1
|
Ma L, Liu Y, Sun J, Yang X, He Y, Zhang T, Zhao J, Lu Z, Yan X, Qie X. The synthesis of nitric oxide regulated by JNK pathway in the pea aphid to defend against bacterial infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104315. [PMID: 40274239 DOI: 10.1016/j.ibmb.2025.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/13/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Compared to other insects, the pea aphid Acyrthosiphon pisum exhibits limited immune responses, particularly due to the absence of many immune genes, including those encoding antimicrobial peptides and key components of the IMD pathway. Prior studies proved that the conserved signaling, Jun N-terminal kinase (JNK) pathway, plays a critical role in the immune system of the pea aphid, and nitric oxide synthase (NOS) is required for the pea aphid's defense against infections. Herein, using in vitro biochemical assays and in vivo bioassays, we demonstrated that the JNK pathway directly regulates the expression of NOS and that the JNK pathway-NOS-NO signal axis is efficient in defending against bacterial infections. The Toll pathway is instrumental for combating bacterial infections, and NO can activate the Toll pathway. The Toll pathway induced by NO regulates the expressions of ROS metabolism, lysosome, and phagocytosis-related genes. NO was identified as a crucial signaling molecule that facilitates communication between the JNK and Toll pathways.
Collapse
Affiliation(s)
- Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yaya Liu
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jing Sun
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xiaorong Yang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yingying He
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Tingting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jingyu Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xizhong Yan
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Xingtao Qie
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
2
|
Zdybicka-Barabas A, Stączek S, Kunat-Budzyńska M, Cytryńska M. Innate Immunity in Insects: The Lights and Shadows of Phenoloxidase System Activation. Int J Mol Sci 2025; 26:1320. [PMID: 39941087 PMCID: PMC11818254 DOI: 10.3390/ijms26031320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Melanogenesis and melanin deposition are processes essential for the effective immune response of insects to various invaders. Phenoloxidase (PO), produced in specialized cells as an inactive precursor prophenoloxidase (proPO), is the key enzyme for melanin formation. The precursor is activated via limited proteolysis by a dedicated serine proteinase, which is the final element in the cascade of serine proteinases (SPs) that make up the PO system. Melanogenesis provides different cytotoxic molecules active in fighting infections, as well as melanin, which is important for sequestration of invaders. However, since the cytotoxic reactive compounds generated during melanization also pose a threat to host cells, strict control of the PO system is necessary for host self-protection. Different pathogens and parasites influence the PO system and melanization through various strategies, which allow them to survive and develop in the host insect body. In this review, we characterize "the lights and shadows" of PO system activation, indicating, on one hand, its advantages as an efficient and effective mechanism of the insect immune response and, on the other hand, the dangers for the insect host associated with the improper functioning of this system and selected strategies for regulating its activity by entomopathogenic organisms.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (A.Z.-B.); (S.S.); (M.K.-B.)
| |
Collapse
|
3
|
Du Z, Zhang G, Yu C, Qin Y, He S, Li J, Guo L, Wan H. Characterization of CYP303A1 and its potential application based on ZIF-8 nanoparticle-wrapped dsRNA in Nilaparvata lugens (Stål). PEST MANAGEMENT SCIENCE 2025; 81:766-776. [PMID: 39394876 DOI: 10.1002/ps.8479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND RNA interference (RNAi) technology has been put forward as a promising method for pest control and resistance management. Mining highly efficient lethal genes and constructing stable double-stranded RNA (dsRNA) delivery systems are of great significance to improve the application potential of RNAi technology. RESULTS In this study, we characterized a molting-related gene, NlCYP303A1, in Nilaparvata lugens that was highly expressed in the cuticle and at the end stages of each instar in nymphs. Silencing the expression of NlCYP303A1 in N. lugens resulted in a deformed phenotype and a significant increase in mortality. Furthermore, interfering with NlCYP303A1 changed the relative expression of key genes in the chitin synthesis and degradation pathway. Finally, we used the nanocarrier zeolitic imidazolate framework-8 (ZIF-8) to load dsNlCYP303A1, forming a complex denoted as dsNlCYP303A1@ZIF-8. The results of both feeding and rice-seedling dip experiments indicated that the expression of NlCYP303A1 was dramatically and persistently suppressed by the dsNlCYP303A1@ZIF-8 treatment, compared with treatment with dsNlCYP303A1, suggesting that ZIF-8 can enhance the interference efficiency as well as the stability of dsNlCYP303A1. CONCLUSIONS Our results demonstrate that the lethal gene NlCYP303A1 can be employed as an excellent target for RNAi technology by loading onto a nano-delivery system, and provide new insights into the creation of innovative pest control approaches. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zuyi Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guijian Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chang Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yao Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shun He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianhong Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Le Guo
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Sun LN, Meng JY, Wang Z, Lin SY, Shen J, Yan S. Research progress of aphid immunity system: Potential effective target for green pest management. INSECT SCIENCE 2024; 31:1662-1674. [PMID: 38415382 DOI: 10.1111/1744-7917.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Due to the absence of acquired immunity, insects primarily rely on their innate immune system to resist pathogenic microorganisms and parasitoids in natural habitats. This innate immune system can be classified into cellular immunity and humoral immunity. Cellular immunity is mediated by hemocytes, which perform phagocytosis, aggregation, and encapsulation to fight against invaders, whereas the humoral immunity primarily activates the immune signaling pathways and induces the generation of immune effectors. Existing studies have revealed that the hemipteran aphids lack some crucial immune genes compared to other insect species, indicating the different immune mechanisms in aphids. The current review summarizes the adverse impacts of pathogenic microorganisms and parasitoids on aphids, introduces the cellular and humoral immune systems in insects, and analyzes the differences between aphids and other insect species. Furthermore, our review also discussed the existing prospects and challenges in aphid immunity research, and proposed the potential application of immune genes in green pest management.
Collapse
Affiliation(s)
- Li-Na Sun
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, China
| | - Zeng Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shi-Yang Lin
- Pu'er Agricultural Science Research Institute, Pu'er, Yunnan Province, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Reingold V, Faigenboim A, Matveev S, Haviv S, Belausov E, Vilcinskas A, Ment D. Transcriptional reprogramming in the entomopathogenic fungus Metarhizium brunneum and its aphid host Myzus persicae during the switch between saprophytic and parasitic lifestyles. BMC Genomics 2024; 25:917. [PMID: 39358701 PMCID: PMC11446092 DOI: 10.1186/s12864-024-10824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The fungus Metarhizium brunneum has evolved a remarkable ability to switch between different lifestyles. It develops as a saprophyte, an endophyte establishing mutualistic relationships with plants, or a parasite, enabling its use for the control of insect pests such as the aphid Myzus persicae. We tested our hypothesis that switches between lifestyles must be accompanied by fundamental transcriptional reprogramming, reflecting adaptations to different environmental settings. RESULTS We combined high throughput RNA sequencing of M. brunneum in vitro and at different stages of pathogenesis to validate the modulation of genes in the fungus and its host during the course of infection. In agreement with our hypothesis, we observed transcriptional reprogramming in M. brunneum following conidial attachment, germination on the cuticle, and early-stage growth within the host. This involved the upregulation of genes encoding degrading enzymes and gene clusters involved in synthesis of secondary metabolites that act as virulence factors. The transcriptional response of the aphid host included the upregulation of genes potentially involved in antifungal activity, but antifungal peptides were not induced. We also observed the induction of a host flightin gene, which may be involved in wing formation and flight muscle development. CONCLUSIONS The switch from saprophytic to parasitic development in M. brunneum is accompanied by fundamental transcriptional reprogramming during the course of the infection. The aphid host responds to fungal infection with its own transcriptional reprogramming, reflecting its inability to express antifungal peptides but featuring the induction of genes involved in winged morphs that may enable offspring to avoid the contaminated environment.
Collapse
Affiliation(s)
- Victoria Reingold
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Food & Environment, Rehovot, Israel
| | - Adi Faigenboim
- Institute of Plant Science, ARO, The Volcani Institute, Rishon Le Zion, Israel
| | - Sabina Matveev
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Food & Environment, Rehovot, Israel
| | - Sabrina Haviv
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Eduard Belausov
- Institute of Plant Science, ARO, The Volcani Institute, Rishon Le Zion, Israel
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig Universität Giessen, Giessen, 35392, Germany
- Branch Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, 35392, Germany
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
6
|
Zhao YJ, Li YM, Yang T, Lu Z. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway contributes to the defense against bacterial infection in the pea aphid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105915. [PMID: 38879296 DOI: 10.1016/j.pestbp.2024.105915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 06/29/2024]
Abstract
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is activated by infections of bacteria, fungi, viruses and parasites and mediated cellular and humoral immune responses. In the pea aphid Acyrthosiphon pisum little is known about the function of JAK/STAT signaling in its immune system. In this study, we first showed that expression of genes in the JAK/STAT signaling, including the receptors Domeless1/2, Janus kinase (JAK) and transcriptional factor Stat92E, is up-regulated upon bacteria Escherichia coli and Staphylococcus aureus and fungus Beauveria bassiana infections. After knockdown of expression of these genes by means of dsRNA injection, the aphids harbored more bacteria and suffered more death after infected with E. coli and S. aureus, but showed no significant change after B. bassiana infection. Our study suggests the JAK/STAT signaling contributes to the defense against bacterial infection in the pea aphid.
Collapse
Affiliation(s)
- Yu-Jie Zhao
- College of Plant Protection, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yue-Ming Li
- College of Plant Protection, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Yang
- College of Plant Protection, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqiang Lu
- College of Plant Protection, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Becchimanzi A, Nicoletti R, Di Lelio I, Russo E. Immune Gene Repertoire of Soft Scale Insects (Hemiptera: Coccidae). Int J Mol Sci 2024; 25:4922. [PMID: 38732132 PMCID: PMC11084805 DOI: 10.3390/ijms25094922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Insects possess an effective immune system, which has been extensively characterized in several model species, revealing a plethora of conserved genes involved in recognition, signaling, and responses to pathogens and parasites. However, some taxonomic groups, characterized by peculiar trophic niches, such as plant-sap feeders, which are often important pests of crops and forestry ecosystems, have been largely overlooked regarding their immune gene repertoire. Here we annotated the immune genes of soft scale insects (Hemiptera: Coccidae) for which omics data are publicly available. By using immune genes of aphids and Drosophila to query the genome of Ericerus pela, as well as the transcriptomes of Ceroplastes cirripediformis and Coccus sp., we highlight the lack of peptidoglycan recognition proteins, galectins, thaumatins, and antimicrobial peptides in Coccidae. This work contributes to expanding our knowledge about the evolutionary trajectories of immune genes and offers a list of promising candidates for developing new control strategies based on the suppression of pests' immunity through RNAi technologies.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics, 81100 Caserta, Italy
| | - Ilaria Di Lelio
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80126 Naples, Italy
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80126 Naples, Italy; (A.B.); (I.D.L.); (E.R.)
| |
Collapse
|
8
|
Zhao L, Niu J, Feng D, Wang X, Zhang R. Immune functions of pattern recognition receptors in Lepidoptera. Front Immunol 2023; 14:1203061. [PMID: 37398667 PMCID: PMC10312389 DOI: 10.3389/fimmu.2023.1203061] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Pattern recognition receptors (PRRs), as the "sensors" in the immune response, play a prominent role in recognizing pathogen-associated molecular patterns (PAMPs) and initiating an effective defense response to pathogens in Lepidoptera. It is becoming increasingly clear that damage-associated molecular patterns (DAMPs) normally play a physiological role within cells; however, when exposed to extracellular, they may become "part-time" critical signals of the immune response. Based on research in recent years, we review herein typical PRRs of Lepidoptera, including peptidoglycan recognition protein (PGRP), gram-negative binding protein (GNBP), β-1,3-glucan recognition protein (βGRP), C-type lectin (CTL), and scavenger receptor (SR). We also outline the ways in which DAMPs participate in the immune response and the correlation between PRRs and immune escape. Taken together, these findings suggest that the role of PRRs in insect innate immunity may be much greater than expected and that it is possible to recognize a broader range of signaling molecules.
Collapse
Affiliation(s)
- Lin Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinlan Niu
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Disong Feng
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Ma L, Yan X, Zhou L, Wang W, Chen K, Hao C, Lu Z, Qie X. Nitric oxide synthase is required for the pea aphid's defence against bacterial infection. INSECT MOLECULAR BIOLOGY 2023; 32:187-199. [PMID: 36527288 DOI: 10.1111/imb.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Compared to other insects, the pea aphid Acyrthosiphon pisum has a reduced immune system with an absence of genes coding for a lot of immunity-related molecules. Notably, nitric oxide synthase (NOS), which catalyses the synthesis of nitric oxide (NO), is present in the pea aphid. However, the role of NO in the immune system of pea aphid remains unclear. In this study, we explored the role of NO in the defence of the pea aphid against bacterial infections and found that the NOS gene of the pea aphid responded to an immune challenge, with the expression of ApNOS observably upregulated after bacterial infections. Knockdown of ApNOS using RNA interference or inhibition of NOS activity increased the number of live bacterial cells in aphids and the mortality of aphids after bacterial infection. Conversely, the increase in NO level in aphids using NO donor inhibited the bacterial growth, increased the survival of bacteria-infected aphids, and upregulated immune genes, such as Toll pathway and phagocytosis related genes. Thus, NO promotes immune responses and plays an important role in the immune system of pea aphid.
Collapse
Affiliation(s)
- Li Ma
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Xizhong Yan
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Lin Zhou
- Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling, China
| | - Wentao Wang
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chi Hao
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A & F University, Yangling, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess, Ministry of Agriculture, Northwest A & F University, Yangling, China
| | - Xingtao Qie
- Department of Plant Protection, College of Plant Protection, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
10
|
Marieshwari BN, Bhuvaragavan S, Sruthi K, Mullainadhan P, Janarthanan S. Insect phenoloxidase and its diverse roles: melanogenesis and beyond. J Comp Physiol B 2023; 193:1-23. [PMID: 36472653 DOI: 10.1007/s00360-022-01468-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022]
Abstract
Insect life on earth is greatly diversified despite being exposed to several infectious agents due to their diverse habitats and ecological niche. One of the major factors responsible for their successful establishment is having a powerful innate immune system. The most common and effective method used by insects in recognizing pathogen and non-self-substances is the melanization process among others. The key enzyme involved in melanin biosynthesis is the copper containing humoral defense enzyme, phenoloxidase (PO). This review focused on understanding about PO and that had been in research for nearly a century. The review elaborates about evolutionary significance of PO in arthropods, its relationship with mammalian tyrosinases, various substrates, activators and inhibitors involved in the activation of phenoloxidase cascade, as it requires an integrated system of activation that vary among insect species. The enzyme also plays a vital role in insect immunity by involving in several other immune functions like sclerotization, wound healing, opsonization, encapsulation and nodule formation. Further, gene knock down or knock out of PO genes and inhibition of PO-melanization cascade by several mechanisms can also be considered as promising future alternative to control serious pests by making them highly susceptible to any targeted attack.
Collapse
Affiliation(s)
| | | | - Kannan Sruthi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | | | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
11
|
Inchauregui RA, Tallapragada K, Parker BJ. Aphid facultative symbionts confer no protection against the fungal entomopathogen Batkoa apiculata. PLoS One 2023; 18:e0286095. [PMID: 37205695 DOI: 10.1371/journal.pone.0286095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Fungi in the family Entomophthoraceae are prevalent pathogens of aphids. Facultative symbiotic bacteria harbored by aphids, including Spiroplasma sp. and Regiella insecticola, have been shown to make their hosts more resistant to infection with the fungal pathogen Pandora neoaphidis. How far this protection extends against other species of fungi in the family Entomophthoraceae is unknown. Here we isolated a strain of the fungal pathogen Batkoa apiculata infecting a natural population of pea aphids (Acyrthosiphon pisum) and confirmed its identity by sequencing the 28S rRNA gene. We then infected a panel of aphids each harboring a different species or strain of endosymbiotic bacteria to test whether aphid symbionts protect against B. apiculata. We found no evidence of symbiont-mediated protection against this pathogen, and our data suggest that some symbionts make aphids more susceptible to infection. This finding is relevant to our understanding of this important model of host-microbe interactions, and we discuss our results in the context of aphid-microbe ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- Rose A Inchauregui
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN, United States of America
- Department of Biological Sciences, Indiana University South Bend, South Bend, IN, United States of America
| | - Keertana Tallapragada
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN, United States of America
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee Knoxville, Knoxville, TN, United States of America
| | - Benjamin J Parker
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, TN, United States of America
| |
Collapse
|
12
|
Wang Z, Luo J, Feng K, Zhou Y, Tang F. Prophenoloxidase of Odontotermes formosanus (Shiraki) (Blattodea: Termitidae) Is a Key Gene in Melanization and Has a Defensive Role during Bacterial Infection. Int J Mol Sci 2022; 24:ijms24010406. [PMID: 36613850 PMCID: PMC9820534 DOI: 10.3390/ijms24010406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Melanization mediated by the prophenoloxidase (PPO)-activating system is an important innate immunity to fight pathogens in insects. In this study, the in vitro time-dependent increase in the intensity of melanization and phenoloxidase (PO) activity from the hemolymph of Odontotermes formosanus (Shiraki) challenged by pathogenic bacteria was detected. PPO is one of the key genes in melanization pathway, whereas the molecular characteristics and functions of O. formosanus PPO are unclear. The OfPPO gene was cloned and characterized. The open reading frame of OfPPO is 2085 bp in length and encodes a 79.497 kDa protein with 694 amino acids. A BLASTx search and phylogenetic analyses revealed that OfPPO shares a high degree of homology to the Blattodea PPOs. Moreover, real-time fluorescent quantitative PCR analysis showed that OfPPO is ubiquitously expressed in all castes and tissues examined, with the highest expression in workers and variable expression patterns in tissues of different termite castes. Furthermore, the expression of OfPPO was significantly induced in O. formosanus infected by pathogenic bacteria. Intriguingly, in combination with silencing of OfPPO expression, pathogenic bacteria challenge caused greatly increased mortality of O. formosanus. These results suggest that OfPPO plays a role in defense against bacteria and highlight the novel termite control strategy combining pathogenic bacteria application with termite PPO silencing.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yujingyun Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-138-1396-6269
| |
Collapse
|
13
|
Im Y, Park SE, Lee SY, Kim JC, Kim JS. Early-Stage Defense Mechanism of the Cotton Aphid Aphis gossypii Against Infection With the Insect-Killing Fungus Beauveria bassiana JEF-544. Front Immunol 2022; 13:907088. [PMID: 35720408 PMCID: PMC9201107 DOI: 10.3389/fimmu.2022.907088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Aphis gossypii, commonly known as the cotton aphid, is a widely distributed pest of agricultural crops and acts as a vector for many serious plant viruses. Cotton aphid shows high resistance to chemical insecticides due to rapid rates of genetic diversity as a result of its short life cycle, seasonal migration, and host alteration. As an alternative, entomopathogenic fungi can be used to control cotton aphids in an environmentally sound manner. However, little is known about how cotton aphids respond to fungal infection. In this work, a new Beauveria bassiana strain JEF-544 (Bb JEF-544) was selected and isolated through bioassays with high virulence against cotton aphid. Early response of cotton aphid to Bb JEF-544 infection was analyzed at the transcriptome level. Infected aphids were collected two days after treatment at 25% lethal time (LT25), and total RNA of non-infected and Bb JEF-544-infected aphids was independently subjected to sequencing. Infected aphids showed significant up-regulation of the insect hormone biosynthesis pathway. Bursicon (Burs) and crustacean cardioactive peptide (CCAP) receptors involved in molting along with ecdysone synthesis were also strongly up-regulated in the aphid response to the fungal infection. In the immune response, melanization in the hemocoel was significantly up-regulated, while phagocytosis was less actively transcribed. In conclusion, cotton aphids protect themselves from Bb JEF-544 infection by activating the immune response including melanization and insect molting hormones to shed infected cuticles. In addition to describing the initial stages of Bb JEF-544 infection at the transcriptome level, this work provides potential treatment targets and insight into how fungal isolates can effectively be used to control this serious aphid species.
Collapse
Affiliation(s)
- Yeram Im
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - So-Eun Park
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Sue Yeon Lee
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
14
|
Guo Y, Zhang Q, Hu X, Pang C, Li J, Huang J. Mating Stimulates the Immune Response and Sperm Storage-Related Genes Expression in Spermathecae of Bumblebee ( Bombus terrestris) Queen. Front Genet 2021; 12:795669. [PMID: 34899871 PMCID: PMC8661091 DOI: 10.3389/fgene.2021.795669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Bumblebee queens have remarkable spermathecae that store sperm for year-round reproduction. The spermathecal gland is regarded as a secretory organ that could benefit sperm storage. Queen mating provokes substantial physiological, behavioral, and gene expression changes. Here, the transcriptomes of spermathecae were compared between virgins and mated queens of the bumblebee, Bombus terrestris L., at 24 h post mating. Differentially expressed genes were further validated by real time quantitative PCR and immunofluorescence assay. In total, the expression of 11, 069 and 10, 862 genes were identified in virgins and mated queens, respectively. We identified that 176 differentially expressed genes between virgin and mated queen spermathecae: 110 (62.5%) genes were upregulated, and 66 (37.5%) genes were downregulated in mated queens. Most of the differentially expressed genes validated by RT-qPCR were concentrated on immune response [i.e., leucine-rich repeat-containing protein 70 (35.8-fold), phenoloxidase 2 (41.9-fold), and defensin (4.9-fold)] and sperm storage [i.e., chymotrypsin inhibitor (6.2-fold), trehalose transporter Tret1 (1.7-, 1.9-, 2.4-, and 2.4-fold), and heterogeneous nuclear ribonucleoprotein A3 (1.2-, and 2.6-fold)] functions in the spermathecae of mated queens. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (PLOD1) was hypothesized to promote the mating behavior according to RT-qPCR and immunofluorescence assay. The expression levels of most upregulated immune genes were decreased significantly at 3 days post mating. In conclusion, the external sperm transfer into spermathecae led to the significantly upregulated immune response genes in bumblebees. These gene expression differences in queen spermathecae contribute to understanding the bumblebee post mating regulatory network.
Collapse
Affiliation(s)
- Yueqin Guo
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Zhang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Xiao Hu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunxiu Pang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jilian Li
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxing Huang
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Luo C, Belghazi M, Schmitz A, Lemauf S, Desneux N, Simon JC, Poirié M, Gatti JL. Hosting certain facultative symbionts modulates the phenoloxidase activity and immune response of the pea aphid Acyrthosiphon pisum. INSECT SCIENCE 2021; 28:1780-1799. [PMID: 33200579 DOI: 10.1111/1744-7917.12888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/08/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The pea aphid Acyrthosiphon pisum hosts different facultative symbionts (FS) which provide it with various benefits, such as tolerance to heat or protection against natural enemies (e.g., fungi, parasitoid wasps). Here, we investigated whether and how the presence of certain FS could affect phenoloxidase (PO) activity, a key component of insect innate immunity, under normal and stressed conditions. For this, we used clones of A. pisum of different genetic backgrounds (LL01, YR2 and T3-8V1) lacking FS or harboring one or two (Regiella insecticola, Hamiltonella defensa, Serratia symbiotica + Rickettsiella viridis). Gene expression and proteomics analyses of the aphid hemolymph indicated that the two A. pisum POs, PPO1 and PPO2, are expressed and translated into proteins. The level of PPO genes expression as well as the amount of PPO proteins and phenoloxidase activity in the hemolymph depended on both the aphid genotype and FS species. In particular, H. defensa and R. insecticola, but not S. symbiotica + R. viridis, caused a sharp decrease in PO activity by interfering with both transcription and translation. The microinjection of different types of stressors (yeast, Escherichia coli, latex beads) in the YR2 lines hosting different symbionts affected the survival rate of aphids and, in most cases, also decreased the expression of PPO genes after 24 h. The amount and activity of PPO proteins varied according to the type of FS and stressor, without clear corresponding changes in gene expression. These data demonstrate that the presence of certain FS influences an important component of pea aphid immunity.
Collapse
Affiliation(s)
- Chen Luo
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
- Present address: State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Maya Belghazi
- INP, UMR7051, CNRS, Aix Marseille Université, Marseille, 13015, France
| | - Antonin Schmitz
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), 06000 Nice, France
| | | | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, UMR Institut Sophia Agrobiotech (ISA), Sophia Antipolis, France
| |
Collapse
|
16
|
Geng T, Lu F, Zhu F, Wang S. Lineage-specific gene evolution of innate immunity in Bombyx mori to adapt to challenge by pathogens, especially entomopathogenic fungi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104171. [PMID: 34118279 DOI: 10.1016/j.dci.2021.104171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Bombyx mori is a model species of Lepidoptera, in which 21 gene families and 220 genes have been identified as involved in immunity. However, only 45 B. mori - Drosophila melanogaster - Anopheles gambiae - Apis mellifera - Tribolium castaneum 1:1:1:1:1 orthologous genes were identified. B. mori has unique immune factors not found in D. melanogaster - A. gambiae - A. mellifera - T. castaneum. Pattern recognition receptors, signal transducers and effector genes for antifungal immune responses in B. mori have evolved through expansion and modification of existing genes. This review summarizes the current knowledge of the antifungal immune responses of B. mori and focuses on the lineage-specific gene evolution used by Lepidoptera to adapt to the challenge by pathogens, especially entomopathogenic fungi.
Collapse
Affiliation(s)
- Tao Geng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Fuping Lu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Feng Zhu
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277160, China.
| | - Shuchang Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Sericulture Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
17
|
Chen K, Chen J, Tang T, Jiang H, Han Z, Wang L, Alradi MF, Lu S, Wei X, Liu X, Wei Y, Feng C. Characterization and functional analysis of a Relish gene from the Asian corn borer, Ostrinia furnacalis (Guenée). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21841. [PMID: 34468040 PMCID: PMC8453101 DOI: 10.1002/arch.21841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 05/21/2023]
Abstract
Pathogen-induced host immune responses reduce the efficacy of pathogens used to control pests. However, compared to the well-deciphered immunity system of Drosophila melanogaster, the immunity system of agricultural pests is largely unconfirmed through functional analysis. Beginning to unveil mechanisms of transcription regulation of immune genes in the Asian corn borer, Ostrinia furnacalis, we cloned the complementary DNA (cDNA) of a transcription factor Relish by rapid amplification of cDNA ends. The 3164 bp cDNA, designated Of-Relish, encodes a 956-residue protein. Bioinformatic analysis showed that Of-Relish had a Rel homology domain, a predicted cleavage site between Q409 and L410 , six ankyrin repeats, and a death domain. The response of Of-Relish expression to the Gram-negative bacteria Pseudomonas aeruginosa was sooner and stronger than to the Gram-positive Micrococcus luteus. The antimicrobial peptide genes Attacin and Gloverin had similar expression patterns in response to the infections. Knockdown of Of-Relish led to a decrease in Attacin and Gloverin messenger RNA levels, suggesting that Attacin and Gloverin were regulated by Of-Relish. Together, the results suggested that Of-Relish is a key component of the IMD pathway in O. furnacalis, involved in defense against P. aeruginosa through activation of Attacin and Gloverin.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiaqian Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tai Tang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Zhaoyang Han
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mohamed F. Alradi
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shiqi Lu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiangyi Wei
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xu Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Youheng Wei
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Corresponding author Congjing Feng,
| |
Collapse
|
18
|
Ji J, Zhou L, Xu Z, Ma L, Lu Z. Two atypical gram-negative bacteria-binding proteins are involved in the antibacterial response in the pea aphid (Acyrthosiphon pisum). INSECT MOLECULAR BIOLOGY 2021; 30:427-435. [PMID: 33928689 DOI: 10.1111/imb.12708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The activation of immune pathways is triggered by the recognition of pathogens by pattern recognition receptors (PRRs). Gram-negative bacteria-binding proteins (GNBPs)/β-1,3-glucan recognition proteins (βGRPs) are a conserved family of PRRs in insects. Two GNBPs are predicted in the genome database of pea aphids; however, little is known about their functions in the aphid immune system. Here, we show that pea aphid GNBPs possess domain architectures and sequence features distinct from those of typical GNBPs/βGRPs and that their expression is induced by bacterial infection. Knockdown of their expression by dsRNA resulted in lower phenoloxidase activity, higher bacterial loads and higher mortality in aphids after infection. Our data suggest that these two atypical GNBPs are involved in the antibacterial response in the pea aphid, likely acting as PRRs in the prophenoloxidase pathway.
Collapse
Affiliation(s)
- J Ji
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Xu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - L Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Z Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Fight or Flight? Alternative Defense of the Pea Aphids, Acyrthosiphon pisum on Different Host Plants. INSECTS 2021; 12:insects12070614. [PMID: 34357273 PMCID: PMC8306235 DOI: 10.3390/insects12070614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary In the event of a pathogen attack, fecundity compensation and production of winged offspring are critical in pea aphids. However, little is known about the effects of the host plant on these responses. The purpose of this study was to investigate the effects of host plant on these two alternative defenses in pea aphids. We took a single adult female from a pink colony of pea aphids that was originally from broad beans and allowed her to reproduce offspring in the laboratory. Some offspring were fed broad beans, while others were fed alfalfa for over 30 generations. We first investigated the backgrounds of their facultative symbionts before infecting them with pathogens and found that the composition of secondary symbionts in our aphid colony was not affected by the host plants. Broad bean reared pea aphids produced more offspring in infected and uninfected conditions, whereas alfalfa reared pea aphids produced more winged offspring when confronting challenges caused by Staphylococcus aureus and Beauveria bassiana. Our findings showed that the host plant influences the pea aphid’s alternative responses to mortality risks. Abstract Non-immunological responses are important alternative strategies for animals to deal with pathogens. It has long been recognized that fecundity compensation and production of winged offspring are two common non-immunological responses used by aphids when confronted with predators or pathogens. However, the effects of host plant on these responses have received little attention. This study investigated the effects of host plant on non-immunological defense in the pea aphids, Acyrthosiphon pisum, after bacterial and fungal infections. The aphids were raised in two groups, with one group being raised on broad beans and the other group being raised on alfalfa. The secondary symbiont background was examined, and the aphids were then infected with bacteria and fungus to assess fecundity and winged offspring production. We found that aphids that had been fed alfalfa had fewer offspring than those fed broad beans. Alfalfa-fed aphids produced more winged offspring in response to S. aureus and B. bassiana infections. Our findings suggest that the host plant plays a key role in fecundity and winged offspring production in pea aphid colony.
Collapse
|
20
|
Wang C, Pian R, Chen X, Zhang Q. Effects of polyphenol oxidases on proteolysis and lipolysis during ensiling of Moringa oleifera leaves with or without pyrocatechol. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Intraspecific variation in immune gene expression and heritable symbiont density. PLoS Pathog 2021; 17:e1009552. [PMID: 33901257 PMCID: PMC8102006 DOI: 10.1371/journal.ppat.1009552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/06/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Host genetic variation plays an important role in the structure and function of heritable microbial communities. Recent studies have shown that insects use immune mechanisms to regulate heritable symbionts. Here we test the hypothesis that variation in symbiont density among hosts is linked to intraspecific differences in the immune response to harboring symbionts. We show that pea aphids (Acyrthosiphon pisum) harboring the bacterial endosymbiont Regiella insecticola (but not all other species of symbionts) downregulate expression of key immune genes. We then functionally link immune expression with symbiont density using RNAi. The pea aphid species complex is comprised of multiple reproductively-isolated host plant-adapted populations. These ‘biotypes’ have distinct patterns of symbiont infections: for example, aphids from the Trifolium biotype are strongly associated with Regiella. Using RNAseq, we compare patterns of gene expression in response to Regiella in aphid genotypes from multiple biotypes, and we show that Trifolium aphids experience no downregulation of immune gene expression while hosting Regiella and harbor symbionts at lower densities. Using F1 hybrids between two biotypes, we find that symbiont density and immune gene expression are both intermediate in hybrids. We propose that in this system, Regiella symbionts are suppressing aphid immune mechanisms to increase their density, but that some hosts have adapted to prevent immune suppression in order to control symbiont numbers. This work therefore suggests that antagonistic coevolution can play a role in host-microbe interactions even when symbionts are transmitted vertically and provide a clear benefit to their hosts. The specific immune mechanisms that we find are downregulated in the presence of Regiella have been previously shown to combat pathogens in aphids, and thus this work also highlights the immune system’s complex dual role in interacting with both beneficial and harmful microbes. Insects frequently form beneficial partnerships with heritable microbes that are passed from mothers to offspring. Natural populations exhibit a great deal of variation in the frequency of heritable microbes and in the within-host density of these infections. Uncovering the mechanisms underlying variation in host-microbe interactions is key to understanding how they evolve. We study a model host-microbe interaction: the pea aphid and a heritable bacterium that makes aphids resistant to fungal pathogens. We show that aphids harboring bacteria show sharply reduced expression of innate immune system genes, and that this leads to increased densities of symbionts. We further show that populations of aphids that live on different species of plants vary in differential immune gene expression and in the density of their symbiont infections. This study contributes to our mechanistic understanding of an important model of host-microbe symbiosis and suggests that hosts and heritable microbes are evolving antagonistically. This work also sheds light on how invertebrate immune systems evolve to manage the complex task of combatting harmful pathogens while accommodating potentially beneficial microbes.
Collapse
|
22
|
McLean AHC, Parker BJ. Variation in intrinsic resistance of pea aphids to parasitoid wasps: A transcriptomic basis. PLoS One 2020; 15:e0242159. [PMID: 33206703 PMCID: PMC7673541 DOI: 10.1371/journal.pone.0242159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022] Open
Abstract
Evolutionary interactions between parasitoid wasps and insect hosts have been well studied at the organismal level, but little is known about the molecular mechanisms that insects use to resist wasp parasitism. Here we study the interaction between a braconid wasp (Aphidius ervi) and its pea aphid host (Acyrthosiphon pisum). We first identify variation in resistance to wasp parasitism that can be attributed to aphid genotype. We then use transcriptome sequencing to identify genes in the aphid genome that are differentially expressed at an early stage of parasitism, and we compare these patterns in highly resistant and susceptible aphid host lines. We find that resistant genotypes are upregulating genes involved in carbohydrate metabolism and several key innate immune system genes in response to parasitism, but that this response seems to be weaker in susceptible aphid genotypes. Together, our results provide a first look into the complex molecular mechanisms that underlie aphid resistance to wasp parasitism and contribute to a broader understanding of how resistance mechanisms evolve in natural populations.
Collapse
Affiliation(s)
| | - Benjamin J. Parker
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
- * E-mail:
| |
Collapse
|
23
|
Ma L, Chen F, Wang W, Xu L, Lu ZQ. Identification of two clip domain serine proteases involved in the pea aphid's defense against bacterial and fungal infection. INSECT SCIENCE 2020; 27:735-744. [PMID: 30916875 DOI: 10.1111/1744-7917.12673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Phenoloxidases (POs) are required for the pea aphid's defense against bacterial and fungal infection. Prophenoloxidases (PPOs) are proteolytically converted to its active form PO through a clip domain serine protease cascade. In this study, we identified five clip domain serine proteases in the pea aphids. The messenger RNA levels of two of them, Ap_SPLP and Ap_VP, were upregulated by Gram-positive bacterium Staphylococcus aureus and fungus Beauveria bassiana infections. Double-stranded RNA-based expression knockdown of these two genes resulted in reduced PO activity of the aphid hemolymph, higher loads of S. aureus and B. bassiana in the aphids, and lower survival rates of the aphids after infections. Our data suggest that Ap_SPLP and Ap_VP are involved in PPO activation pathway in the pea aphid.
Collapse
Affiliation(s)
- Li Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Feng Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Xu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhi-Qiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
24
|
Ma L, Liu L, Zhao Y, Yang L, Chen C, Li Z, Lu Z. JNK pathway plays a key role in the immune system of the pea aphid and is regulated by microRNA-184. PLoS Pathog 2020; 16:e1008627. [PMID: 32584915 PMCID: PMC7343183 DOI: 10.1371/journal.ppat.1008627] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Different from holometabolous insects, the hemipteran species such as pea aphid Acyrthosiphon pisum exhibit reduced immune responses with the absence of the genes coding for antimicrobial peptide (AMP), immune deficiency (IMD), peptidoglycan recognition proteins (PGRPs), and other immune-related molecules. Prior studies have proved that phenoloxidase (PO)-mediated melanization, hemocyte-mediated phagocytosis, and reactive oxygen species (ROS) participate in pea aphid defense against bacterial infection. Also, the conserved signaling, Jun N-terminal kinase (JNK) pathway, has been suggested to be involved in pea aphid immune defense. However, the precise role of the JNK signaling, its interplay with other immune responses and its regulation in pea aphid are largely unknown. In this study, using in vitro biochemical assays and in vivo bioassays, we demonstrated that the JNK pathway regulated hemolymph PO activity, hydrogen peroxide concentration and hemocyte phagocytosis in bacteria infected pea aphids, suggesting that the JNK pathway plays a central role in regulating immune responses in pea aphid. We further revealed the JNK pathway is regulated by microRNA-184 in response to bacterial infection. It is possible that in common the JNK pathway plays a key role in immune system of hemipteran insects and microRNA-184 regulates the JNK pathway in animals.
Collapse
Affiliation(s)
- Li Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Liu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yujie Zhao
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Yang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Caihua Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaofei Li
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
25
|
Kutsukake M, Moriyama M, Shigenobu S, Meng XY, Nikoh N, Noda C, Kobayashi S, Fukatsu T. Exaggeration and cooption of innate immunity for social defense. Proc Natl Acad Sci U S A 2019; 116:8950-8959. [PMID: 30988178 PMCID: PMC6500135 DOI: 10.1073/pnas.1900917116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Social insects often exhibit striking altruistic behaviors, of which the most spectacular ones may be self-destructive defensive behaviors called autothysis, "self-explosion," or "suicidal bombing." In the social aphid Nipponaphis monzeni, when enemies damage their plant-made nest called the gall, soldier nymphs erupt to discharge a large amount of body fluid, mix the secretion with their legs, and skillfully plaster it over the plant injury. Dozens of soldiers come out, erupt, mix, and plaster, and the gall breach is promptly sealed with the coagulated body fluid. What molecular and cellular mechanisms underlie the self-sacrificing nest repair with body fluid for the insect society? Here we demonstrate that the body cavity of soldier nymphs is full of highly differentiated large hemocytes that contain huge amounts of lipid droplets and phenoloxidase (PO), whereas their hemolymph accumulates huge amounts of tyrosine and a unique repeat-containing protein (RCP). Upon breakage of the gall, soldiers gather around the breach and massively discharge the body fluid. The large hemocytes rupture and release lipid droplets, which promptly form a lipidic clot, and, concurrently, activated PO converts tyrosine to reactive quinones, which cross-link RCP and other macromolecules to physically reinforce the clot to seal the gall breach. Here, soldiers' humoral and cellular immune mechanisms for wound sealing are extremely up-regulated and utilized for colony defense, which provides a striking case of direct evolutionary connection between individual immunity and social immunity and highlights the importance of exaggeration and cooption of preexisting traits to create evolutionary novelties.
Collapse
Affiliation(s)
- Mayako Kutsukake
- Bioproduction Research Institute, National Institute of Advanced Science and Technology, 305-8566 Tsukuba, Japan;
| | - Minoru Moriyama
- Bioproduction Research Institute, National Institute of Advanced Science and Technology, 305-8566 Tsukuba, Japan
- Computational Bio Big Data Open Innovation Laboratory, National Institute of Advanced Science and Technology, 305-8566 Tsukuba, Japan
| | - Shuji Shigenobu
- Core Research Facilities, National Institute for Basic Biology, 444-8585 Okazaki, Japan
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Science and Technology, 305-8566 Tsukuba, Japan
| | - Naruo Nikoh
- Department of Liberal Arts, The Open University of Japan, 261-8586 Chiba, Japan
| | - Chiyo Noda
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, 444-8787 Okazaki, Japan
| | - Satoru Kobayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 305-8577 Tsukuba, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Science and Technology, 305-8566 Tsukuba, Japan;
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-0033 Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 305-8572 Tsukuba, Japan
| |
Collapse
|