1
|
Riquelme N, Díaz-Calderón P, Luarte A, Arancibia C. Effect of Ultrasound Time on Structural and Gelling Properties of Pea, Lupin, and Rice Proteins. Gels 2025; 11:270. [PMID: 40277706 PMCID: PMC12026612 DOI: 10.3390/gels11040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Plant proteins are garnering interest due to the growing demand for plant-based products, but their functionality in gel-based foods remains limited. Ultrasound (US) technology may improve the technological properties of proteins. Thus, the effect of US treatment time (0-15 min) on the structure and gelling properties of pea, lupin, and rice proteins was evaluated. The results showed that the whiteness (~60%) of all freeze-dried proteins remained unchanged (p > 0.05), regardless of the US time. However, FT-IR analysis revealed progressive reductions in α-helix and β-sheet for pea and lupin proteins (~50%) with US time, indicating partial unfolding. In addition, microstructure analysis showed an ~80% reduction in aggregate size for these proteins, while rice protein exhibited minimal changes. Conversely, weak gels were formed with pea and lupin proteins treated after 5 and 10 min of US, respectively, whereas rice protein did not form gels. Furthermore, US treatment time significantly increased (p < 0.05) the mechanical moduli, resulting in more structured gels after longer treatment times (tan δ ~0.3 at 15 min of US). These findings suggest that US treatment enhances the gelling properties of pea and lupin proteins, making them more suitable for plant-based food applications such as yogurt or desserts.
Collapse
Affiliation(s)
- Natalia Riquelme
- Laboratorio de Investigación en Propiedades de los Alimentos (INPROAL), Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Estación Central 9170201, Chile;
| | - Paulo Díaz-Calderón
- Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Chile, Las Condes 7620001, Chile;
- Centro de Investigación e Innovación Biomédica (CIIB), Universidad de Los Andes, Chile, Las Condes 7620001, Chile
| | - Alejandro Luarte
- Facultad de Medicina, Universidad de Los Andes, Chile, Las Condes 7620001, Chile;
- Programa de Neurociencias, Centro de Investigación e Innovación Biomédica (CIIB), Universidad de Los Andes, Chile, Las Condes 7620001, Chile
| | - Carla Arancibia
- Laboratorio de Investigación en Propiedades de los Alimentos (INPROAL), Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Estación Central 9170201, Chile;
| |
Collapse
|
2
|
Choudhury DB, Gul K, Sehrawat R, Mir NA, Ali A. Unveiling the potential of bean proteins: Extraction methods, functional and structural properties, modification techniques, physiological benefits, and diverse food applications. Int J Biol Macromol 2025; 295:139578. [PMID: 39793834 DOI: 10.1016/j.ijbiomac.2025.139578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Bean proteins, known for their sustainability, versatility, and high nutritional value, represent a valuable yet underutilized resource, receiving less industrial attention compared to soy and pea proteins. This review examines the structural and molecular characteristics, functional properties, amino acid composition, nutritional value, antinutritional factors, and digestibility of bean proteins. Their applications in various food systems, including baked goods, juice and milk substitutes, meat alternatives, edible coatings, and 3D printing inks, are discussed. The physiological benefits of bean proteins, such as antidiabetic, cardioprotective, antioxidant, and neuroprotective effects, are also presented, highlighting their potential for promoting well-being. Our review emphasizes the diversity of bean proteins and highlights ultrasound as the most effective extraction method among available techniques. Beyond their physiological benefits, bean proteins significantly enhance the structural, technological, and nutritional properties of food systems. The functionality can be further improved through various modification techniques, thereby expanding their applicability in the food industry. While studies have explored the impact of bean protein structure on their nutritional and functional properties, further research is needed to investigate advanced modification techniques and the structure-function relationship. This will enhance the utilization of bean proteins in innovative and sustainable food applications.
Collapse
Affiliation(s)
- Debojit Baidya Choudhury
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India.
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India
| | - Nisar Ahmad Mir
- Department of Food Technology, Islamic University of Science and Technology, One University Avenue, Awantipora 192122, India
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan 43500, Malaysia; Future Food Beacon of Excellence, Faculty of Science, University of Nottingham, Loughborough LE 12 5RD, United Kingdom
| |
Collapse
|
3
|
Zhou L, Ali I, Manickam S, Goh BH, Tao Y, Zhang J, Tang SY, Zhang W. Ultrasound-induced food protein-stabilized emulsions: Exploring the governing principles from the protein structural perspective. Compr Rev Food Sci Food Saf 2025; 24:e70162. [PMID: 40119796 DOI: 10.1111/1541-4337.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/25/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
Consumers' growing demand for healthy and natural foods has led to a preference for products with fewer additives. However, the low emulsifying properties of natural proteins often necessitate the addition of emulsifiers in food formulations. Consequently, enhancing the emulsifying properties of proteins through various modification methods is crucial to meet modern consumer demands for natural food products. High-intensity ultrasound offers a green, efficient processing technology that significantly improves the emulsifying properties of proteins. This study explores how ultrasound treatment enhances the stability of protein-based emulsions by modifying protein structures. While ultrasonic treatment does not significantly affect the primary structure of proteins, it influences the secondary, tertiary, and quaternary structures depending on the type of protein, ultrasound parameters (type, intensity, and time), and treatment conditions. The results suggest that ultrasound treatment reduces α-helix content, decreases protein particle size, and increases β-sheet content, surface hydrophobicity, free sulfhydryl groups, and zeta potential, leading to a more stable protein-based emulsion. The reduced particle size and increased flexibility of proteins induced by ultrasound enable more rapid protein adsorption at the oil-water interface, resulting in smaller emulsion droplets. This contributes to the emulsion's improved stability during storage. Future research should focus on the large-scale application of ultrasonic treatment for protein modification to produce high-quality, natural foods that meet the evolving needs of consumers.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- School of Food Science and Technology, Hunan Agricultural University, Changsha, China
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Israq Ali
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ye Tao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jian Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Siah Ying Tang
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Wangang Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Wei Y, Ning D, Sun L, Gu Y, Zhuang Y, Ding Y, Fan X. Breaking barriers: Elevating legume protein functionality in food products through non-thermal technologies. Food Chem X 2025; 25:102169. [PMID: 39872822 PMCID: PMC11770516 DOI: 10.1016/j.fochx.2025.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Legume proteins have recently gained significant interest in the food industry for their eco-friendliness and nutritional qualities. Research shows that the replacement of specific animal protein sources with legume proteins presents sustainability and economic benefit. Nonetheless, legume proteins frequently exhibit inferior functional properties and palatability compared to animal proteins. Various non-thermal technologies, including high hydrostatic pressure, ultrasound, cold plasma, pulsed electric field, and dynamic high-pressure microjet, had been investigated to enhance the functional properties of legume proteins without loss of nutritional and sensory properties. Although these technologies show potential, no systematic study has been conducted to summarize and compare their effects on different legume proteins. This review aims to fill this gap by addressing the most promising approaches of non-thermal technologies for the modification of functional properties of legume proteins. New insights are discussed, elaborating the effect of non-thermal technologies on the structural and functional behavior of proteins.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Delu Ning
- Yunnan Academy of Forestry and Grassland Sciences, Kunming 650201, China
- Yunnan Technology Innovation Center of Woody Oil, Kunming 650201, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Technology Innovation Center of Woody Oil, Kunming 650201, China
| | - Yangyue Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xuejing Fan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
5
|
Mundada V, Karabulut G, Kapoor R, Malvandi A, Feng H. Fabricating dehydrated albumen with a novel variable frequency ultrasonic drying method: Drying kinetics, physiochemical and foaming characteristics. Int J Biol Macromol 2024; 283:137664. [PMID: 39561847 DOI: 10.1016/j.ijbiomac.2024.137664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Albumen, primarily composed of ovalbumin, is a vital, nutrient-rich ingredient in the food industry. Drying is a critical step in low-water-activity albumen powder production, allowing extended shelf-life and reduced costs in handling, transportation, and storage of albumen products. Traditional drying methods, such as spray drying (SD) and hot air drying (HAD), often degrade albumen. This study explores variable frequency contact ultrasonic drying (CUD) as a novel and green alternative, operating at a central frequency of 20 kHz with sound amplitudes of 0 %, 40 %, and 60 %, and temperatures of 40 °C and 60 °C. The drying kinetics, physical, and foaming properties of CUD-dried albumen proteins were compared with those of hot-air-, spray-, and freeze-dried (FD) samples. Compared to HAD, CUD significantly enhanced the drying process, as evidenced by a 240 % increase in effective moisture diffusivity, a 66-78 % reduction in activation energy (Ea), and a 27 % reduction in drying time. Moreover, CUD maintained higher protein integrity, evident from a 24-35 % decrease in enthalpies, more β-turn and random coil structures, and increased free sulfhydryl groups. Notably, CUD at 40 °C significantly improved foaming capacity by 88 %, and at 60 °C, it enhanced foaming stability by 34 %, outperforming other drying methods. Protein solubility of CUD-albumen was improved by 10-12 % compared to HAD and was slightly better than FD. CUD-albumen showed a brighter color with a 26 % lower browning index than the HAD samples. Overall, CUD emerges as an effective and sustainable method for drying high-protein materials, ensuring high-quality albumen powders.
Collapse
Affiliation(s)
- Vedant Mundada
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54187 Sakarya, Türkiye
| | - Ragya Kapoor
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amir Malvandi
- Department of Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| |
Collapse
|
6
|
Miao Q, He Y, Sun H, Olajide TM, Yang M, Han B, Liao X, Huang J. Effects of preheat treatment and syringic acid modification on the structure, functional properties, and stability of black soybean protein isolate. J Food Sci 2024; 89:3577-3590. [PMID: 38720591 DOI: 10.1111/1750-3841.17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 06/14/2024]
Abstract
This study investigated preheated (25-100°C) black soybean protein isolate (BSPI) conjugated with syringic acid (SA) (25 and 50 µmol/g protein) under alkaline conditions, focusing on the structure, functional properties, and storage stability. The results revealed that the SA binding equivalent and binding rate on BSPI increased continuously as the preheat temperature increased. Additionally, preheating positively impacted the surface hydrophobicity (H0) of BSPI, with further enhancement observed upon SA binding. Preheating and SA binding altered the secondary and tertiary structure of BSPI, resulting in protein unfolding and increased molecular flexibility. The improvement in BSPI functional properties was closely associated with both preheating temperature and SA binding. Specifically, preheating decreased the solubility of BSPI but enhanced the emulsifying activity index (EAI) and foaming capacity (FC) of BSPI. Conversely, SA binding increased the solubility of BSPI with an accompanying increase in EAI, FC, foaming stability, and antioxidant activity. Notably, the BSPI100-SA50 exhibited the most significant improvement in functional properties, particularly in solubility, emulsifying, and foaming attributes. Moreover, the BSPI-SA conjugates demonstrated good stability of SA during storage, which positively correlated with the preheating temperature. This study proposes a novel BSPI-SA conjugate with enhanced essential functional properties, underscoring the potential of preheated BSPI-SA conjugates to improve SA storage stability. PRACTICAL APPLICATION: Preheated BSPI-SA conjugates can be used as functional ingredients in food or health products. In addition, preheated BSPI shows potential as a candidate for encapsulating and delivering hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Qianqian Miao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yiqing He
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Haiwen Sun
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tosin Michael Olajide
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, Shanghai, China
| | - Minxin Yang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Bingyao Han
- Residential College, Shanghai University, Shanghai, China
| | - Xianyan Liao
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Huang
- Food Nutrition and Chronic Disease Intervention Laboratory, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Mao S, Zhou Y, Song B, Wu Y, Wang Y, Wang Y, Liu Y, Xu X, Zhao C, Liu J. Effect of Microwave Intermittent Drying on the Structural and Functional Properties of Zein in Corn Kernels. Foods 2024; 13:207. [PMID: 38254508 PMCID: PMC10814094 DOI: 10.3390/foods13020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Microwave intermittent drying was carried out on newly harvested corn kernels to study the effects of different microwave intermittent powers (900 W, 1800 W, 2700 W, and 3600 W) on the structural and functional properties of zein in corn kernels. The results showed that microwave drying could increase the thermal stability of zein in corn kernels. The solubility, emulsification activity index, and surface hydrophobicity increased under 1800 W drying power, which was due to the unfolding of the molecular structure caused by the increase in the content of irregular structure and the decrease in the value of particle size. At a drying power of 2700 W, there was a significant increase in grain size values and β-sheet structure. This proves that at this time, the corn proteins in the kernels were subjected to the thermal effect generated by the higher microwave power, which simultaneously caused cross-linking and aggregation within the proteins to form molecular aggregates. The solubility, surface hydrophobicity, and other functional properties were reduced, while the emulsification stability was enhanced by the aggregates. The results of the study can provide a reference for the in-depth study of intermittent corn microwave drying on a wide range of applications of zein in corn kernels.
Collapse
Affiliation(s)
- Sining Mao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Yuhan Zhou
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Bin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Yuzhu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Yiran Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Yanjia Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Xiuying Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Chengbin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (S.M.); (Y.Z.); (B.S.); (Y.W.); (Y.W.); (Y.L.); (X.X.); (C.Z.)
| | - Jingsheng Liu
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
8
|
Kozell A, Solomonov A, Shimanovich U. Effects of sound energy on proteins and their complexes. FEBS Lett 2023; 597:3013-3037. [PMID: 37838939 DOI: 10.1002/1873-3468.14755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023]
Abstract
Mechanical energy in the form of ultrasound and protein complexes intuitively have been considered as two distinct unrelated topics. However, in the past few years, increasingly more attention has been paid to the ability of ultrasound to induce chemical modifications on protein molecules that further change protein-protein interaction and protein self-assembling behavior. Despite efforts to decipher the exact structure and the behavior-modifying effects of ultrasound on proteins, our current understanding of these aspects remains limited. The limitation arises from the complexity of both phenomena. Ultrasound produces multiple chemical, mechanical, and thermal effects in aqueous media. Proteins are dynamic molecules with diverse complexation mechanisms. This review provides an exhaustive analysis of the progress made in better understanding the role of ultrasound in protein complexation. It describes in detail how ultrasound affects an aqueous environment and the impact of each effect separately and when combined with the protein structure and fold, the protein-protein interaction, and finally the protein self-assembly. It specifically focuses on modifying role of ultrasound in amyloid self-assembly, where the latter is associated with multiple neurodegenerative disorders.
Collapse
Affiliation(s)
- Anna Kozell
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Aleksei Solomonov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Liu S, Kong T, Feng Y, Fan Y, Yu J, Duan Y, Cai M, Hu K, Ma H, Zhang H. Effects of slit dual-frequency ultrasound-assisted pulping on the structure, functional properties and antioxidant activity of Lycium barbarum proteins and in situ real-time monitoring process. ULTRASONICS SONOCHEMISTRY 2023; 101:106696. [PMID: 37988957 PMCID: PMC10696417 DOI: 10.1016/j.ultsonch.2023.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
To improve the protein dissolution rate and the quality of fresh Lycium barbarum pulp (LBP), we optimized the slit dual-frequency ultrasound-assisted pulping process, explored the dissolution kinetics of Lycium barbarum protein (LBPr), and established a near-infrared spectroscopy in situ real-time monitoring model for LBPr dissolution through spectral information analysis and chemometric methods. The results showed that under optimal conditions (dual-frequency 28-33 kHz, 300 W, 31 min, 40 °C, interval ratio 5:2 s/s), ultrasonic treatment not only significantly increased LBPr dissolution rate (increased by 71.48 %, p < 0.05), improved other nutrient contents and color, but also reduced the protein particle size, changed the amino acid composition ratio and protein structure, and increased the surface hydrophobicity, zeta potential, and free sulfhydryl content of protein, as well as the antioxidant activity of LBPr. In addition, ultrasonication significantly improved the functional properties of the protein, including thermal stability, foaming, emulsification and oil absorption capacity. Furthermore, the real-time monitoring model of the dissolution process was able to quantitatively predict the dissolution rate of LBPr with good calibration and prediction performance (Rc = 0.9835, RMSECV = 2.174, Rp = 0.9841, RMSEP = 1.206). These findings indicated that dual-frequency ultrasound has great potential to improve the quality of LBP and may provide a theoretical basis for the establishment of an intelligent control system in the industrialized production of LBP and the functional development of LBPr.
Collapse
Affiliation(s)
- Shuhan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanli Fan
- School of Food & Wine, Ningxia University, Yinchuan 750021, China
| | - Junwei Yu
- Ningxia Zhongning Goji Industry Innovation Research Institute, Zhongning 755100, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
10
|
Ma Y, Zhang J, He J, Xu Y, Guo X. Effects of high-pressure homogenization on the physicochemical, foaming, and emulsifying properties of chickpea protein. Food Res Int 2023; 170:112986. [PMID: 37316018 DOI: 10.1016/j.foodres.2023.112986] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
In order to expand the utilization of chickpeas in various food products, this study investigated the effects of different homogenization pressures (0-150 MPa) and cycles (1-3) on the physicochemical, and functional properties of chickpea protein. After high-pressure homogenization (HPH) treatment, hydrophobic groups and sulfhydryl groups of chickpea protein was exposed which increased its surface hydrophobicity and decreased its total sulfhydryl content. SDS-PAGE analysis showed that the molecular weight of modified chickpea protein remained unchanged. The particle size and turbidity of chickpea protein significantly decreased with an increase in homogenization pressure and cycles. Furthermore, the solubility, foaming, and emulsifying properties of chickpea protein were all enhanced by HPH treatment. In addition, the emulsions prepared by modified chickpea protein showed better stability capacity due to its smaller particle size and higher zeta potential. Therefore, HPH might be an effective technique to improve the functional properties of chickpea protein.
Collapse
Affiliation(s)
- Yigang Ma
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Jinmeng He
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yingjie Xu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
11
|
Alfaro-Diaz A, Escobedo A, Luna-Vital DA, Castillo-Herrera G, Mojica L. Common beans as a source of food ingredients: Techno-functional and biological potential. Compr Rev Food Sci Food Saf 2023; 22:2910-2944. [PMID: 37182216 DOI: 10.1111/1541-4337.13166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 04/16/2023] [Indexed: 05/16/2023]
Abstract
Common beans are an inexpensive source of high-quality food ingredients. They are rich in proteins, slowly digestible starch, fiber, phenolic compounds, and other bioactive molecules that could be separated and processed to obtain value-added ingredients with techno-functional and biological potential. The use of common beans in the food industry is a promising alternative to add nutritional and functional ingredients with a low impact on overall consumer acceptance. Researchers are evaluating traditional and novel technologies to develop functionally enhanced common bean ingredients, such as flours, proteins, starch powders, and phenolic extracts that could be introduced as functional ingredient alternatives in the food industry. This review compiles recent information on processing, techno-functional properties, food applications, and the biological potential of common bean ingredients. The evidence shows that incorporating an adequate proportion of common bean ingredients into regular foods such as pasta, bread, or nutritional bars improves their fiber, protein, phenolic compounds, and glycemic index profile without considerably affecting their organoleptic properties. Additionally, common bean consumption has shown health benefits in the gut microbiome, weight control, and the reduction of the risk of developing noncommunicable diseases. However, food matrix interaction studies and comprehensive clinical trials are needed to develop common bean ingredient applications and validate the health benefits over time.
Collapse
Affiliation(s)
- Arturo Alfaro-Diaz
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Alejandro Escobedo
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Diego A Luna-Vital
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
| | - Gustavo Castillo-Herrera
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
12
|
Teixeira RF, Balbinot Filho CA, Oliveira DD, Zielinski AAF. Prospects on emerging eco-friendly and innovative technologies to add value to dry bean proteins. Crit Rev Food Sci Nutr 2023; 64:10256-10280. [PMID: 37341113 DOI: 10.1080/10408398.2023.2222179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The world's growing population and evolving food habits have created a need for alternative plant protein sources, with pulses playing a crucial role as healthy staple foods. Dry beans are high-protein pulses rich in essential amino acids like lysine and bioactive peptides. They have gathered attention for their nutritional quality and potential health benefits concerning metabolic syndrome. This review highlights dry bean proteins' nutritional quality, health benefits, and limitations, focusing on recent eco-friendly emerging technologies for their obtaining and functionalization. Antinutritional factors (ANFs) in bean proteins can affect their in vitro protein digestibility (IVPD), and lectins have been identified as potential allergens. Recently, eco-friendly emerging technologies such as ultrasound, microwaves, subcritical fluids, high-hydrostatic pressure, enzyme technology, and dry fractionation methods have been explored for extracting and functionalizing dry bean proteins. These technologies have shown promise in reducing ANFs, improving IVPD, and modifying allergen epitopes. Additionally, they enhance the techno-functional properties of bean proteins, making them more soluble, emulsifying, foaming, and gel-forming, with enhanced water and oil-holding capacities. By utilizing emerging innovative technologies, protein recovery from dry beans and the development of protein isolates can meet the demand for alternative protein sources while being eco-friendly, safe, and efficient.
Collapse
Affiliation(s)
- Renata Fialho Teixeira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | |
Collapse
|
13
|
Long FF, Fan XH, Zhang QA. Effects of ultrasound on the immunoreactivity of amandin, an allergen in apricot kernels during debitterizing. ULTRASONICS SONOCHEMISTRY 2023; 95:106410. [PMID: 37088029 PMCID: PMC10457589 DOI: 10.1016/j.ultsonch.2023.106410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
In this paper, an investigation was conducted on the effects of ultrasound time, power and temperatures on the immunoreactivity of the allergenic amandin in apricot kernels by western blotting analysis during the ultrasonically accelerated debitterizing. And its influencing mechanism on the structure of amandin was also analyzed by SDS-PAGE, circular dichroism spectrum, extrinsic fluorescence spectrum, surface hydrophobicity and zeta potential determination, respectively. The results indicate that ultrasound could significantly reduce the immunoreactivity of amandin during ultrasonically accelerated debitterizing, and the optimal ultrasound condition was 60 min, 300 W, 55 °C and 59 kHz and decreased the immunoreactivity to 15.61%, which might be attributed to the changes of the protein subunits, secondary and tertiary structure, and molecular aggregation state induced by ultrasound. In a word, ultrasound could not only accelerate debitterizing, but also significantly decrease the immunoreactivity of apricot kernels, which proved the feasibility of ultrasound in practical processing of apricot kernels.
Collapse
Affiliation(s)
- Fei-Fei Long
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xue-Hui Fan
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Qing-An Zhang
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
14
|
Influences of Ultrasonic Treatments on the Structure and Antioxidant Properties of Sugar Beet Pectin. Foods 2023; 12:foods12051020. [PMID: 36900538 PMCID: PMC10001074 DOI: 10.3390/foods12051020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
The objective of this study was to explore the structural changes and oxidation resistance of ultrasonic degradation products of sugar beet pectin (SBP). The changes in the structures and antioxidant activity between SBP and its degradation products were compared. As the ultrasonic treatment time increased, the content of α-D-1,4-galacturonic acid (GalA) also increased, to 68.28%. In addition, the neutral sugar (NS) content, esterification degree (DE), particle size, intrinsic viscosity and viscosity-average molecular weight (MV) of the modified SBP decreased. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to study the degradation of the SBP structure after ultrasonication. After ultrasonic treatment, the DPPH and ABTS free radical scavenging activities of the modified SBP reached 67.84% and 54.67% at the concentration of 4 mg/mL, respectively, and the thermal stability of modified SBP was also improved. All of the results indicate that the ultrasonic technology is an environmentally friendly, simple, and effective strategy to improve the antioxidant capacity of SBP.
Collapse
|
15
|
Rawat R, Saini CS. High-Intensity Ultrasound (HIUS) Treatment of Sunnhemp Protein Isolate (Crotalaria juncea L.): Modification of Functional, Structural, and Microstructural Properties. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Xu G, Kang J, You W, Li R, Zheng H, Lv L, Zhang Q. Pea protein isolates affected by ultrasound and NaCl used for dysphagia's texture-modified food: Rheological, gel, and structural properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
17
|
Zhong M, Sun Y, Song H, Liao Y, Qi B, Li Y. Dithiothreitol-induced reassembly of soybean lipophilic protein as a carrier for resveratrol: Preparation, structural characterization, and functional properties. Food Chem 2023; 399:133964. [PMID: 36029675 DOI: 10.1016/j.foodchem.2022.133964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022]
Abstract
We employed dithiothreitol (DTT) to reassemble soy lipophilic protein (LP) and increased its solubility for encapsulating resveratrol (Res); we subsequently added hydroxypropyl methylcellulose (HPMC) to further stabilize Res. Physicochemical characterization, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and spectral analysis revealed that DTT triggered the breakage and reassembly of the disulfide bond. Consequently, the solubility of LP increased from 38.64 % to 71.49 %, and the number of free sulfhydryl groups increased to 7.84 mol·g-1. Furthermore, the encapsulation efficiency and structure of reassembled LP nanoparticles loaded with Res were found to be closely related to the DTT concentration used for induction. When HPMC was added, the LP-Res complex demonstrated spontaneous self-assembly, and the pH and temperature stability of the Res in the nanoparticles improved. An in vitro digestion simulation revealed that the reassembled LP was an efficient carrier for Res delivery. Particularly, HPMC improved the bioavailability and sustained release of Res.
Collapse
Affiliation(s)
- Mingming Zhong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yufan Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hanyu Song
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yi Liao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; National Research Center of Soybean Engineering and Technology, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; National Research Center of Soybean Engineering and Technology, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| |
Collapse
|
18
|
Bangar SP, Esua OJ, Sharma N, Thirumdas R. Ultrasound-assisted modification of gelation properties of proteins: A review. J Texture Stud 2022; 53:763-774. [PMID: 35275412 DOI: 10.1111/jtxs.12674] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/16/2022]
Abstract
Protein gels have diverse applications in the food, pharmaceutical, and cosmetic sectors due to their affordability, biodegradability, and edibility. However, the inherent properties of some native proteins have a few drawbacks that have to be tailored to meet the needs of specific functions as the food ingredients. The protein gelation properties mainly depend on the protein molecular structure, primarily the folding and unfolding of secondary structural elements (α-helix and β-sheets) with distinctive functions. In the past, a great amount of work (thermal, chemical, and enzymatic methods) has been carried out to enhance the gelation and functional properties of proteins. Recently, the traditional methods have been replaced with non-thermal physical methods that enhance the properties for better applications. One such approach is the use of ultrasonic technology as a low-cost green technology to modify the molecular orientation attributed to the native chemistry and functionality of that proteins. Ultrasonic technology is important in food systems and can be effectively used as an alternative method to improve the protein gelling characteristics to form high-quality gels. This article is aimed to comprehensively collate some of the vital information published on the mechanism of protein gelation by ultrasonication and review the effects of ultrasound-assisted extraction and treatments on gelation properties of different proteins. The enhanced gelation properties by the ultrasound application open a new stage of technology that enables the proteins for better utilization in the food processing sector.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Okon Johnson Esua
- Department of Agricultural and Food Engineering, University of Uyo, Uyo, Nigeria.,School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Nitya Sharma
- Food Customization Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Rohit Thirumdas
- Department of Food Process Technology, College of Food Science and Technology, PJTSAU, Telangana, India
| |
Collapse
|
19
|
Ultrasound modified protein colloidal particles: Interfacial activity, gel property and encapsulation efficiency. Adv Colloid Interface Sci 2022; 309:102768. [DOI: 10.1016/j.cis.2022.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
|
20
|
Bi CH, Chi SY, Zhou T, Zhang JY, Wang XY, Li J, Shi WT, Tian B, Huang ZG, Liu Y. Effect of low-frequency high-intensity ultrasound (HIU) on the physicochemical properties of chickpea protein. Food Res Int 2022; 159:111474. [DOI: 10.1016/j.foodres.2022.111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/20/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022]
|
21
|
Effects of Microwave Treatment on Structure, Functional Properties and Antioxidant Activities of Germinated Tartary Buckwheat Protein. Foods 2022; 11:foods11101373. [PMID: 35626943 PMCID: PMC9142102 DOI: 10.3390/foods11101373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/13/2022] Open
Abstract
Tartary buckwheat protein (TBP) has promise as a potential source of novel natural nutrient plant protein ingredients. The modulating effects of microwave pretreatment at varying powers and times on the structure, functional properties, and antioxidant activities of germinated TBP were investigated. Compared with native germinated TBP, after microwave pretreatment, the content of free sulfhydryl groups in the germinated TBP increased, and the secondary structure changes showed a significant decrease in α-helix and an increase in random coil contents, and the intensity of the ultraviolet absorption peak increased (p < 0.05). In addition, microwave pretreatment significantly improved the solubility (24.37%), water-holding capacity (38.95%), emulsifying activity index (17.21%), emulsifying stability index (11.22%), foaming capacity (71.43%), and foaming stability (33.60%) of germinated TBP (p < 0.05), and the in vitro protein digestibility (5.56%) and antioxidant activities (DPPH (32.35%), ABTS (41.95%), and FRAP (41.46%)) of germinated TBP have also been improved. Among different treatment levels, a microwave level of 300 W/50 s gave the best results for the studied parameters. Specifically, microwave pretreatment could be a promising approach for modulating other germinated plant protein resources, as well as expanding the application of TBP.
Collapse
|
22
|
Kang S, Zhang J, Guo X, Lei Y, Yang M. Effects of Ultrasonic Treatment on the Structure, Functional Properties of Chickpea Protein Isolate and Its Digestibility In Vitro. Foods 2022; 11:foods11060880. [PMID: 35327302 PMCID: PMC8954619 DOI: 10.3390/foods11060880] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
This study evaluated the effects of different levels of ultrasonic power (200, 400, 600 W) and treatment time (0, 10, 15 and 30 min) on the structure, emulsification characteristics, and in vitro digestibility of chickpea protein isolate (CPI). The changes in surface hydrophobicity of CPI indicated that ultrasound treatment exposed more hydrophobic amino acid residues. The analysis of sulfhydryl content and zeta potential showed that ultrasound caused the disulfide bond of CPI to be opened, releasing more negatively charged groups, and the solution was more stable. In addition, Fourier Transform Infrared Spectroscopy (FT-IR) and intrinsic fluorescence spectroscopy showed that ultrasound changes the secondary and tertiary structure of CPI, which is due to molecular expansion and stretching, exposing internal hydrophobic groups. The emulsification and foaming stability of CPI were significantly improved after ultrasonic treatment. Ultrasonic treatment had a minor effect on the solubility, foaming capacity and in vitro digestibility of CPI. All the results revealed that the ultrasound was a promising way to improve the functional properties of CPI.
Collapse
|
23
|
Li C, Wang Q, Zhang C, Lei L, Lei X, Zhang Y, Li L, Wang Q, Ming J. Effect of simultaneous treatment combining ultrasonication and rutin on gliadin in the formation of nanoparticles. J Food Sci 2021; 87:80-93. [PMID: 34935129 DOI: 10.1111/1750-3841.15993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
Proteins, one of the vital nutritional compounds sensitive to the environment, can be modified by interaction with polyphenols. Ultrasonication has been applied for enhancing the functional properties of proteins. In this study, the interactions of gliadin (G) and rutin (R) in the absence and presence of ultrasonication (0, 150, 300, 450, and 600 W) for 20 min were investigated, with a focus on the properties of emulsions prepared by G-R complexes. Ultrasonication improved the interaction, which increased the content of β-type secondary structure. Ultrasonication at 450 W increased the particle size of the conjugates. For Pickering emulsions, treating the covering of R on G with ultrasonication improves the stability of the G-based emulsion significantly, owing to the strong films formed on the oil-water interfaces. The G-R complexes treated at 450 W ultrasonication formed emulsions that showed higher potential and storage modulus (G') and denser microstructures than those of the untreated emulsions. Nevertheless, ultrasound treatment at 600 W weakened the emulsion properties that were stabilized by the conjugates. Ultrasound combined R was shown to be a potential processing technology for changing the protein structure and producing stable emulsions. PRACTICAL APPLICATION: The interactions between proteins and polyphenols are able to preserve the stability of the functional compounds, allow targeted and controlled release, and improve the texture of these complexes employed in the food industry. Improvements in the functional characteristics of the protein-polyphenol complexes so that they possess high emulsifying stability during food processing is a crucial factor for employing them in the food industry. Therefore, the aim of this research is using a soluble complex of gliadin-rutin for the development of its functional characteristics.
Collapse
Affiliation(s)
- Chunyi Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Qiming Wang
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Chi Zhang
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, People's Republic of China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
24
|
Niu HZ, Liu CM, Hou WC, Li SN, Zhang YC, Liu Z, Yun HC. Development of a method to screen and isolate xanthine oxidase inhibitors from black bean in a single step: Hyphenation of semipreparative liquid chromatography and stepwise flow rate countercurrent chromatography. J Sep Sci 2021; 45:492-506. [PMID: 34799974 DOI: 10.1002/jssc.202100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/06/2022]
Abstract
Black bean, in which isoflavones are the main active constituent, also contains saponins and monoterpenes. Soybean isoflavone is a secondary metabolite that is formed during the growth of soybean; it exhibits antioxidant and cardiovascular activities and traces estrogen-like effects. In this study, black bean isoflavones were extracted with n-butanol, and ultrafiltration-liquid chromatography-mass spectrometry was used to screen their activity. Subsequently, the inhibitors were isolated and purified using semipreparative liquid chromatography and stepwise flow rate countercurrent chromatography. Thereafter, five active compounds were identified using mass spectrometry and nuclear magnetic resonance experiments. Finally, the inhibition types of the xanthine oxidase inhibitors were determined using enzymatic kinetic studies. The IC50 values of daidzin, glycitein-7-O-glucoside, genistin, daidzein, and genistein were determined to be 35.08, 56.22, 30.76, 68.79, and 95.37 μg/mL, respectively. Daidzin, genistin, and daidzein exhibited reversible inhibition, whereas glycitein-7-O-glucoside and genistein presented irreversible inhibition. This novel approach, which was based on ultrafiltration-liquid chromatography-mass spectrometry and stepwise flow rate countercurrent chromatography, is a powerful method for screening and isolating xanthine oxidase inhibitors from complex matrices. The study of enzyme inhibition types is helpful for understanding the underlying inhibition mechanism. Therefore, a beneficial platform was developed for the large-scale production of bioactive and nutraceutical ingredients.
Collapse
Affiliation(s)
- Hua-Zhou Niu
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Chun-Ming Liu
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Wan-Chao Hou
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Sai-Nan Li
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Yu-Chi Zhang
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Zhen Liu
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| | - Hao-Cheng Yun
- Central Laboratory, Changchun Normal University, Changchun, P. R. China
| |
Collapse
|
25
|
Chen J, Zhang X, Chen Y, Zhao X, Anthony B, Xu X. Effects of different ultrasound frequencies on the structure, rheological and functional properties of myosin: Significance of quorum sensing. ULTRASONICS SONOCHEMISTRY 2020; 69:105268. [PMID: 32731126 DOI: 10.1016/j.ultsonch.2020.105268] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 05/08/2023]
Abstract
Structure and rheological properties of myosin in myofibrillar protein (MP) after single frequency pulsed ultrasound (SFPU, G1-G2) and dual frequency pulsed ultrasound (DFPU, G3) were compared for the first time. Results showed SFPU and DFPU induced "stress response" through the action of cavitation on multiple myosin. In addition, there may be a certain quorum sensing among myosin, inducing a more stable β-antiparallel structure to resist negative effects of cavitation force. Results of particle size and synchronous fluorescence indicated that structure of myosin in MPs changed through stress. The increase in pH also assisted in the ultrasound process (G5-G7). Notably, DFPU induced stronger quorum sensing and formed a more stable structure. More so, effects of (-)-epigallocatechin-3-gallate (EGCG) and baicalein (BN) on the emulsion and gel properties of DFPU treated and non-treated MPs were also investigated. Results showed that ultrasound increased the stability of emulsion. Additionally, the texture and expressible moisture content (EMOC) of the gel were also improved after treatment.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University, Aachen 52074, Germany
| | - Yan Chen
- School of Mathematical Sciences, Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Zhao
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bassey Anthony
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
26
|
Salehi F. Physico-chemical properties of fruit and vegetable juices as affected by ultrasound: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1825486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|