1
|
Yue X, Peng L, Liu S, Zhang B, Zhang X, Chang H, Pei Y, Li X, Liu J, Shui W, Wu L, Xu H, Liu ZJ, Hua T. Structural basis of stepwise proton sensing-mediated GPCR activation. Cell Res 2025:10.1038/s41422-025-01092-w. [PMID: 40211064 DOI: 10.1038/s41422-025-01092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/23/2025] [Indexed: 04/12/2025] Open
Abstract
The regulation of pH homeostasis is crucial in many biological processes vital for survival, growth, and function of life. The pH-sensing G protein-coupled receptors (GPCRs), including GPR4, GPR65 and GPR68, play a pivotal role in detecting changes in extracellular proton concentrations, impacting both physiological and pathological states. However, comprehensive understanding of the proton sensing mechanism is still elusive. Here, we determined the cryo-electron microscopy structures of GPR4 and GPR65 in various activation states across different pH levels, coupled with Gs, Gq or G13 proteins, as well as a small molecule NE52-QQ57-bound inactive GPR4 structure. These structures reveal the dynamic nature of the extracellular loop 2 and its signature conformations in different receptor states, and disclose the proton sensing mechanism mediated by networks of extracellular histidine and carboxylic acid residues. Notably, we unexpectedly captured partially active intermediate states of both GPR4-Gs and GPR4-Gq complexes, and identified a unique allosteric binding site for NE52-QQ57 in GPR4. By integrating prior investigations with our structural analysis and mutagenesis data, we propose a detailed atomic model for stepwise proton sensation and GPCR activation. These insights may pave the way for the development of selective ligands and targeted therapeutic interventions for pH sensing-relevant diseases.
Collapse
Affiliation(s)
- Xiaolei Yue
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Li Peng
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bingjie Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xiaodan Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hao Chang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuan Pei
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xiaoting Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
| | - Huji Xu
- Department of Rheumatology and Immunology, Changzheng Hospital, Second Military Medical University, Shanghai, China.
- School of Clinical Medicine, Tsinghua University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
2
|
Howard MK, Hoppe N, Huang XP, Mitrovic D, Billesbølle CB, Macdonald CB, Mehrotra E, Rockefeller Grimes P, Trinidad DD, Delemotte L, English JG, Coyote-Maestas W, Manglik A. Molecular basis of proton sensing by G protein-coupled receptors. Cell 2025; 188:671-687.e20. [PMID: 39753132 PMCID: PMC11849372 DOI: 10.1016/j.cell.2024.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 11/21/2024] [Indexed: 02/09/2025]
Abstract
Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues. Using deep mutational scanning (DMS), we determined the functional importance of every residue in GPR68 activation by generating ∼9,500 mutants and measuring their effects on signaling and surface expression. Constant-pH molecular dynamics simulations provided insights into the conformational landscape and protonation patterns of key residues. This unbiased approach revealed that, unlike other proton-sensitive channels and receptors, no single site is critical for proton recognition. Instead, a network of titratable residues extends from the extracellular surface to the transmembrane region, converging on canonical motifs to activate proton-sensing GPCRs. Our approach integrating structure, simulations, and unbiased functional interrogation provides a framework for understanding GPCR signaling complexity.
Collapse
Affiliation(s)
- Matthew K Howard
- Tetrad graduate program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicholas Hoppe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Biophysics graduate program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xi-Ping Huang
- Department of Pharmacology and the National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Darko Mitrovic
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 12121 Solna, Stockholm, Stockholm County 114 28, Sweden
| | - Christian B Billesbølle
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christian B Macdonald
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eshan Mehrotra
- Tetrad graduate program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrick Rockefeller Grimes
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donovan D Trinidad
- Department of Medicine, Division of Infectious Disease, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lucie Delemotte
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 12121 Solna, Stockholm, Stockholm County 114 28, Sweden
| | - Justin G English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
3
|
Neitzel LR, Silver M, Wasserman AH, Rea S, Hong CC, Williams CH. A novel transgenic reporter of extracellular acidification in zebrafish elucidates skeletal muscle T-tubule pH regulation. Dev Dyn 2025. [PMID: 39840753 DOI: 10.1002/dvdy.770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/23/2025] Open
Abstract
Disruption of extracellular pH and proton-sensing can profoundly impact cellular and protein functions, leading to developmental defects. To visualize changes in extracellular pH in the developing embryo, we generated a zebrafish transgenic line that ubiquitously expresses the ratiometric pH-sensitive fluorescent protein pHluorin2, tethered to the extracellular face of the plasma membrane using a glycosylphosphatidylinositol (GPI) anchor. Monitoring of pHluorin2 with ratiometric fluorescence revealed dynamic and discrete domains of extracellular acidification over the first 72 h of embryonic development. These included acidification of the notochord intercalations, transient acidification of the otic placode, and persistent acidification of the extracellular space of the myotome at distinctly different pH from that within the T-tubules. Knockdown of centronuclear myopathy genes Bin1b (OMIM: 255200) and MTM1 (OMIM: 310400), which disrupt T-tubule formation, also disrupted myotome acidification. In this study we visualize extracellular acidic microdomains in the tissues of whole live animals. This real-time reporter line for directly measuring changes in extracellular pH can be used to illuminate the role of extracellular pH in normal physiological development and disease states.
Collapse
Affiliation(s)
- Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, Michigan, USA
| | - Maya Silver
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aaron H Wasserman
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, Michigan, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, Michigan, USA
| | - Charles H Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, Michigan, USA
| |
Collapse
|
4
|
Justus CR, Marie MA, Sanderlin EJ, Yang LV. The Roles of Proton-Sensing G-Protein-Coupled Receptors in Inflammation and Cancer. Genes (Basel) 2024; 15:1151. [PMID: 39336742 PMCID: PMC11431078 DOI: 10.3390/genes15091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
The precise regulation of pH homeostasis is crucial for normal physiology. However, in tissue microenvironments, it can be impacted by pathological conditions such as inflammation and cancer. Due to the overproduction and accumulation of acids (protons), the extracellular pH is characteristically more acidic in inflamed tissues and tumors in comparison to normal tissues. A family of proton-sensing G-protein-coupled receptors (GPCRs) has been identified as molecular sensors for cells responding to acidic tissue microenvironments. Herein, we review the current research progress pertaining to these proton-sensing GPCRs, including GPR4, GPR65 (TDAG8), and GPR68 (OGR1), in inflammation and cancer. Growing evidence suggests that GPR4 and GPR68 are mainly pro-inflammatory, whereas GPR65 is primarily anti-inflammatory, in various inflammatory disorders. Both anti- and pro-tumorigenic effects have been reported for this family of receptors. Moreover, antagonists and agonists targeting proton-sensing GPCRs have been developed and evaluated in preclinical models. Further research is warranted to better understand the roles of these proton-sensing GPCRs in pathophysiology and is required in order to exploit them as potential therapeutic targets for disease treatment.
Collapse
Affiliation(s)
- Calvin R Justus
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Mona A Marie
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Edward J Sanderlin
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Li V Yang
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
5
|
Neale I, Reddy C, Tan ZY, Li B, Nag PP, Park J, Park J, Carey KL, Graham DB, Xavier RJ. Small-molecule probe for IBD risk variant GPR65 I231L alters cytokine signaling networks through positive allosteric modulation. SCIENCE ADVANCES 2024; 10:eadn2339. [PMID: 39028811 PMCID: PMC11259170 DOI: 10.1126/sciadv.adn2339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/13/2024] [Indexed: 07/21/2024]
Abstract
The proton-sensing heterotrimeric guanine nucleotide-binding protein-coupled receptor GPR65 is expressed in immune cells and regulates tissue homeostasis in response to decreased extracellular pH, which occurs in the context of inflammation and tumorigenesis. Genome-wide association studies linked GPR65 to several autoimmune and inflammatory diseases such as multiple sclerosis and inflammatory bowel disease (IBD). The loss-of-function GPR65 I231L IBD risk variant alters cellular metabolism, impairs protective tissue functions, and increases proinflammatory cytokine production. Hypothesizing that a small molecule designed to potentiate GPR65 at subphysiological pH could decrease inflammatory responses, we found positive allosteric modulators of GPR65 that engage and activate both human and mouse orthologs of the receptor. We observed that the chemical probe BRD5075 alters cytokine and chemokine programs in dendritic cells, establishing that immune signaling can be modulated by targeting GPR65. Our investigation offers improved chemical probes to further interrogate the biology of human GPR65 and its clinically relevant genetic variants.
Collapse
Affiliation(s)
- Ilona Neale
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clark Reddy
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zher Yin Tan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bihua Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Partha P. Nag
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jihye Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Daniel B. Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
6
|
Sawabe A, Okazaki S, Nakamura A, Goitsuka R, Kaifu T. The orphan G protein-coupled receptor 141 expressed in myeloid cells functions as an inflammation suppressor. J Leukoc Biol 2024; 115:935-945. [PMID: 38226682 DOI: 10.1093/jleuko/qiae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular processes in response to various stimuli, including light, hormones, neurotransmitters, and odorants, some of which play critical roles in innate and adaptive immune responses. However, the physiological functions of many GPCRs and the involvement of them in autoimmune diseases of the central nervous system remain unclear. Here, we demonstrate that GPR141, an orphan GPCR belonging to the class A receptor family, suppresses immune responses. High GPR141 messenger RNA levels were expressed in myeloid-lineage cells, including neutrophils (CD11b + Gr1+), monocytes (CD11b + Gr1-Ly6C+ and CD11b + Gr1-Ly6C-), macrophages (F4/80+), and dendritic cells (CD11c+). Gpr141 -/- mice, which we independently generated, displayed almost no abnormalities in myeloid cell differentiation and compartmentalization in the spleen and bone marrow under steady-state conditions. However, Gpr141 deficiency exacerbated disease conditions of experimental autoimmune encephalomyelitis, an autoimmune disease model for multiple sclerosis, with increased inflammation in the spinal cord. Gpr141 -/- mice showed increased CD11b + Gr1+ neutrophils, CD11b + Gr1- monocytes, CD11c+ dendritic cells, and CD4+ T cell infiltration into the experimental autoimmune encephalomyelitis-induced spinal cord compared with littermate control mice. Lymphocytes enriched from Gpr141 -/- mice immunized with myelin oligodendrocyte glycoprotein 35-55 produced high amounts of interferon-γ, interleukin-17A, and interleukin-6 compared with those from wild-type mice. Moreover, CD11c+ dendritic cells (DCs) purified from Gpr141 -/- mice increased cytokine production of myelin oligodendrocyte glycoprotein 35-55-specific T cells. These findings suggest that GPR141 functions as a negative regulator of immune responses by controlling the functions of monocytes and dendritic cells and that targeting GPR141 may be a possible therapeutic intervention for modulating chronic inflammatory diseases.
Collapse
MESH Headings
- Animals
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Myeloid Cells/metabolism
- Myeloid Cells/immunology
- Inflammation/immunology
- Inflammation/metabolism
- Mice, Knockout
- Mice
- Mice, Inbred C57BL
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Peptide Fragments
Collapse
Affiliation(s)
- Atsuya Sawabe
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Sendai 983-8536, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, 1-8-13, Surugadai, Kanda, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Sendai 983-8536, Japan
| | - Ryo Goitsuka
- Division of Cell Fate Regulations, Developmental Immmunology, Regenerative Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | - Tomonori Kaifu
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Sendai 983-8536, Japan
| |
Collapse
|
7
|
Howard MK, Hoppe N, Huang XP, Macdonald CB, Mehrota E, Grimes PR, Zahm A, Trinidad DD, English J, Coyote-Maestas W, Manglik A. Molecular basis of proton-sensing by G protein-coupled receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.590000. [PMID: 38659943 PMCID: PMC11042331 DOI: 10.1101/2024.04.17.590000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Three proton-sensing G protein-coupled receptors (GPCRs), GPR4, GPR65, and GPR68, respond to changes in extracellular pH to regulate diverse physiology and are implicated in a wide range of diseases. A central challenge in determining how protons activate these receptors is identifying the set of residues that bind protons. Here, we determine structures of each receptor to understand the spatial arrangement of putative proton sensing residues in the active state. With a newly developed deep mutational scanning approach, we determined the functional importance of every residue in proton activation for GPR68 by generating ~9,500 mutants and measuring effects on signaling and surface expression. This unbiased screen revealed that, unlike other proton-sensitive cell surface channels and receptors, no single site is critical for proton recognition in GPR68. Instead, a network of titratable residues extend from the extracellular surface to the transmembrane region and converge on canonical class A GPCR activation motifs to activate proton-sensing GPCRs. More broadly, our approach integrating structure and unbiased functional interrogation defines a new framework for understanding the rich complexity of GPCR signaling.
Collapse
Affiliation(s)
- Matthew K. Howard
- Tetrad graduate program, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, CA, USA
| | - Nicholas Hoppe
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Biophysics graduate program, University of California, San Francisco, CA, USA
| | - Xi-Ping Huang
- Department of Pharmacology and the National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christian B. Macdonald
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, CA, USA
| | - Eshan Mehrota
- Tetrad graduate program, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
| | | | - Adam Zahm
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Donovan D. Trinidad
- Department of Medicine, Division of Infectious Disease, University of California, San Francisco, United States
| | - Justin English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, USA
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Caratis F, Opiełka M, Hausmann M, Velasco-Estevez M, Rojek B, de Vallière C, Seuwen K, Rogler G, Karaszewski B, Rutkowska A. The proton-sensing receptors TDAG8 and GPR4 are differentially expressed in human and mouse oligodendrocytes: Exploring their role in neuroinflammation and multiple sclerosis. PLoS One 2024; 19:e0283060. [PMID: 38527054 PMCID: PMC10962805 DOI: 10.1371/journal.pone.0283060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024] Open
Abstract
Acidosis is one of the hallmarks of demyelinating central nervous system (CNS) lesions in multiple sclerosis (MS). The response to acidic pH is primarily mediated by a family of G protein-coupled proton-sensing receptors: OGR1, GPR4 and TDAG8. These receptors are inactive at alkaline pH, reaching maximal activation at acidic pH. Genome-wide association studies have identified a locus within the TDAG8 gene associated with several autoimmune diseases, including MS. Accordingly, we here found that expression of TDAG8, as opposed to GPR4 or OGR1, is upregulated in MS plaques. This led us to investigate the expression of TDAG8 in oligodendrocytes using mouse and human in vitro and in vivo models. We observed significant upregulation of TDAG8 in human MO3.13 oligodendrocytes during maturation and in response to acidic conditions. However, its deficiency did not impact normal myelination in the mouse CNS, and its expression remained unaltered under demyelinating conditions in mouse organotypic cerebellar slices. Notably, our data revealed no expression of TDAG8 in primary mouse oligodendrocyte progenitor cells (OPCs), in contrast to its expression in primary human OPCs. Our investigations have revealed substantial species differences in the expression of proton-sensing receptors in oligodendrocytes, highlighting the limitations of the employed experimental models in fully elucidating the role of TDAG8 in myelination and oligodendrocyte biology. Consequently, the study does not furnish robust evidence for the role of TDAG8 in such processes. Nonetheless, our findings tentatively point towards a potential association between TDAG8 and myelination processes in humans, hinting at a potential link between TDAG8 and the pathophysiology of MS and warrants further research.
Collapse
Affiliation(s)
- Fionä Caratis
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| | - Mikołaj Opiełka
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maria Velasco-Estevez
- H12O-CNIO Hematological Malignancies Group, Clinical Research Unit, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | - Bartłomiej Rojek
- Department of Adult Neurology, Medical University of Gdansk & University Clinical Centre, Gdansk, Poland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bartosz Karaszewski
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
- Department of Adult Neurology, Medical University of Gdansk & University Clinical Centre, Gdansk, Poland
| | - Aleksandra Rutkowska
- Brain Diseases Centre, Medical University of Gdansk, Gdansk, Poland
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
9
|
Lee SW, Park HJ, Van Kaer L, Hong S. Role of CD1d and iNKT cells in regulating intestinal inflammation. Front Immunol 2024; 14:1343718. [PMID: 38274786 PMCID: PMC10808723 DOI: 10.3389/fimmu.2023.1343718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Invariant natural killer T (iNKT) cells, a subset of unconventional T cells that recognize glycolipid antigens in a CD1d-dependent manner, are crucial in regulating diverse immune responses such as autoimmunity. By engaging with CD1d-expressing non-immune cells (such as intestinal epithelial cells and enterochromaffin cells) and immune cells (such as type 3 innate lymphoid cells, B cells, monocytes and macrophages), iNKT cells contribute to the maintenance of immune homeostasis in the intestine. In this review, we discuss the impact of iNKT cells and CD1d in the regulation of intestinal inflammation, examining both cellular and molecular factors with the potential to influence the functions of iNKT cells in inflammatory bowel diseases such as Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Biomedical Laboratory Science, College of Health and Biomedical Services, Sangji University, Wonju, Republic of Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Zha XM, Xiong ZG, Simon RP. pH and proton-sensitive receptors in brain ischemia. J Cereb Blood Flow Metab 2022; 42:1349-1363. [PMID: 35301897 PMCID: PMC9274858 DOI: 10.1177/0271678x221089074] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Extracellular proton concentration is at 40 nM when pH is 7.4. In disease conditions such as brain ischemia, proton concentration can reach µM range. To respond to this increase in extracellular proton concentration, the mammalian brain expresses at least three classes of proton receptors. Acid-sensing ion channels (ASICs) are the main neuronal cationic proton receptor. The proton-activated chloride channel (PAC), which is also known as (aka) acid-sensitive outwardly rectifying anion channel (ASOR; TMEM206), mediates acid-induced chloride currents. Besides proton-activated channels, GPR4, GPR65 (aka TDAG8, T-cell death-associated gene 8), and GPR68 (aka OGR1, ovarian cancer G protein-coupled receptor 1) function as proton-sensitive G protein-coupled receptors (GPCRs). Though earlier studies on these GPCRs mainly focus on peripheral cells, we and others have recently provided evidence for their functional importance in brain injury. Specifically, GPR4 shows strong expression in brain endothelium, GPR65 is present in a fraction of microglia, while GPR68 exhibits predominant expression in brain neurons. Here, to get a better view of brain acid signaling and its contribution to ischemic injury, we will review the recent findings regarding the differential contribution of proton-sensitive GPCRs to cerebrovascular function, neuroinflammation, and neuronal injury following acidosis and brain ischemia.
Collapse
Affiliation(s)
- Xiang-ming Zha
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Roger P Simon
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
11
|
Chen X, Jaiswal A, Costliow Z, Herbst P, Creasey EA, Oshiro-Rapley N, Daly MJ, Carey KL, Graham DB, Xavier RJ. pH sensing controls tissue inflammation by modulating cellular metabolism and endo-lysosomal function of immune cells. Nat Immunol 2022; 23:1063-1075. [PMID: 35668320 PMCID: PMC9720675 DOI: 10.1038/s41590-022-01231-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/26/2022] [Indexed: 02/08/2023]
Abstract
Extracellular acidification occurs in inflamed tissue and the tumor microenvironment; however, a systematic study on how pH sensing contributes to tissue homeostasis is lacking. In the present study, we examine cell type-specific roles of the pH sensor G protein-coupled receptor 65 (GPR65) and its inflammatory disease-associated Ile231Leu-coding variant in inflammation control. GPR65 Ile231Leu knock-in mice are highly susceptible to both bacterial infection-induced and T cell-driven colitis. Mechanistically, GPR65 Ile231Leu elicits a cytokine imbalance through impaired helper type 17 T cell (TH17 cell) and TH22 cell differentiation and interleukin (IL)-22 production in association with altered cellular metabolism controlled through the cAMP-CREB-DGAT1 axis. In dendritic cells, GPR65 Ile231Leu elevates IL-12 and IL-23 release at acidic pH and alters endo-lysosomal fusion and degradation capacity, resulting in enhanced antigen presentation. The present study highlights GPR65 Ile231Leu as a multistep risk factor in intestinal inflammation and illuminates a mechanism by which pH sensing controls inflammatory circuits and tissue homeostasis.
Collapse
Affiliation(s)
- Xiangjun Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Experimental Medicine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alok Jaiswal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Paula Herbst
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth A Creasey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Noriko Oshiro-Rapley
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Experimental Medicine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | | | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Experimental Medicine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
Imenez Silva PH, Câmara NO, Wagner CA. Role of proton-activated G protein-coupled receptors in pathophysiology. Am J Physiol Cell Physiol 2022; 323:C400-C414. [PMID: 35759438 DOI: 10.1152/ajpcell.00114.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Local acidification is a common feature of many disease processes such as inflammation, infarction, or solid tumor growth. Acidic pH is not merely a sequelae of disease but contributes to recruitment and regulation of immune cells, modifies metabolism of parenchymal, immune and tumor cells, modulates fibrosis, vascular permeability, oxygen availability and consumption, invasiveness of tumor cells, and impacts on cell survival. Thus, multiple pH-sensing mechanisms must exist in cells involved in these processes. These pH-sensors play important roles in normal physiology and pathophysiology, and hence might be attractive targets for pharmacological interventions. Among the pH-sensing mechanisms, OGR1 (GPR68), GPR4 (GPR4), and TDAG8 (GPR65) have emerged as important molecules. These G protein-coupled receptors are widely expressed, are upregulated in inflammation and tumors, sense changes in extracellular pH in the range between pH 8 and 6, and are involved in modulating key processes in inflammation, tumor biology, and fibrosis. This review discusses key features of these receptors and highlights important disease states and pathways affected by their activity.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| | - Niels Olsen Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research NCCR Kidney.CH, Switzerland
| |
Collapse
|
13
|
Cao P, Yang M, Chang C, Wu H, Lu Q. Germinal Center-Related G Protein-Coupled Receptors in Antibody-Mediated Autoimmune Skin Diseases: from Basic Research to Clinical Trials. Clin Rev Allergy Immunol 2022; 63:357-370. [PMID: 35674978 DOI: 10.1007/s12016-022-08936-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
Germinal center (GC) reaction greatly contributes to the humoral immune response, which begins in lymph nodes or other secondary lymphoid organs after follicular B cells are activated by T-dependent antigens. The GCs then serve as a platform for follicular B cells to complete clonal expansion and somatic hypermutation and then interact with follicular dendritic cells (FDC) and follicular helper T cells (Tfh). Through the interaction between the immune cells, significant processes of the humoral immune response are accomplished, such as antibody affinity maturation, class switching, and production of memory B cells and plasma cells. Cell positioning during the GC reaction is mainly mediated by the chemokine receptors and lipid receptors, which both belong to G protein-coupled receptors (GPCRs) family. There are some orphan GPCRs whose endogenous ligands are unclear yet contribute to the regulation of GC reaction as well. This review will give an introduction on the ligands and functions of two types of GC-relating GPCRs-chemokine receptors like CXCR4 and CXCR5, as well as emerging de-orphanized GPCRs like GPR183, GPR174, and P2RY8. The roles these GPCRs play in several antibody-mediated autoimmune skin diseases will be also discussed, including systemic lupus erythematosus (SLE), pemphigus, scleroderma, and dermatomyositis. Besides, GPCRs are excellent drug targets due to the unique structure and vital functions. Therefore, this review is aimed at providing readers with a focused knowledge about the role that GPCRs play in GC reaction, as well as in provoking the development of GPCR-targeting agents for immune-mediated diseases besides autoimmune diseases.
Collapse
Affiliation(s)
- Pengpeng Cao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China. .,Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China. .,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China. .,Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
14
|
Imenez Silva PH, Wagner CA. Physiological relevance of proton-activated GPCRs. Pflugers Arch 2022; 474:487-504. [PMID: 35247105 PMCID: PMC8993716 DOI: 10.1007/s00424-022-02671-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
The detection of H+ concentration variations in the extracellular milieu is accomplished by a series of specialized and non-specialized pH-sensing mechanisms. The proton-activated G protein-coupled receptors (GPCRs) GPR4 (Gpr4), TDAG8 (Gpr65), and OGR1 (Gpr68) form a subfamily of proteins capable of triggering intracellular signaling in response to alterations in extracellular pH around physiological values, i.e., in the range between pH 7.5 and 6.5. Expression of these receptors is widespread for GPR4 and OGR1 with particularly high levels in endothelial cells and vascular smooth muscle cells, respectively, while expression of TDAG8 appears to be more restricted to the immune compartment. These receptors have been linked to several well-studied pH-dependent physiological activities including central control of respiration, renal adaption to changes in acid-base status, secretion of insulin and peripheral responsiveness to insulin, mechanosensation, and cellular chemotaxis. Their role in pathological processes such as the genesis and progression of several inflammatory diseases (asthma, inflammatory bowel disease), and tumor cell metabolism and invasiveness, is increasingly receiving more attention and makes these receptors novel and interesting targets for therapy. In this review, we cover the role of these receptors in physiological processes and will briefly discuss some implications for disease processes.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
- National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland.
| |
Collapse
|
15
|
Lin R, Wu W, Chen H, Gao H, Wu X, Li G, He Q, Lu H, Sun M, Liu Z. GPR65 promotes intestinal mucosal Th1 and Th17 cell differentiation and gut inflammation through downregulating NUAK2. Clin Transl Med 2022; 12:e771. [PMID: 35343079 PMCID: PMC8958354 DOI: 10.1002/ctm2.771] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/15/2023] Open
Abstract
G protein-coupled receptor 65 (GPR65), a susceptibility gene for inflammatory bowel diseases (IBD), has been identified to promote Th17 cell pathogenicity and induce T cell apoptosis. However, the potential role of GPR65 in modulating CD4+ T cell immune responses in the pathogenesis of IBD stills not entirely understood. Here, we displayed that GPR65 expression was increased in inflamed intestinal mucosa of IBD patients and positively associated with disease activity. It was expressed in CD4+ T cells and robustly upregulated through the TNF-α-caspase 3/8 signalling pathway. Ectopic expression of GPR65 significantly promoted the differentiation of peripheral blood (PB) CD4+ T cells from IBD patients and HC to Th1 and Th17 cells in vitro. Importantly, conditional knockout of Gpr65 in CD4+ T cells ameliorated trinitrobenzene sulfonic acid (TNBS)-induced acute murine colitis and a chronic colitis in Rag1-/- mice reconstituted with CD45RBhigh CD4+ T cells in vivo, characterised by attenuated Th1 and Th17 cell immune response in colon mucosa and decreased infiltration of CD4+ T cells, neutrophils and macrophages. RNA-seq analysis of Gpr65ΔCD4 and Gpr65flx/flx CD4+ T cells revealed that NUAK family kinase 2 (Nuak2) acts as a functional target of Gpr65 to restrict Th1 and Th17 cell immune response. Mechanistically, GPR65 deficiency promoted NUAK2 expression via the cAMP-PKA-C-Raf-ERK1/2-LKB1-mediated signalling pathway. Consistently, silencing of Nuak2 facilitated the differentiation of Gpr65ΔCD4 and Gpr65flx/flx CD4+ T cells into Th1 and Th17 cells. Therefore, our data point out that GPR65 promotes Th1 and Th17 cell immune response and intestinal mucosal inflammation by suppressing NUAK2 expression, and that targeting GPR65 and NUAK2 in CD4+ T cells may represent a novel therapeutic approach for IBD.
Collapse
Affiliation(s)
- Ritian Lin
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Wei Wu
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Huimin Chen
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Han Gao
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Xiaohan Wu
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Gengfeng Li
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Qiong He
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Huiying Lu
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Mingming Sun
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease ResearchThe Shanghai Tenth People's HospitalTongji University of School MedicineShanghaiChina
| |
Collapse
|
16
|
IBD-associated G protein-coupled receptor 65 variant compromises signalling and impairs key functions involved in inflammation. Cell Signal 2022; 93:110294. [PMID: 35218908 PMCID: PMC9536022 DOI: 10.1016/j.cellsig.2022.110294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases (IBD) result in chronic inflammation of the gastrointestinal tract. Genetic studies have shown that the GPR65 gene, as well as its missense coding variant, GPR65*Ile231Leu, is associated with IBD. We aimed to define the signalling and biological pathways downstream of GPR65 activation and evaluate the impact of GPR65*231Leu on these. METHODS We used HEK 293 cells stably expressing GPR65 and deficient for either Gαs, Gαq/11 or Gα12/13, to define GPR65 signalling pathways, IBD patient biopsies and a panel of human tissues, primary immune cells and cell lines to determine biologic context, and genetic modulation of human THP-1-derived macrophages to examine the impact of GPR65 in bacterial phagocytosis and NLRP3 inflammasome activation. RESULTS We confirmed that GPR65 signals via the Gαs pathway, leading to cAMP accumulation. GPR65 can also signal via the Gα12/13 pathway leading to formation of stress fibers, actin remodeling and RhoA activation; all impaired by the IBD-associated GPR65*231Leu allele. Gene expression profiling revealed greater expression of GPR65 in biopsies from inflamed compared to non-inflamed tissues from IBD patients or control individuals, potentially explained by infiltration of inflammatory immune cells. Decreased GPR65 expression in THP-1-derived macrophages leads to impaired bacterial phagocytosis, increased NLRP3 inflammasome activation and IL-1β secretion in response to an inflammatory stimulus. CONCLUSIONS We demonstrate that GPR65 exerts its effects through Gαs- and Gα12/13-mediated pathways, that the IBD-associated GPR65*231Leu allele has compromised interactions with Gα12/13 and that KD of GPR65 leads to impaired bacterial phagocytosis and increased inflammatory signalling via the NLRP3 inflammasome. This work identifies a target for development of small molecule therapies.
Collapse
|
17
|
Zarobkiewicz MK, Morawska I, Michalski A, Roliński J, Bojarska-Junak A. NKT and NKT-like Cells in Autoimmune Neuroinflammatory Diseases-Multiple Sclerosis, Myasthenia Gravis and Guillain-Barre Syndrome. Int J Mol Sci 2021; 22:9520. [PMID: 34502425 PMCID: PMC8431671 DOI: 10.3390/ijms22179520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
NKT cells comprise three subsets-type I (invariant, iNKT), type II, and NKT-like cells, of which iNKT cells are the most studied subset. They are capable of rapid cytokine production after the initial stimulus, thus they may be important for polarisation of Th cells. Due to this, they may be an important cell subset in autoimmune diseases. In the current review, we are summarising results of NKT-oriented studies in major neurological autoimmune diseases-multiple sclerosis, myasthenia gravis, and Guillain-Barre syndrome and their corresponding animal models.
Collapse
Affiliation(s)
- Michał K. Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (A.M.); (J.R.)
| | | | | | | | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (I.M.); (A.M.); (J.R.)
| |
Collapse
|
18
|
Zhao M, Wang Z, Yang M, Ding Y, Zhao M, Wu H, Zhang Y, Lu Q. The Roles of Orphan G Protein-Coupled Receptors in Autoimmune Diseases. Clin Rev Allergy Immunol 2021; 60:220-243. [PMID: 33411320 DOI: 10.1007/s12016-020-08829-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of plasma membrane receptors in nature and mediate the effects of a variety of extracellular signals, such as hormone, neurotransmitter, odor, and light signals. Due to their involvement in a broad range of physiological and pathological processes and their accessibility, GPCRs are widely used as pharmacological targets of treatment. Orphan G protein-coupled receptors (oGPCRs) are GPCRs for which no natural ligands have been found, and they not only play important roles in various physiological functions, such as sensory perception, reproduction, development, growth, metabolism, and responsiveness, but are also closely related to many major diseases, such as central nervous system (CNS) diseases, metabolic diseases, and cancer. Recently, many studies have reported that oGPCRs play increasingly important roles as key factors in the occurrence and progression of autoimmune diseases. Therefore, oGPCRs are likely to become potential therapeutic targets and may provide a breakthrough in the study of autoimmune diseases. In this article, we focus on reviewing the recent research progress and clinical treatment effects of oGPCRs in three common autoimmune diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE), shedding light on novel strategies for treatments.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheyu Wang
- University of South China, Hengyang, Hunan, China.,Maternal & Child Health Care Hospital Hainan Province, Haikou, Hainan, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Ding
- Maternal & Child Health Care Hospital Hainan Province, Haikou, Hainan, China.,Hainan Province Dermatol Disease Hospital, Haikou, Hainan, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yan Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China. .,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, 310058, China. .,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
19
|
Matoba K, Yamashita S, Isaksen TJ, Yamashita T. Proton-sensing receptor GPR132 facilitates migration of astrocytes. Neurosci Res 2020; 170:106-113. [PMID: 33333086 DOI: 10.1016/j.neures.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 11/26/2022]
Abstract
Astrocytes are one of the first responders to central nervous system (CNS) injuries such as spinal cord injury (SCI). They are thought to repress injury-induced CNS inflammation as well as inhibit axonal regeneration. While reactive astrocytes migrate and accumulate around the lesion core, the mechanism of astrocyte migration towards the lesion site remains unclear. Here, we examined possible involvement of acidification of the lesion site and expression of proton-sensing receptors in astrocyte migration, both in mice models and in vitro. We found that the expression of several proton-sensing receptors was increased at the lesion site after SCI. Among these receptors, Gpr132 was expressed in primary cultured astrocytes and exhibited significant enhanced expression in acidic conditions in vitro. Furthermore, astrocyte motility was enhanced in acidic media and by Gpr132 activation. These results suggest that acidification of the lesion site facilitates astrocyte migration via the proton-sensing receptor Gpr132.
Collapse
Affiliation(s)
- Ken Matoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | - Toke Jost Isaksen
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
20
|
Amini A, Pang D, Hackstein CP, Klenerman P. MAIT Cells in Barrier Tissues: Lessons from Immediate Neighbors. Front Immunol 2020; 11:584521. [PMID: 33329559 PMCID: PMC7734211 DOI: 10.3389/fimmu.2020.584521] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells present at considerable frequencies in human blood and barrier tissues, armed with an expanding array of effector functions in response to homeostatic perturbations. Analogous to other barrier immune cells, their phenotype and function is driven by crosstalk with host and dynamic environmental factors, most pertinently the microbiome. Given their distribution, they must function in diverse extracellular milieus. Tissue-specific and adapted functions of barrier immune cells are shaped by transcriptional programs and regulated through a blend of local cellular, inflammatory, physiological, and metabolic mediators unique to each microenvironment. This review compares the phenotype and function of MAIT cells with other barrier immune cells, highlighting potential areas for future exploration. Appreciation of MAIT cell biology within tissues is crucial to understanding their niche in health and disease.
Collapse
Affiliation(s)
- Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Declan Pang
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Carl-Philipp Hackstein
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Terrazzano G, Bruzzaniti S, Rubino V, Santopaolo M, Palatucci AT, Giovazzino A, La Rocca C, de Candia P, Puca A, Perna F, Procaccini C, De Rosa V, Porcellini C, De Simone S, Fattorusso V, Porcellini A, Mozzillo E, Troncone R, Franzese A, Ludvigsson J, Matarese G, Ruggiero G, Galgani M. T1D progression is associated with loss of CD3 +CD56 + regulatory T cells that control CD8 + T cell effector functions. Nat Metab 2020; 2:142-152. [PMID: 32500117 PMCID: PMC7272221 DOI: 10.1038/s42255-020-0173-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An unresolved issue in autoimmunity is the lack of surrogate biomarkers of immunological self-tolerance for disease monitoring. Here, we show that peripheral frequency of a regulatory T cell population, characterized by the co-expression of CD3 and CD56 molecules (TR3-56), is reduced in subjects with new-onset type 1 diabetes (T1D). In three independent T1D cohorts, we find that low frequency of circulating TR3-56 cells is associated with reduced β-cell function and with the presence of diabetic ketoacidosis. As autoreactive CD8+ T cells mediate disruption of insulin-producing β-cells1-3, we demonstrate that TR3-56 cells can suppress CD8+ T cell functions in vitro by reducing levels of intracellular reactive oxygen species. The suppressive function, phenotype and transcriptional signature of TR3-56 cells are also altered in T1D children. Together, our findings indicate that TR3-56 cells constitute a regulatory cell population that controls CD8+ effector functions, whose peripheral frequency may represent a traceable biomarker for monitoring immunological self-tolerance in T1D.
Collapse
Affiliation(s)
- Giuseppe Terrazzano
- Dipartimento di Scienze, Università degli Studi di Potenza, Potenza, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Valentina Rubino
- Dipartimento di Scienze, Università degli Studi di Potenza, Potenza, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Marianna Santopaolo
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | - Angela Giovazzino
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Paola de Candia
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | - Annibale Puca
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | - Francesco Perna
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
- Unità di Neuroimmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
- Unità di Neuroimmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Chiara Porcellini
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Salvatore De Simone
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Valentina Fattorusso
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonio Porcellini
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Enza Mozzillo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Riccardo Troncone
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
- European Laboratory for the Investigation of Food-Induced Disease, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Adriana Franzese
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University and Crown Princess Victoria Children's Hospital, Linköping, Sweden
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Giuseppina Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale G. Salvatore, Consiglio Nazionale delle Ricerche, Naples, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.
| |
Collapse
|
22
|
Pattison LA, Callejo G, St John Smith E. Evolution of acid nociception: ion channels and receptors for detecting acid. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190291. [PMID: 31544616 PMCID: PMC6790391 DOI: 10.1098/rstb.2019.0291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
Nociceptors, i.e. sensory neurons tuned to detect noxious stimuli, are found in numerous phyla of the Animalia kingdom and are often polymodal, responding to a variety of stimuli, e.g. heat, cold, pressure and chemicals, such as acid. Owing to the ability of protons to have a profound effect on ionic homeostasis and damage macromolecular structures, it is no wonder that the ability to detect acid is conserved across many species. To detect changes in pH, nociceptors are equipped with an assortment of different acid sensors, some of which can detect mild changes in pH, such as the acid-sensing ion channels, proton-sensing G protein-coupled receptors and several two-pore potassium channels, whereas others, such as the transient receptor potential vanilloid 1 ion channel, require larger shifts in pH. This review will discuss the evolution of acid sensation and the different mechanisms by which nociceptors can detect acid. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
| | | | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
23
|
Musha S, Nagayama S, Murakami S, Kojima R, Deai M, Sato K, Okajima F, Ueharu H, Tomura H. Protons Differentially Activate TDAG8 Homologs from Various Species. Zoolog Sci 2019; 36:105-111. [PMID: 31120644 DOI: 10.2108/zs180128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022]
Abstract
Mammalian T cell death-associated gene 8 (TDAG8)s are activated by extracellular protons. In the present study, we examined whether the TDAG8 homologs of other species are activated by protons as they are in mammals. We found that Xenopus TDAG8 also stimulated cAMP response element (CRE)-driven promoter activities reflecting the activation of Gs/cAMP signaling pathways when they are stimulated by protons. On the other hand, the activities of chicken and zebrafish TDAG8s are hardly affected by protons. Results using chimeric receptors of human and zebrafish TDAG8s indicate that the specificity of the proton-induced activation lies in the extracellular region. These results suggest that protons are not an evolutionarily conserved agonist of TDAG8.
Collapse
Affiliation(s)
- Shiori Musha
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Suminori Nagayama
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Syo Murakami
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Ryotaro Kojima
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Masahito Deai
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Koichi Sato
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Fumikazu Okajima
- Laboratory of Pathophysiology, Faculty of Pharmacy, Aomori University, Aomori 030-0943, Japan
| | - Hiroki Ueharu
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Hideaki Tomura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kawasaki 214-8571, Japan,
| |
Collapse
|
24
|
Alavi MS, Karimi G, Roohbakhsh A. The role of orphan G protein-coupled receptors in the pathophysiology of multiple sclerosis: A review. Life Sci 2019; 224:33-40. [PMID: 30904492 DOI: 10.1016/j.lfs.2019.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that are expressed in many organs and serve as important drug targets. A new subgroup, namely orphan GPCRs, comprising many of these receptors has been discovered. These receptors exhibit diverse physiological functions and have been considered in many neurological disorders including Alzheimer's disease, Parkinson's disease, and multiple sclerosis (MS). GPR17, GPR30, GPR37, GPR40, GPR50, GPR54, GPR56, GPR65, GPR68, GPR75, GPR84, GPR97, GPR109, GPR124, and GPR126 are orphan GPCRs that have been reported with considerable effects in the prevention and/or treatment of MS in preclinical studies. In the present article, we reviewed the most recent findings regarding the role of orphan GPCRs in the treatment of MS.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
La Flamme AC. Immunology & Cell Biology's top 10 original research articles 2017-2018. Immunol Cell Biol 2019; 97:119-120. [PMID: 30693569 DOI: 10.1111/imcb.12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anne C La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
26
|
Robert R, Mackay CR. Gαs-coupled GPCRs GPR65 and GPR174. Downers for immune responses. Immunol Cell Biol 2018. [PMID: 29542190 DOI: 10.1111/imcb.12027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
See also: Outstanding Observation by Wirasinha et al., Short Communication by Barnes & Cyster.
Collapse
Affiliation(s)
- Remy Robert
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Charles R Mackay
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|