1
|
Zhang Z, Zhang J, Zhang K, Ge X, Zhai X. Robust evidence supports a causal link between higher birthweight and longer telomere length: a mendelian randomization study. Front Genet 2024; 15:1264028. [PMID: 38974386 PMCID: PMC11224456 DOI: 10.3389/fgene.2024.1264028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/17/2024] [Indexed: 07/09/2024] Open
Abstract
Background Observational studies have suggested a potential relationship between birthweight and telomere length. However, the causal link between these two parameters remains undefined. In this study, we use Mendelian Randomization (MR). This method employs genetic variants as instrumental variables, to explore the existence of causal associations and elucidate the causal relationship between birth weight and telomere length. Methods We used 35 single nucleotide polymorphisms (SNPs) as instrumental variables for birth weight. These SNPs were identified from a meta-analysis involving 153,781 individuals. Furthermore, we obtained summary statistics for telomere length from a study conducted on 472,174 United Kingdom Biobank participants. To evaluate the causal estimates, we applied the random effect inverse variance weighted method (IVW) and several other MR methods, such as MR-Egger, weighted median, and MR-PRESSO, to verify the reliability of our findings. Results Our analysis supports a significant causal relationship between genetically predicted birth weight and telomer3e length. The inverse variance weighted analysis results for birth weight (Beta = 0.048; 95%CI = 0.023 to 0.073; p < 0.001) corroborate this association. Conclusion Our study provides robust evidence supporting a causal link between higher birth weight and longer telomere length.
Collapse
Affiliation(s)
- Zhuoya Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kaiqi Zhang
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolei Ge
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Zhai
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Wang D, Li C, Zhang X, Li Y, He J, Guo X. Leukocyte telomere length and sarcopenia-related traits: A bidirectional Mendelian randomization study. PLoS One 2024; 19:e0296063. [PMID: 38166034 PMCID: PMC10760921 DOI: 10.1371/journal.pone.0296063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024] Open
Abstract
Accumulating evidence indicated that leukocyte telomere length (LTL) was related to sarcopenia. However, it is still not clear whether the association of changes in LTL with sarcopenia is likely to be causal, or could be explained by reverse causality. Thus, we carried on bidirectional Mendelian randomization (MR) and multivariable MR analyses to identify the causal relationship between LTL and sarcopenia-related traits. Summary-level data and independent variants used as instruments came from large genome-wide association studies of LTL (472,174 participants), appendicular lean mass (450,243 participants), low grip strength (256,523 participants), and walking pace (450,967 participants). We identified suggestive association of longer LTL with larger appendicular lean mass [odds ratio (OR) = 1.053; 95% confidence interval (CI), 1.009-1.099; P = 0.018], and causal association of longer LTL with a lower risk of low grip strength (OR = 0.915; 95% CI, 0.860-0.974; P = 0.005). In the reverse MR analysis, we also observed a positive causal association between walking pace and LTL (OR = 1.252; 95% CI, 1.121-1.397; P < 0.001). Similar results can be repeated in sensitivity analyses. While in the multivariable MR analysis, the estimate of the impact of walking pace on LTL underwent a transformation after adjusting for T2DM (OR = 1.141; 95%CI: 0.989-1.317; P = 0.070). The current MR analysis supported a causal relationship between shorter telomere length and both low muscle mass and strength. Additionally, walking pace may affect LTL through T2DM.
Collapse
Affiliation(s)
- Dingkun Wang
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chenhao Li
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xinwen Zhang
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yihao Li
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Junhua He
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaoming Guo
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Van Der Stukken C, Nawrot TS, Wang C, Lefebvre W, Vanpoucke C, Plusquin M, Roels HA, Janssen BG, Martens DS. The association between ambient particulate matter exposure and the telomere-mitochondrial axis of aging in newborns. ENVIRONMENT INTERNATIONAL 2023; 171:107695. [PMID: 36574746 DOI: 10.1016/j.envint.2022.107695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Particulate matter (PM) is associated with aging markers at birth, including telomeres and mitochondria. It is unclear whether markers of the core-axis of aging, i.e. tumor suppressor p53 (p53) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), are associated with prenatal air pollution and whether there are underlying mechanisms. METHODS 556 mother-newborn pairs from the ENVIRONAGE birth cohort were recruited at the East Limburg Hospital in Genk (Belgium). In placenta and cord blood, telomere length (TL) and mitochondrial DNA content (mtDNAc) were measured using quantitative real-time polymerase chain reaction (qPCR). In cord plasma, p53 and PGC-1α protein levels were measured using ELISA. Daily ambient PM2.5 concentrations during gestation were calculated using a spatial temporal interpolation model. Distributed lag models (DLMs) were applied to assess the association between prenatal PM2.5 exposure and each molecular marker. Mediation analysis was performed to test for underlying mechanisms. RESULTS A 5 µg/m3 increment in PM2.5 exposure was associated with -11.23 % (95 % CI: -17.36 % to -4.65 %, p = 0.0012) and -7.34 % (95 % CI: -11.56 % to -2.92 %, p = 0.0014) lower placental TL during the entire pregnancy and second trimester respectively, and with -12.96 % (95 % CI: -18.84 % to -6.64 %, p < 0.001) lower placental mtDNAc during the third trimester. Furthermore, PM2.5 exposure was associated with a 12.42 % (95 % CI: -1.07 % to 27.74 %, p = 0.059) higher cord plasma p53 protein level and a -3.69 % (95 % CI: -6.97 % to -0.31 %, p = 0.033) lower cord plasma PGC-1α protein level during the third trimester. Placental TL mediated 65 % of the negative and 17 % of the positive association between PM2.5 and placental mtDNAc and cord plasma p53 protein levels, respectively. CONCLUSION Ambient PM2.5 exposure during pregnancy is associated with markers of the core-axis of aging, with TL as a mediating factor. This study strengthens the hypothesis of the air pollution induced core-axis of aging, and may unravel a possible underlying mediating mechanism in an early-life epidemiological context.
Collapse
Affiliation(s)
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
4
|
Gonzalez-Riano C, Santos M, Díaz M, García-Beltran C, Lerin C, Barbas C, Ibáñez L, Sánchez-Infantes D. Birth Weight and Early Postnatal Outcomes: Association with the Cord Blood Lipidome. Nutrients 2022; 14:3760. [PMID: 36145136 PMCID: PMC9505183 DOI: 10.3390/nu14183760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Being born small or large for gestational age (SGA and LGA, respectively), combined with suboptimal early postnatal outcomes, can entail future metabolic alterations. The exact mechanisms underlying such risks are not fully understood. Lipids are a highly diverse class of molecules that perform multiple structural and metabolic functions. Dysregulation of lipid metabolism underlies the onset and progression of many disorders leading to pathological states. The aim of this pilot study was to investigate the relationships between birth weight, early postnatal outcomes, and cord blood serum lipidomes. We performed a non-targeted lipidomics-based approach to ascertain differences in cord blood lipid species among SGA, LGA, and appropriate-for-GA (AGA) newborns. Moreover, we longitudinally assessed (at birth and at ages of 4 and 12 months) weight and length, body composition (DXA), and clinical parameters. We disclosed distinct cord blood lipidome patterns in SGA, LGA, and AGA newborns; target lipid species distinctly modulated in each SGA, AGA, and LGA individual were associated with parameters related to growth and glucose homeostasis. The distinct lipidome patterns observed in SGA, AGA, and LGA newborns may play a role in adipose tissue remodeling and future metabolic risks. Maternal dietary interventions may potentially provide long-term benefits for the metabolic health of the offspring.
Collapse
Affiliation(s)
- Carolina Gonzalez-Riano
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Marcelo Santos
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Marta Díaz
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina García-Beltran
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carles Lerin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Lourdes Ibáñez
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Sánchez-Infantes
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029 Madrid, Spain
- Department of Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), 28922 Madrid, Spain
| |
Collapse
|
5
|
Scarpato R, Colosimo V, Chiaramonte A, Di Bello D, Esposti V, Falaschi A, Ghirri P, Micheli C, Testi S. High level of γH2AX phosphorylation in the cord-blood cells of large-for-gestational-age (LGA) newborns. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503526. [PMID: 36031337 DOI: 10.1016/j.mrgentox.2022.503526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Newborns can experience adverse effects as a consequence of maternal or in utero exposure, altered growth of the fetus, or placental dysfunctions. Accurate characterization of gestational age allows monitoring of fetal growth, identification of deviations from the normal growth trajectory, and classification of babies as adapted, small, or large for gestational age (AGA, SGA, or LGA). The aim of this work was to evaluate nuclear and oxidative damage in umbilical cord-blood cells of newborns (sampled at birth), by applying the γH2AX assay and the fluorescent probe BODIPY581/591 C11, to detect DNA DSB and cell membrane oxidation, respectively. No statistically significant differences were observed in the proportion of oxidized cord-blood cells among the groups of newborns, although the LGA group showed the highest value. With regard to genome damage, elevated levels of γH2AX foci were detected in the cell nuclei from LGA newborns as compared to AGA or SGA babies, whose values did not differ from each other. Considering that the observed DNA damage, although still repairable, can represent a risk factor for obesity, metabolic diseases, or other pathologies, monitoring genome and cell integrity at birth can provide useful information for prevention of diseases later in life.
Collapse
Affiliation(s)
- Roberto Scarpato
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy.
| | - Valentina Colosimo
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Anna Chiaramonte
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy; Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Women-Child-Newborn Obstetrics and Gynaecology, Milano, Italy
| | - Domenica Di Bello
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Veronica Esposti
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Aurora Falaschi
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Paolo Ghirri
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Consuelo Micheli
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Serena Testi
- Unità di Genetica, Dipartimento di Biologia, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Garay JL, Barreira TV, Wang Q, Brutsaert TD. Intra-uterine effects on adult muscle strength. Early Hum Dev 2021; 163:105490. [PMID: 34717155 PMCID: PMC8717807 DOI: 10.1016/j.earlhumdev.2021.105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Maternal behaviors and exposures affect fetal growth and development. Smoking, malnutrition, sedentary behavior, and stress can each lead to fetal programming and intra-uterine growth restriction. As a result, tissue development may be impaired. Problems with muscle formation can lead to reductions in muscle performance throughout life. The purpose of this study was to determine if in utero effects on muscle mass, muscle function, or both are responsible for the relationship between size at birth and adult muscle strength. STUDY DESIGN One hundred adults (ages 18-40), who were singletons born at term (37-42 weeks), participated. Birth weight was adjusted for gestational age using neonatal growth reference data. Maximal voluntary contractions (MVC) of dominant and non-dominant handgrip, and right and left leg extension were measured. Linear regression analysis was used to determine the association between adjusted birth weight and muscle strength. Sex and lean body mass were covariates. RESULTS Dominant handgrip MVC increased by 1.533 kg per 1 SD increase in adjusted birth weight (p = 0.004). Lean body mass had a significant indirect effect on this relationship. The relationship between handgrip strength and adjusted birth weight was strongest among female subjects. No other muscle strength measures were significantly associated with adjusted birth weight. CONCLUSIONS Birth size was a significant predictor of handgrip strength in adulthood. Including lean body mass attenuated, but did not remove, the association. Thus, among individuals born to term, having a smaller-than-predicted birth size likely causes both reductions in muscle mass formation and decreased muscle function, ultimately impacting muscle strength in adulthood.
Collapse
Affiliation(s)
- Jessica L Garay
- Department of Nutrition and Food Studies, Syracuse University, United States of America.
| | - Tiago V Barreira
- Department of Exercise Science, Syracuse University, United States of America
| | - Qiu Wang
- Department of Higher Education, Syracuse University, United States of America
| | - Tom D Brutsaert
- Department of Exercise Science, Syracuse University, United States of America
| |
Collapse
|
7
|
Telomeres: New players in immune-mediated inflammatory diseases? J Autoimmun 2021; 123:102699. [PMID: 34265700 DOI: 10.1016/j.jaut.2021.102699] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Telomeres are repetitive DNA sequences located at the ends of linear chromosomes that preserve the integrity and stability of the genome. Telomere dysfunctions due to short telomeres or altered telomere structures can ultimately lead to replicative cellular senescence and chromosomal instability, both mechanisms being hallmarks of ageing. Chronic inflammation, oxidative stress and finally telomere length (TL) dynamics have been shown to be involved in various age-related non-communicable diseases (NCDs). Immune-mediated inflammatory diseases (IMIDs), including affections such as inflammatory bowel disease, psoriasis, rheumatoid arthritis, spondyloarthritis and uveitis belong to this group of age-related NCDs. Although in recent years, we have witnessed the emergence of studies in the literature linking these IMIDs to TL dynamics, the causality between these diseases and telomere attrition is still unclear and controversial. In this review, we provide an overview of available studies on telomere dynamics and discuss the utility of TL measurements in immune-mediated inflammatory diseases.
Collapse
|
8
|
Baskind M, Hawkins J, Heyman MB, Wojcicki JM. Obesity at Age 6 Months Is Associated with Shorter Preschool Leukocyte Telomere Length Independent of Parental Telomere Length. J Pediatr 2021; 233:141-149. [PMID: 33242471 PMCID: PMC8141537 DOI: 10.1016/j.jpeds.2020.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To assess whether early modifiable dietary factors and obesity measures are associated with leukocyte telomere length at 3-5 years of age after controlling for the heritability of leukocyte telomere length in a prospective cohort of low-income Latina mothers and their children in San Francisco. STUDY DESIGN We analyzed data from the Latinx, Eating and Diabetes cohort, a prospective study of 97 woman-infant dyads. We used linear regression models to evaluate associations between early dietary factors and obesity measures and child leukocyte telomere length at 3-5 years of age. Multivariable models included child age at the time of telomere collection, breastfeeding at 6 months (yes/no), obesity at 6 months, maternal education, child sex, and maternal and paternal leukocyte telomere length. RESULTS Data for 73 of the 97 children at 3-5 years of age were analyzed. Any breastfeeding at 6 months was positively associated (β = 0.14; P = .02) and obesity at 6 months was negatively associated (β = -0.21; P < .001) with leukocyte telomere length in bivariate analyses. In multivariable models including parental leukocyte telomere length, obesity at 6 months was associated with a shorter leukocyte telomere length at 3-5 years of age (β = -0.15; P = .02). Analyses of dietary factors showed high flavored milk consumption at 3 years of age was associated with shorter leukocyte telomere length after adjustment for possible confounders. CONCLUSIONS In a low-income Latinx population, obesity at 6 months of age is negatively associated with cellular health at 3-5 years of age after controlling for genetic factors (parental leukocyte telomere length) associated with leukocyte telomere length. Early life obesity may be more deleterious for cellular health than obesity later in childhood.
Collapse
Affiliation(s)
- Melanie Baskind
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Jessica Hawkins
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Melvin B. Heyman
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Janet M Wojcicki
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of California San Francisco, San Francisco, CA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
9
|
de Fluiter KS, Codd V, Denniff M, Kerkhof GF, van Beijsterveldt IALP, Breij LM, Samani NJ, Abrahamse-Berkeveld M, Hokken-Koelega ACS. Longitudinal telomere length and body composition in healthy term-born infants during the first two years of life. PLoS One 2021; 16:e0246400. [PMID: 33529269 PMCID: PMC7853438 DOI: 10.1371/journal.pone.0246400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Leukocyte telomere length (LTL) is one of the markers of biological aging as shortening occurs over time. Shorter LTL has been associated with adiposity and a higher risk of cardiovascular diseases. The objective was to assess LTL and LTL shortening during the first 2 years of life in healthy, term-born infants and to associate LTL shortening with potential stressors and body composition. STUDY DESIGN In 145 healthy, term-born infants (85 boys), we measured LTL in blood, expressed as telomere to single-gene copy ratio (T/S ratio), at 3 months and 2 years by quantitative PCR technique. Fat mass (FM) was assessed longitudinally by PEAPOD, DXA, and abdominal FM by ultrasound. RESULTS LTL decreased by 8.5% from 3 months to 2 years (T/S ratio 4.10 vs 3.75, p<0.001). LTL shortening from 3 months to 2 years associated with FM%(R = 0.254), FM index(R = 0.243) and visceral FM(R = 0.287) at 2 years. LTL shortening tended to associate with gain in FM% from 3 to 6 months (R = 0.155, p = 0.11), in the critical window for adiposity programming. There was a trend to a shorter LTL in boys at 2 years(p = 0.056). LTL shortening from 3 months to 2 years was not different between sexes. CONCLUSION We present longitudinal LTL values and show that LTL shortens considerably (8.5%) during the first 2 years of life. LTL shortening during first 2 years of life was associated with FM%, FMI and visceral FM at age 2 years, suggesting that adverse adiposity programming in early life could contribute to more LTL shortening.
Collapse
Affiliation(s)
- Kirsten S. de Fluiter
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center – Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Gerthe F. Kerkhof
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center – Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Inge A. L. P. van Beijsterveldt
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center – Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Laura M. Breij
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center – Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | | | - Anita C. S. Hokken-Koelega
- Department of Pediatrics, Subdivision of Endocrinology, Erasmus University Medical Center – Sophia Children’s Hospital, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
| |
Collapse
|
10
|
McAninch D, Bianco-Miotto T, Gatford KL, Leemaqz SY, Andraweera PH, Garrett A, Plummer MD, Dekker GA, Roberts CT, Smithers LG, Grieger JA. The metabolic syndrome in pregnancy and its association with child telomere length. Diabetologia 2020; 63:2140-2149. [PMID: 32728890 DOI: 10.1007/s00125-020-05242-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine whether presence of the metabolic syndrome in pregnancy associates with child telomere length or child anthropometry (weight, BMI) and BP, measured at 10 years of age. METHODS The Screening for Pregnancy Endpoints study (SCOPE) was a multicentre, international prospective cohort of nulliparous pregnant women recruited from Australia, New Zealand, Ireland and the UK (N = 5628). The current analysis is a 10 year follow-up of SCOPE pregnant women and their children, from the Australian cohort. Clinical data collected at 14-16 weeks' gestation during the SCOPE study were used to diagnose the metabolic syndrome using IDF criteria. Telomere length, a biomarker of ageing, was assessed by quantitative PCR from children's saliva collected at 10 years of age. RESULTS In women who completed follow-up (n = 255), 20% had the metabolic syndrome in pregnancy. After adjusting for a range of confounders, children of mothers who had the metabolic syndrome in pregnancy had 14% shorter telomeres than children of mothers without the metabolic syndrome in pregnancy (mean difference -0.36 [95% CI -0.74, 0.01]). Height- and weight-for-age, and BMI z scores were similar in children of mothers who did and did not have the metabolic syndrome during pregnancy. CONCLUSIONS/INTERPRETATION Children of mothers who had the metabolic syndrome in pregnancy have shorter telomeres, a biomarker of accelerated ageing. These findings warrant further studies in larger cohorts of children, as well as investigations into whether telomere length measured in cord blood associates with telomere length in childhood.
Collapse
Affiliation(s)
- Dale McAninch
- Robinson Research Institute, University of Adelaide, North Adelaide, SA, 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Tina Bianco-Miotto
- Robinson Research Institute, University of Adelaide, North Adelaide, SA, 5005, Australia
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA, Australia
| | - Kathy L Gatford
- Robinson Research Institute, University of Adelaide, North Adelaide, SA, 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Shalem Y Leemaqz
- Robinson Research Institute, University of Adelaide, North Adelaide, SA, 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Prabha H Andraweera
- Robinson Research Institute, University of Adelaide, North Adelaide, SA, 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Amy Garrett
- Robinson Research Institute, University of Adelaide, North Adelaide, SA, 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Michelle D Plummer
- Robinson Research Institute, University of Adelaide, North Adelaide, SA, 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Gus A Dekker
- Robinson Research Institute, University of Adelaide, North Adelaide, SA, 5005, Australia
- Women and Children's Division, Lyell McEwin Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Claire T Roberts
- Robinson Research Institute, University of Adelaide, North Adelaide, SA, 5005, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Lisa G Smithers
- Robinson Research Institute, University of Adelaide, North Adelaide, SA, 5005, Australia
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Jessica A Grieger
- Robinson Research Institute, University of Adelaide, North Adelaide, SA, 5005, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
11
|
Wells JC, Sawaya AL, Wibaek R, Mwangome M, Poullas MS, Yajnik CS, Demaio A. The double burden of malnutrition: aetiological pathways and consequences for health. Lancet 2020; 395:75-88. [PMID: 31852605 PMCID: PMC7613491 DOI: 10.1016/s0140-6736(19)32472-9] [Citation(s) in RCA: 459] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022]
Abstract
Malnutrition has historically been researched and addressed within two distinct silos, focusing either on undernutrition, food insecurity, and micronutrient deficiencies, or on overweight, obesity, and dietary excess. However, through rapid global nutrition transition, an increasing proportion of individuals are exposed to different forms of malnutrition during the life course and have the double burden of malnutrition (DBM) directly. Long-lasting effects of malnutrition in early life can be attributed to interconnected biological pathways, involving imbalance of the gut microbiome, inflammation, metabolic dysregulation, and impaired insulin signalling. Life-course exposure to early undernutrition followed by later overweight increases the risk of non-communicable disease, by imposing a high metabolic load on a depleted capacity for homoeostasis, and in women increases the risk of childbirth complications. These life-course trajectories are shaped both by societal driving factors-ie, rapidly changing diets, norms of eating, and physical activity patterns-and by broader ecological factors such as pathogen burden and extrinsic mortality risk. Mitigation of the DBM will require major societal shifts regarding nutrition and public health, to implement comprehensive change that is sustained over decades, and scaled up into the entire global food system.
Collapse
Affiliation(s)
- Jonathan C Wells
- Childhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK.
| | - Ana Lydia Sawaya
- Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Rasmus Wibaek
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Clinical Epidemiology, Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Martha Mwangome
- Kenya Medical Research Institute Wellcome Trust Research Program, Kilifi, Kenya
| | - Marios S Poullas
- Childhood Nutrition Research Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Alessandro Demaio
- School of Global Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; EAT Foundation, Oslo, Norway; Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia; VicHealth, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Niu Z, Li K, Xie C, Wen X. Adverse Birth Outcomes and Birth Telomere Length: A Systematic Review and Meta-Analysis. J Pediatr 2019; 215:64-74.e6. [PMID: 31630890 DOI: 10.1016/j.jpeds.2019.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/18/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To synthesize previous findings on the difference in birth telomere length between newborns with and without intrauterine growth restriction (IUGR) or with and without preterm birth. STUDY DESIGN We systematically searched 3 databases (PubMed, Embase, and Web of Science) for publications that examined the relationships of IUGR or preterm birth with birth telomere length. We conducted meta-analysis to pool the estimated difference in birth telomere length either between IUGR and non-IUGR or between preterm birth and full-term birth. Subgroup analyses were conducted by tissues (newborn blood vs placenta) and techniques used for telomere length measurement (quantitative polymerase chain reaction [qPCR] vs telomere restriction fragment). RESULTS We included 11 articles on comparing birth telomere length between IUGR (combined n = 227) and non-IUGR (n = 1897) and 7 articles on comparing birth telomere length between preterm birth (n = 182) and full-term birth (n = 1320). We found IUGR was associated with shorter birth telomere length only when birth telomere length was measured in placenta (pooled standardized mean difference [SMD] = -0.85; 95% CI -1.13 to -0.57; IUGR/non-IUGR n = 87/173), but not in newborn blood (pooled SMD = 0.00, 95% CI -0.18 to 0.19; IUGR/non-IUGR n = 148/1733). Birth telomere length was significantly longer in preterm birth than in full-term birth when birth telomere length was measured by qPCR (pooled SMD = 0.40, 95% CI 0.18-0.63; preterm birth/full-term birth n = 137/682) but not by telomere restriction fragment (pooled SMD = 0.05, 95% CI -0.29 to 0.38; preterm birth/full-term birth n = 44/444). CONCLUSIONS IUGR is associated with shorter placental telomere length and preterm birth is associated with longer birth telomere length measured by qPCR.
Collapse
Affiliation(s)
- Zhongzheng Niu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY
| | - Karen Li
- Division of Behavioral Medicine, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY; College of Health Professions, Lienhard School of Nursing, Pace University, New York, NY
| | - Chuanbo Xie
- Department of Cancer Prevention Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, China
| | - Xiaozhong Wen
- Division of Behavioral Medicine, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY.
| |
Collapse
|
13
|
Lamprokostopoulou A, Moschonis G, Manios Y, Critselis E, Nicolaides NC, Stefa A, Koniari E, Gagos S, Charmandari E. Childhood obesity and leucocyte telomere length. Eur J Clin Invest 2019; 49:e13178. [PMID: 31610015 DOI: 10.1111/eci.13178] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/29/2019] [Accepted: 10/12/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity in adulthood is associated with decreased leucocyte telomere length (LTL), which is associated with cardiovascular disease and diabetes mellitus type 2. The aim of our study was to investigate whether increased body mass index (BMI) is associated with decreased LTL in children and adolescents, and to identify other risk factors of shorter LTL in this population. MATERIALS AND METHODS A cross-sectional study was conducted among 919 Greek children aged 9-13 years (The Healthy Growth Study). Participants were classified as obese (n = 124), overweight (n = 276) or of normal BMI (n = 519). LTL was determined by monochrome multiplex quantitative real-time polymerase chain reaction. Univariate and multivariable linear regression analyses were applied to determine the predictive factors of LTL. RESULTS Both overweight and obese children had significantly shorter LTL than their normal-BMI counterparts. Following adjustment for age, sex, total daily energy intake and average weekly physical activity (average total steps per day), increasing weight category was inversely associated with LTL in children and adolescents (β: -0.110 ± 0.035; P = .002). CONCLUSION Overweight and obesity in childhood and adolescence are associated with shorter LTL, even following adjustment for potential confounding effects. Therefore, the increased BMI in childhood and adolescence may be associated with accelerated biological ageing and may have an adverse impact on future health in adulthood.
Collapse
Affiliation(s)
- Agaristi Lamprokostopoulou
- Division of Endocrinology and Metabolism, Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George Moschonis
- Department of Dietetics, Nutrition and Sport, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Vic., Australia
| | - Yannis Manios
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Elena Critselis
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Nicolas C Nicolaides
- Division of Endocrinology and Metabolism, Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | - Alketa Stefa
- Division of Endocrinology and Metabolism, Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleni Koniari
- Division of Endocrinology and Metabolism, Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sarantis Gagos
- Laboratory of Genetics, Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelia Charmandari
- Division of Endocrinology and Metabolism, Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW A growing body of epidemiological and experimental data indicate that nutritional or environmental stressors during early development can induce long-term adaptations that increase risk of obesity, diabetes, cardiovascular disease, and other chronic conditions-a phenomenon termed "developmental programming." A common phenotype in humans and animal models is altered body composition, with reduced muscle and bone mass, and increased fat mass. In this review, we summarize the recent literature linking prenatal factors to future body composition and explore contributing mechanisms. RECENT FINDINGS Many prenatal exposures, including intrauterine growth restriction, extremes of birth weight, maternal obesity, and maternal diabetes, are associated with increased fat mass, reduced muscle mass, and decreased bone density, with effects reported throughout infancy and childhood, and persisting into middle age. Mechanisms and mediators include maternal diet, breastmilk composition, metabolites, appetite regulation, genetic and epigenetic influences, stem cell commitment and function, and mitochondrial metabolism. Differences in body composition are a common phenotype following disruptions to the prenatal environment, and may contribute to developmental programming of obesity and diabetes risk.
Collapse
Affiliation(s)
- Elvira Isganaitis
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Research Division, Joslin Diabetes Center, 1 Joslin Place, Room 655A, Boston, 02215, MA, USA.
| |
Collapse
|
15
|
Grunnet LG, Pilgaard K, Alibegovic A, Jensen CB, Hjort L, Ozanne SE, Bennett M, Vaag A, Brøns C. Leukocyte telomere length is associated with elevated plasma glucose and HbA1c in young healthy men independent of birth weight. Sci Rep 2019; 9:7639. [PMID: 31113969 PMCID: PMC6529491 DOI: 10.1038/s41598-019-43387-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/23/2019] [Indexed: 01/24/2023] Open
Abstract
Telomeres are protein-bound regions of repetitive nucleotide sequences (TTAGGG) at the end of human chromosomes, and their length is a marker of cellular aging. Intrauterine growth restriction is associated with shorter blood cell telomeres at birth and individuals with type 2 diabetes have shorter telomeres. Individuals with a low birth weight (LBW) have an increased risk of metabolic disease and type 2 diabetes. Therefore, we aimed to investigate the relationship between birth weight and telomere length and the association between birth weight, telomere length and cardiometabolic phenotype in adulthood. Young, healthy men with LBW (n = 55) and normal birth weight (NBW) (n = 65) were examined including blood pressure, blood samples and body composition. Leukocyte telomere length was determined using a high-throughput qPCR method. The LBW men were more insulin resistant as determined by the HOMA-IR index. There was no difference in telomere length between LBW and NBW subjects. When adjusting for birth weight and cohort effect, significant negative associations between telomere length and fasting glucose (P = 0.003) and HbA1c (P = 0.0008) were found. In conclusion, no significant difference in telomere length was found between LBW and NBW men. The telomere length was negatively associated with glucose concentrations and HbA1c levels within the normal non-diabetic range independent of birth weight.
Collapse
Affiliation(s)
- L G Grunnet
- Department of Endocrinology, Diabetes & Metabolism, Rigshospitalet, Copenhagen, Denmark. .,The Danish Diabetes Academy, Odense, Denmark.
| | - K Pilgaard
- Nordsjællands Hospital, Hillerød, Denmark
| | - A Alibegovic
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | | | - L Hjort
- Department of Endocrinology, Diabetes & Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - S E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC metabolic Diseases Unit, Cambridge, UK
| | - M Bennett
- Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - A Vaag
- Department of Endocrinology, Diabetes & Metabolism, Rigshospitalet, Copenhagen, Denmark.,Cardiovascular and Metabolic Disease (CVMD) Translational Medicine Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - C Brøns
- Department of Endocrinology, Diabetes & Metabolism, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
16
|
Micronutrient status and leukocyte telomere length in school-age Colombian children. Eur J Nutr 2019; 59:1055-1065. [DOI: 10.1007/s00394-019-01966-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/07/2019] [Indexed: 12/18/2022]
|
17
|
Slykerman RF, Joglekar MV, Hardikar AA, Satoor SN, Thompson JMD, Jenkins A, Mitchell EA, Murphy R. Maternal stress during pregnancy and small for gestational age birthweight are not associated with telomere length at 11 years of age. Gene 2019; 694:97-101. [PMID: 30738962 DOI: 10.1016/j.gene.2019.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/19/2018] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Previous studies indicate that low birth weight and exposure to maternal stress during pregnancy may result in shortened telomeres in infants. Shorter telomere length has in turn been linked with accelerated ageing and with age-related diseases. This study aimed to investigate the association between pregnancy and birth factors and relative telomere length in offspring at 11 years of age. METHODS Participants were aged 11 years enrolled in the Auckland Birthweight Collaborative Study at birth (n = 380). Half of the children were born small for gestational age (SGA = birthweight ≤ 10th percentile) and half were appropriate for gestational age (AGA = birthweight > 10th percentile). Maternal stress during pregnancy was assessed using the Perceived Stress Scale. Relative leukocyte telomere length (RTL) in leukocytes was measured at 11 years of age using quantitative real-time PCR. RESULTS RTL was normally distributed (mean = 3.78, SD = 1.05). There were no significant associations between RTL at age 11 years and birthweight, sex, maternal smoking, maternal stress during pregnancy or maternal pre-pregnancy body mass index. CONCLUSION At age 11 years, RTL did not differ between children by birthweight or pregnancy-related stressors. Further telomere-related studies in newborns, children and adolescents are merited to increase knowledge of potential telomere modulating factors.
Collapse
Affiliation(s)
- Rebecca F Slykerman
- Department of Psychological Medicine, University of Auckland, Auckland 1142, New Zealand.
| | - Mugdha V Joglekar
- NHMRC CTC, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Sarang N Satoor
- NHMRC CTC, University of Sydney, Sydney, New South Wales 2006, Australia
| | - John M D Thompson
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland 1142, New Zealand
| | - Alicia Jenkins
- NHMRC CTC, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Edwin A Mitchell
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland 1142, New Zealand
| | - Rinki Murphy
- Department of Medicine, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
18
|
Seeker LA, Ilska JJ, Psifidi A, Wilbourn RV, Underwood SL, Fairlie J, Holland R, Froy H, Salvo-Chirnside E, Bagnall A, Whitelaw B, Coffey MP, Nussey DH, Banos G. Bovine telomere dynamics and the association between telomere length and productive lifespan. Sci Rep 2018; 8:12748. [PMID: 30143784 PMCID: PMC6109064 DOI: 10.1038/s41598-018-31185-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
Average telomere length (TL) in blood cells has been shown to decline with age in a range of vertebrate species, and there is evidence that TL is a heritable trait associated with late-life health and mortality in humans. In non-human mammals, few studies to date have examined lifelong telomere dynamics and no study has estimated the heritability of TL, despite these being important steps towards assessing the potential of TL as a biomarker of productive lifespan and health in livestock species. Here we measured relative leukocyte TL (RLTL) in 1,328 samples from 308 Holstein Friesian dairy cows and in 284 samples from 38 female calves. We found that RLTL declines after birth but remains relatively stable in adult life. We also calculated the first heritability estimates of RLTL in a livestock species which were 0.38 (SE = 0.03) and 0.32 (SE = 0.08) for the cow and the calf dataset, respectively. RLTL measured at the ages of one and five years were positively correlated with productive lifespan (p < 0.05). We conclude that bovine RLTL is a heritable trait, and its association with productive lifespan may be used in breeding programmes aiming to enhance cow longevity.
Collapse
Affiliation(s)
- Luise A Seeker
- Animal & Veterinary Sciences Group, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK.
| | - Joanna J Ilska
- Animal & Veterinary Sciences Group, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
| | - Androniki Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
- Queen Mother Hospital for Animals, Royal Veterinary College, University of London, Hatfield, UK
| | - Rachael V Wilbourn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Sarah L Underwood
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Jennifer Fairlie
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Rebecca Holland
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Hannah Froy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | | | | | - Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Mike P Coffey
- Animal & Veterinary Sciences Group, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Georgios Banos
- Animal & Veterinary Sciences Group, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
19
|
Guyatt AL, Rodriguez S, Gaunt TR, Fraser A, Anderson EL. Early life adiposity and telomere length across the life course: a systematic review and meta-analysis. Wellcome Open Res 2018; 2:118. [PMID: 30542661 PMCID: PMC6259597 DOI: 10.12688/wellcomeopenres.13083.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Background: The relationship between adiposity at birth and in childhood, and telomere length is yet to be determined. We aimed to systematically review and meta-analyse the results of studies assessing associations between neonatal and later childhood adiposity, and telomere length. Methods: We searched Medline, EMBASE and PubMed for studies reporting associations between adiposity measured in the neonatal period or later childhood/adolescence, and leucocyte telomere length, measured at any age via quantitative polymerase chain reaction, or terminal restriction fragment analysis, either cross-sectionally, or longitudinally. Papers published before April 2017 were included. Results: Out of 230 abstracts assessed, 23 papers (32 estimates) were retained, from which 19 estimates were meta-analysed (15 cross-sectional, four longitudinal). Of the 15 cross-sectional estimates, seven reported on neonates: four used binary exposures of small-for-gestational-age vs. appropriate-for-gestational age (or appropriate- and large-for-gestational age), and three studied birth weight continuously. Eight estimates reported on later childhood or adolescent measures; five estimates were from studies of binary exposures (overweight/obese vs. non-obese children), and three studies used continuous measures of body mass index. All four longitudinal estimates were of neonatal adiposity, with two estimates for small-for-gestational-age vs. appropriate-for-gestational age neonates, and two estimates of birth weight studied continuously, in relation to adult telomere (49-61 years). There was no strong evidence of an association between neonatal or later childhood/adolescent adiposity, and telomere length. However, between study heterogeneity was high, and there were few combinable studies. Conclusions: Our systematic review and meta-analysis found no strong evidence of an association between neonatal or later childhood or adolescent adiposity and telomere length.
Collapse
Affiliation(s)
- Anna L. Guyatt
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Tom R. Gaunt
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
- NIHR Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Emma L. Anderson
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
20
|
Leukocyte telomere length in paediatric critical illness: effect of early parenteral nutrition. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:38. [PMID: 29463275 PMCID: PMC5820800 DOI: 10.1186/s13054-018-1972-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022]
Abstract
Background Children who have suffered from critical illnesses that required treatment in a paediatric intensive care unit (PICU) have long-term physical and neurodevelopmental impairments. The mechanisms underlying this legacy remain largely unknown. In patients suffering from chronic diseases hallmarked by inflammation and oxidative stress, poor long-term outcome has been associated with shorter telomeres. Shortened telomeres have also been reported to result from excessive food consumption and/or unhealthy nutrition. We investigated whether critically ill children admitted to the PICU have shorter-than-normal telomeres, and whether early parenteral nutrition (PN) independently affects telomere length when adjusting for known determinants of telomere length. Methods Telomere length was quantified in leukocyte DNA from 342 healthy children and from 1148 patients who had been enrolled in the multicenter, randomised controlled trial (RCT), PEPaNIC. These patients were randomly allocated to initiation of PN within 24 h (early PN) or to withholding PN for one week in PICU (late PN). The impact of early PN versus late PN on the change in telomere length from the first to last PICU-day was investigated with multivariable linear regression analyses. Results Leukocyte telomeres were 6% shorter than normal upon PICU admission (median 1.625 (IQR 1.446–1.825) telomere/single-copy-gene ratio (T/S) units vs. 1.727 (1.547–1.915) T/S-units in healthy children (P < 0.0001)). Adjusted for potential baseline determinants and leukocyte composition, early PN was associated with telomere shortening during PICU stay as compared with late PN (estimate early versus late PN –0.021 T/S-units, 95% CI −0.038; 0.004, P = 0.01). Other independent determinants of telomere length identified in this model were age, gender, baseline telomere length and fraction of neutrophils in the sample from which the DNA was extracted. Telomere shortening with early PN was independent of post-randomisation factors affected by early PN, including longer length of PICU stay, larger amounts of insulin and higher risk of infection. Conclusions Shorter than normal leukocyte telomeres are present in critically ill children admitted to the PICU. Early initiation of PN further shortened telomeres, an effect that was independent of other determinants. Whether such telomere-shortening predisposes to long-term consequences of paediatric critical illness should be further investigated in a prospective follow-up study. Trial registration ClinicalTrials.gov, NCT01536275. Registered on 16 February 2012. Electronic supplementary material The online version of this article (10.1186/s13054-018-1972-6) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Guyatt AL, Rodriguez S, Gaunt TR, Fraser A, Anderson EL. Early life adiposity and telomere length across the life course: a systematic review and meta-analysis. Wellcome Open Res 2017; 2:118. [PMID: 30542661 PMCID: PMC6259597 DOI: 10.12688/wellcomeopenres.13083.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2018] [Indexed: 11/08/2023] Open
Abstract
Background: The relationship between adiposity at birth and in childhood, and telomere length is yet to be determined. We aimed to systematically review and meta-analyse the results of studies assessing associations between neonatal and childhood adiposity, and telomere length. Methods: We searched Medline, EMBASE and PubMed for studies reporting associations between adiposity measured in the neonatal period or childhood, and leucocyte telomere length, measured at any age via quantitative polymerase chain reaction, or terminal restriction fragment analysis, either cross-sectionally, or longitudinally. Papers published before April 2017 were included. Results: Out of 230 abstracts assessed, 23 papers (32 estimates) were retained, from which 19 estimates were meta-analysed (15 cross-sectional, four longitudinal). Of the 15 cross-sectional estimates, seven reported on neonates: four used binary exposures of small-for-gestational-age vs. appropriate-for-gestational age (or appropriate- and large-for-gestational age), and three studied birth weight continuously. Eight estimates reported on childhood measures; five estimates were from studies of binary exposures (overweight/obese vs. non-obese children), and three studies used continuous measures of body mass index. All four longitudinal estimates were of neonatal adiposity, with two estimates for small-for-gestational-age vs. appropriate-for-gestational age neonates, and two estimates of birth weight studied continuously, in relation to adult telomere (49-61 years). There was no strong evidence of an association between neonatal or childhood adiposity, and telomere length. However, between study heterogeneity was high, and there were few combinable studies. Conclusions: Our systematic review and meta-analysis found no strong evidence of an association between neonatal or childhood adiposity and telomere length.
Collapse
Affiliation(s)
- Anna L. Guyatt
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Tom R. Gaunt
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Abigail Fraser
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
- NIHR Biomedical Research Centre at the University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Emma L. Anderson
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Lee SP, Hande P, Yeo GS, Tan EC. Correlation of cord blood telomere length with birth weight. BMC Res Notes 2017; 10:469. [PMID: 28886728 PMCID: PMC5591543 DOI: 10.1186/s13104-017-2791-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
Background Intrauterine growth restriction affects 3% of newborns; and the lightest 10% of whom are classified as small for gestational age (SGA). These low-birth weight newborns are at increased risk of neonatal morbidity such as hypoxia and hypoglycaemia. In later life, they are at higher risk of several age-related diseases such as cardiovascular and metabolic disorders and dementia. As having short telomeres is also associated with these diseases, we tested if these newborns might already start with shorter telomeres at birth. Findings Relative telomere lengths were determined using quantitative real-time PCR in cord blood samples from 195 newborns of Chinese ancestry. Based on the telomere length normalised to a single copy gene and a reference DNA sample as internal control, we found statistically significant correlations between relative telomere length and both unadjusted and gestational age-adjusted birth weight, with the lighter newborns having shorter telomeres. The SGA birth weight group comprising the bottom 10% of the samples also had the shortest telomeres compared to the medium and heaviest birth weight groups. Conclusions Our results indicate that there is reduction of cord blood telomere length for newborns with lower birth weight.
Collapse
Affiliation(s)
- Siew-Peng Lee
- Research Laboratory, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, Singapore
| | - Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - George Sh Yeo
- Maternal-Fetal Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Ene-Choo Tan
- Research Laboratory, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, Singapore. .,Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
23
|
Catch-up growth in the first two years of life in Extremely Low Birth Weight (ELBW) infants is associated with lower body fat in young adolescence. PLoS One 2017; 12:e0173349. [PMID: 28278233 PMCID: PMC5344416 DOI: 10.1371/journal.pone.0173349] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
Aim To investigate growth patterns and anthropometrics in former extremely low birth weight (ELBW, <1000 g) children and link these outcomes to neurocognition and body composition in childhood. Methods ELBW children were examined at birth (n = 140), at 9 and 24 months (n≥96) and at approximately 11 years within the framework of the PREMATCH (PREMATurity as predictor children’s of Cardiovascular and renal Health) case–control (n = 93–87) study. Regional growth charts were used to convert anthropometrics into Z–scores. Catch–up growth in the first two years of life was qualified as present if ΔZ–score >0.67 SDS. At 11 years, anthropometrics, neurocognitive performance, body composition, grip strength and puberty scores were assessed. Results ELBW neonates displayed extra–uterine growth restriction with mean Z–scores for height, weight and head circumference of –0.77, –0.93 and –0.46 at birth, –1.61, –1.67 and –0.72 at 9 months, –1.22, –1.61 and –0.84 at 24 months, and –0.42, –0.49 and –1.09 at 11 years. ELBW children performed consistently worse on neurocognitive testing with an average intelligence quotient equivalent at 11 years of 92.5 (SD 13.1). Catch–up growth was not associated with neurocognitive performance. Compared to controls, ELBW cases had lower grip strength (13.6 vs. 15.9 kg) and percentage lean body weight (75.1 vs. 80.5%), but higher body fat (24.6 vs. 19.2%) and advanced puberty scores at 11 years (all P≤0.025). Catch–up growth for weight and height in the first two years of life in cases was associated with a lower percentage body fat compared to cases without catch–up growth (16.8% catch-up growth for weight vs. 25.7%, P<0.001; 20.9% catch-up for height vs. 25.8%, P = 0.049). Conclusions In young adolescence, former ELBW children still have difficulties to reach their target height. Compared to normal birth weight controls, ELBW adolescents show lower neurocognitive performance and grip strength and a higher percentage body fat, a potential risk factor for adverse health outcomes in adulthood. Our key finding is that catch–up growth in ELBW children in the first two years of life is associated with a lower percentage body fat and is therefore likely to be beneficial.
Collapse
|
24
|
Smeets CCJ, Codd V, Denniff M, Samani NJ, Hokken-Koelega ACS. Effects of size at birth, childhood growth patterns and growth hormone treatment on leukocyte telomere length. PLoS One 2017; 12:e0171825. [PMID: 28178350 PMCID: PMC5298325 DOI: 10.1371/journal.pone.0171825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/26/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Small size at birth and rapid growth in early life are associated with increased risk of cardiovascular disease in later life. Short children born small for gestational age (SGA) are treated with growth hormone (GH), inducing catch-up in length. Leukocyte telomere length (LTL) is a marker of biological age and shorter LTL is associated with increased risk of cardiovascular disease. OBJECTIVES To investigate whether LTL is influenced by birth size, childhood growth and long-term GH treatment. METHODS We analyzed LTL in 545 young adults with differences in birth size and childhood growth patterns. Previously GH-treated young adults born SGA (SGA-GH) were compared to untreated short SGA (SGA-S), SGA with spontaneous catch-up to a normal body size (SGA-CU), and appropriate for gestational age with a normal body size (AGA-NS). LTL was measured using a quantitative PCR assay. RESULTS We found a positive association between birth length and LTL (p = 0.04), and a trend towards a positive association between birth weight and LTL (p = 0.08), after adjustments for gender, age, gestational age and adult body size. Weight gain during infancy and childhood and fat mass percentage were not associated with LTL. Female gender and gestational age were positively associated with LTL, and smoking negatively. After adjustments for gender, age and gestational age, SGA-GH had a similar LTL as SGA-S (p = 0.11), SGA-CU (p = 0.80), and AGA-NS (p = 0.30). CONCLUSIONS Larger size at birth is positively associated with LTL in young adulthood. Growth patterns during infancy and childhood are not associated with LTL. Previously GH-treated young adults born SGA have similar LTL as untreated short SGA, SGA with spontaneous catch-up and AGA born controls, indicating no adverse effects of GH-induced catch-up in height on LTL.
Collapse
Affiliation(s)
- Carolina C. J. Smeets
- Department of Pediatrics, subdivision of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom
| | - Anita C. S. Hokken-Koelega
- Department of Pediatrics, subdivision of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
| |
Collapse
|