1
|
Park HW, Lee SY, Lee HS. The role of mTOR activation in steroid-resistant asthma: insights from particulate matter-induced mouse model and patient studies. Inflamm Res 2025; 74:19. [PMID: 39812811 DOI: 10.1007/s00011-025-01992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025] Open
Abstract
Particulate matter (PM) exposure has been proposed as one of the causes of steroid resistance. However, studies investigating this using patient samples or animals are still lacking. Therefore, in this study, we aimed to investigate the changes in cytokines and mTOR (mammalian target of rapamycin) activation in patients with steroid resistant asthma and the role of mTOR in a mouse model of steroid resistant asthma induced by PM. In mouse experiment, on administering PM10 and allergen (Dp) through the intranasal route for 3 weeks, airway hyperresponsiveness (AHR), eosinophils, and airway inflammation were increased. However, administering rapamycin (mTOR inhibitor) together with PM and Dp led to significant decrease in all of the abovementioned features; additionally, the population of IL-13 + or IL-17 + cells in CD62lowCD44high subset of CD4 + T cells, which serves as an effector/memory cell marker, showed a significant decrease when compared to the group that received PM and Dp. When Dp was administered once after a rest period, the mice exposed to PM and Dp exhibited resurgence in asthma features and elevated effector/memory IL-13 + or IL-17 + cell populations. Rapamycin administration inhibited this effect. In human PBMC, in the steroid Non-Responder (NR) group, cytokines with p-mTOR double-positive population of effector/memory CD4 T cells (CCR7-CD45RA-CD4 + in CD62-CD27-CD45RO+) was significantly higher than that of the Normal or steroid Responder (R) groups. These data demonstrates that rapamycin can inhibit asthmatic features in mouse model of PM induced steroid-resistant asthma. And we suggest that rapamycin could act on effector/memory CD4 + T cells through in vitro and patient sample experiments.
Collapse
Affiliation(s)
- Heung-Woo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Suh-Young Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun Seung Lee
- Institute of Allergy and Clinical Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.
| |
Collapse
|
2
|
Süsal C, Alvarez CM, Benning L, Daniel V, Zeier M, Schaier M, Morath C, Speer C. The balance between memory and regulatory cell populations in kidney transplant recipients with operational tolerance. Clin Exp Immunol 2024; 216:318-330. [PMID: 38393856 PMCID: PMC11097908 DOI: 10.1093/cei/uxae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024] Open
Abstract
Donor-reactive memory cells represent a barrier to long-term kidney graft survival. A better understanding of regulatory mechanisms that counterbalance alloreactive memory responses may help to identify patients with operational tolerance. This prospective study investigated the equilibrium between memory T-cell subsets and regulatory T or B cells (Tregs, Bregs) in peripheral blood of kidney transplant recipients with operational tolerance (N = 8), chronic rejection (N = 8), and different immunosuppressive treatment regimens (N = 81). Patients on hemodialysis and healthy individuals served as controls (N = 50). In addition, the expression of Treg- and Breg-associated molecule genes was analyzed. Patients with chronic rejection showed a disrupted memory T-cell composition with a significantly higher frequency of circulating CD8+ terminally differentiated effector memory (TEMRA) T cells than patients with operational tolerance, patients on hemodialysis, or healthy controls (P < 0.001). Low frequency of CD8+ TEMRA and high frequency of Tregs and transitional Bregs were found in operationally tolerant patients. Consequently, operationally tolerant patients showed, as compared to all other transplant recipients with different immunosuppressive regiments, the lowest ratios between CD8+ TEMRA T cells and Tregs or Bregs (for both P < 0.001). Moreover, a specific peripheral blood transcription pattern was found in operationally tolerant patients with an increased expression of Breg- and Treg-associated genes CD22 and FoxP3 and a decreased FcγRIIA/FcγRIIB transcript ratio (for all P < 0.001). In conclusion, monitoring the balance between circulating CD8+ TEMRA T cells and regulatory cell subsets and their transcripts may help to distinguish transplant recipients with operational tolerance from recipients at risk of graft loss.
Collapse
Affiliation(s)
- Caner Süsal
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
- Transplant Immunology Research Center of Excellence, Koç University Hospital, Istanbul, Turkey
| | - Cristiam M Alvarez
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Louise Benning
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Christian Morath
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Negi S, Rutman AK, Saw CL, Paraskevas S, Tchervenkov J. Pretransplant, Th17 dominant alloreactivity in highly sensitized kidney transplant candidates. FRONTIERS IN TRANSPLANTATION 2024; 3:1336563. [PMID: 38993777 PMCID: PMC11235243 DOI: 10.3389/frtra.2024.1336563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 07/13/2024]
Abstract
Introduction Sensitization to donor human leukocyte antigen (HLA) molecules prior to transplantation is a significant risk factor for delayed access to transplantation and to long-term outcomes. Memory T cells and their cytokines play a pivotal role in shaping immune responses, thereby increasing the risk of allograft rejection among highly sensitized patients. This study aims to elucidate the precise contribution of different CD4+ memory T cell subsets to alloreactivity in highly sensitized (HS) kidney transplant recipients. Methods and results Stimulation of peripheral blood mononuclear cells (PBMC) with various polyclonal stimulating agents to assess non-specific immune responses revealed that HS patients exhibit elevated immune reactivity even before kidney transplantation, compared to non-sensitized (NS) patients. HS patients' PBMC displayed higher frequencies of CD4+ T cells expressing IFNγ, IL4, IL6, IL17A, and TNFα and secreted relatively higher levels of IL17A and IL21 upon stimulation with PMA/ionomycin. Additionally, PBMC from HS patients stimulated with T cell stimulating agent phytohemagglutinin (PHA) exhibited elevated expression levels of IFNγ, IL4 and, IL21. On the other hand, stimulation with a combination of resiquimod (R848) and IL2 for the activation of memory B cells demonstrated higher expression of IL17A, TNFα and IL21, as determined by quantitative real-time PCR. A mixed leukocyte reaction (MLR) assay, employing third-party donor antigen presenting cells (APCs), was implemented to evaluate the direct alloreactive response. HS patients demonstrated notably higher frequencies of CD4+ T cells expressing IL4, IL6 and IL17A. Interestingly, APCs expressing recall HLA antigens triggered a stronger Th17 response compared to APCs lacking recall HLA antigens in sensitized patients. Furthermore, donor APCs induced higher activation of effector memory T cells in HS patients as compared to NS patients. Conclusion These results provide an assessment of pretransplant alloreactive T cell subsets in highly sensitized patients and emphasize the significance of Th17 cells in alloimmune responses. These findings hold promise for the development of treatment strategies tailored to sensitized kidney transplant recipients, with potential clinical implications.
Collapse
Affiliation(s)
- Sarita Negi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
| | | | - Chee Loong Saw
- HLA Laboratory, Division of Hematology, McGill University Health Centre, Montréal, QC, Canada
| | - Steven Paraskevas
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
- Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| | - Jean Tchervenkov
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
- Division of General Surgery and Multi-Organ Transplant Program, Department of Surgery, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
4
|
Volta V, Pérez-Baos S, de la Parra C, Katsara O, Ernlund A, Dornbaum S, Schneider RJ. A DAP5/eIF3d alternate mRNA translation mechanism promotes differentiation and immune suppression by human regulatory T cells. Nat Commun 2021; 12:6979. [PMID: 34848685 PMCID: PMC8632918 DOI: 10.1038/s41467-021-27087-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Treg cells) inhibit effector T cells and maintain immune system homeostasis. Treg cell maturation in peripheral sites requires inhibition of protein kinase mTORC1 and TGF-beta-1 (TGF-beta). While Treg cell maturation requires protein synthesis, mTORC1 inhibition downregulates it, leaving unanswered how Treg cells achieve essential mRNA translation for development and immune suppression activity. Using human CD4+ T cells differentiated in culture and genome-wide transcription and translation profiling, here we report that TGF-beta transcriptionally reprograms naive T cells to express Treg cell differentiation and immune suppression mRNAs, while mTORC1 inhibition impairs translation of T cell mRNAs but not those induced by TGF-beta. Rather than canonical mTORC1/eIF4E/eIF4G translation, Treg cell mRNAs utilize the eIF4G homolog DAP5 and initiation factor eIF3d in a non-canonical translation mechanism that requires cap-dependent binding by eIF3d directed by Treg cell mRNA 5' noncoding regions. Silencing DAP5 in isolated human naive CD4+ T cells impairs their differentiation into Treg cells. Treg cell differentiation is mediated by mTORC1 downregulation and TGF-beta transcriptional reprogramming that establishes a DAP5/eIF3d-selective mechanism of mRNA translation.
Collapse
Affiliation(s)
- Viviana Volta
- Synthis LLC, 430 East 29th Street, Launch Labs, Alexandria Center for Life Sciences, New York, NY, 10016, USA
| | - Sandra Pérez-Baos
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Columba de la Parra
- Department of Chemistry, Herbert H. Lehman College, City University of New York, The Graduate Center, Biochemistry Ph.D. Program, City University of New York, New York, NY, 10016, USA
| | - Olga Katsara
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Amanda Ernlund
- Johns Hopkins Applied Physics Lab, 11000 Johns Hopkins Road, Laurel, MD, 20723, USA
| | - Sophie Dornbaum
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Robert J Schneider
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Parhizkar F, Motavalli-Khiavi R, Aghebati-Maleki L, Parhizkar Z, Pourakbari R, Kafil HS, Danaii S, Yousefi M. The Impact of New Immunological Therapeutic Strategies on Recurrent Miscarriage and Recurrent Implantation Failure. Immunol Lett 2021; 236:20-30. [PMID: 34090942 DOI: 10.1016/j.imlet.2021.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Maternal-fetal immune dysregulation is one of the risk factors that increases the probability of embryo rejection and reproductive failure. The stimulation of immunological tolerance and suppression of immunological rejection are prerequisites for protecting embryos and preventing immunological attacks. Hence, it appears that immunomodulatory and immunosuppressive therapies can manage reproductive failures by controlling immune cells. The current medical literature has shown that immunotherapy approaches and cell therapy have promising results in improving pregnancy outcomes and live birth rates. These outcomes are obtained by regulating maternal immune responses, and exerting positive effects on human reproductive processes.
Collapse
Affiliation(s)
- Forough Parhizkar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli-Khiavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Parhizkar
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ramin Pourakbari
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan branch of ACECR, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Fan Y, Yang C, Zhou J, Cheng X, Dong Y, Wang Q, Wang Z. Regulatory effect of glutathione on treg/Th17 cell balance in allergic rhinitis patients through inhibiting intracellular autophagy. Immunopharmacol Immunotoxicol 2020; 43:58-67. [PMID: 33285073 DOI: 10.1080/08923973.2020.1850762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Glutathione is a potential therapy for systemic lupus erythematosus, but its role in allergic rhinitis (AR) has not been determined. This report probed into the actions of glutathione in AR, so as to supplement evidence for a therapeutical countermeasure for AR. METHODS In this study, peripheral blood mononuclear cells (PBMCs) of patients were extracted and processed with glutathione. PBMCs and nasal mucosa tissues were collected from AR mouse models treated with or without glutathione. The proportions of Th17/Treg cell markers and autophagy-related molecules in the nasal mucosa, PBMCs or Th17/Treg cells were assessed by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot (WB) or flow cytometry analysis, and serum contents of related factors were analyzed by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was applied to observe the thickness of mouse mucosa. RESULTS IL-17A, RORγt, Beclin1 and LC3-II/LC3-I levels were increased in AR patients, while Foxp3 and P62 were decreased. The serum contents of IL-17A and eosinophil cationic protein (ECP) in AR patients were elevated, but IL-10 level was reduced. In PBMCs of AR patients, the levels of IL-17A and LC3-II were increased, and the levels of Foxp3 and P62 were decreased, while these changes could be reversed by glutathione. In AR mouse models, glutathione could balance Th17/Treg cells, reduce autophagy, correct the levels of related cytokines in mouse serum, and shrunk mucosa thickness. CONCLUSION Glutathione could rescue the imbalance of Treg/Th17 cells by suppressing intracellular autophagy, which might be beneficial to the treatment of AR patients.
Collapse
Affiliation(s)
- Yuqin Fan
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenchen Yang
- Department of Nursing, Wuxi Taihu University, Wuxi, Jiangsu, China
| | - Jieyu Zhou
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Cheng
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Dong
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Wang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhentao Wang
- Department of Otolaryngology Head & Neck Surgery, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Ko EJ, Seo JW, Kim KW, Kim BM, Cho JH, Kim CD, Seok J, Yang CW, Lee SH, Chung BH. Phenotype and molecular signature of CD8+ T cell subsets in T cell- mediated rejections after kidney transplantation. PLoS One 2020; 15:e0234323. [PMID: 32530943 PMCID: PMC7292394 DOI: 10.1371/journal.pone.0234323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/24/2020] [Indexed: 01/08/2023] Open
Abstract
We investigated the phenotype and molecular signatures of CD8+ T cell subsets in kidney-transplant recipients (KTRs) with biopsy-proven T cell-mediated rejection (TCMR). We included 121 KTRs and divided them into three groups according to the pathologic or clinical diagnosis: Normal biopsy control (NC)(n = 32), TCMR (n = 50), and long-term graft survival (LTGS)(n = 39). We used flowcytometry and microarray to analyze the phenotype and molecular signatures of CD8+ T cell subsets using peripheral blood from those patients and analyzed significant gene expressions according to CD8+ T cell subsets. We investigated whether the analysis of CD8+ T cell subsets is useful for predicting the development of TCMR. CCR7+CD8+ T cells significantly decreased, but CD28nullCD57+CD8+ T cells and CCR7-CD45RA+CD8+ T cells showed an increase in the TCMR group compared to other groups (p<0.05 for each); hence CCR7+CD8+ T cells showed significant negative correlations to both effector CD8+ T cells. We identified genes significantly associated with the change of CCR7+CD8+ T, CCR7-CD45RA+CD8+ T, and CD28nullCD57+CD8+ T cells in an ex vivo study and found that most of them were included in the significant genes on in vitro CCR7+CD8+ T cells. Finally, the decrease of CCR7+CD8+ T cells relative to CD28nullCD57+ T or CCR7-CD45RA+CD8+ T cells can predict TCMR significantly in the whole clinical cohort. In conclusion, phenotype and molecular signature of CD8+ T subsets showed a significant relationship to the development of TCMR; hence monitoring of CD8+ T cell subsets may be a useful for predicting TCMR in KTRs.
Collapse
Affiliation(s)
- Eun Jeong Ko
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung-Woo Seo
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Kyoung Woon Kim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bo-Mi Kim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Junhee Seok
- School of Electrical Engineering, Korea University, Seoul, South Korea
| | - Chul Woo Yang
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang-Ho Lee
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Byung Ha Chung
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
8
|
Long-Term Redistribution of Peripheral Lymphocyte Subpopulations after Switching from Calcineurin to mTOR Inhibitors in Kidney Transplant Recipients. J Clin Med 2020; 9:jcm9041088. [PMID: 32290462 PMCID: PMC7230655 DOI: 10.3390/jcm9041088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 01/04/2023] Open
Abstract
Classical immunosuppression based on steroids, calcineurin inhibitors, and mycophenolate results in several unwanted effects and unsatisfactory long-term outcomes in kidney transplantation (KT). New immunosuppressors search for fewer adverse events and increased graft survival but may have a distinct impact on graft function and immunological biomarkers according to their mechanism of action. This prospective study evaluates the immunological effect of tacrolimus to serine/threonine protein kinase mechanistic target of rapamycin inhibitors (mTORi) conversion in 29 KT recipients compared with 16 controls maintained on tacrolimus. We evaluated renal function, human leukocyte antigen (HLA) antibodies and peripheral blood lymphocyte subsets at inclusion and at 3, 12, and 24 months later. Twenty immunophenotyped healthy subjects served as reference. Renal function remained stable in both groups with no significant change in proteinuria. Two patients in the mTORi group developed HLA donor-specific antibodies and none in the control group (7% vs. 0%, p = 0.53). Both groups showed a progressive increase in regulatory T cells, more prominent in patients converted to mTORi within the first 18 months post-KT (p < 0.001). All patients showed a decrease in naïve B cells (p < 0.001), excepting those converted to mTORi without receiving steroids (p = 0.31). Transitional B cells significantly decreased in mTORi patients (p < 0.001), independently of concomitant steroid treatment. Finally, CD56bright and CD94/NK group 2 member A receptor positive (NKG2A+) Natural Killer (NK) cell subsets increased in mTORi- compared to tacrolimus-treated patients (both p < 0.001). Patients switched to mTORi displayed a significant redistribution of peripheral blood lymphocyte subpopulations proposed to be associated with graft outcomes. The administration of steroids modified some of these changes.
Collapse
|
9
|
Zhao C, Chu Y, Liang Z, Zhang B, Wang X, Jing X, Hao M, Wang Y, An J, Zhang X, Sun L, Chen J. Low dose of IL-2 combined with rapamycin restores and maintains the long-term balance of Th17/Treg cells in refractory SLE patients. BMC Immunol 2019; 20:32. [PMID: 31484501 PMCID: PMC6727508 DOI: 10.1186/s12865-019-0305-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The development of Systemic lupus erythematosus (SLE) has been associated with the balance of Th17 and Treg cells. IL-2 and rapamycin can influence the populations of both Th17 and Treg cells. However, it is unclear whether low dose of IL-2 and rapamycin can relieve the symptoms of SLE patients and what is the mechanisms. In this study, we aim to analyze the effect of low dose of IL-2 plus rapamycin on the number of Tregs, Th17 cells and the ratio of Th17/Treg cells, as well as to evaluate its therapeutic efficacy in refractory SLE patients. RESULT Fifty refractory SLE patients and 70 healthy controls were enrolled and followed up for 24 weeks. We found that compared with HC, the refractory SLE patients had a lower number of Tregs, a similar number of Th17 cells, but an increased ratio of Th17/Treg. After the treatment, the number of Tregs of the patients at 12th and 24th week was significantly increased. While the number of Th17 cells was unchanged, the ratio of Th17/Treg was significantly decreased at both 6 weeks and 24 weeks. After 6, 12 and 24 weeks of treatment, the SLEDAI score was significantly reduced. The prednison dosage at 6th,12th and 24th week post treatment was significantly decreased. CONCLUSION Our results support that the reduction of Tregs and the imbalance of Th17/Treg cells were correlated with the occurrence and development of refractory SLE. Low dose of IL-2 combined with rapamycin was able to restore the number of Tregs and the balance of Th17/Treg cells. As a result, this approach was able to induce immune tolerance and promote disease remission, allowing for the reduction in prednisone dosage. TRIAL REGISTRATION ChiCTR-IPR-16009451 Registration date: 2016/10/16.
Collapse
Affiliation(s)
- Chunmiao Zhao
- Deptartment of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yanfang Chu
- Deptartment of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zhaoyun Liang
- Deptartment of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Bingying Zhang
- Deptartment of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xuxia Wang
- Deptartment of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaona Jing
- Deptartment of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Meihua Hao
- Deptartment of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yiqi Wang
- Deptartment of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jia An
- Deptartment of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xingzhe Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liguang Sun
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Junwei Chen
- Deptartment of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
10
|
Jamali S, Sarafnejad A, Ahmadpoor P, Nafar M, Karimi M, Eteghadi A, Yekaninejad MS, Amirzargar AA. Sirolimus vs mycophenolate moftile in Tacrolimus based therapy following induction with Antithymocyte globulin promotes regulatory T cell expansion and inhibits RORγt and T-bet expression in kidney transplantation. Hum Immunol 2019; 80:739-747. [PMID: 30597187 DOI: 10.1016/j.humimm.2018.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/05/2018] [Accepted: 12/28/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Accumulating evidence suggests that regulatory T cells (Tregs) have a crucial role in immune tolerance and long-term graft survival. However, the influence of immunosuppressive drugs on the level of Tregs has not been fully understood. Therefore we prospectively compare the effect of two different calcineurin inhibitor (CNI)-based immunosuppression protocols on Tregs frequencies and expression of regulatory and effector T cell-related genes in renal transplant recipients. METHODS The study included 24 renal transplant recipients who received induction therapy (Antithymocyte globulin) and were on triple immunosuppressive therapy so that one group was on Tacrolimus (Tac), mycophenolate moftile (MMF) and prednisolone (P) whereas another group was on Tac, Sirolimus (SRL) and P. The frequency of circulating Treg cells was analyzed by flow cytometry before and 4 months after transplantation. Also, the mRNA expression of FOXP3, T-bet, GATA3 and RORγt was examined by quantitative RT-PCR before and 4 months after transplantation. RESULTS Compared to baseline, the frequency of CD4+ CD25+ FOXP3+ Treg cells was significantly increased in the all patients following transplantation. Patients who received Tac/MMF had significantly higher CD4+ CD25+ FOXP3+ Treg cells compared to patients who received Tac/SRL. There was no a significant difference in the frequency of CD3+CD8+ CD28- Tregs between two different calcineurin inhibitor (CNI)-based immunosuppression protocols. FOXP3 mRNA levels in the patients who received Tac/MMF were increased 4 months after transplantation and the expression was significantly higher than patients who received Tac/SRL. On the other hand, T-bet and RORγt expression levels were significantly lower in the Tac/SRL group in comparison to Tac/MMF group. We did not observe any significant difference in GATA3 mRNA level between the two groups. CONCLUSIONS Our results suggest that although Tac/MMF-containing immunosuppressive regimen could significantly increase the frequency of CD4+ CD25+ FOXP3+ Tregs, unlike to Tac/SRL-containing regimen, it could not significantly decrease the expression levels of RORγt and T-bet.
Collapse
Affiliation(s)
- Saeideh Jamali
- Department of Pathobiology, School of Public Healths, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolfatah Sarafnejad
- Department of Pathobiology, School of Public Healths, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Ahmadpoor
- Chronic Kidney Disease Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Nafar
- Chronic Kidney Disease Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Karimi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Eteghadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Sirolimus as a new drug to treat RIF patients with elevated Th17/Treg ratio: A double-blind, phase II randomized clinical trial. Int Immunopharmacol 2019; 74:105730. [PMID: 31299610 DOI: 10.1016/j.intimp.2019.105730] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND RIF is clinically defined as the failure of good quality embryos to implant into the uterus following at least three cycles of In Vitro Fertilization/Embryo Transfer (IVF/ET). During human pregnancy, a genetically different fetus is allowed to survive within the uterus despite the maternal recognition of fetal alloantigens. Compared with normal pregnant women, early loss of embryo is associated with systemic lower levels of Treg cells in IVF. Moreover, several lines of evidence have indicated that differentiation of naive T cells into Th17 is deleterious for normal pregnancy and may cause implantation failure. Sirolimus as the most common mTOR (mammalian target of Rapamycin) inhibitor is able to effectively prevent allograft rejection. Here we aimed to evaluate Sirolimus effects on Th17/Treg axis and subsequently on pregnancy outcome. METHODS AND MATERIALS 121 patients with a history of at least 3 implatation failures were selected and enrolled in this clinical trial. Blood was drawn between days 5 and 10 of the cycle prior to the index IVF/ET cycle to assess baseline value of Th17 cells and regulatory T cells ratios using flowcytometry. A Th17/Treg cell ratio equal or >0.74 was considered to be the elevated Th17/Treg cell ratio. In 76 patients with elevated Th17/Treg ratios, 43 individuals were treated with Sirolimus and 33 remained untreated. RESULTS Our results demonstrated that Sirolimus treatment led to an increase in Treg cells number and function in treated group and reduced the frequency and function of Th17 cells. Moreover Th17/Treg cell ratio, significantly reduced from 1.18 ± 0.46% to 0.9 ± 0.45% following Sirolimus intervention (P = 0.024). In contrast, no significant difference in Th17 and Treg cell frequencies and Th17/Treg cell ratio was observed in untreated control subjects before and after ET. Finally our data showed a significantly higher clinical pregnancy rate (55.81%) in Sirolimus-treated patients compared with control group (24.24%) (P < 0.0005). We also found a significantly increased live birth rate (48.83%) in RIF women who received Sirolimus compared with control group (21.21%) (P < 0.0001). CONCLUSION The findings of the current study revealed the fact that Sirolimus exhibit potent immunosuppressive effects by blocking intracellular immune responses downstream of co-stimulatory signals, also is able to improve reproductive outcome in RIF women with imbalanced Th17/Treg ratio by modulate of Th17 /Treg axis, thus representing a new approach for the potential treatment of patients with embryo implantation failure.
Collapse
|
12
|
Sutter D, Dzhonova DV, Prost JC, Bovet C, Banz Y, Rahnfeld L, Leroux JC, Rieben R, Vögelin E, Plock JA, Luciani P, Taddeo A, Schnider JT. Delivery of Rapamycin Using In Situ Forming Implants Promotes Immunoregulation and Vascularized Composite Allograft Survival. Sci Rep 2019; 9:9269. [PMID: 31239498 PMCID: PMC6592945 DOI: 10.1038/s41598-019-45759-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Vascularized composite allotransplantation (VCA), such as hand and face transplantation, is emerging as a potential solution in patients that suffered severe injuries. However, adverse effects of chronic high-dose immunosuppression regimens strongly limit the access to these procedures. In this study, we developed an in situ forming implant (ISFI) loaded with rapamycin to promote VCA acceptance. We hypothesized that the sustained delivery of low-dose rapamycin in proximity to the graft may promote graft survival and induce an immunoregulatory microenvironment, boosting the expansion of T regulatory cells (Treg). In vitro and in vivo analysis of rapamycin-loaded ISFI (Rapa-ISFI) showed sustained drug release with subtherapeutic systemic levels and persistent tissue levels. A single injection of Rapa-ISFI in the groin on the same side as a transplanted limb significantly prolonged VCA survival. Moreover, treatment with Rapa-ISFI increased the levels of multilineage mixed chimerism and the frequency of Treg both in the circulation and VCA-skin. Our study shows that Rapa-ISFI therapy represents a promising approach for minimizing immunosuppression, decreasing toxicity and increasing patient compliance. Importantly, the use of such a delivery system may favor the reprogramming of allogeneic responses towards a regulatory function in VCA and, potentially, in other transplants and inflammatory conditions.
Collapse
Affiliation(s)
- Damian Sutter
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Jean-Christophe Prost
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cedric Bovet
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Lisa Rahnfeld
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Jena, Jena, Germany.,Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | - Robert Rieben
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Esther Vögelin
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Jan A Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zürich, Switzerland.
| | - Paola Luciani
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Jena, Jena, Germany. .,Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland. .,Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| | - Adriano Taddeo
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Jonas T Schnider
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Yang Y, Cheng L, Deng X, Yu H, Chao L. Expression of GRIM-19 in unexplained recurrent spontaneous abortion and possible pathogenesis. Mol Hum Reprod 2019; 24:366-374. [PMID: 29741731 DOI: 10.1093/molehr/gay020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Is aberrant expression of gene associated with retinoid-interferon-induced mortality-19 (GRIM-19) associated with unexplained recurrent spontaneous abortion (URSA)? SUMMARY ANSWER GRIM-19 deficiency may regulate regulatory T cell/T helper 17 cell (Treg/Th17) balance partly through reactive oxygen species (ROS)-mammalian target of rapamycin (mTOR) signaling axis in URSA. WHAT IS KNOWN ALREADY Immunological disorders may cause impaired maternal immune tolerance to the fetus and result in fetal rejection. The differentiation of Treg and Th17 cells is controlled by phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling pathway. GRIM-19 participates in the immune response, but its role in URSA is largely unknown. STUDY DESIGN, SIZE, DURATION The current study included 28 URSA patients and 30 non-pregnant healthy women. PARTICIPANTS/MATERIALS, SETTING, METHODS The proportion of Treg and Th17 cells in peripheral blood of URSA patients and control subjects were assessed with flow cytometry. The expression of GRIM-19 in peripheral blood lymphocytes (PBLs) was measured with quantitative real-time PCR and western blot analysis. Furthermore, the ROS level in the PBLs of URSA patients and control subjects were assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Then, Akt/mTOR expression in the PBLs was measured. Downregulation of GRIM-19 in Jurkat cells was performed by specific siRNA. Then, intracellular ROS production and the expression of p-mTOR, which is known to enhance Th17 differentiation and decrease Treg cell differentiation, were detected. Finally, N-acetylcysteine (NAC) was used to decrease the intracellular ROS level, and the expression of p-mTOR was measured. MAIN RESULTS AND THE ROLE OF CHANCE The proportion of Treg cells was reduced in URSA patients, whereas the proportion of Th17 cells was increased. The expression of GRIM-19 was significantly lower in PBLs of URSA patients. Furthermore, there is a considerable increase in intracellular ROS production and a high level of p-Akt and p-mTOR expression in the PBLs of URSA patients compared with the control subjects. In parallel to this, downregulation of GRIM-19 in the Jurkat cells by siRNA results in an increased ROS production and an increased expression of p-mTOR. Importantly, the upregulation of p-mTOR resulting from GRIM-19 loss was significantly reversed in the cells treatment with ROS inhibitor N-acetyl-l-cysteine (NAC), indicating that ROS was indeed required for GRIM-19 depletion induced p-mTOR expression. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION A large number of researches have confirmed that the differentiation of Treg and Th17 cells is controlled by PI3K/Akt/mTOR signaling pathway. We have not shown the regulatory role of ROS and PI3K/Akt/mTOR in Treg and Th17 differentiation in this study. WIDER IMPLICATIONS OF THE FINDINGS Our study has demonstrated that GRIM-19 deficiency may play a role in regulating Treg/Th17 balance partly through ROS-mTOR signaling axis in URSA. The present study offers a new perspective to the roles of GRIM-19 in immunoregulation. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (Grant numbers 81571511, 81701528, 81370711 and 30901603), the Shandong Provincial Natural Science Foundation (Grant numbers ZR2017PH052 and ZR2013HM090) and the Science Foundation of Qilu Hospital of Shandong University, Fundamental Research Funds of Shandong University (Grant numbers 2015QLQN50 and 2015QLMS24). The authors declare that there is no conflict of interest that could prejudice the impartiality of the present research.
Collapse
Affiliation(s)
- Yang Yang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, PR China
| | - Laiyang Cheng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, PR China
| | - Xiaohui Deng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, PR China
| | - Hongling Yu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, PR China
| | - Lan Chao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, PR China
| |
Collapse
|
14
|
Cangemi M, Montico B, Faè DA, Steffan A, Dolcetti R. Dissecting the Multiplicity of Immune Effects of Immunosuppressive Drugs to Better Predict the Risk of de novo Malignancies in Solid Organ Transplant Patients. Front Oncol 2019; 9:160. [PMID: 30972289 PMCID: PMC6445870 DOI: 10.3389/fonc.2019.00160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
De novo malignancies constitute an emerging cause of morbidity after solid organ transplant (SOT), significantly affecting the long-term survival of transplant recipients. Pharmacologic immunosuppression may functionally impair the immunosurveillance in these patients, thereby increasing the risk of cancer development. Nevertheless, the multiplicity and heterogeneity of the immune effects induced by immunosuppressive drugs limit the current possibilities to reliably predict the risk of de novo malignancy in SOT patients. Therefore, there is the pressing need to better characterize the immune dysfunctions induced by the different immunosuppressive regimens administered to prevent allograft rejection to tailor more precisely the therapeutic schedule and decrease the risk of de novo malignancies. We herein highlight the impact exerted by different classes of immunosuppressants on the most relevant immune cells, with a particular focus on the effects on dendritic cells (DCs), the main regulators of the balance between immunosurveillance and tolerance.
Collapse
Affiliation(s)
- Michela Cangemi
- Immunopathology and Cancer Biomarkers, Translational Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers, Translational Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Damiana A Faè
- Immunopathology and Cancer Biomarkers, Translational Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Translational Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Riccardo Dolcetti
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Wang KQ, Wen HZ, Wu QY, Zheng QW, Wang MW, Wan ZW, Yang D, Hao WW. Factors involved in balance of Th17/Treg cells: Clinical implications in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2019; 27:336-340. [DOI: 10.11569/wcjd.v27.i5.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
T-helper 17 (Th17) cells promote tissue inflammation and T-regulatory (Treg) cells inhibit autoimmunity in inflammatory bowel disease (IBD). Thus, the balance between Th17 and Treg cells is crucial. Many factors that influence the generation and maintenance of these cells are also important for appropriate regulation of the Th17/Treg balance; these include TCR signals, costimulatory signals, cytokine signals, Foxp3 stability, metabolic processes, and the microbiota. This article will focus on what we know about these factors, their roles in regulating the Th17/Treg balance, and their clinical implications in IBD.
Collapse
Affiliation(s)
- Kai-Qiang Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hong-Zhu Wen
- Research Institute of Spleen and Stomach Diseases, Shanghai Institute of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qing-Yuan Wu
- Research Institute of Spleen and Stomach Diseases, Shanghai Institute of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qin-Wei Zheng
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Meng-Wan Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zhi-Wei Wan
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Dan Yang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Wei-Wei Hao
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China,Research Institute of Spleen and Stomach Diseases, Shanghai Institute of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
16
|
Doh KC, Kim BM, Kim KW, Chung BH, Yang CW. Effects of resveratrol on Th17 cell-related immune responses under tacrolimus-based immunosuppression. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:54. [PMID: 30832648 PMCID: PMC6399827 DOI: 10.1186/s12906-019-2464-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/25/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND We previously reported that tacrolimus (Tac) does not decrease T helper 17 cells (Th17) response in kidney transplantation. In this study, we evaluated whether Resveratrol (Resv) has immunosuppressive effects by decreasing Th17 responses in Tac-based immunosuppression. METHODS We investigated the effects of Resv under Tac-treatment conditions, on CD4+ T cell differentiation to Th17 cells in peripheral blood mononuclear cells (PBMCs), and proliferation of CD4+ T cells co-cultured with human renal proximal tubular epithelial cells (HRPTEpiCs). The effects of Resv on Th17 cells were tested in the murine skin transplant model. RESULTS In PBMCs, Tac did not but combination of Tac and Resv further suppressed Th17 immune response. In the co-culture study, combination of Resv to Tac significantly decreased HRPTEpiC-induced T cell proliferation compared to Tac alone. Resv treatment in the Jurkat cell induced the expression of AMP-activated protein kinase and suppressed the expression of mammalian target of rapamycin (mTOR), suggesting blocking Th17 pathway by Resv. In the murine skin transplant model, combination of Resv to Tac significantly prolonged skin graft survival accompanied by the suppression of Th17 cells, compared to either the Tac-alone or control groups. CONCLUSION The results of our study suggest that Resv provides additional immunosuppressive effects to Tac by suppressing effector CD4+ T cells, especially Th17 cells, in the transplantation setting.
Collapse
Affiliation(s)
- Kyoung Chan Doh
- Convergent Research Consortium for Immunologic disease, St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
- Transplant research center, St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Bo-Mi Kim
- Convergent Research Consortium for Immunologic disease, St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
- Transplant research center, St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Kyoung Woon Kim
- Convergent Research Consortium for Immunologic disease, St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
- Transplant research center, St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Byung Ha Chung
- Convergent Research Consortium for Immunologic disease, St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
- Transplant research center, St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Chul Woo Yang
- Convergent Research Consortium for Immunologic disease, St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
- Transplant research center, St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
17
|
Eteghadi A, Pak F, Ahmadpoor P, Jamali S, Karimi M, Yekaninejad MS, Kokhaei P, Nafar M, Amirzargar AA. Th1, Th2, Th17 cell subsets in two different immunosuppressive protocols in renal allograft recipients (Sirolimus vs mycophenolate mofetil): A cohort study. Int Immunopharmacol 2019; 67:319-325. [PMID: 30576916 DOI: 10.1016/j.intimp.2018.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023]
Abstract
Long-term use of calcineurin inhibitors (CNI) is associated with nephrotoxicity, which is an important cause of renal dysfunction. Therefore, CNI-minimization strategies which decrease the CNI nephrotoxicity under the protection of additional immunosuppressant drugs have been developed. The aim of current cohort study was to compare the effect of two immunosuppressive protocols [tacrolimus (TAC) in combination with mycophenolate mofetil (MMF) and prednisolone (PRED) versus TAC in combination with sirolimus (SRL) and prednisolone] on the frequency of T helper cell subsets (Th1, Th2 and Th17 cells) and their associated cytokine (IFN-γ, IL-4 and IL-17A) levels in renal allograft recipients. In this study, renal transplant recipients who received induction therapy (Antithymocyte globulin) and were also on triple immunosuppressive therapy were included and divided in to two groups: Group A was comprised 14 patients who received TAC, MMF and PERD whereas group B was composed of 10 patients who received TAC, SRL and PERD. The frequency of Th1, Th2 and Th17 cells in the peripheral blood mononuclear cells (PBMCs) of the patients was analyzed by flow cytometry before and 4 months after transplantation. In addition, IFN-γ, IL-4 and IL-17A concentrations in PBMC culture supernatants of patients before and 4 months after transplantation were quantified by ELISA. The results of our study showed that TAC, MMF and PRED protocol did not diminish the frequency of Th17 cells at 4 months post-transplantation (5% ± 2.5) compared with pre-transplantation (2.3% ± 1; P < 0.05). However, Th17 (3.6% ± 1.5 pre-transplantation vs 2.2% ± 0.9 at 4 months post-transplantation; P < 0.05), Th2 (1.4% ± 0.3 pre-transplantation vs 0.8% ± 0.4 at 4 months post-transplantation; P < 0.05) cell subsets and IL-4 concentration (71.5 pg/ml ± 12 pre-transplantation vs 62.5 pg/ml ±4.4 at 4 months post-transplantation; P < 0.05) were significantly decreased after transplantation in patients who had received SRL, TAC and PRED. In conclusion, the data of the current study suggest that using reduced dose of TAC in SRL, TAC and PRED protocol is in favor of allograft survival; however a cohort study with larger sample size is needed for confirming our results.
Collapse
Affiliation(s)
- Atefeh Eteghadi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Pak
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Pedram Ahmadpoor
- Chronic Kidney Disease Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Jamali
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Karimi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Kokhaei
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Nafar
- Chronic Kidney Disease Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Amirzargar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Li Z, Nie L, Chen L, Sun Y, Guo L. [Rapamycin alleviates inflammation by up-regulating TGF-β/Smad signaling in a mouse model of autoimmune encephalomyelitis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:35-42. [PMID: 30692064 DOI: 10.12122/j.issn.1673-4254.2019.01.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the efficacy of rapmycin for treatment of experimental autoimmune encephalomyelitis (EAE) in mice and explore the underlying mechanism. METHODS An EAE model was established in C57BL/6 mice. After immunization, the mice were divided into model group and rapamycin groups treated daily with low-dose (0.3 mg/kg) or high-dose (1 mg/kg) rapamycin. The clinical scores of the mice were observed using Knoz score, the infiltration of IL-17 cells in the central nervous system (CNS) was determined using immunohistochemistry; the differentiation of peripheral Treg cells was analyzed using flow cytometry, and the changes in the levels of cytokines were detected with ELISA; the changes in the expressions of p-Smad2 and p- smad3 were investigated using Western blotting. RESULTS High-dose rapamycin significantly improved the neurological deficits scores of EAE mice. In high-dose rapamycin group, the scores in the onset stage, peak stage and remission stage were 0.14±0.38, 0.43±1.13 and 0.14±0.37, respectively, as compared with 1.14±0.69, 2.14±1.06 and 2.2±0.75 in the model group. The infiltration of inflammatory IL-17 cells was significantly lower in high-dose rapamycin group than in the model group (43±1.83 vs 153.5±7.02). High-dose rapamycin obviously inhibited the production of IL-12, IFN-γ, IL-17 and IL-23 and induced the anti-inflammatory cytokines IL-10 and TGF-β. The percentage of Treg in CD4+ T cells was significantly higher in high- dose rapamycin group than in the model group (10.17 ± 0.68 vs 3.52 ± 0.32). In the in vitro experiment, combined treatments of the lymphocytes isolated from the mice with rapamycin and TGF-β induced a significant increase in the number of Treg cells (13.66±1.89) compared with the treatment with rapamycin (6.23±0.80) or TGF-β (4.87±0.85) alone. Rapamycin also obviously up-regulated the expression of p-Smad2 and p-Smad3 in the lymphocytes. CONCLUSIONS Rapamycin can promote the differentiation of Treg cells by up-regulating the expression of p-Smad2 and p-smad3 to improve neurological deficits in mice with EAE.
Collapse
Affiliation(s)
- Zhenfei Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Lingling Nie
- Shijiazhuang Circulating Chemical Park Hospital, Shijiazhuang 050000, China
| | - Liping Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yafei Sun
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Li Guo
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
19
|
Martin-Moreno PL, Tripathi S, Chandraker A. Regulatory T Cells and Kidney Transplantation. Clin J Am Soc Nephrol 2018; 13:1760-1764. [PMID: 29789350 PMCID: PMC6237070 DOI: 10.2215/cjn.01750218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability of the immune system to differentiate self from nonself is critical in determining the immune response to antigens expressed on transplanted tissue. Even with conventional immunosuppression, acceptance of the allograft is an active process often determined by the presence of regulatory T cells (Tregs). Tregs classically are CD4+ cells that constitutively express high levels of the IL-2 receptor α chain CD25, along with the transcription factor Foxp3. The use of Tregs in the field of solid organ transplantation is related specifically to the objective of achieving tolerance, with the goal of reducing or eliminating immunosuppressive drugs as well as maintaining tissue repair and managing acute rejection. A key issue in clinical use of Tregs is how to effectively expand the number of Tregs, either through increasing numbers of endogenous Tregs or by the direct infusion of exogenously expanded Tregs. In order to realize the benefits of Treg therapy in solid organ transplantation, a number of outstanding challenges need to be overcome, including assuring an effective expansion of Tregs, improving long-term Treg stability and reduction of risk-related to off-target, nonspecific, immunosuppressive effects related specially to cancer.
Collapse
Affiliation(s)
- Paloma Leticia Martin-Moreno
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
- Nephrology Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Sudipta Tripathi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
20
|
Chung BH, Yang CW, Cho ML. Clinical significance of Th17 cells in kidney transplantation. Korean J Intern Med 2018; 33:860-866. [PMID: 29843491 PMCID: PMC6129639 DOI: 10.3904/kjim.2018.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Transplantation research has focused on cytotoxic T-cell and plasma cell/B-cell-targeted strategies, but little attention has been paid to the role of T helper 17 (Th17) cells in allograft dysfunction. However, accumulating evidence suggests that Th17 cells contribute to the development of acute and chronic allograft injury after transplantation of various organs, including the kidney. This review summarizes recent reports on the role of Th17 cells in kidney transplantation. Means of improving allograft outcomes by targeting the Th17 pathway are also suggested.
Collapse
Affiliation(s)
- Byung Ha Chung
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
- Transplant Research Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
- Transplant Research Center, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Mi-La Cho
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Mi-La Cho, Ph.D. Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-7467 Fax: +82-2-599-4287 E-mail:
| |
Collapse
|
21
|
Clinical significance of CCR7 +CD8 + T cells in kidney transplant recipients with allograft rejection. Sci Rep 2018; 8:8827. [PMID: 29891963 PMCID: PMC5995850 DOI: 10.1038/s41598-018-27141-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/30/2018] [Indexed: 01/05/2023] Open
Abstract
The regulatory function of CCR7+CD8+ T cells against effector T-cells involved in T-cell mediated rejection (TCMR) in kidney transplant recipients was investigated. In vitro experiments explored the ability of CCR7+CD8+ T cells to suppress T-cell proliferation under T-cell activation conditions or during coculture with human renal proximal tubular epithelial cells (HRPTEpiC). In an ex vivo experiment, the proportion of CCR7+/CD8+, FOXP3+/CCR7+CD8+ T and effector T-cell subsets were compared between the normal biopsy control (NC, n = 17) and TCMR group (n = 17). The CCR7+CD8+ T cells significantly suppressed the proliferation of CD4+ T cells and significantly decreased the proportion of IFN-γ+ and IL-17+/CD4+ T cells and inflammatory cytokine levels (all p < 0.05). After coculturing with HRPTEpiC, CCR7+CD8+ T cells also suppressed T-cell differentiation into IL-2+, IFN-γ+, and IL-17+/CD4+ T cells (all p < 0.05). The TCMR group had significantly fewer CCR7+/CD8+ and FOXP3+/CCR7+CD8+ T in comparison with the NC group, but the proportions of all three effector T-cell subsets were increased in the TCMR group (all p < 0.05). The proportion of CCR7+/CD8+ T was inversely correlated with those of effector T-cell subsets. The results indicate that CCR7+CD8+ T cells may regulate effector T-cells involved in TCMR in an in vitro and in an ex vivo transplant model.
Collapse
|
22
|
Mathew JM, H-Voss J, LeFever A, Konieczna I, Stratton C, He J, Huang X, Gallon L, Skaro A, Ansari MJ, Leventhal JR. A Phase I Clinical Trial with Ex Vivo Expanded Recipient Regulatory T cells in Living Donor Kidney Transplants. Sci Rep 2018; 8:7428. [PMID: 29743501 PMCID: PMC5943280 DOI: 10.1038/s41598-018-25574-7] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/24/2018] [Indexed: 01/12/2023] Open
Abstract
There is considerable interest in therapeutic transfer of regulatory T cells (Tregs) for controlling aberrant immune responses. Initial clinical trials have shown the safety of Tregs in hematopoietic stem cell transplant recipients and subjects with juvenile diabetes. Our hypothesis is that infusion(s) of Tregs may induce transplant tolerance thus avoiding long-term use of toxic immunosuppressive agents that cause increased morbidity/mortality. Towards testing our hypothesis, we conducted a phase I dose escalation safety trial infusing billions of ex vivo expanded recipient polyclonal Tregs into living donor kidney transplant recipients. Despite variability in recipient’s renal disease, our expansion protocol produced Tregs which met all release criteria, expressing >98% CD4+CD25+ with <1% CD8+ and CD19+ contamination. Our product displayed >80% FOXP3 expression with stable demethylation in the FOXP3 promoter. Functionally, expanded Tregs potently suppressed allogeneic responses and induced the generation of new Tregs in the recipient’s allo-responders in vitro. Within recipients, expanded Tregs amplified circulating Treg levels in a sustained manner. Clinically, all doses of Treg therapy tested were safe with no adverse infusion related side effects, infections or rejection events up to two years post-transplant. This study provides the necessary safety data to advance Treg cell therapy to phase II efficacy trials.
Collapse
Affiliation(s)
- James M Mathew
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Jessica H-Voss
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ann LeFever
- Mathews Center for Cellular Therapy, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Iwona Konieczna
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Cheryl Stratton
- Mathews Center for Cellular Therapy, Northwestern Memorial Hospital, Chicago, IL, 60611, USA
| | - Jie He
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xuemei Huang
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Lorenzo Gallon
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Medicine, Division of Nephrology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Anton Skaro
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Mohammed Javeed Ansari
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Medicine, Division of Nephrology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Leventhal
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA. .,TRACT Therapeutics, Inc; 125W. Oak Street; Suite D, Chicago, IL, 60610, USA.
| |
Collapse
|
23
|
Lee GR. The Balance of Th17 versus Treg Cells in Autoimmunity. Int J Mol Sci 2018; 19:E730. [PMID: 29510522 PMCID: PMC5877591 DOI: 10.3390/ijms19030730] [Citation(s) in RCA: 524] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023] Open
Abstract
T helper type 17 (Th17) cells and pTreg cells, which share a common precursor cell (the naïve CD4 T cell), require a common tumor growth factor (TGF)-β signal for initial differentiation. However, terminally differentiated cells fulfill opposite functions: Th17 cells cause autoimmunity and inflammation, whereas Treg cells inhibit these phenomena and maintain immune homeostasis. Thus, unraveling the mechanisms that affect the Th17/Treg cell balance is critical if we are to better understand autoimmunity and tolerance. Recent studies have identified many factors that influence this balance; these factors range from signaling pathways triggered by T cell receptors, costimulatory receptors, and cytokines, to various metabolic pathways and the intestinal microbiota. This review article summarizes recent advances in our understanding of the Th17/Treg balance and its implications with respect to autoimmune disease.
Collapse
Affiliation(s)
- Gap Ryol Lee
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
| |
Collapse
|
24
|
|
25
|
Suppressive Effect of 1α,25-Dihydroxyvitamin D3 on Th17-Immune Responses in Kidney Transplant Recipients With Tacrolimus-Based Immunosuppression. Transplantation 2017; 101:1711-1719. [PMID: 28107277 DOI: 10.1097/tp.0000000000001516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The aim of this study was to investigate whether 1α,25-dihydroxyvitamin D3 can regulate Th17-related immune responses in kidney transplant recipients (KTRs) being treated with tacrolimus (Tac)-based immunosuppression. METHODS First, we evaluated the effect of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) on Th17-immune responses in an in vitro study using peripheral blood mononuclear cells (PBMCs) from healthy volunteers or KTRs. Next, we investigated mammalian target of rapamycin/STAT3 signaling as a mechanism by which 1,25(OH)2D3 exerted its effect on T cells using the Jurkat cell line. Third, we investigated Th17-cytokine levels or Th17 cell percentage in PBMCs according to the serum 25-hydroxyvitamin D (25(OH)D) level in 81 KTRs, and we performed a prospective study to assess whether 1,25(OH)2D3 (calcitriol) treatment decreased Th17 cytokine levels (IL-17, IL-22) in 42 KTRs. RESULTS In the in vitro study, we observed that the addition of 1,25(OH)2D3 to Tac significantly inhibited the appearance of IL-17-positive cells in culture. The expression of IL-17 and IL-22 messenger RNA in PBMCs was also decreased by the addition of 1,25(OH)2D3. In the Jurkat cell line, the mTOR/STAT3 pathway was further downregulated with the addition of 1,25(OH)2D3 to Tac. In the 81 KTRs, the 25(OH)D level was inversely correlated with the Th17 cytokine levels or the proportion of Th17 cell out of CD4 T cells. Treatment with calcitriol for 6 months significantly decreased Th17 cytokine levels compared with the baseline values in another 42 KTRs. CONCLUSIONS Treatment with 1,25(OH)2D3 may have immunologic benefits by effectively suppressing the Th17-related immune responses in KTRs on Tac-based immunosuppression.
Collapse
|
26
|
Single and combined effect of retinoic acid and rapamycin modulate the generation, activity and homing potential of induced human regulatory T cells. PLoS One 2017; 12:e0182009. [PMID: 28746369 PMCID: PMC5529012 DOI: 10.1371/journal.pone.0182009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/11/2017] [Indexed: 12/29/2022] Open
Abstract
Adoptive transfer of CD4+CD25+FOXP3+ regulatory T cells (Treg cells) has been successfully utilized to treat graft versus host disease and represents a promising strategy for the treatment of autoimmune diseases and transplant rejection. The aim of this study was to evaluate the effects of all-trans retinoic acid (atRA) and rapamycin (RAPA) on the number, phenotype, homing markers expression, DNA methylation, and function of induced human Treg cells in short-term cultures. Naive T cells were polyclonally stimulated and cultured for five days in the presence of different combinations of IL-2, TGF-β1, atRA and RAPA. The resulting cells were characterized by the expression of FOXP3, activation, surface and homing markers. Methylation of the Conserved Non-coding Sequence 2 was also evaluated. Functional comparison of the different culture conditions was performed by suppression assays in vitro. Culturing naive human T cells with IL-2/TGFβ1 resulted in the generation of 54.2% of Treg cells (CD4+CD25+FOXP3+) whereas the addition of 100 nM atRA increased the yield of Treg cells to 66% (p = 0.0088). The addition of RAPA did not increase the number of Treg cells in any of these settings. Treg cells generated in the presence of atRA had an increased expression of the β7 integrin to nearly 100% of the generated Treg cells, while RAPA treated cells showed enhanced expression of CXCR4. The differential expression of homing molecules highlights the possibility of inducing Treg cells with differential organ-specific homing properties. Neither atRA nor RAPA had an effect on the highly methylated CNS2 sites, supporting reports that their contribution to the lineage stability of Treg cells is not mediated by methylation changes in this locus. Treg cells generated in the presence of RAPA show the most potent suppression effect on the proliferation of effector cells.
Collapse
|
27
|
Pereira LMS, Gomes STM, Ishak R, Vallinoto ACR. Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis. Front Immunol 2017; 8:605. [PMID: 28603524 PMCID: PMC5445144 DOI: 10.3389/fimmu.2017.00605] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor forkhead box protein 3 (FOXP3) is an essential molecular marker of regulatory T cell (Treg) development in different microenvironments. Tregs are cells specialized in the suppression of inadequate immune responses and the maintenance of homeostatic tolerance. Studies have addressed and elucidated the role played by FOXP3 and Treg in countless autoimmune and infectious diseases as well as in more specific cases, such as cancer. Within this context, the present article reviews aspects of the immunoregulatory profile of FOXP3 and Treg in the management of immune homeostasis, including issues relating to pathology as well as immune tolerance.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Samara Tatielle Monteiro Gomes
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
28
|
The Authors' Reply. Transplantation 2017; 101:e229. [PMID: 28333862 DOI: 10.1097/tp.0000000000001745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Safa K, Chandran S, Wojciechowski D. Pharmacologic targeting of regulatory T cells for solid organ transplantation: current and future prospects. Drugs 2016; 75:1843-52. [PMID: 26493288 DOI: 10.1007/s40265-015-0487-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The last three decades have witnessed significant advances in the development of immunosuppressive medications used in kidney transplantation leading to a remarkable gain in short-term graft function and outcomes. Despite these major breakthroughs, improvements in long-term outcomes lag behind due to a stalemate between drug-related nephrotoxicity and chronic rejection typically due to donor-specific antibodies. Regulatory T cells (Tregs) have been shown to modulate the alloimmune response and can exert suppressive activity preventing allograft rejection in kidney transplantation. Currently available immunosuppressive agents impact Tregs in the alloimmune milieu with some of these interactions being deleterious to the allograft while others may be beneficial. Variable effects are seen with common antibody induction agents such that basiliximab, an IL-2 receptor blocker, decreases Tregs while lymphocyte depleting agents such as antithymocyte globulin increase Tregs. Calcineurin inhibitors, a mainstay of maintenance immunosuppression since the mid-1980s, seem to suppress Tregs while mammalian targets of rapamycin (less commonly used in maintenance regimens) expand Tregs. The purpose of this review is to provide an overview of Treg biology in transplantation, identify in more detail the interactions between commonly used immunosuppressive agents and Tregs in kidney transplantation and lastly describe future directions in the use of Tregs themselves as therapy for tolerance induction.
Collapse
Affiliation(s)
- Kassem Safa
- Division of Nephrology and Transplant Center, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, USA
| | - Sindhu Chandran
- Division of Nephrology, Department of Medicine, University of California San Francisco Medical center, San Francisco, CA, USA
| | - David Wojciechowski
- Division of Nephrology and Transplant Center, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, USA.
| |
Collapse
|
30
|
Balancing Inflammation: The Link between Th17 and Regulatory T Cells. Mediators Inflamm 2016; 2016:6309219. [PMID: 27413254 PMCID: PMC4930807 DOI: 10.1155/2016/6309219] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
CD4+ T cell compartments in mouse and man are composed of multiple distinct subsets each possessing unique phenotypic and functional characteristics. IL-17-producing CD4+ T cells (Th17 cells) represent a distinct subset of the CD4+ T cell lineage. Recent evidence suggests that Th17 cells carry out effector functions similar to cytotoxic CD8+ T cells and play an important role in the clearance of extracellular pathogens and fungi. Th17 cell differentiation and function are closely related to the development and function of regulatory T cells (TREG). The balance between these two cell populations is essential for immune homeostasis and dysregulation of this balance has been implicated in a variety of inflammatory conditions including autoimmunity, allograft rejection, and tumorigenesis. Emerging evidence reports a significant amount of plasticity between the Th17 and regulatory T cell compartments, and the mechanisms by which these cells communicate and influence each other are just beginning to be understood. In this review, we highlight recent findings detailing the mechanisms driving Th17 and TREG plasticity and discuss the biologic consequences of their unique relationship.
Collapse
|
31
|
Yang Y, Shen ZY, Wu B, Yin ML, Zhang BY, Song HL. Mesenchymal stem cells improve the outcomes of liver recipients via regulating CD4+ T helper cytokines in rats. Hepatobiliary Pancreat Dis Int 2016; 15:257-65. [PMID: 27298101 DOI: 10.1016/s1499-3872(16)60085-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMMSCs) exert immunosuppressive activities in transplantation. This study aimed to determine whether BMMSCs reduce acute rejection and improve outcomes of liver transplantation in rats. METHODS Orthotopic liver transplantation from Lewis to Brown Norway rats was performed, which was followed by the infusion of BMMSCs through the penile superficial dorsal vein. Normal saline infusion was used as a control. Animals were sacrificed at 0, 24, 72, or 168 hours after BMMSCs infusion. Liver grafts, and recipient serum and spleen tissues were obtained. Histopathology, apoptosis, serum liver enzymes, serum cytokines, and circulating regulatory T (Treg), Th1, Th2 and Th17 cells were assessed at each time point. RESULTS BMMSCs significantly attenuated acute rejection and improved the survival rate of allogeneic liver transplantation recipients. Liver enzymes and liver apoptosis were significantly alleviated. The levels of the Th1/Th2 ratio-associated cytokines such as IL-2 and IFN-gamma were significantly reduced and IL-10 was significantly increased. The levels of the Th17/Tregs axis-associated cytokines such as IL-6, IL-17, IL-23, and TNF-alpha were significantly reduced, whereas TGF-beta concentration was significantly increased. Moreover, flow cytometry analysis showed that the infusion of BMMSCs significantly increased Th2 and Treg cells and decreased Th1 and Th17 cells. CONCLUSION BMMSCs had immunomodulatory effects, attenuated acute rejection and improved outcomes of allogeneic liver transplantation in rats by regulating the levels of cytokines associated with Th1/Th2 and Th17/Treg ratios.
Collapse
Affiliation(s)
- Yang Yang
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, China.
| | | | | | | | | | | |
Collapse
|
32
|
Yu JH, Kim KW, Kim BM, Chung BH, Cho ML, Choi BS, Park CW, Kim YS, Yang CW. Safety and immunologic benefits of conversion to sirolimus in kidney transplant recipients with long-term exposure to calcineurin inhibitors. Korean J Intern Med 2016; 31:552-9. [PMID: 26968190 PMCID: PMC4855095 DOI: 10.3904/kjim.2014.366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/24/2015] [Accepted: 03/01/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIMS Sirolimus (SRL) is a promising immunosuppressant replacingcalcineurin inhibitors (CNIs). This study was performed to evaluate the safetyand immunologic benefits of conversion to SRL in stable kidney transplant (KT)recipients exposed to CNIs for long periods. METHODS Fourteen CNI-treated KT recipients with stable renal function for morethan 10 years were included. Either 2 or 3 mg per day of SRL was administeredwhile CNIs were reduced by half starting on day 1, and then stopped 2 weeks afterSRL introduction. The safety of SRL conversion was assessed considering thegraft function, acute rejection, and graft loss. Immunologic alterations were measuredvia serial changes of T cell and B cell subsets after SRL conversion. Adverseeffects of SRL conversion were also evaluated. RESULTS Conversion to SRL was successful in nine patients (64.2%). Conversionto SRL preserved graft function as compared to the baseline value (p = 0.115). Noacute rejection or allograft loss was observed during the follow-up period. Immunemonitoring of T and B cells revealed a regulatory T cells increase after SRL conversion (p = 0.028). Most adverse events developed within 6 weeks after SRLconversion, and oral mucositis was the main cause of SRL withdrawal. CONCLUSIONS Conversion to SRL can be safe and has immunologic benefits in KTrecipients with long-term CNI exposure. Close monitoring of mucocutaneous adverseevents is, however, required in the early period after SRL conversion.
Collapse
Affiliation(s)
- Ji Hyun Yu
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Kyoung Woon Kim
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bo-Mi Kim
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Transplant Research Center, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Mi-La Cho
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bum Soon Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Transplant Research Center, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Transplant Research Center, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yong-Soo Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Transplant Research Center, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Transplant Research Center, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Chul Woo Yang, M.D. Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6037 Fax: +82-2-536-0323 E-mail:
| |
Collapse
|
33
|
Wang R, Solt LA. Metabolism of murine TH 17 cells: Impact on cell fate and function. Eur J Immunol 2016; 46:807-16. [PMID: 26893133 DOI: 10.1002/eji.201545788] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/04/2016] [Accepted: 02/11/2016] [Indexed: 12/19/2022]
Abstract
An effective adaptive immune response relies on the ability of lymphocytes to rapidly act upon a variety of insults. In T lymphocytes, this response includes cell growth, clonal expansion, differentiation, and cytokine production, all of which place a significant energy burden on the cell. Recent evidence shows that T-cell metabolic reprogramming is an essential component of the adaptive immune response and specific metabolic pathways dictate T-cell fate decisions, including the development of TH 17 versus T regulatory (Treg) cells. TH 17 cells have garnered significant attention due to their roles in the pathology of immune-mediated inflammatory diseases. Attempts to characterize TH 17 cells have demonstrated that they are highly dynamic, adjusting their function to environmental cues, which dictate their metabolic program. In this review, we highlight recent data demonstrating the impact of cellular metabolism on the TH 17/Treg balance and present factors that mediate TH 17-cell metabolism. Some examples of these include the differential impact of the mTOR signaling complexes on T-helper-cell differentiation, hypoxia inducible factor 1 alpha (HIF1α) promotion of glycolysis to favor TH 17-cell development, and ACC1-dependent de novo fatty acid synthesis favoring TH 17-cell development over Treg cells. Finally, we discuss the potential therapeutic options and the implications of modulating TH 17-cell metabolism for the treatment of TH 17-mediated diseases.
Collapse
Affiliation(s)
- Ran Wang
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| | - Laura A Solt
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
34
|
Waldner M, Fantus D, Solari M, Thomson AW. New perspectives on mTOR inhibitors (rapamycin, rapalogs and TORKinibs) in transplantation. Br J Clin Pharmacol 2016; 82:1158-1170. [PMID: 26810941 DOI: 10.1111/bcp.12893] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023] Open
Abstract
The macrolide rapamycin and its analogues (rapalogs) constitute the first generation of mammalian target of rapamycin (mTOR) inhibitors. Since the introduction of rapamycin as an immunosuppressant, there has been extensive progress in understanding its complex mechanisms of action. New insights into the function of mTOR in different immune cell types, vascular endothelial cells and neoplastic cells have opened new opportunities and challenges regarding mTOR as a pharmacological target. Currently, the two known mTOR complexes, mTOR complex (mTORC) 1 and mTORC2, are the subject of intense investigation, and the introduction of second-generation dual mTORC kinase inhibitors (TORKinibs) and gene knockout mice is helping to uncover the distinct roles of these complexes in different cell types. While the pharmacological profiling of rapalogs is advanced, much less is known about the properties of TORKinibs. A potential benefit of mTOR inhibition in transplantation is improved protection against transplant-associated viral infections compared with standard calcineurin inhibitor-based immunosuppression. Preclinical and clinical data also underscore the potentially favourable antitumour effects of mTOR inhibitors in regard to transplant-associated malignancies and as a novel treatment option for various other cancers. Many aspects of the mechanisms of action of mTOR inhibitors and their clinical implications remain unknown. In this brief review we discuss new findings and perspectives of mTOR inhibitors in transplantation.
Collapse
Affiliation(s)
- Matthias Waldner
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Plastic Surgery, University of Zurich, Zurich, Switzerland
| | - Daniel Fantus
- Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mario Solari
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Angus W Thomson
- Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Sirolimus and everolimus in kidney transplantation. Drug Discov Today 2015; 20:1243-9. [DOI: 10.1016/j.drudis.2015.05.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/26/2015] [Accepted: 05/14/2015] [Indexed: 11/15/2022]
|
36
|
Ma L, Zhang H, Hu K, Lv G, Fu Y, Ayana DA, Zhao P, Jiang Y. The imbalance between Tregs, Th17 cells and inflammatory cytokines among renal transplant recipients. BMC Immunol 2015; 16:56. [PMID: 26400627 PMCID: PMC4581081 DOI: 10.1186/s12865-015-0118-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 09/02/2015] [Indexed: 12/21/2022] Open
Abstract
Background A significant barrier to organ transplantation is the cellular rejection that occurs and mediated by antibodies, T cells, and innate immune cells. This study was aimed to determine the number of CD4+CD25+Foxp3+ Treg, CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells in renal transplant recipients (RTR). Methods Renal transplantation was performed for a total of 35 patients with end-stage renal failure. The number of CD4+CD25+Foxp3+ Treg, CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells, and the serum level of IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10, and IL-17 were measured in pre- and post-transplant patients and 10 healthy controls (HC) using flow cytometry and Cytometric Bead Array (CBA). The association between the number of different subsets of CD4+ T-cells and clinical parameters were analyzed among the pre- and post-transplant patients, and the healthy controls. Results The number of CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells were significantly increased in patients with End-Stage Renal Failure (ESRF) compared to the HC. Stratification analysis indicated that AMR (Acute antibody mediated acute rejection), AR (acute rejection) and CR (chronic rejection) groups displayed greater number of CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells as well as high level of serum IL-2, IFN-γ, TNF-α and IL-17. But, the AMR, AR and CR groups have shown lower level of CD4+CD25+Foxp3+ T cells and serum IL-10 compared to transplant stable (TS) patients. Moreover, the number of Tregs were negatively correlated with the number of Th17 cells in RTR patients. The number of Tregs and Th17 cells were positively correlated with the eGFR and serum creatinine values, respectively. Conclusion The imbalance between different types of CD4+ T cells and dysregulated inflammatory cytokines may contribute towards renal transplantation rejection.
Collapse
Affiliation(s)
- Liang Ma
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Department of Gastroenterology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, 213003, China.
| | - Huimao Zhang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Kebang Hu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Guoyue Lv
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yaowen Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China.
| | | | - Pingwei Zhao
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
37
|
Sabbatini M, Ruggiero G, Palatucci AT, Rubino V, Federico S, Giovazzino A, Apicella L, Santopaolo M, Matarese G, Galgani M, Terrazzano G. Oscillatory mTOR inhibition and Treg increase in kidney transplantation. Clin Exp Immunol 2015; 182:230-40. [PMID: 26077103 DOI: 10.1111/cei.12669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 01/13/2023] Open
Abstract
Intracellular metabolic pathways dependent upon the mammalian target of rapamycin (mTOR) play a key role in immune-tolerance control. In this study, we focused on long-term mTOR-dependent immune-modulating effects in kidney transplant recipients undergoing conversion from calcineurin inhibitors (CNI) to mTOR inhibitors (everolimus) in a 1-year follow-up. The conversion to everolimus is associated with a decrease of neutrophils and of CD8(+) T cells. In addition, we observed a reduced production of interferon (IFN)-γ by CD8(+) T cells and of interleukin (IL)-17 by CD4(+) T lymphocytes. An increase in CD4(+) CD25(+) forkhead box protein 3 (FoxP3)(+) [regulatory T cell [(Treg)] numbers was also seen. Treg increase correlated with a higher proliferation rate of this regulatory subpopulation when compared with the CD4(+) FoxP3(-) effector counterpart. Basal phosphorylation level of S6 kinase, a major mTOR-dependent molecular target, was substantially maintained in patients treated with everolimus. Moreover, oscillations in serum concentration of everolimus were associated with changes in basal and activation-dependent S6 kinase phosphorylation of CD4(+) and CD8(+) T cells. Indeed, T cell receptor (TCR) triggering was observed to induce significantly higher S6 kinase phosphorylation in the presence of lower everolimus serum concentrations. These results unveil the complex mTOR-dependent immune-metabolic network leading to long-term immune-modulation and might have relevance for novel therapeutic settings in kidney transplants.
Collapse
Affiliation(s)
- M Sabbatini
- Dipartimento di Sanità Pubblica, DH di Nefrologia e Trapianto di Rene, Università di Napoli 'Federico II', Napoli, Italy
| | - G Ruggiero
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli 'Federico II', Napoli, Italy
| | - A T Palatucci
- Dottorato di Scienze.,Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| | - V Rubino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli 'Federico II', Napoli, Italy
| | - S Federico
- Dipartimento di Sanità Pubblica, DH di Nefrologia e Trapianto di Rene, Università di Napoli 'Federico II', Napoli, Italy
| | - A Giovazzino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli 'Federico II', Napoli, Italy.,Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| | - L Apicella
- Dipartimento di Sanità Pubblica, DH di Nefrologia e Trapianto di Rene, Università di Napoli 'Federico II', Napoli, Italy
| | - M Santopaolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli Italy
| | - G Matarese
- Dipartimento di Medicina e Chirurgia, Università di Salerno, Salerno, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milano, Italy
| | - M Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - G Terrazzano
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli 'Federico II', Napoli, Italy.,Dipartimento di Scienze, Università della Basilicata, Potenza, Italy
| |
Collapse
|
38
|
Citrate Attenuates Adenine-Induced Chronic Renal Failure in Rats by Modulating the Th17/Treg Cell Balance. Inflammation 2015; 39:79-86. [DOI: 10.1007/s10753-015-0225-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Heo SB, Lim SW, Jhun JY, Cho ML, Chung BH, Yang CW. Immunological benefits by ginseng through reciprocal regulation of Th17 and Treg cells during cyclosporine-induced immunosuppression. J Ginseng Res 2015; 40:18-27. [PMID: 26843818 PMCID: PMC4703771 DOI: 10.1016/j.jgr.2015.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/08/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It is not clear whether ginseng affects cyclosporine A (CsA)-induced desirable immunosuppressive action. In this study, we evaluated the immunological influence of combined treatment of ginseng with CsA. METHODS Using CD4+ T cells from mouse spleens stimulated with the T cell receptor (TCR) or allogeneic antigen-presenting cells (APCs), we examined the differentiation of naïve T cells into T helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs), and their cytokine production during treatment by Korean Red Ginseng extract (KRGE) and/or CsA. The influence of KRGE on the allogeneic T cell response was evaluated by mixed lymphocyte reaction (MLR). We also evaluated whether signal transducer and activator of transcription 3 (STAT3) and STAT5 are implicated in this regulation. RESULTS Under TCR stimulation, KRGE treatment did not affect the population of CD4+interferon gamma (IFNγ)+ and CD4+interleukin (IL)-4+ cells and their cytokine production compared with CsA alone. Under the Th17-polarizing condition, KRGE significantly reduced the number of CD4+IL-17+ cells and CD4+/phosphorylated STAT3 (p-STAT3)+ cells, but increased the number of CD4+CD25+forkhead box P3 (Foxp3)+ cells and CD4+/p-STAT5+ cells compared with CsA alone. In allogeneic APCs-stimulated CD4+ T cells, KRGE significantly decreased total allogeneic T cell proliferation. Consistent with the effects of TCR stimulation, KRGE reduced the number of CD4+IL-17+ cells and increased the number of CD4+CD25+Foxp3+ cells under the Th17-polarizing condition. CONCLUSION KRGE has immunological benefits through the reciprocal regulation of Th17 and Treg cells during CsA-induced immunosuppression.
Collapse
Affiliation(s)
- Seong Beom Heo
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea; Transplant Research Center, The Catholic University of Korea, Seoul, Korea
| | - Sun Woo Lim
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea; Transplant Research Center, The Catholic University of Korea, Seoul, Korea
| | - Joo Yeon Jhun
- Centre for Rheumatic Diseases, The Catholic University of Korea, Seoul, Korea
| | - Mi La Cho
- Centre for Rheumatic Diseases, The Catholic University of Korea, Seoul, Korea
| | - Byung Ha Chung
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea; Transplant Research Center, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea; Transplant Research Center, The Catholic University of Korea, Seoul, Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|