut microbiome of cocoa consumers and controls by using 16S rRNA gene sequencing data. The polyphenols in cocoa can change the gut microbiota either by inhibiting the growth of pathogenic bacteria in the gut such as Clostridium perfringens or by increasing the growth of beneficial microbiota in the gut such as Lactobacillus and Bifidobacterium. This paper demonstrates the holistic effect of gut microbiota on cocoa chemicals and how it impacts human health. We present herein the first comprehensive review and analysis of how raw and roasted cocoa and its products can specifically influence gut homeostasis, and likewise, how microbiota metabolizes cocoa chemicals. In addition to that, our 16S rRNA amplicon sequencing analysis revealed that the flavone and flavonols metabolism, aminobenzoate degradation and fatty acid elongation pathways represent the three most important signatures of microbial functions associated with cocoa consumption.
Collapse
Affiliation(s)
- Mohamed A Farag
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamad Louai M Hariri
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Aya Ehab
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Masun Nabhan Homsi
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Chao Zhao
- College of Marine Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Biochemistry, Life Science Faculty, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Borja Fajardo JG, Horta Tellez HB, Peñaloza Atuesta GC, Sandoval Aldana AP, Mendez Arteaga JJ. Antioxidant activity, total polyphenol content and methylxantine ratio in four materials of Theobroma cacao L. from Tolima, Colombia. Heliyon 2022; 8:e09402. [PMID: 35600450 PMCID: PMC9118492 DOI: 10.1016/j.heliyon.2022.e09402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/30/2021] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
The International Cocoa Organization recognized Colombian cocoa as "fine aroma," but in recent years, clone CCN 51 has grown in popularity, widely due to its high yield. The Tolima department is the fourth producer of cacao in Colombia, but there is a lack of knowledge of the chemical properties of regional cocoa genotypes. The aim of this study was to evaluate the morphological, antioxidant activity, total polyphenol content and the methylxanthines ratio of four regional genotypes (UTLP02, UTVE01, UTGC01 and UTLM02) of Theobroma cacao L. from Tolima, Colombia. The universal clone of CCN51 was used as control. The highest values for the qualitative descriptors were obtained by the variants UTVE01 and CCN51 with FRAP and TPC ranging from 44.51 ± 0.90 to 106.77 ± 5.21 mg GAE/g and 27.13 ± 0.14 to 52.12 ± 4.71 mmol TE/g respectively. The genotypes with the highest values for FRAP and TPC were UTGC01 and CCN51. According to the methylxanthine ratio, UTVE01 was classified as Criollo, while UTLM02, UTGC01 and UTLP02, CCN51 are Trinitario and Forastero, respectively. Although CCN51 is considered a remarkable material in terms of productivity, the genotypes evaluated present good yields and interesting values of TPC and antioxidant activity, making them promising trees in local breeding programs.
Collapse
Affiliation(s)
- Juan G Borja Fajardo
- Interdisciplinary Research Group on Tropical Fruit Cultivation, Faculty of Agronomic Engineering, University of Tolima, Cl. 42 #1b-1, Ibagué, Colombia
| | - Heidi B Horta Tellez
- Interdisciplinary Research Group on Tropical Fruit Cultivation, Faculty of Agronomic Engineering, University of Tolima, Cl. 42 #1b-1, Ibagué, Colombia
| | - Giann C Peñaloza Atuesta
- Natural Products Research Group, Department of Chemistry, Faculty of Sciences, University of Tolima, Cl. 42 #1b-1, Ibagué, Colombia
| | - Angélica P Sandoval Aldana
- Interdisciplinary Research Group on Tropical Fruit Cultivation, Faculty of Agronomic Engineering, University of Tolima, Cl. 42 #1b-1, Ibagué, Colombia
| | - Jonh J Mendez Arteaga
- Natural Products Research Group, Department of Chemistry, Faculty of Sciences, University of Tolima, Cl. 42 #1b-1, Ibagué, Colombia
| |
Collapse
|
15
|
Renna M, Lussiana C, Colonna L, Malfatto VM, Mimosi A, Cornale P. Inclusion of Cocoa Bean Shell in the Diet of Dairy Goats: Effects on Milk Production Performance and Milk Fatty Acid Profile. Front Vet Sci 2022; 9:848452. [PMID: 35252429 PMCID: PMC8894810 DOI: 10.3389/fvets.2022.848452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
The use of agro-industrial by-products in animal nutrition is a promising strategy to reduce the food-feed competition, the diet cost at farm level and the environmental impact of animal-derived food production. In this study, the suitability of cocoa bean shell (CBS), a by-product of the cocoa industry, as a feed ingredient in the diet of dairy goats was evaluated, with a focus on the related implications on feed intake, milk yield, milk main constituents, and fatty acid (FA) profile of milk fat. Twenty-two Camosciata delle Alpi goats were divided into two balanced groups. All the goats were fed mixed hay ad libitum. The control group (CTRL; n = 11) also received 1.20 kg/head × day of a commercial concentrate, while in the experimental group (CBS; n = 11) 200 g of the CTRL concentrate were replaced by the same amount of pelleted CBS. The total dry matter intake of the goats was reduced by the dietary inclusion of CBS (P ≤ 0.01). The milk yield, as well as the milk fat, protein, and casein contents and yields were unaffected by the treatment. Milk from the CBS-fed goats showed decreased urea content when compared to the CTRL group (P ≤ 0.001). Milk from the CBS group of goats also showed increased concentrations of total branched-chain FA (both iso and anteiso forms; P ≤ 0.001) and total monounsaturated FA (P ≤ 0.05), as well as a decreased ∑ n6/∑ n3 FA ratio (P ≤ 0.05). De novo saturated FA, total polyunsaturated FA, total conjugated linoleic acids, and the majority of ruminal biohydrogenation intermediates remained unaffected by the dietary treatment. These results suggest that CBS can be strategically used as an alternative non-conventional raw material in diets intended for lactating goats, with no detrimental effects on their milk production performance. The use of CBS in goat nutrition may be hindered by the presence of theobromine, a toxic alkaloid. Special attention is needed by nutritionists to avoid exceeding the theobromine limits imposed by the current legislation. Detheobromination treatments are also suggested in literature to prevent toxic phenomena.
Collapse
Affiliation(s)
- Manuela Renna
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
- *Correspondence: Manuela Renna
| | - Carola Lussiana
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Letizia Colonna
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Vanda Maria Malfatto
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Antonio Mimosi
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Paolo Cornale
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| |
Collapse
|
16
|
Physicochemical Phenomena in the Roasting of Cocoa (Theobroma cacao L.). FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-021-09301-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Febrianto NA, Zhu F. Composition of methylxanthines, polyphenols, key odorant volatiles and minerals in 22 cocoa beans obtained from different geographic origins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Calva-Estrada SDJ, Jimenez-Fernandez M, Vallejo-Cardona AA, Castillo-Herrera GA, Lugo-Cervantes EDC. Cocoa Nanoparticles to Improve the Physicochemical and Functional Properties of Whey Protein-Based Films to Extend the Shelf Life of Muffins. Foods 2021; 10:foods10112672. [PMID: 34828954 PMCID: PMC8622579 DOI: 10.3390/foods10112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
A novel nanocomposite whey protein-based film with nanoemulsified cocoa liquor (CL) was prepared using one-stage microfluidization to evaluate the emulsion properties and the effect of CL on the film properties by response surface methodology (RSM). The results indicated that the number of cycles by microfluidization had a significant effect (p < 0.05) on the particle size and polydispersity of the nanoemulsion, with a polyphenol retention of approximately 83%. CL decreased the solubility (<21.87%) and water vapor permeability (WVP) (<1.57 g mm h-1 m-2 kPa-1) of the film. FTIR analysis indicated that CL modified the secondary protein structure of the whey protein and decreased the mechanical properties of the film. These results demonstrate that applying the film as a coating is feasible and effective to improve the shelf life of bakery products with a high moisture content. This nanocomposite film is easy to produce and has potential applications in the food industry.
Collapse
Affiliation(s)
- Sergio de Jesús Calva-Estrada
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., Camino Arenero 1227, El Bajío, Zapopan C.P. 45019, JAL, Mexico; (S.d.J.C.-E.); (G.A.C.-H.)
| | - Maribel Jimenez-Fernandez
- Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Av. Doctor Luis Castelazo, Industrial Las Animas, Xalapa Enríquez C.P. 91190, VER, Mexico
- Correspondence: (M.J.-F.); (E.d.C.L.-C.)
| | - Alba Adriana Vallejo-Cardona
- Consejo Nacional de Ciencia y Tecnología—Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CONACYT-CIATEJ) A.C., Av. Normalistas 800, Colinas de la Normal, Guadalajara C.P. 44270, JAL, Mexico;
| | - Gustavo Adolfo Castillo-Herrera
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., Camino Arenero 1227, El Bajío, Zapopan C.P. 45019, JAL, Mexico; (S.d.J.C.-E.); (G.A.C.-H.)
| | - Eugenia del Carmen Lugo-Cervantes
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., Camino Arenero 1227, El Bajío, Zapopan C.P. 45019, JAL, Mexico; (S.d.J.C.-E.); (G.A.C.-H.)
- Correspondence: (M.J.-F.); (E.d.C.L.-C.)
| |
Collapse
|
19
|
Barbosa-Pereira L, Belviso S, Ferrocino I, Rojo-Poveda O, Zeppa G. Characterization and Classification of Cocoa Bean Shells from Different Regions of Venezuela Using HPLC-PDA-MS/MS and Spectrophotometric Techniques Coupled to Chemometric Analysis. Foods 2021; 10:1791. [PMID: 34441568 PMCID: PMC8393802 DOI: 10.3390/foods10081791] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 01/30/2023] Open
Abstract
The cocoa bean shell (CBS) is one of the main cocoa byproducts with a prospective to be used as a functional food ingredient due to its nutritional and sensory properties. This study aims to define the chemical fingerprint of CBSs obtained from cocoa beans of diverse cultivars and collected in different geographical areas of Venezuela assessed using high-performance liquid chromatography coupled to photodiodes array and mass spectrometry (HPLC-PDA-MS/MS) and spectrophotometric assays combined with multivariate analysis for classification purposes. The study provides a comprehensive fingerprint and quantitative data for 39 compounds, including methylxanthines and several polyphenols, such as flavan-3-ols, procyanidins, and N-phenylpropenoyl amino acids. Several key cocoa markers, such as theobromine, epicatechin, quercetin-3-O-glucoside, procyanidin_A pentoside_3, and N-coumaroyl-l-aspartate_2, were found suitable for the classification of CBS according to their cultivar and origin. Despite the screening methods required a previous purification of the sample, both methodologies appear to be suitable for the classification of CBS with a high correlation between datasets. Finally, preliminary findings on the identification of potential contributors for the radical scavenging activity of CBS were also accomplished to support the valorization of this byproduct as a bioactive ingredient in the production of functional foods.
Collapse
Affiliation(s)
- Letricia Barbosa-Pereira
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (S.B.); (I.F.); (O.R.-P.); (G.Z.)
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simona Belviso
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (S.B.); (I.F.); (O.R.-P.); (G.Z.)
| | - Ilario Ferrocino
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (S.B.); (I.F.); (O.R.-P.); (G.Z.)
| | - Olga Rojo-Poveda
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (S.B.); (I.F.); (O.R.-P.); (G.Z.)
- RD3 Department-Unit of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Giuseppe Zeppa
- Department of Agriculture, Forestry and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (S.B.); (I.F.); (O.R.-P.); (G.Z.)
| |
Collapse
|
20
|
Campione A, Pauselli M, Natalello A, Valenti B, Pomente C, Avondo M, Luciano G, Caccamo M, Morbidini L. Inclusion of cocoa by-product in the diet of dairy sheep: Effect on the fatty acid profile of ruminal content and on the composition of milk and cheese. Animal 2021; 15:100243. [PMID: 34087758 DOI: 10.1016/j.animal.2021.100243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
In this study, we hypothesized that dietary cocoa bean shell (CBS) as a partial replacer of human edible cereal grains in the diet of lactating ewes may affect performance and milk and cheese composition. Twenty Comisana lactating ewes allotted into control (CTRL; n = 10) or cocoa (CBS; n = 10) group received alfalfa hay ad libitum and 800 g of conventional (CTRL) or experimental (CBS) concentrate containing 11.7% CBS to partially replace corn and barley of the CTRL concentrate. Milk yield and composition did not differ between groups, and only urea concentration was lower in CBS milk. Dietary CBS increased cheese fat and reduced protein percentage in CBS group. Fatty acid composition of rumen content partially reflected that of the ingested diet, with total saturated fatty acids (SFA), total monounsaturated fatty acids (MUFA), 16:0, 18:0 and 18:1c9 greater in the CBS group. Moreover, all the identified trans- and cis-18:1 isomers were greater in CBS rumen content. Milk and cheese showed a similar fatty acid composition. Total MUFAs were greater in milk and cheese of CBS, mainly due to the proportion of 18:1c9, and conversely, total polyunsaturated fatty acids (PUFA), PUFAn-6 and PUFAn-6-to-PUFAn-3 ratio was greater in CTRL group. Concluding, the inclusion of CBS in the diet of lactating ewes within the limit imposed by the current legislation did not cause detrimental effects on animal performance and milk composition. Interestingly, dietary CBS reduced milk urea concentration probably due to the phenols contained in CBS concentrate. However, our results support that biohydrogenation was weakly impaired by dietary CBS. Finally, CBS negatively affected cheese nutritional characteristics due to lower protein and greater fat content, but improved fat health indexes in milk and cheese.
Collapse
Affiliation(s)
- A Campione
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - M Pauselli
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - A Natalello
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - B Valenti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | - C Pomente
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - M Avondo
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - G Luciano
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - M Caccamo
- Consorzio per la Ricerca nel settore della Filiera Lattiero-Casearia e dell'Agroalimentare, S.P. 25 km 5 Ragusa Mare, 97100 Ragusa, Italy
| | - L Morbidini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| |
Collapse
|
21
|
Martinez SJ, Batista NN, Ramos CL, Dias DR, Schwan RF. Brazilian cocoa hybrid-mix fermentation: Impact of microbial dominance as well as chemical and sensorial properties. J Food Sci 2021; 86:2604-2614. [PMID: 34009655 DOI: 10.1111/1750-3841.15758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 11/28/2022]
Abstract
High-yield resistant hybrids are used in cocoa fermentation and result in chocolates with different sensorial profiles. This work aimed to characterize the fermentation microbiologically and physicochemically. Hybrids CEPEC 2004, FA13, PH15, and CEPEC 2002 were used for fermentation. The yeast, acetic acid bacteria, lactic acid bacteria, and mesophilic bacteria population were evaluated in their respective medium. Carbohydrates and acids were detected using a high-performance liquid chromatography system, and volatiles were analyzed using gas chromatography-mass spectrometry equipment. Finally, a consumer acceptance test followed by a check-all-that-apply question and a temporal dominance of sensations assessment was performed in chocolate. The fermentation resulted in a typical succession: yeast-dominated at first, followed by lactic acid, acetic acid, and mesophilic bacteria. In the pulp, carbohydrates and citric acid were consumed. Low concentrations of acetic acid (0.09-1.75 g/kg) were detected. Acids, esters, and alcohols were the most abundant groups. The chocolate profile resulted in sweet, acidic, and fruity, satisfying consumers' tastes. PRACTICAL APPLICATION: The cocoa hybrid-mix fermentation can improve the fermentation process and chocolate quality. The mixture generated a different sensory profile in comparison to other fermentations. The fruity chocolate was accepted and liked by consumers.
Collapse
Affiliation(s)
| | - Nádia Nara Batista
- Food Science Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Cíntia Lacerda Ramos
- Food Science and Technology, Federal University of Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Disney Ribeiro Dias
- Food Science Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | | |
Collapse
|
22
|
Jean-Marie E, Bereau D, Poucheret P, Guzman C, Boudard F, Robinson JC. Antioxidative and Immunomodulatory Potential of the Endemic French Guiana Wild Cocoa "Guiana". Foods 2021; 10:522. [PMID: 33802251 PMCID: PMC8001100 DOI: 10.3390/foods10030522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Guiana is a little-known and endemic variety of cocoa (Theobroma cacao L.), native to French Guiana. No data were available regarding its chemical composition and biological properties; therefore, a study was necessary, using Forastero as a reference. To exemplify biological activities of the cacao species, cocoa extracts were evaluated by antioxidant (DPPH, FRAP, ORAC) and anti-inflammatory assays. Our results showed that raw Guiana presented equivalent DPPH and FRAP activities, but a 1.3-fold higher antioxidant activity (1097 ± 111.8 μM ET/g DM) than Forastero (838.5 ± 67.8 μM ET/g DM) in ORAC assay. Furthermore, the impact of fermentation (under four conditions: unfermented, two days, four days and six days of fermentation) on Guiana cocoa beans composition and health properties was also studied. Indeed, fermentation, a key step necessary to obtain the taste and color of chocolate, is generally known to alter bean composition and modulate its health benefits. At six days, the fermentation process led to a nearly 25% lower antioxidative capacity in various assays. Moreover, in inflammation-induced macrophage assays, Guiana and Forastero unfermented extracts induced a 112% stimulation in TNF-α production, and a 56.8% inhibition of IL-6 production. Fermentation altered the cocoa composition by diminishing bioactive compounds, which could be responsible for these biological activities. Indeed, after six days of fermentation, compounds decreased from 614.1 ± 39.3 to 332.3 ± 29 mg/100 g DM for epicatechin, from 254.1 ± 14.8 to 129.5 ± 20.7 mg/100 g DM for procyanidin B2 and from 178.4 ± 23.5 to 81.7 ± 2.9 mg/100 g DM for procyanidin C1. The similar composition and the equivalent or higher antioxidant activity of Guiana leads us to propose it as an alternative to Forastero.
Collapse
Affiliation(s)
- Elodie Jean-Marie
- Laboratoire COVAPAM, UMR Qualisud, Université de Guyane, 97300 French Guiana, France; (E.J.-M.); (D.B.)
| | - Didier Bereau
- Laboratoire COVAPAM, UMR Qualisud, Université de Guyane, 97300 French Guiana, France; (E.J.-M.); (D.B.)
| | - Patrick Poucheret
- Qualisud, University Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France; (P.P.); (C.G.); (F.B.)
| | - Caroline Guzman
- Qualisud, University Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France; (P.P.); (C.G.); (F.B.)
| | - Frederic Boudard
- Qualisud, University Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France; (P.P.); (C.G.); (F.B.)
| | - Jean-Charles Robinson
- Laboratoire COVAPAM, UMR Qualisud, Université de Guyane, 97300 French Guiana, France; (E.J.-M.); (D.B.)
| |
Collapse
|
23
|
Medina-Mendoza M, Rodriguez-Pérez RJ, Rojas-Ocampo E, Torrejón-Valqui L, Fernández-Jeri AB, Idrogo-Vásquez G, Cayo-Colca IS, Castro-Alayo EM. Rheological, bioactive properties and sensory preferences of dark chocolates with partial incorporation of Sacha Inchi ( Plukenetia volubilis L.) oil. Heliyon 2021; 7:e06154. [PMID: 33644458 PMCID: PMC7889989 DOI: 10.1016/j.heliyon.2021.e06154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/13/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
We studied the effect of substituting partially, cocoa butter (CB) with Sacha Inchi (Plukenetia volubilis L.) oil (SIO) on rheology, bioactive properties, and sensory preferences in potentially functional chocolate. For this 70% dark chocolates were prepared and the CB was substituted with 1.5%, 3%, and 4.5% of SIO. Hardness and viscosity of the SIO-chocolates were significantly reduced compared to the control (5451 ± 658 g; 17.01 ± 0.94 Pa s, respectively). Total phenolic content remained constant while the antioxidant capacity increased up to IC50 of 2.48 ± 0.10 as the content of SIO increased. The Casson yield stress and Casson plastic viscosity decreased as the amount of SIO increased. Chocolates with 4.5% SIO had a similar color, better glossiness, preferable snap attributes, and were more accepted (7.50 ± 0.08) compared to the control (p < 0.05), measured with a hedonic scale. Then, SIO can improve the bioactive properties of dark chocolates obtaining a potentially functional food with acceptable physicochemical characteristics. SIO can be considered as a new cocoa butter equivalent.
Collapse
Affiliation(s)
- Marleni Medina-Mendoza
- Programa Académico de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Roxana J Rodriguez-Pérez
- Programa Académico de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Elizabeth Rojas-Ocampo
- Programa Académico de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Llisela Torrejón-Valqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Armstrong B Fernández-Jeri
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Guillermo Idrogo-Vásquez
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Ilse S Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| | - Efraín M Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la Región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco 342-350-356, Chachapoyas, Amazonas, Peru
| |
Collapse
|
24
|
Cocoa Shell as a Step Forward to Functional Chocolates-Bioactive Components in Chocolates with Different Composition. Molecules 2020; 25:molecules25225470. [PMID: 33238393 PMCID: PMC7700659 DOI: 10.3390/molecules25225470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
Chocolate is considered as both caloric and functional food. Its nutritional properties may be improved by addition of fiber; however, this may reduce polyphenols content. The aim of this research was to determine the influence of cocoa shell addition (as a source of fiber) and its combination with different ingredients (cocoa butter equivalents (CBE), emulsifiers, dairy ingredients) on polyphenols of dark and milk chocolates. Total polyphenol (TPC) and total flavonoid (TFC) contents were determined spectrophotometrically, identification and quantification of individual compounds by high pressure liquid chromatography and antioxidant capacity by ferric reducing antioxidant power (FRAP) assay. Results showed that even though addition of cocoa shell to chocolate results in reduced contents of TPC, TFC, and individual compounds, it is not significant compared to ones reported by other authors for commercial chocolates. Other ingredients influence determined values for all investigated parameters; however, additional research is needed to reveal exact mechanisms and implications.
Collapse
|
25
|
Virgens IA, Pires TC, Santana LRR, Soares SE, Maciel LF, Ferreira ACR, Biasoto ACT, Bispo EDS. Relationship between bioactive compounds and sensory properties of dark chocolate produced from Brazilian hybrid cocoa. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Ye N, Belli S, Caruso F, Roy G, Rossi M. Antioxidant studies by hydrodynamic voltammetry and DFT, quantitative analyses by HPLC-DAD of clovamide, a natural phenolic compound found in Theobroma Cacao L. beans. Food Chem 2020; 341:128260. [PMID: 33039740 DOI: 10.1016/j.foodchem.2020.128260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 11/26/2022]
Abstract
Clovamide (trans-clovamide, (2S)-3-(3,4-dihydroxyphenyl)-2-[[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]amino]propanoic acid) is a naturally occurring caffeoyl conjugate and a potent antioxidant found in the phenolic fraction of Theobroma Cacao L. beans. This work quantified clovamide content in single-origin cocoa beans at different production stages (raw, roasted, and winnowed side and end products) by high-performance liquid chromatography with diode array detector (HPLC-DAD). We analyzed the antioxidant activities of clovamide and these extracts by measuring their superoxide radical scavenging capabilities in a Rotating Ring-Disk Electrode (RRDE) electrochemical system against in-situ generated superoxide radical. Our studies concluded a positive correlation between clovamide concentration and the overall antioxidant activities of beans, with the roasting step showing a reduction effect on both. The subsequent refining steps recover the clovamide concentration. Antioxidant studies on clovamide alone by RRDE and density functional theory (DFT) studies led to the conclusion that it is a powerful oxygen radical scavenger, partially contributed by its molecular catechol moieties.
Collapse
Affiliation(s)
- Naike Ye
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| | - Stuart Belli
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| | - Francesco Caruso
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| | - Glenn Roy
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| | - Miriam Rossi
- Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA.
| |
Collapse
|
27
|
Calva-Estrada SJ, Utrilla-Vázquez M, Vallejo-Cardona A, Roblero-Pérez DB, Lugo-Cervantes E. Thermal properties and volatile compounds profile of commercial dark-chocolates from different genotypes of cocoa beans (Theobroma cacao L.) from Latin America. Food Res Int 2020; 136:109594. [PMID: 32846619 DOI: 10.1016/j.foodres.2020.109594] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/03/2023]
Abstract
There is a growing interest in the identification of chemometric markers that allow the distinction and authentication of dark-chocolates according to their cocoa geographical origin and/or genotype. However, samples derived from Latin American cocoa, including specimens from North and South America, have not been studied in this context. An exploration of the melting behavior, fat composition, bioactive content, and volatile profile of commercial darkchocolates was conducted to identify possible patterns related to the genotype and/or origin of cocoa from Latin America. The melting properties were evaluated by DSC and related to fat content and fatty acids profile. Total polyphenol, anthocyanin, methylxanthine, and catechin content were analyzed. Finally, the volatile compounds were extracted and identified by HS-SPME/GC-MS and were analyzed through Principal Component Analysis (PCA) and the Hierarchical Cluster Analysis Heatmap (HCA Heatmap). The fatty acids profile showed a relationship with the melting properties of dark chocolate. The samples exhibited two glass-transition temperatures (Tg) at ≈19 °C and ≈25.5 °C, possibly related to traces of unstable polymorphic forms of monounsaturated triacylglycerides. The analysis of bioactive compounds demonstrated great variability among samples independent of the cocoa origin, genotype, and content. The PCA and HCA Heatmaps allowed discriminating against the chocolates in relation to the cocoa origin and genotype. Compounds like tetramethylpyrazine, trimethylpyrazine, benzaldehyde, and furfural could be considered as dark-chocolate aroma markers derived from Latin American cocoas (North American region). The 2-phenylethyl alcohol, 2-methylpropanoic acid, 2,3-butanediol, 2-nonanone, and limonene for derived from South America. And the 2-phenylethyl acetate, 3-methyl-butanal, and cinnamaldehyde could allow to distinguishing between regional genotypes.
Collapse
Affiliation(s)
- S J Calva-Estrada
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., Camino Arenero 1227, El Bajío, C.P. 45019 Zapopan, Jalisco, Mexico
| | - M Utrilla-Vázquez
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., Camino Arenero 1227, El Bajío, C.P. 45019 Zapopan, Jalisco, Mexico
| | - A Vallejo-Cardona
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - D B Roblero-Pérez
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., Camino Arenero 1227, El Bajío, C.P. 45019 Zapopan, Jalisco, Mexico
| | - E Lugo-Cervantes
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) A.C., Camino Arenero 1227, El Bajío, C.P. 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
28
|
González-Barrio R, Nuñez-Gomez V, Cienfuegos-Jovellanos E, García-Alonso FJ, Periago-Castón MJ. Improvement of the Flavanol Profile and the Antioxidant Capacity of Chocolate Using a Phenolic Rich Cocoa Powder. Foods 2020; 9:foods9020189. [PMID: 32074967 PMCID: PMC7073749 DOI: 10.3390/foods9020189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/31/2022] Open
Abstract
Chocolate is made from cocoa, which is rich in (poly)phenols that have a high antioxidant capacity and are associated with the prevention of chronic diseases. In this study, a new production process was evaluated in order to obtain a dark chocolate enriched in (poly)phenols using a cocoa powder with an improved flavanol profile. The antioxidant capacity (Oxygen Radical Absorbance Capacity (ORAC) assay) and the flavanol profile (HPLC-DAD and HPLC-FL) was determined. The analysis of the enriched chocolate showed that the total flavan-3-ols (monomers) content was 4 mg/g representing a 3-fold higher than that quantified in the conventional one. Total levels of dimers (procyanidin B1 and B2) were 2.4-fold higher in the enriched chocolate than in the conventional, with a total content of 6 mg/g. The total flavanol content (flavan-3-ols and procyanidins) in the enriched chocolate was increased by 39% compared to the conventional one which led to a 56% increase in the antioxidant capacity. The new flavanol-enriched dark chocolate is expected to provide greater beneficial effect to consumers. Moreover, the amount of flavonols provided by a single dose (ca. 200 mg per 10 g) would allow the use of a health claim on cardiovascular function, a fact of interest for the cocoa industry.
Collapse
|
29
|
Carta S, Nudda A, Cappai MG, Lunesu MF, Atzori AS, Battacone G, Pulina G. Short communication: Cocoa husks can effectively replace soybean hulls in dairy sheep diets-Effects on milk production traits and hematological parameters. J Dairy Sci 2020; 103:1553-1558. [PMID: 31864740 DOI: 10.3168/jds.2019-17550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/26/2019] [Indexed: 11/19/2022]
Abstract
The aim of this study was to test the effect of replacing soybean hulls with different doses of cocoa husk (CH) on milk production traits and the hematological profile of dairy ewes. Twenty-four mid-lactating Sarda dairy ewes were allotted to 3 homogeneous experimental groups (8 animals per group divided into 4 pens). Each group received a total mixed ration as a basal diet and a supplement that differed among groups. The first group was supplemented with 100 g of soybean hulls/d per head (SBH group). In the second group, soybean hulls were replaced with 50 g of CH/d (CH50 group). In the third group, soybean hulls were replaced with 100 g of CH/d per head (CH100 group). The study lasted 8 wk, with 3 wk of adaptation and 5 wk for the experimental period. The replacement of soybean hulls with 50 and 100 g of CH/d did not affect dry matter intake, milk production, and milk coagulation properties. Milk fat, protein, casein, and somatic cell count concentration and curd-firming time showed a significant interaction between treatment and sampling date. During the experiment, the somatic cell counts were lower in both the CH50 and CH100 groups than in the SBH group. Most of the hematological parameters were not affected by treatments except for basophiles, which were significantly higher in the SBH group than in the CH50 and CH100 groups. In conclusion, CH can be substituted for soybean hulls in the diet of dairy sheep without adverse effects on milk production or apparent negative effects on animal health conditions.
Collapse
Affiliation(s)
- S Carta
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli studi di Sassari, 07100, Sassari, Italy
| | - A Nudda
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli studi di Sassari, 07100, Sassari, Italy.
| | - M G Cappai
- Dipartimento di Medicina Veterinaria, Università degli studi di Sassari, 07100, Sassari, Italy
| | - M F Lunesu
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli studi di Sassari, 07100, Sassari, Italy
| | - A S Atzori
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli studi di Sassari, 07100, Sassari, Italy
| | - G Battacone
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli studi di Sassari, 07100, Sassari, Italy
| | - G Pulina
- Dipartimento di Agraria, Sezione di Scienze Zootecniche, Università degli studi di Sassari, 07100, Sassari, Italy
| |
Collapse
|
30
|
Changes in the composition and content of polyphenols in chocolate resulting from pre-treatment method of cocoa beans and technological process. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03333-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Mudenuti NVDR, de Camargo AC, Shahidi F, Madeira TB, Hirooka EY, Grossmann MVE. Soluble and insoluble-bound fractions of phenolics and alkaloids and their antioxidant activities in raw and traditional chocolate: A comparative study. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
32
|
Papillo VA, Locatelli M, Travaglia F, Bordiga M, Garino C, Coïsson JD, Arlorio M. Cocoa hulls polyphenols stabilized by microencapsulation as functional ingredient for bakery applications. Food Res Int 2018; 115:511-518. [PMID: 30599972 DOI: 10.1016/j.foodres.2018.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/12/2018] [Accepted: 10/01/2018] [Indexed: 01/20/2023]
Abstract
Cocoa hulls are a potential source of polyphenols to be used as "functional ingredients" in foods, but their low stability to oxidation and thermal degradation limits their practical application. The aim of this study was to microencapsulate cocoa hulls phenolic extracts through spray-drying, in order to produce new heat stable ingredients for bakery products. Polyphenols were extracted using water and ethanol under different conditions. The best performing extract (water/ethanol 50:50), containing 93.3 mg of total polyphenols per gram of dry extract, was spray-dried with and without stabilizing agents (maltodextrins and/or gum Arabic), obtaining seven different powders. These were first tested for their stability, showing a total phenolic content and an antioxidant activity stable up to 90 days. The powders were then used to evaluate their baking stability in a model biscuit; the microencapsulation using an 80:20 ratio of maltodextrins to the dry extract allowed obtaining the most stable powder, with a total polyphenol content unaffected by the baking process.
Collapse
Affiliation(s)
- Valentina A Papillo
- Dipartimento di Scienze del Farmaco and DFB Center - Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Monica Locatelli
- Dipartimento di Scienze del Farmaco and DFB Center - Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Fabiano Travaglia
- Dipartimento di Scienze del Farmaco and DFB Center - Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Matteo Bordiga
- Dipartimento di Scienze del Farmaco and DFB Center - Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Cristiano Garino
- Dipartimento di Scienze del Farmaco and DFB Center - Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Jean Daniel Coïsson
- Dipartimento di Scienze del Farmaco and DFB Center - Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Marco Arlorio
- Dipartimento di Scienze del Farmaco and DFB Center - Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| |
Collapse
|
33
|
Khlifi R, Dhaouefi Z, Maatouk M, Sassi A, Boudhiba N, Ioannou I, Ghedira K, Chekir-Ghedira L, Kilani-Jaziri S. Heat treatment improves the immunomodulatory and cellular antioxidant behavior of a natural flavanone: Eriodictyol. Int Immunopharmacol 2018; 61:317-324. [DOI: 10.1016/j.intimp.2018.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023]
|
34
|
Quiroz-Reyes CN, Fogliano V. Design cocoa processing towards healthy cocoa products: The role of phenolics and melanoidins. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
35
|
Barbosa-Pereira L, Guglielmetti A, Zeppa G. Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-017-2045-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Mellor DD, Amund D, Georgousopoulou E, Naumovski N. Sugar and cocoa: sweet synergy or bitter antagonisms. Formulating cocoa and chocolate products for health: a narrative review. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Duane D. Mellor
- School of Life Sciences Faculty of Health and Life Sciences Coventry University 20 Whitefriars Street Coventry CV1 2DS UK
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group Faculty of Health University of Canberra Canberra ACT 2617 Australia
| | - Daniel Amund
- School of Life Sciences Faculty of Health and Life Sciences Coventry University 20 Whitefriars Street Coventry CV1 2DS UK
| | - Ekavi Georgousopoulou
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group Faculty of Health University of Canberra Canberra ACT 2617 Australia
- Department of Nutrition‐Dietetics Faculty of Health Science and Education Harokopio University E. Venizelou 70, Kallithea, Greece 17671 Kallithea‐Athens Greece
| | - Nenad Naumovski
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group Faculty of Health University of Canberra Canberra ACT 2617 Australia
| |
Collapse
|
37
|
Di Mattia CD, Sacchetti G, Mastrocola D, Serafini M. From Cocoa to Chocolate: The Impact of Processing on In Vitro Antioxidant Activity and the Effects of Chocolate on Antioxidant Markers In Vivo. Front Immunol 2017; 8:1207. [PMID: 29033932 PMCID: PMC5626833 DOI: 10.3389/fimmu.2017.01207] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022] Open
Abstract
Chocolate is a product processed from cocoa rich in flavonoids, antioxidant compounds, and bioactive ingredients that have been associated with both its healthy and sensory properties. Chocolate production consists of a multistep process which, starting from cocoa beans, involves fermentation, drying, roasting, nib grinding and refining, conching, and tempering. During cocoa processing, the naturally occurring antioxidants (flavonoids) are lost, while others, such as Maillard reaction products, are formed. The final content of antioxidant compounds and the antioxidant activity of chocolate is a function of several variables, some related to the raw material and others related to processing and formulation. The aim of this mini-review is to revise the literature on the impact of full processing on the in vitro antioxidant activity of chocolate, providing a critical analysis of the implications of processing on the evaluation of the antioxidant effect of chocolate in in vivo studies in humans.
Collapse
Affiliation(s)
- Carla D Di Mattia
- Faculty of Biosciences and Technologies for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| | - Giampiero Sacchetti
- Faculty of Biosciences and Technologies for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| | - Dino Mastrocola
- Faculty of Biosciences and Technologies for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| | - Mauro Serafini
- Faculty of Biosciences and Technologies for Agriculture, Food and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
38
|
Baião DDS, de Freitas CS, Gomes LP, da Silva D, Correa ACNTF, Pereira PR, Aguila EMD, Paschoalin VMF. Polyphenols from Root, Tubercles and Grains Cropped in Brazil: Chemical and Nutritional Characterization and Their Effects on Human Health and Diseases. Nutrients 2017; 9:E1044. [PMID: 28930173 PMCID: PMC5622804 DOI: 10.3390/nu9091044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023] Open
Abstract
Throughout evolution, plants have developed the ability to produce secondary phenolic metabolites, which are important for their interactions with the environment, reproductive strategies and defense mechanisms. These (poly)phenolic compounds are a heterogeneous group of natural antioxidants found in vegetables, cereals and leguminous that exert beneficial and protective actions on human health, playing roles such as enzymatic reaction inhibitors and cofactors, toxic chemicals scavengers and biochemical reaction substrates, increasing the absorption of essential nutrients and selectively inhibiting deleterious intestinal bacteria. Polyphenols present in some commodity grains, such as soy and cocoa beans, as well as in other vegetables considered security foods for developing countries, including cassava, taro and beetroot, all of them cropped in Brazil, have been identified and quantified in order to point out their bioavailability and the adequate dietary intake to promote health. The effects of the flavonoid and non-flavonoid compounds present in these vegetables, their metabolism and their effects on preventing chronic and degenerative disorders like cancers, diabetes, osteoporosis, cardiovascular and neurological diseases are herein discussed based on recent epidemiological studies.
Collapse
Affiliation(s)
- Diego Dos Santos Baião
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Av Athos da Silveira Ramos 149, 21949-909 Rio de Janeiro (RJ), Brazil.
| | - Cyntia Silva de Freitas
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Av Athos da Silveira Ramos 149, 21949-909 Rio de Janeiro (RJ), Brazil.
| | - Laidson Paes Gomes
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Av Athos da Silveira Ramos 149, 21949-909 Rio de Janeiro (RJ), Brazil.
| | - Davi da Silva
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Av Athos da Silveira Ramos 149, 21949-909 Rio de Janeiro (RJ), Brazil.
| | - Anna Carolina N T F Correa
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Av Athos da Silveira Ramos 149, 21949-909 Rio de Janeiro (RJ), Brazil.
| | - Patricia Ribeiro Pereira
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Av Athos da Silveira Ramos 149, 21949-909 Rio de Janeiro (RJ), Brazil.
| | - Eduardo Mere Del Aguila
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Av Athos da Silveira Ramos 149, 21949-909 Rio de Janeiro (RJ), Brazil.
| | - Vania Margaret Flosi Paschoalin
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Av Athos da Silveira Ramos 149, 21949-909 Rio de Janeiro (RJ), Brazil.
| |
Collapse
|
39
|
De Taeye C, Bodart M, Caullet G, Collin S. Roasting conditions for preserving cocoa flavan-3-ol monomers and oligomers: interesting behaviour of Criollo clones. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4001-4008. [PMID: 28194790 DOI: 10.1002/jsfa.8265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/18/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Cocoa bean roasting is important for creating the typical chocolate aroma through Maillard reactions, but it is also a key step deleterious to the polyphenol content and profile. RESULTS Compared with usual roasting at 150 °C, keeping the beans for 30 min at 120 °C or for 1 h at 90 °C proved much better for preventing strong degradation of native P1, P2 and P3 flavan-3-ols in cocoa (shown for Forastero, Trinitatio and Criollo cultivars). Surprisingly, Cuban, Mexican and Malagasy white-seeded beans behaved atypically when roasted for 30 min at 150 °C, releasing a pool of catechin. Enantiomeric chromatographic separation proved that this pool contained mainly (-)-catechin issued from (-)-epicatechin by epimerisation. As the (-)-epicatechin content remained relatively constant through Criollo bean roasting, flavan-3-ol monomers must have been regenerated from oligomers. This emergence of (-)-catechin in Criollo beans only, reported here for the first time, could be due to increased flavan-3-ol monomer stability in the absence of anthocyanidin-derived products. CONCLUSION The degradation rate of flavan-3-ols through roasting is higher in cocoa beans containing anthocyani(di)ns. The liberation of a pool of (-)-catechin when submitted to roasting at 150 °C allows to distinguish white-seeded cultivars. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cédric De Taeye
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute, ELIM, Faculté des Bioingénieurs, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marie Bodart
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute, ELIM, Faculté des Bioingénieurs, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gilles Caullet
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute, ELIM, Faculté des Bioingénieurs, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sonia Collin
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute, ELIM, Faculté des Bioingénieurs, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
40
|
Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Res Int 2017; 99:550-559. [PMID: 28784516 DOI: 10.1016/j.foodres.2017.06.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 01/03/2023]
Abstract
A comprehensive analysis of cocoa polyphenols from unfermented and fermented cocoa beans from a wide range of geographic origins was carried out to catalogue systematic differences based on their origin as well as fermentation status. This study identifies previously unknown compounds with the goal to ascertain, which of these are responsible for the largest differences between bean types. UHPLC coupled with ultra-high resolution time-of-flight mass spectrometry was employed to identify and relatively quantify various oligomeric proanthocyanidins and their glycosides amongst several other unreported compounds. A series of biomarkers allowing a clear distinction between unfermented and fermented cocoa beans and for beans of different origins were identified. The large sample set employed allowed comparison of statistically significant variations of key cocoa constituents.
Collapse
|
41
|
Ryan CM, Khoo W, Stewart AC, O'Keefe SF, Lambert JD, Neilson AP. Flavanol concentrations do not predict dipeptidyl peptidase-IV inhibitory activities of four cocoas with different processing histories. Food Funct 2017; 8:746-756. [PMID: 28106217 DOI: 10.1039/c6fo01730d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cocoa and its constituent bioactives (particularly flavanols) have reported anti-diabetic and anti-obesity activities. One potential mechanism of action is inhibition of dipeptidyl peptidase-IV (DPP4), the enzyme that inactivates incretin hormones such as glucagon-like peptide-1 and gastric inhibitory peptide. The objective of this study was to determine the DPP4 inhibitory activities of cocoas with different processing histories, and identify processing factors and bioactive compounds that predict DPP4 inhibition. IC25 values (μg mL-1) were 4.82 for Diprotin A (positive control), 2135 for fermented bean extract, 1585 for unfermented bean extract, 2871 for unfermented liquor extract, and 1076 for fermented liquor extract This suggests mild inhibitory activity. Surprisingly, protein binding activity, total polyphenol, total flavanol, individual flavanol and complex fermentation/roasting product levels were all positively correlated to IC25 concentrations (greater levels correspond to less potent inhibition). For the representative samples studied, fermentation appeared to improve inhibition. This study suggests that cocoa may possess mild DPP4 inhibitory activity, and that processing steps such as fermentation may actually enhance activity. Furthermore, this activity and the variation between samples were not easily explainable by traditional putative bioactives in cocoa. The compounds driving this activity, and the associated mechanism(s) by which this inhibition occurs, remain to be elucidated.
Collapse
Affiliation(s)
- Caroline M Ryan
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Weslie Khoo
- Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Amanda C Stewart
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Sean F O'Keefe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Joshua D Lambert
- Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Andrew P Neilson
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
42
|
Chaaban H, Ioannou I, Chebil L, Slimane M, Gérardin C, Paris C, Charbonnel C, Chekir L, Ghoul M. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13203] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hind Chaaban
- Laboratory of Reactions and Process Engineering (LRGP), Lorraine University, 2 avenue de la Forêt de Haye-TSA; Vandoeuvre Cedex 40602 54518 France
| | - Irina Ioannou
- Laboratory of Reactions and Process Engineering (LRGP), Lorraine University, 2 avenue de la Forêt de Haye-TSA; Vandoeuvre Cedex 40602 54518 France
| | - Latifa Chebil
- Laboratory of Reactions and Process Engineering (LRGP), Lorraine University, 2 avenue de la Forêt de Haye-TSA; Vandoeuvre Cedex 40602 54518 France
| | - Manel Slimane
- Laboratory of Reactions and Process Engineering (LRGP), Lorraine University, 2 avenue de la Forêt de Haye-TSA; Vandoeuvre Cedex 40602 54518 France
| | - Christine Gérardin
- Laboratory of Studies and Research on Wood Material (LERMAB), Lorraine University, Boulevard des Aiguillettes-BP; Vandœuvre lès Nancy Cedex 70239 54506 France
| | - Cédric Paris
- Laboratory of Biomolecule Engineering (LIBio), Lorraine University, 2 avenue de la Forêt de Haye-TSA; Vandoeuvre Cedex 40602 54518 France
| | - Céline Charbonnel
- Laboratory of Reactions and Process Engineering (LRGP), Lorraine University, 2 avenue de la Forêt de Haye-TSA; Vandoeuvre Cedex 40602 54518 France
| | - Leila Chekir
- Laboratory of Cellular and Molecular Biology, Faculty of Dental Medicine; University of Monastir, Rue Avicenne; Monastir 5000 Tunisia
| | - Mohamed Ghoul
- Laboratory of Reactions and Process Engineering (LRGP), Lorraine University, 2 avenue de la Forêt de Haye-TSA; Vandoeuvre Cedex 40602 54518 France
| |
Collapse
|
43
|
Bioactive amines and phenolic compounds in cocoa beans are affected by fermentation. Food Chem 2017; 228:484-490. [PMID: 28317753 DOI: 10.1016/j.foodchem.2017.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/21/2022]
Abstract
Cocoa is the target of increased scientific research as it is one of the richest source of bioactive compounds. The formation of bioactive amines and their changes in cocoa beans during seven days of traditional fermentation was investigated for the first time. In addition, total phenolic compounds, anthocyanins contents and the scavenging capacity against ABTS radical were determined to monitor the fermentation process. Only two biogenic amines (tryptamine and tyramine) and two polyamines (spermidine and spermine) were detected in cocoa beans during fermentation. Fermentation was characterized by three stages: i) high levels of tryptamine, phenolics, and scavenging capacity; ii) high contents of spermine, total biogenic amines and total polyamines; and iii) the highest spermidine levels and total acidity, but the lowest total phenolic compounds and anthocyanins contents. The scavenging capacity of cocoa beans during fermentation correlated with total phenolic compounds and anthocyanins contents.
Collapse
|
44
|
Alejo-Armijo A, Glibota N, Frías MP, Altarejos J, Gálvez A, Ortega-Morente E, Salido S. Antimicrobial and antibiofilm activities of procyanidins extracted from laurel wood against a selection of foodborne microorganisms. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13321] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alfonso Alejo-Armijo
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales; Universidad de Jaén; Campus de Excelencia Internacional Agroalimentario (ceiA3) Jaén 23071 Spain
| | - Nicolás Glibota
- Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales; Universidad de Jaén; Campus de Excelencia Internacional Agroalimentario (ceiA3) Jaén 23071 Spain
| | - María P. Frías
- Departamento de Estadística e Investigación Operativa, Facultad de Ciencias Experimentales; Universidad de Jaén; Campus de Excelencia Internacional Agroalimentario (ceiA3) Jaén 23071 Spain
| | - Joaquín Altarejos
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales; Universidad de Jaén; Campus de Excelencia Internacional Agroalimentario (ceiA3) Jaén 23071 Spain
| | - Antonio Gálvez
- Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales; Universidad de Jaén; Campus de Excelencia Internacional Agroalimentario (ceiA3) Jaén 23071 Spain
| | - Elena Ortega-Morente
- Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales; Universidad de Jaén; Campus de Excelencia Internacional Agroalimentario (ceiA3) Jaén 23071 Spain
| | - Sofía Salido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales; Universidad de Jaén; Campus de Excelencia Internacional Agroalimentario (ceiA3) Jaén 23071 Spain
| |
Collapse
|
45
|
De Taeye C, Eyamo Evina VJ, Caullet G, Niemenak N, Collin S. Fate of Anthocyanins through Cocoa Fermentation. Emergence of New Polyphenolic Dimers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8876-8885. [PMID: 27934293 DOI: 10.1021/acs.jafc.6b03892] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fresh, ripe cocoa beans from Cameroon (German cocoa/Amelonado group and ICS 40/Trinitario group) were subjected to fermentation-like incubations in acetic acid, lactic acid, or both and to natural fermentation. Two naturally fermented samples from Cuba (UF 654/Trinitario group and C 411/Criollo group) were also investigated. Both cyanidin-3-galactoside and cyanidin-3-arabinoside (found as major anthocyanins in colored beans only) were drastically degraded through fermentation, especially in small beans and in the presence of acetic acid. On the other hand, emergence of a cyanidin-rhamnose isomer was evidenced, even in Criollo beans. In addition to the recently described structures F1 and F2 [m/z = 575 in ESI(-)], three additional polyphenolic structures [F3, F4, and F5; m/z = 557 in ESI(+)] were found after fermentation, the two former ones resulting from epicatechin oxidation. Synthesis of F5 requires an interclass reaction between cyani(di)n and epicatechin, which explains its absence in fermented Criollo beans.
Collapse
Affiliation(s)
- Cédric De Taeye
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute, ELIM, Faculté des Bioingénieurs, Université catholique de Louvain , Croix du Sud, 2 box L07.05.07, B-1348 Louvain-la-Neuve, Belgium
| | - Victor Jos Eyamo Evina
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute, ELIM, Faculté des Bioingénieurs, Université catholique de Louvain , Croix du Sud, 2 box L07.05.07, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Plant Physiology, Department of Biological Sciences, Higher Teacher's Training College, University of Yaounde I , P.O. Box 47, Yaounde, Cameroon
| | - Gilles Caullet
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute, ELIM, Faculté des Bioingénieurs, Université catholique de Louvain , Croix du Sud, 2 box L07.05.07, B-1348 Louvain-la-Neuve, Belgium
| | - Nicolas Niemenak
- Laboratory of Plant Physiology, Department of Biological Sciences, Higher Teacher's Training College, University of Yaounde I , P.O. Box 47, Yaounde, Cameroon
| | - Sonia Collin
- Unité de Brasserie et des Industries Alimentaires, Earth and Life Institute, ELIM, Faculté des Bioingénieurs, Université catholique de Louvain , Croix du Sud, 2 box L07.05.07, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
46
|
Pedan V, Fischer N, Rohn S. An online NP-HPLC-DPPH method for the determination of the antioxidant activity of condensed polyphenols in cocoa. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Batista NN, de Andrade DP, Ramos CL, Dias DR, Schwan RF. Antioxidant capacity of cocoa beans and chocolate assessed by FTIR. Food Res Int 2016; 90:313-319. [PMID: 29195887 DOI: 10.1016/j.foodres.2016.10.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/16/2016] [Accepted: 10/16/2016] [Indexed: 11/19/2022]
Abstract
The total antioxidant capacity (TAC) and total phenolic compounds (TPC) of cocoa beans and chocolate produced from spontaneous and inoculated fermentations of different cocoa varieties were evaluated. Fourier transform infrared spectroscopy (FTIR), as well as conventional methods: 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), was used to determine TAC and TPC. Chocolate showed higher (p<0.05) TPC (47.17-57.16mgGAE/g) and TAC (1.66-2.33mMTE/g and 8.86-11.35mMTE/g as measured by DPPH and ABTS, respectively) than cocoa beans (6.30-26.05mgGAE/g, 0.24-1.17mMTE/g and 1.29-4.83mMTE/g for TPC, DPPH and ABTS, respectively). Partial least square (PLS) model for infrared data showed a good calibration coefficient (R2cal>0.94), indicating that the FTIR technique represents a fast and reliable tool to evaluate TPC and TAC in cocoa beans and chocolate.
Collapse
Affiliation(s)
- Nádia Nara Batista
- Department of Food Science, Federal University of Lavras, 37.200-000 Lavras, MG, Brazil.
| | | | - Cíntia Lacerda Ramos
- Department of Biology, Federal University of Lavras, 37.200-000 Lavras, MG, Brazil.
| | - Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras, 37.200-000 Lavras, MG, Brazil.
| | | |
Collapse
|
48
|
Morais Ferreira JM, Azevedo BM, Silva FGDE, Luccas V, Bolini HMA. Isosweetness concentrations of sucrose and high-intensity sweeteners and antioxidant activity in white chocolate with functional properties. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Bruna Marcacini Azevedo
- Faculty of Food Engineering (FEA); University of Campinas (UNICAMP); Monteiro Lobato, 80 13083-862 Campinas SP Brazil
| | | | - Valdecir Luccas
- Food Technology Institute (ITAL); Avenida Brazil, 2880 13070-178 Campinas SP Brazil
| | - Helena Maria André Bolini
- Faculty of Food Engineering (FEA); University of Campinas (UNICAMP); Monteiro Lobato, 80 13083-862 Campinas SP Brazil
| |
Collapse
|
49
|
Ivanišová E, Godočiková L, Árvay J, Petrová J, Kačániová M. The comparison of biological activity of chocolates made by different technological procedures. POTRAVINARSTVO 2016. [DOI: 10.5219/628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Plant polyphenols to enhance the nutritional and sensory properties of chocolates. Food Chem 2016; 200:46-54. [DOI: 10.1016/j.foodchem.2015.12.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/13/2015] [Accepted: 12/29/2015] [Indexed: 12/11/2022]
|