1
|
Garduno A, Martín-Loeches I. Targeting Sepsis: Disease Tolerance, Immune Resilience, and Compartmentalized Immunity. Biomedicines 2024; 12:2420. [PMID: 39594987 PMCID: PMC11592085 DOI: 10.3390/biomedicines12112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024] Open
Abstract
Introduction: Sepsis remains a major contributor to critical care mortality and morbidity worldwide. Despite advances in understanding its complex immunopathology, the compartmentalized nature of immune responses across different organs has yet to be fully translated into targeted therapies. This review explores the burden of sepsis on organ-specific immune dysregulation, immune resilience, and epigenetic reprogramming, emphasizing translational challenges and opportunities. Methods: We implemented a systematic literature search strategy, incorporating data from studies published between 2010 and 2024, to evaluate the role of molecular profiling techniques, including transcriptomics and epigenetic markers, in assessing the feasibility of targeted therapies. Results: Sepsis-induced immune dysregulation manifests differently in various organs, with lung, heart, liver, and kidney responses driven by unique local immune environments. Organ-specific biomarkers, such as the Spns2/S1P axis in lung macrophages, mitochondrial dysfunction in the heart, proenkephalin for early acute kidney injury (AKI), and adrenomedullin for predicting multi-organ failure, offer promising avenues for timely intervention. Furthermore, immune resilience, particularly through regulatory T-cell modulation and cytokine targeting (e.g., IL-18), is crucial for long-term recovery. Epigenetic mechanisms, including histone modification and trained immunity, present opportunities for reprogramming immune responses but require more precision to avoid unintended inflammatory sequelae. Conclusions: A deeper understanding of compartmentalized immune responses and the dynamic immune landscape in sepsis is critical for developing precision therapies. Real-time immune monitoring and organ-targeted interventions could revolutionize sepsis management, although significant barriers remain in clinical translation. Further research is required to establish biomarkers and treatment timing that optimize therapeutic efficacy while minimizing systemic risks.
Collapse
Affiliation(s)
- Alexis Garduno
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James’ Hospital, D08 NHY1 Dublin, Ireland;
| | - Ignacio Martín-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James’ Hospital, D08 NHY1 Dublin, Ireland;
- Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERES, 08036 Barcelona, Spain
| |
Collapse
|
2
|
Zheng Y, Han F, Wu Z, Wang B, Chen X, Boulouis C, Jiang Y, Ho A, He D, Sia WR, Mak JYW, Fairlie DP, Wang LF, Sandberg JK, Lobie PE, Ma S, Leeansyah E. MAIT cell activation and recruitment in inflammation and tissue damage in acute appendicitis. SCIENCE ADVANCES 2024; 10:eadn6331. [PMID: 38865451 PMCID: PMC11168461 DOI: 10.1126/sciadv.adn6331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are antimicrobial T cells abundant in the gut, but mechanisms for their migration into tissues during inflammation are poorly understood. Here, we used acute pediatric appendicitis (APA), a model of acute intestinal inflammation, to examine these migration mechanisms. MAIT cells were lower in numbers in circulation of patients with APA but were enriched in the inflamed appendix with increased production of proinflammatory cytokines. Using the patient-derived appendix organoid (PDAO) model, we found that circulating MAIT cells treated with inflammatory cytokines elevated in APA up-regulated chemokine receptors, including CCR1, CCR3, and CCR4. They exhibited enhanced infiltration of Escherichia coli-pulsed PDAO in a CCR1-, CCR2-, and CCR4-dependent manner. Close interactions of MAIT cells with infected organoids led to the PDAO structural destruction and death. These findings reveal a previously unidentified mechanism of MAIT cell tissue homing, their participation in tissue damage in APA, and their intricate relationship with mucosal tissues during acute intestinal inflammation in humans.
Collapse
Affiliation(s)
- Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bingjie Wang
- Department of Pediatric Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Yuebin Jiang
- Department of Pathology, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou 363000, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Dan He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jeffrey Y. W. Mak
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Peter E. Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
3
|
Burton RJ, Raffray L, Moet LM, Cuff SM, White DA, Baker SE, Moser B, O’Donnell VB, Ghazal P, Morgan MP, Artemiou A, Eberl M. Conventional and unconventional T-cell responses contribute to the prediction of clinical outcome and causative bacterial pathogen in sepsis patients. Clin Exp Immunol 2024; 216:293-306. [PMID: 38430552 PMCID: PMC11097916 DOI: 10.1093/cei/uxae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/04/2024] Open
Abstract
Sepsis is characterized by a dysfunctional host response to infection culminating in life-threatening organ failure that requires complex patient management and rapid intervention. Timely diagnosis of the underlying cause of sepsis is crucial, and identifying those at risk of complications and death is imperative for triaging treatment and resource allocation. Here, we explored the potential of explainable machine learning models to predict mortality and causative pathogen in sepsis patients. By using a modelling pipeline employing multiple feature selection algorithms, we demonstrate the feasibility of identifying integrative patterns from clinical parameters, plasma biomarkers, and extensive phenotyping of blood immune cells. While no single variable had sufficient predictive power, models that combined five and more features showed a macro area under the curve (AUC) of 0.85 to predict 90-day mortality after sepsis diagnosis, and a macro AUC of 0.86 to discriminate between Gram-positive and Gram-negative bacterial infections. Parameters associated with the cellular immune response contributed the most to models predictive of 90-day mortality, most notably, the proportion of T cells among PBMCs, together with expression of CXCR3 by CD4+ T cells and CD25 by mucosal-associated invariant T (MAIT) cells. Frequencies of Vδ2+ γδ T cells had the most profound impact on the prediction of Gram-negative infections, alongside other T-cell-related variables and total neutrophil count. Overall, our findings highlight the added value of measuring the proportion and activation patterns of conventional and unconventional T cells in the blood of sepsis patients in combination with other immunological, biochemical, and clinical parameters.
Collapse
Affiliation(s)
- Ross J Burton
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Adult Critical Care, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK
| | - Loïc Raffray
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Department of Internal Medicine, Félix Guyon University Hospital of La Réunion, Saint Denis, Réunion Island, France
| | - Linda M Moet
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Simone M Cuff
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Daniel A White
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Sarah E Baker
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Bernhard Moser
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Valerie B O’Donnell
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Peter Ghazal
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Matt P Morgan
- Adult Critical Care, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK
| | - Andreas Artemiou
- School of Mathematics, Cardiff University, Cardiff, UK
- Department of Information Technologies, University of Limassol, 3025 Limassol, Cyprus
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
Davies K, McLaren J. Destabilisation of T cell-dependent humoral immunity in sepsis. Clin Sci (Lond) 2024; 138:65-85. [PMID: 38197178 PMCID: PMC10781648 DOI: 10.1042/cs20230517] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Sepsis is a heterogeneous condition defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For some, sepsis presents as a predominantly suppressive disorder, whilst others experience a pro-inflammatory condition which can culminate in a 'cytokine storm'. Frequently, patients experience signs of concurrent hyper-inflammation and immunosuppression, underpinning the difficulty in directing effective treatment. Although intensive care unit mortality rates have improved in recent years, one-third of discharged patients die within the following year. Half of post-sepsis deaths are due to exacerbation of pre-existing conditions, whilst half are due to complications arising from a deteriorated immune system. It has been suggested that the intense and dysregulated response to infection may induce irreversible metabolic reprogramming in immune cells. As a critical arm of immune protection in vertebrates, alterations to the adaptive immune system can have devastating repercussions. Indeed, a marked depletion of lymphocytes is observed in sepsis, correlating with increased rates of mortality. Such sepsis-induced lymphopenia has profound consequences on how T cells respond to infection but equally on the humoral immune response that is both elicited by B cells and supported by distinct CD4+ T follicular helper (TFH) cell subsets. The immunosuppressive state is further exacerbated by functional impairments to the remaining lymphocyte population, including the presence of cells expressing dysfunctional or exhausted phenotypes. This review will specifically focus on how sepsis destabilises the adaptive immune system, with a closer examination on how B cells and CD4+ TFH cells are affected by sepsis and the corresponding impact on humoral immunity.
Collapse
Affiliation(s)
- Kate Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| |
Collapse
|
5
|
Tian L, Xu J, Chen C, Lin J, Ju L, Chen L, Zhang Y, Han X, Liu L. HLA-DR + mucosal-associated invariant T cells predict poor prognosis in patients with sepsis: A prospective observational study. Scand J Immunol 2023; 98:e13286. [PMID: 37163215 DOI: 10.1111/sji.13286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/09/2023] [Accepted: 04/22/2023] [Indexed: 05/11/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are important in antibacterial immune responses; however, during sepsis, they are few in number and exhibit highly activated phenotypes. The relationship between MAIT cells in peripheral blood and the prognosis of sepsis is not well understood. Thus, this study aimed to examine the levels and phenotypes of MAIT cells in early sepsis, evaluate their clinical relevance, and investigate their association with patient prognosis. This prospective observational study enrolled 72 septic patients defined according to the Sepsis 3.0 criteria and 21 healthy controls matched for age and sex. Their peripheral blood samples were used to assay the expression of immune activation (CD69 and HLA-DR) and immune checkpoint (PD-1 and PD-L1) markers on MAIT cells. The systemic inflammatory response syndrome, acute physiology and chronic health evaluation (APACHE) II, and sequential organ failure assessment scores were recorded. Subsequently, the association between MAIT cell characteristics and clinical indicators was assessed using Spearman's rank correlation analysis, and binary logistic regression analysis with a forward stepwise approach assessed independent risk factors for 28-day mortality. We noted a decrease in the percentage of MAIT cells in the patients' peripheral blood, which exhibited an activated phenotype. Besides, HLA-DR+ MAIT cell percentage and the APACHE II score were independently associated with the 28-day mortality and, in combination, were the best indicators of mortality. Thus, the percentage of HLA-DR+ MAIT cells in early sepsis serves as a novel prognostic biomarker for predicting mortality and improves the predictive capacity of the APACHE II score.
Collapse
Affiliation(s)
- Lijun Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Critical Care Medicine, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Junxian Xu
- Department of Critical Care Medicine, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Cong Chen
- Physical Examination Center, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Jinfeng Lin
- Department of Critical Care Medicine, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Linling Ju
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Lin Chen
- Nantong Institute of Liver Disease, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Yufeng Zhang
- Department of Respiratory Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China
| | - Xudong Han
- Department of Critical Care Medicine, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Lijun Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Nelson AG, Wang H, Dewar PM, Eddy EM, Li S, Lim XY, Patton T, Zhou Y, Pediongco TJ, Meehan LJ, Meehan BS, Mak JYW, Fairlie DP, Stent AW, Kjer-Nielsen L, McCluskey J, Eckle SBG, Corbett AJ, Souter MNT, Chen Z. Synthetic 5-amino-6-D-ribitylaminouracil paired with inflammatory stimuli facilitates MAIT cell expansion in vivo. Front Immunol 2023; 14:1109759. [PMID: 37720229 PMCID: PMC10500299 DOI: 10.3389/fimmu.2023.1109759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/12/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Mucosal-associated invariant T (MAIT) cells are a population of innate-like T cells, which mediate host immunity to microbial infection by recognizing metabolite antigens derived from microbial riboflavin synthesis presented by the MHC-I-related protein 1 (MR1). Namely, the potent MAIT cell antigens, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU), form via the condensation of the riboflavin precursor 5-amino-6-D-ribitylaminouracil (5-A-RU) with the reactive carbonyl species (RCS) methylglyoxal (MG) and glyoxal (G), respectively. Although MAIT cells are abundant in humans, they are rare in mice, and increasing their abundance using expansion protocols with antigen and adjuvant has been shown to facilitate their study in mouse models of infection and disease. Methods Here, we outline three methods to increase the abundance of MAIT cells in C57BL/6 mice using a combination of inflammatory stimuli, 5-A-RU and MG. Results Our data demonstrate that the administration of synthetic 5-A-RU in combination with one of three different inflammatory stimuli is sufficient to increase the frequency and absolute numbers of MAIT cells in C57BL/6 mice. The resultant boosted MAIT cells are functional and can provide protection against a lethal infection of Legionella longbeachae. Conclusion These results provide alternative methods for expanding MAIT cells with high doses of commercially available 5-A-RU (± MG) in the presence of various danger signals.
Collapse
Affiliation(s)
- Adam G. Nelson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Phoebe M. Dewar
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Eleanor M. Eddy
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Songyi Li
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Timothy Patton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Yuchen Zhou
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Troi J. Pediongco
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Bronwyn S. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jeffrey Y. W. Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | | | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michael N. T. Souter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Wang NI, Ninkov M, Haeryfar SMM. Classic costimulatory interactions in MAIT cell responses: from gene expression to immune regulation. Clin Exp Immunol 2023; 213:50-66. [PMID: 37279566 PMCID: PMC10324557 DOI: 10.1093/cei/uxad061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are evolutionarily conserved, innate-like T lymphocytes with enormous immunomodulatory potentials. Due to their strategic localization, their invariant T cell receptor (iTCR) specificity for major histocompatibility complex-related protein 1 (MR1) ligands of commensal and pathogenic bacterial origin, and their sensitivity to infection-elicited cytokines, MAIT cells are best known for their antimicrobial characteristics. However, they are thought to also play important parts in the contexts of cancer, autoimmunity, vaccine-induced immunity, and tissue repair. While cognate MR1 ligands and cytokine cues govern MAIT cell maturation, polarization, and peripheral activation, other signal transduction pathways, including those mediated by costimulatory interactions, regulate MAIT cell responses. Activated MAIT cells exhibit cytolytic activities and secrete potent inflammatory cytokines of their own, thus transregulating the biological behaviors of several other cell types, including dendritic cells, macrophages, natural killer cells, conventional T cells, and B cells, with significant implications in health and disease. Therefore, an in-depth understanding of how costimulatory pathways control MAIT cell responses may introduce new targets for optimized MR1/MAIT cell-based interventions. Herein, we compare and contrast MAIT cells and mainstream T cells for their expression of classic costimulatory molecules belonging to the immunoglobulin superfamily and the tumor necrosis factor (TNF)/TNF receptor superfamily, based not only on the available literature but also on our transcriptomic analyses. We discuss how these molecules participate in MAIT cells' development and activities. Finally, we introduce several pressing questions vis-à-vis MAIT cell costimulation and offer new directions for future research in this area.
Collapse
Affiliation(s)
- Nicole I Wang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|