1
|
Cao G, Xu Q, Huang S, Dai D, Wang J, Li W, Zhao Y, Lin J, Han X. B10 cells regulate macrophage polarization to alleviate inflammation and bone loss in periodontitis. J Periodontol 2025; 96:355-368. [PMID: 39210600 DOI: 10.1002/jper.24-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The polarization of macrophages into an anti-inflammatory phenotype is crucial for resolving periodontal inflammation. It has been reported that B10 cells can regulate the immune response of macrophages during inflammation and are also able to regulate inflammation in periodontitis. However, whether B10 cells' regulation function in periodontitis is related to macrophage polarization remains unclear. This study aims to investigate whether B10 cells can regulate macrophage polarization in periodontitis. METHODS Macrophages were cocultured with B10 cells in vitro for 5 days. After coculture, macrophages were obtained for analysis directly or followed by stimulation with Pg-LPS/IFN-γ or IL-4/IL-13. Flow cytometry and/or reverse transcriptase-polymerase chain reaction (RT-PCR) were employed to detect the expression of IL-1β, iNOS, TNF-α, CD206, and ARG-1 in macrophages. B10 cells were transferred on the 5th day after ligation in wild or macrophage-depletion mice. Toluidine blue and TRAP staining were used to evaluate alveolar bone resorption and osteoclast activation. Immunohistochemistry was employed to detect the expression of CD68, IL-1β, TNF-α, iNOS, ARG-1, and IL-10. Immunofluorescence was used to detect the expression of CD68+CD86+M1 macrophages and CD68+CD206+M2 macrophages. RESULTS In vitro, B10 cells inhibit the expression of IL-1β, iNOS, and TNF-α in macrophages while increasing the expression of CD206 and ARG-1. In experimental periodontitis, B10 cells inhibit the polarization of CD68+CD86+M1 macrophages and iNOS expression but enhance the polarization of CD68+CD206+M2 macrophages and ARG-1 expression. Importantly, the depletion of macrophages partially weakened the regulation function of B10 cells in periodontitis. CONCLUSIONS B10 cells promote M2 macrophage polarization, inhibit M1 macrophage polarization in periodontitis, and alleviate periodontitis partially by regulating macrophage polarization.
Collapse
Affiliation(s)
- Guoqin Cao
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qiuping Xu
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shengyuan Huang
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dong Dai
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jilei Wang
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yue Zhao
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiang Lin
- Department of Stomatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaozhe Han
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
2
|
Xu Y, Hu K, Liu C, Du P, Zhou F, Lu Y, Fu Q, Xu J, Lyu G. Eschar dissolution and the immunoregulator effect of keratinase on burn wounds. Sci Rep 2023; 13:13238. [PMID: 37580372 PMCID: PMC10425458 DOI: 10.1038/s41598-023-39765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023] Open
Abstract
At present, enzyme debridement preparation has shown a good curative effect on eschar removal of burn wounds. Keratinase has shown great potential in enzymatic debridement because of its good fibrin-degrading ability. In this study, the debridement of keratinase was examined by using a third degree burn wound model in rats. We observed the wound, and keratinase shortened the time of eschar dissolution after debridement. Histopathology and immunofluorescence staining showed that the eschar in the keratinase group became thinner, inflammatory cell infiltration in the wound increased, the fluorescence intensity of the macrophage surface marker CD68 increased, and the CD163/CD86 ratio increased. In bone marrow-derived macrophages (BMDMs), there was no significant difference in the activity of CCK-8 in cells in the keratinase group compared with the control group. The fluorescence intensity of the keratinase group was higher than that of the control group. At 12 h, the cell scratches were obviously closed. The number of migrated Transwell cells increased. Flow cytometry and immunofluorescence analysis showed increased expression of CD206 and Arg-1 and decreased expression of CD86 and iNOS. The gene expression of the Arg-1, iNOS and IL-10 was increased, as shown by qPCR. The secretion of IL-10 was increased and TNF-α was decreased, as shown by ELISA. We concluded that keratinase dissolution of eschar not only has a hydrolytic effect on eschar but may also affect immune regulation to enhance the migration and phagocytosis of macrophages, promote the polarization of macrophages, and further enhance the effect of eschar dissolution. Therefore, keratinase may have good prospects for the debridement of burn wounds.
Collapse
Affiliation(s)
- Yan Xu
- Wuxi Clinical Medical College of Nanjing University of Traditional Chinese Medicine, Wuxi, 214041, China
- Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Kai Hu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chenyang Liu
- Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Pan Du
- Jiangnan University, Wuxi, 214122, China
| | - Feifan Zhou
- Medical College of Nantong University, Nantong, 226000, China
| | - Yichi Lu
- Jiangnan University, Wuxi, 214122, China
| | - Qiuyan Fu
- Jiangnan University, Wuxi, 214122, China
| | - Jianmin Xu
- Affiliated Hospital of Jiangnan University, Wuxi, 214041, China.
| | - Guozhong Lyu
- Affiliated Hospital of Jiangnan University, Wuxi, 214041, China.
| |
Collapse
|
3
|
Zhang Y, Dai F, Yang D, Zheng Y, Zhu R, Wu M, Deng Z, Wang Z, Tan W, Li Z, Li B, Gao L, Cheng Y. Deletion of Insulin-like growth factor II mRNA-binding protein 3 participates in the pathogenesis of recurrent spontaneous abortion by inhibiting IL-10 secretion and inducing M1 polarization. Int Immunopharmacol 2023; 114:109473. [PMID: 36463698 DOI: 10.1016/j.intimp.2022.109473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
Insulin-like growth factor II mRNA-binding protein 3 (IGF2BP3) has been proved to affect trophoblast function and embryonic development, but its role and potential mechanism in recurrent spontaneous abortion (RSA) are not clear. RSA is a complex reproductive disease, causing physical and mental damage to patients. In recent years, many studies have found that immune microenvironment is vital to maintain successful pregnancy in the maternal fetal interface. Therefore, this study aims to explore the role of IGF2BP3 in affecting macrophage polarization and its possible mechanism. In this article, we found that IGF2BP3 expression was decreased in placental villous samples of human and RSA mouse model, and knockdown of IGF2BP3 in HTR8/SVneo cells promotes M1 Mφ polarization. Combining with RNA sequencing analysis, we found that IGF2BP3 may regulate the Mφ polarization by affecting the expression of trophoblast cytokines, especially IL-10 secretion. Further mechanistic studies showed that knockdown of IGF2BP3 decreased expression of IL-10 by activating NF-κB pathway. Moreover, we found that M2 Mφ promote trophoblast invasion not IGF2BP3 dependent. Our study reveals the interaction between trophoblast cells and macrophages at the maternal-fetal interface of RSA patients, and will provide theoretical guidance for its diagnosis and treatment of RSA patients.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ronghui Zhu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mali Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zitao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bingshu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
4
|
Arish M, Naz F. Macrophage plasticity as a therapeutic target in tuberculosis. Eur J Immunol 2022; 52:696-704. [DOI: 10.1002/eji.202149624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/31/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Mohd Arish
- JH‐Institute of Molecular Medicine Jamia Hamdard New Delhi India
- Carter Immunology Center University of Virginia United States
| | - Farha Naz
- Centre for Interdisciplinary Research in Basic Sciences (CIRBSc) Jamia Millia Islamia New Delhi India
- Division of Infectious Disease and International Health School of Medicine University of Virginia Health System United States
| |
Collapse
|
5
|
Su Q, Kim SY, Adewale F, Zhou Y, Aldler C, Ni M, Wei Y, Burczynski ME, Atwal GS, Sleeman MW, Murphy AJ, Xin Y, Cheng X. Single-cell RNA transcriptome landscape of hepatocytes and non-parenchymal cells in healthy and NAFLD mouse liver. iScience 2021; 24:103233. [PMID: 34755088 PMCID: PMC8560975 DOI: 10.1016/j.isci.2021.103233] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health-care problem with limited therapeutic options. To obtain a cellular resolution of pathogenesis, 82,168 single-cell transcriptomes (scRNA-seq) across different NAFLD stages were profiled, identifying hepatocytes and 12 other non-parenchymal cell (NPC) types. scRNA-seq revealed insights into the cellular and molecular mechanisms of the disease. We discovered a dual role for hepatic stellate cells in gene expression regulation and in the potential to trans-differentiate into myofibroblasts. We uncovered distinct expression profiles of Kupffer cells versus monocyte-derived macrophages during NAFLD progression. Kupffer cells showed stronger immune responses, while monocyte-derived macrophages demonstrated a capability for differentiation. Three chimeric NPCs were identified including endothelial-chimeric stellate cells, hepatocyte-chimeric endothelial cells, and endothelial-chimeric Kupffer cells. Our work identified unanticipated aspects of mouse with NAFLD at the single-cell level and advanced the understanding of cellular heterogeneity in NAFLD livers.
Collapse
Affiliation(s)
- Qi Su
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Sun Y. Kim
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Funmi Adewale
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Ye Zhou
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Christina Aldler
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Michael E. Burczynski
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Gurinder S. Atwal
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Mark W. Sleeman
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Andrew J. Murphy
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| | - Xiping Cheng
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591, USA
| |
Collapse
|
6
|
Vago JP, Amaral FA, van de Loo FAJ. Resolving inflammation by TAM receptor activation. Pharmacol Ther 2021; 227:107893. [PMID: 33992683 DOI: 10.1016/j.pharmthera.2021.107893] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
The control of inflammation is strictly regulated to ensure the adequate intensity and duration of an inflammatory response, enabling the removal of the trigger factors and the restoration of the integrity of the tissues and their functions. This process is coordinated by anti-inflammatory and pro-resolving mediators that regulate the cellular and molecular events necessary to restore homeostasis, and defects in this control are associated with the development of chronic and autoimmune diseases. The TAM family of receptor tyrosine kinases-Tyro3, Axl, and MerTK-plays an essential role in efferocytosis, a key process for the resolution of inflammation. However, new studies have demonstrated that TAM receptor activation not only reduces the synthesis of pro-inflammatory mediators by different cell types in response to some stimuli but also stimulates the production of anti-inflammatory and pro-resolving molecules that control the inflammation. This review provides a comprehensive view of TAM receptor family members as important players in controlling inflammatory responses through anti-inflammatory and pro-resolving actions.
Collapse
Affiliation(s)
- Juliana P Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Flávio A Amaral
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fons A J van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Wang Y, Wang G, Bai J, Zhao N, Wang Q, Zhou R, Li G, Hu C, Li X, Tao K, Xia Z, Wang G. Role of Indole-3-Acetic Acid in NAFLD Amelioration After Sleeve Gastrectomy. Obes Surg 2021; 31:3040-3052. [DOI: 10.1007/s11695-021-05321-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
|
8
|
Campo M, Heater S, Peterson GJ, Simmons JD, Skerrett SJ, Mayanja-Kizza H, Stein CM, Boom WH, Hawn TR. HDAC3 inhibitor RGFP966 controls bacterial growth and modulates macrophage signaling during Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2021; 127:102062. [PMID: 33639591 PMCID: PMC8650124 DOI: 10.1016/j.tube.2021.102062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
RATIONALE Host-directed therapeutics for Mycobacterium tuberculosis (Mtb) offer potential strategies for combatting antibiotic resistance and for killing non-replicating bacilli. Phenylbutyrate, a partially selective histone-deacetylase (HDAC) inhibitor, was previously shown to control Mtb growth and alter macrophage inflammatory pathways at 2-4 mM concentrations. OBJECTIVE To identify a more potent and selective HDAC inhibitor that modulates macrophage responses to mycobacteria and has direct antibacterial effects against Mtb. METHODS We used cellular approaches to characterize the role of pharmacologic inhibition of HDAC3 on Mtb growth and Mtb-induced peripheral and alveolar macrophage immune functions. MEASUREMENTS AND MAIN RESULTS RGFP966, an HDAC3 inhibitor, controlled Mtb, BCG and M. avium growth directly in broth culture and in human peripheral blood monocyte-derived and alveolar macrophages with an MIC50 of approximately 5-10 μM. In contrast, RGFP966 did not inhibit growth of several other intracellular and extracellular bacteria. We also found that RGFP966 modulated macrophage pro-inflammatory cytokine secretion in response to Mtb infection with decreased IL6 and TNF secretion. CONCLUSIONS We identified a potent and selective small molecule inhibitor of HDAC3 with direct antimicrobial activity against Mtb and modulation of macrophage signaling pathways.
Collapse
MESH Headings
- Acrylamides/pharmacology
- Adolescent
- Adult
- Antitubercular Agents/pharmacology
- Cells, Cultured
- Cytokines/metabolism
- Female
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/metabolism
- Host-Pathogen Interactions
- Humans
- Immunity, Innate/drug effects
- Inflammation Mediators/metabolism
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/microbiology
- Male
- Middle Aged
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/immunology
- Phenylenediamines/pharmacology
- Signal Transduction
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/enzymology
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Young Adult
Collapse
Affiliation(s)
- Monica Campo
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Sarah Heater
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | | | - Jason D Simmons
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Shawn J Skerrett
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Harriet Mayanja-Kizza
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Catherine M Stein
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, School of Medicine, Makerere University and Mulago Hospital, Kampala, Uganda
| | - W Henry Boom
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Kjær MB, George J, Kazankov K, Grønbæk H. Current perspectives on the pathophysiology of metabolic associated fatty liver disease: are macrophages a viable target for therapy? Expert Rev Gastroenterol Hepatol 2021; 15:51-64. [PMID: 32878486 DOI: 10.1080/17474124.2020.1817740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Metabolic associated fatty liver disease (MAFLD) is a new nomenclature for fatty liver replacing nonalcoholic fatty liver disease (NAFLD). MAFLD has emerged as the leading cause of liver-related morbidity and mortality with increasing incidence due to its close association with the global epidemic of obesity and type 2 diabetes mellitus. Macrophages play a key role in MAFLD development and progression of steatohepatitis and fibrosis. Therefore, targeting macrophages may be a new therapeutic approach for MAFLD and MAFLD with steatohepatitis. AREAS COVERED We provide a comprehensive review of the significant role of macrophages in MAFLD. Further, we evaluate the current status of lifestyle interventions and pharmacological treatments with a focus on effects mediated through direct or indirect targeting of macrophages. EXPERT OPINION Targeting macrophages holds promise as a treatment option for the management of MAFLD and steatohepatitis. Improved stratification of patients according to MAFLD phenotype would contribute to more adequate design enhancing the yield of clinical trials ultimately leading to personalized medicine for patients with MAFLD. Furthermore, reflecting the multifactorial pathogenesis of MAFLD, combination therapies based on the various pathophysiological driver events including as pertinent to this review, macrophage recruitment, polarization and action, present an intriguing target for future investigation.
Collapse
Affiliation(s)
- Mikkel Breinholt Kjær
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus, Denmark
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney , Sydney, Australia
| | - Konstantin Kazankov
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus, Denmark
| |
Collapse
|
10
|
de Campos GY, Oliveira RA, Oliveira-Brito PKM, Roque-Barreira MC, da Silva TA. Pro-inflammatory response ensured by LPS and Pam3CSK4 in RAW 264.7 cells did not improve a fungistatic effect on Cryptococcus gattii infection. PeerJ 2020; 8:e10295. [PMID: 33304649 PMCID: PMC7698691 DOI: 10.7717/peerj.10295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background The macrophage lineage is characterized by plasticity due to the acquisition of distinct functional phenotypes, and two major subsets are evaluated; classical M1 activation (strong microbicidal activity) and alternative M2 activation (immunoregulatory functions). The M1 subset expresses inducible nitric oxide synthase (iNOS), which is a primary marker to identify these cells, whereas M2 macrophages are characterized by expression of Arginase-1, found in inflammatory zone 1 (Fizz1), chitinase-like molecule (Ym-1), and CD206. The micro-environmental stimuli and signals in tissues are critical in the macrophage polarization. Toll-like receptors (TLR) ligands, such as lipopolysaccharide (LPS), palmitoyl-3-cysteine-serine-lysine-4 (Pam3CSK4), and ArtinM (mannose-binding lectin) are inductors of M1 subset. The impact of TLR2 and TLR4 signals to fight against Cryptococcus gattii infection is unknown, which is a fungal pathogen that preferentially infects the lung of immunocompetent individuals. The macrophages initiate an immune response to combat the C. gattii, then we evaluated in RAW 264.7 cell the effect of TLR2 and TLR4 agonists on the macrophage polarization dynamic and the impact on the growth of C. gattii. Methods and Results We demonstrated that P3C4, LPS, and ArtinM induced an increase in the levels of iNOS transcripts in RAW 264.7 cells, whereas the relative expression of arginase-1, Ym-1, and Fizz1 was significantly increased in the presence of IL-4 alone. The effects of TLR2 and TLR4 agonists on repolarization from the M2 to M1 subset was evaluated, and the first stimulus was composed of IL-4 and, after 24 h of incubation, the cells were submitted to a second stimulus of P3C4, LPS, ArtinM, or Medium. These TLR agonists induced the production of TNF-α in polarized RAW 264.7 cells to the M2 subset, moreover the measurement of M1/M2 markers using qRT-PCR demonstrated that a second stimulus with LPS for 24 h induced a significant augmentation of levels of iNOS mRNA. This impact of TLR2 and TLR4 agonists in the activation of the RAW 264.7 macrophage was assayed in the presence of C. gattii, the macrophages stimulated with TLR2 and TLR4 agonists for 24 h and co-cultured with C. gattii, as a second stimulus, reached high levels of TNF-α even after incubation with different concentrations of C. gattii. The activation of RAW 264.7 cells induced by TLR2 and TLR4 agonists favored the phagocytosis of C. gattii and inhibited the growth of yeast in the early period of infection. However, RAW 264.7 cells incubated with C. gattii in the presence of TLR2 and TLR4 agonists did not result a significant difference in the colony forming unit (CFU) assay in the early period of C. gattii infection, compared to negative control. Conclusion Polarized RAW 264.7 cells to the M1 subset with TLR2 and TLR4 agonists did not inhibit the growth of C. gattii, whereas robust immunity was identified that could dysregulate host tolerance to this pathogen.
Collapse
Affiliation(s)
- Gabriela Yamazaki de Campos
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raquel Amorim Oliveira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patrícia Kellen Martins Oliveira-Brito
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Cristina Roque-Barreira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago Aparecido da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Malaguarnera L. Vitamin D3 as Potential Treatment Adjuncts for COVID-19. Nutrients 2020; 12:E3512. [PMID: 33202670 PMCID: PMC7697253 DOI: 10.3390/nu12113512] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus type (SARS-CoV2, also known as COVID-19), which is the latest pandemic infectious disease, constitutes a serious risk to human health. SARS-CoV2 infection causes immune activation and systemic hyperinflammation which can lead to respiratory distress syndrome (ARDS). ARDS victims are characterized by a significant increase in IL-6 and IL-1. Macrophage activation, associated with the "cytokine storm", promotes the dysregulation of the innate immunity. So far, without vaccines or specific therapy, all efforts to design drugs or clinical trials are worthwhile. Vitamin D and its receptor vitamin D receptor (VDR) exert a critical role in infections due to their remarkable impact on both innate and adaptive immune responses and on the suppression of the inflammatory process. The protective properties of vitamin D supplementation have been supported by numerous observational studies and by meta-analysis of clinical trials for prevention of viral acute respiratory infection. In this review, we compare the mechanisms of the host immune response to SARS-CoV2 infection and the immunomodulatory actions that vitamin D exerts in order to consider the preventive effect of vitamin D supplementation on SARS-CoV2 viral infection.
Collapse
Affiliation(s)
- Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| |
Collapse
|
12
|
Attrill GH, Ferguson PM, Palendira U, Long GV, Wilmott JS, Scolyer RA. The tumour immune landscape and its implications in cutaneous melanoma. Pigment Cell Melanoma Res 2020; 34:529-549. [PMID: 32939993 DOI: 10.1111/pcmr.12926] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/01/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022]
Abstract
The field of tumour immunology has rapidly advanced in the last decade, leading to the advent of effective immunotherapies for patients with advanced cancers. This highlights the critical role of the immune system in determining tumour development and outcome. The tumour immune microenvironment (TIME) is highly heterogeneous, and the interactions between tumours and the immune system are vastly complex. Studying immune cell function in the TIME will provide an improved understanding of the mechanisms underpinning these interactions. This review examines the role of immune cell populations in the TIME based on their phenotype, function and localisation, as well as contextualising their position in the dynamic relationship between tumours and the immune system. We discuss the function of immune cell populations, examine their impact on patient outcome and highlight gaps in current understanding of their roles in the TIME, both in cancers in general and specifically in melanoma. Studying the TIME by evaluating both pro-tumour and anti-tumour effects may elucidate the conditions which lead to tumour growth and metastasis or immune-mediated tumour regression. Moreover, an in-depth understanding of these conditions could contribute to improved prognostication, more effective use of current immunotherapies and guide the development of novel treatment strategies and therapies.
Collapse
Affiliation(s)
- Grace H Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Mater and North Shore Hospitals, Sydney, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| |
Collapse
|
13
|
Jiang Y, Fu J, Du J, Luo Z, Guo L, Xu J, Liu Y. DNA methylation alterations and their potential influence on macrophage in periodontitis. Oral Dis 2020; 28:249-263. [PMID: 32989880 DOI: 10.1111/odi.13654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To explore how various methylation mechanisms function and affect macrophages in periodontitis, with an aim of getting a comprehensive understanding of pathogenesis of the disease. SUBJECT Alterations in DNA methylation are associated with different periodontitis susceptible factors and disrupt immunity homeostasis. The host's immune response to stimulus plays a vital role in the progression of periodontitis. Macrophages are key immune cells of immune system. They act as critical regulators in maintaining issue homeostasis with their nature of high plasticity. The altered methylation status of genes may cause abnormal expression of proteins in the progress of periodontitis, thus, exert potential influence on macrophages. RESULTS Certain genes are selectively activated or silenced due to the changes in the methylation status, which causes the alteration of the expression level of cytokines/chemokines, signal molecules, extracellular matrix molecules, leads to the change in local microenvironment, affects activation states of immune cells including macrophages, thus influences the host immune response during periodontitis.. This results in differential susceptibility and therapeutic outcome. CONCLUSION DNA methylation alteration may cause aberrant expression level of genes associated with periodontal diseases, thus results in deregulation of macrophages, which supports the prospect of using DNA methylation-related parameter as a new biomarker for the diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| |
Collapse
|
14
|
Vago JP, Galvão I, Negreiros-Lima GL, Teixeira LCR, Lima KM, Sugimoto MA, Moreira IZ, Jones SA, Lang T, Riccardi C, Teixeira MM, Harris J, Morand EF, Sousa LP. Glucocorticoid-induced leucine zipper modulates macrophage polarization and apoptotic cell clearance. Pharmacol Res 2020; 158:104842. [PMID: 32413484 DOI: 10.1016/j.phrs.2020.104842] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Macrophages are professional phagocytes that display remarkable plasticity, with a range of phenotypes that can be broadly characterized by the M1/M2 dichotomy. Glucocorticoid (GC)-induced leucine zipper (GILZ) is a protein known to mediate anti-inflammatory and some pro-resolving actions, including as neutrophil apoptosis. However, the role of GILZ in key macrophage function is not well understood. Here, we investigated the role of GILZ on macrophage reprogramming and efferocytosis. Using murine bone-marrow-derived macrophages (BMDMs), we found that GILZ was expressed in naive BMDMs and exhibited increased expression in M2-like macrophages (IL4-differentiated). M1-like macrophages (IFN/LPS-differentiated) from GILZ-/- mice showed higher expression of the M1 markers CD86, MHC class II, iNOS, IL-6 and TNF-α, associated with increased levels of phosphorylated STAT1 and lower IL-10 levels, compared to M1-differentiated cells from WT mice. There were no changes in the M2 markers CD206 and arginase-1 in macrophages from GILZ-/- mice differentiated with IL-4, compared to cells from WT animals. Treatment of M1-like macrophages with TAT-GILZ, a cell-permeable GILZ fusion protein, decreased the levels of CD86 and MHC class II in M1-like macrophages without modifying CD206 levels in M2-like macrophages. In line with the in vitro data, increased numbers of M1-like macrophages were found into the pleural cavity of GILZ-/- mice after LPS-injection, compared to WT mice. Moreover, efferocytosis was defective in the context of GILZ deficiency, both in vitro and in vivo. Conversely, treatment of LPS-injected mice with TAT-GILZ promoted inflammation resolution, associated with lower numbers of M1-like macrophages and increased efferocytosis. Collectively, these data indicate that GILZ is a regulator of important macrophage functions, contributing to macrophage reprogramming and efferocytosis, both key steps for the resolution of inflammation.
Collapse
Affiliation(s)
- Juliana P Vago
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Victoria, Australia
| | - Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Graziele L Negreiros-Lima
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lívia C R Teixeira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kátia M Lima
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A Sugimoto
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Z Moreira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sarah A Jones
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Victoria, Australia
| | - Tali Lang
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Victoria, Australia
| | - Carlo Riccardi
- Departament of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Mauro M Teixeira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - James Harris
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Victoria, Australia
| | - Eric F Morand
- Rheumatology Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Victoria, Australia
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
15
|
Feng TT, Yang XY, Hao SS, Sun FF, Huang Y, Lin QS, Pan W. TLR-2-mediated metabolic reprogramming participates in polyene phosphatidylcholine-mediated inhibition of M1 macrophage polarization. Immunol Res 2020; 68:28-38. [PMID: 32248343 DOI: 10.1007/s12026-020-09125-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Silva LLDL, Gomes RS, Silva MVT, Joosten LAB, Ribeiro-Dias F. IL-15 enhances the capacity of primary human macrophages to control Leishmania braziliensis infection by IL-32/vitamin D dependent and independent pathways. Parasitol Int 2020; 76:102097. [PMID: 32114085 DOI: 10.1016/j.parint.2020.102097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
How human macrophages can control the intracellular infection with Leishmania is not completely understood. IL-15 and IL-32 are cytokines produced by monocytes/macrophages that can induce antimicrobial mechanisms. Here, we evaluated the effects of recombinant human IL-15 (rhIL-15) on primary human macrophage infection and response to L. braziliensis. Priming with rhIL-15 reduced the phagocytosis of L. braziliensis and increased the killing of the parasites in monocyte-derived macrophages from healthy donors. rhIL-15 induced TNFα and IL-32 in uninfected cells. After infection, the high levels of rhIL-15-induced TNFα and IL-32 were maintained. In addition, there was an increase of NO and an inhibition of the parasite-induced IL-10 production. Inhibition of NO reversed the leishmanicidal effects of rhIL-15. Although rhIL-15 did not increase L. braziliensis-induced reactive oxygen intermediates (ROS) production, inhibition of ROS reversed the control of infection induced by rhIL-15. Treatment of the cells with rhIL-32γ increased microbicidal capacity of macrophages in the presence of high levels of vitamin D (25D3), but not in low concentrations of this vitamin. rhIL-15 together with rhIL-32 lead to the highest control of the L. braziliensis infection in high concentrations of vitamin D. In this condition, NO and ROS mediated rhIL-32γ effects on microbicidal activity. The data showed that priming of human macrophages with rhIL-15 or rhIL-32γ results in the control of L. braziliensis infection through induction of NO and ROS. In addition, rhIL-32γ appears to synergize with rhIL-15 for the control of L. braziliensis infection in a vitamin D-dependent manner.
Collapse
Affiliation(s)
- Lucas Luiz de Lima Silva
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil
| | - Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil
| | - Muriel Vilela Teodoro Silva
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil.
| |
Collapse
|
17
|
da Silva Meirelles L, Marson RF, Solari MIG, Nardi NB. Are Liver Pericytes Just Precursors of Myofibroblasts in Hepatic Diseases? Insights from the Crosstalk between Perivascular and Inflammatory Cells in Liver Injury and Repair. Cells 2020; 9:cells9010188. [PMID: 31940814 PMCID: PMC7017158 DOI: 10.3390/cells9010188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cirrhosis, a late form of liver disease, is characterized by extensive scarring due to exacerbated secretion of extracellular matrix proteins by myofibroblasts that develop during this process. These myofibroblasts arise mainly from hepatic stellate cells (HSCs), liver-specific pericytes that become activated at the onset of liver injury. Consequently, HSCs tend to be viewed mainly as myofibroblast precursors in a fibrotic process driven by inflammation. Here, the molecular interactions between liver pericytes and inflammatory cells such as macrophages and neutrophils at the first moments after injury and during the healing process are brought into focus. Data on HSCs and pericytes from other tissues indicate that these cells are able to sense pathogen- and damage-associated molecular patterns and have an important proinflammatory role in the initial stages of liver injury. On the other hand, further data suggest that as the healing process evolves, activated HSCs play a role in skewing the initial proinflammatory (M1) macrophage polarization by contributing to the emergence of alternatively activated, pro-regenerative (M2-like) macrophages. Finally, data suggesting that some HSCs activated during liver injury could behave as hepatic progenitor or stem cells will be discussed.
Collapse
Affiliation(s)
- Lindolfo da Silva Meirelles
- PPGBioSaúde and School of Medicine, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Renan Fava Marson
- PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Maria Inês Gonzalez Solari
- Institute of Cardiology of Rio Grande do Sul, Av Princesa Isabel 370, 90620-001 Porto Alegre, RS, Brazil
| | - Nance Beyer Nardi
- Institute of Cardiology of Rio Grande do Sul, Av Princesa Isabel 370, 90620-001 Porto Alegre, RS, Brazil
- Correspondence: ; Tel.: +55-51-3230-3600
| |
Collapse
|
18
|
Adaptive innate immunity or innate adaptive immunity? Clin Sci (Lond) 2019; 133:1549-1565. [DOI: 10.1042/cs20180548] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
Abstract
The innate immunity is frequently accepted as a first line of relatively primitive defense interfering with the pathogen invasion until the mechanisms of ‘privileged’ adaptive immunity with the production of antibodies and activation of cytotoxic lymphocytes ‘steal the show’. Recent advancements on the molecular and cellular levels have shaken the traditional view of adaptive and innate immunity. The innate immune memory or ‘trained immunity’ based on metabolic changes and epigenetic reprogramming is a complementary process insuring adaptation of host defense to previous infections.
Innate immune cells are able to recognize large number of pathogen- or danger- associated molecular patterns (PAMPs and DAMPs) to behave in a highly specific manner and regulate adaptive immune responses. Innate lymphoid cells (ILC1, ILC2, ILC3) and NK cells express transcription factors and cytokines related to subsets of T helper cells (Th1, Th2, Th17). On the other hand, T and B lymphocytes exhibit functional properties traditionally attributed to innate immunity such as phagocytosis or production of tissue remodeling growth factors. They are also able to benefit from the information provided by pattern recognition receptors (PRRs), e.g. γδT lymphocytes use T-cell receptor (TCR) in a manner close to PRR recognition. Innate B cells represent another example of limited combinational diversity usage participating in various innate responses. In the view of current knowledge, the traditional black and white classification of immune mechanisms as either innate or an adaptive needs to be adjusted and many shades of gray need to be included.
Collapse
|
19
|
Guillot A, Tacke F. Liver Macrophages: Old Dogmas and New Insights. Hepatol Commun 2019; 3:730-743. [PMID: 31168508 PMCID: PMC6545867 DOI: 10.1002/hep4.1356] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a hallmark of virtually all liver diseases, such as liver cancer, fibrosis, nonalcoholic steatohepatitis, alcoholic liver disease, and cholangiopathies. Liver macrophages have been thoroughly studied in human disease and mouse models, unravelling that the hepatic mononuclear phagocyte system is more versatile and complex than previously believed. Liver macrophages mainly consist of liver‐resident phagocytes, or Kupffer cells (KCs), and bone marrow‐derived recruited monocytes. Although both cell populations in the liver demonstrate principal functions of macrophages, such as phagocytosis, danger signal recognition, cytokine release, antigen processing, and the ability to orchestrate immune responses, KCs and recruited monocytes retain characteristic ontogeny markers and remain remarkably distinct on several functional aspects. While KCs dominate the hepatic macrophage pool in homeostasis (“sentinel function”), monocyte‐derived macrophages prevail in acute or chronic injury (“emergency response team”), making them an interesting target for novel therapeutic approaches in liver disease. In addition, recent data acquired by unbiased large‐scale techniques, such as single‐cell RNA sequencing, unraveled a previously unrecognized complexity of human and murine macrophage polarization abilities, far beyond the old dogma of inflammatory (M1) and anti‐inflammatory (M2) macrophages. Despite tremendous progress, numerous challenges remain in deciphering the full spectrum of macrophage activation and its implication in either promoting liver disease progression or repairing injured liver tissue. Being aware of such heterogeneity in cell origin and function is of crucial importance when studying liver diseases, developing novel therapeutic interventions, defining macrophage‐based prognostic biomarkers, or designing clinical trials. Growing knowledge in gene expression modulation and emerging technologies in drug delivery may soon allow shaping macrophage populations toward orchestrating beneficial rather than detrimental inflammatory responses.
Collapse
Affiliation(s)
- Adrien Guillot
- Laboratory of Liver Diseases National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Bethesda MD.,Department of Hepatology/Gastroenterology Charité University Medical Center Berlin Germany
| | - Frank Tacke
- Department of Hepatology/Gastroenterology Charité University Medical Center Berlin Germany
| |
Collapse
|