1
|
Pacella I, Pinzon Grimaldos A, Rossi A, Tucci G, Zagaglioni M, Potenza E, Pinna V, Rotella I, Cammarata I, Cancila V, Belmonte B, Tripodo C, Pietropaolo G, Di Censo C, Sciumè G, Licursi V, Peruzzi G, Antonucci Y, Campello S, Guerrieri F, Iebba V, Prota R, Di Chiara M, Terrin G, De Peppo V, Grazi GL, Barnaba V, Piconese S. Iron capture through CD71 drives perinatal and tumor-associated Treg expansion. JCI Insight 2024; 9:e167967. [PMID: 38954474 PMCID: PMC11383606 DOI: 10.1172/jci.insight.167967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Besides suppressing immune responses, regulatory T cells (Tregs) maintain tissue homeostasis and control systemic metabolism. Whether iron is involved in Treg-mediated tolerance is completely unknown. Here, we showed that the transferrin receptor CD71 was upregulated on activated Tregs infiltrating human liver cancer. Mice with a Treg-restricted CD71 deficiency spontaneously developed a scurfy-like disease, caused by impaired perinatal Treg expansion. CD71-null Tregs displayed decreased proliferation and tissue-Treg signature loss. In perinatal life, CD71 deficiency in Tregs triggered hepatic iron overload response, characterized by increased hepcidin transcription and iron accumulation in macrophages. Lower bacterial diversity, and reduction of beneficial species, were detected in the fecal microbiota of CD71 conditional knockout neonates. Our findings indicate that CD71-mediated iron absorption is required for Treg perinatal expansion and is related to systemic iron homeostasis and bacterial gut colonization. Therefore, we hypothesize that Tregs establish nutritional tolerance through competition for iron during bacterial colonization after birth.
Collapse
Affiliation(s)
- Ilenia Pacella
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Alessandra Rossi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Gloria Tucci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Zagaglioni
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Potenza
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Pinna
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ivano Rotella
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ilenia Cammarata
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | | | - Chiara Di Censo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Sapienza University of Rome, Rome, Italy
| | - Giovanna Peruzzi
- Centre for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Ylenia Antonucci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Guerrieri
- Cancer Research Centre of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, Lyon, France
| | - Valerio Iebba
- Department of Medical, Surgical, and Health Sciences, University of Trieste, Trieste, Italy
| | - Rita Prota
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Maria Di Chiara
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Gianluca Terrin
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Valerio De Peppo
- Hepatobiliary and Pancreatic Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gian Luca Grazi
- Hepatobiliary and Pancreatic Surgery, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Barnaba
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Piconese
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
- Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
2
|
Kajitani Y, Miyazawa T, Inoue T, Kajitani N, Fujita M, Takeichi Y, Miyachi Y, Sakamoto R, Ogawa Y. High frequency of germline recombination in Nestin-Cre transgenic mice crossed with Glucagon-like peptide 1 receptor floxed mice. PLoS One 2023; 18:e0296006. [PMID: 38117787 PMCID: PMC10732384 DOI: 10.1371/journal.pone.0296006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023] Open
Abstract
The Cre-loxP strategy for tissue-specific gene inactivation has become a widely employed tool in several research studies. Conversely, inadequate breeding and genotyping without considering the potential for non-specific Cre-recombinase expression may lead to misinterpretations of results. Nestin-Cre transgenic mice, widely used for the selective deletion of genes in neurons, have been observed to have an incidence of Cre-line germline recombination. In this study, we attempted to generate neuron-specific Glucagon-like peptide 1 receptor (Glp1r) knock-out mice by crossing mice harboring the Nestin-Cre transgene with mice harboring the Glp1r gene modified with loxP insertion, in order to elucidate the role of Glp1r signaling in the nervous system. Surprisingly, during this breeding process, we discovered that the null allele emerged in the offspring irrespective of the presence or absence of the Nestin-Cre transgene, with a high probability of occurrence (93.6%). To elucidate the cause of this null allele, we conducted breeding experiments between mice carrying the heterozygous Glp1r null allele but lacking the Nestin-Cre transgene. We confirmed that the null allele was inherited by the offspring independently of the Nestin-Cre transgene. Furthermore, we assessed the gene expression, protein expression, and phenotype of mice carrying the homozygous Glp1r null allele generated from the aforementioned breeding, thereby confirming that the null allele indeed caused a global knock-out of Glp1r. These findings suggest that the null allele in the NestinCre-Glp1r floxed breeding arose due to germline recombination. Moreover, we demonstrated the possibility that germline recombination may occur not only during the spermatogenesis at testis but also during epididymal sperm maturation. The striking frequency of germline recombination in the Nestin-Cre driver underscores the necessity for caution when implementing precise breeding strategies and employing suitable genotyping methods.
Collapse
Affiliation(s)
- Yusuke Kajitani
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Miyazawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoaki Inoue
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nao Kajitani
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamichi Fujita
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukina Takeichi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasutaka Miyachi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Wu SR, Zoghbi HY. The Atoh1-Cre Knock-In Allele Ectopically Labels a Subpopulation of Amacrine Cells and Bipolar Cells in Mouse Retina. eNeuro 2023; 10:ENEURO.0307-23.2023. [PMID: 37923392 PMCID: PMC10626521 DOI: 10.1523/eneuro.0307-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
The retina has diverse neuronal cell types derived from a common pool of retinal progenitors. Many molecular drivers, mostly transcription factors, have been identified to promote different cell fates. In Drosophila, atonal is required for specifying photoreceptors. In mice, there are two closely related atonal homologs, Atoh1 and Atoh7 While Atoh7 is known to promote the genesis of retinal ganglion cells, there is no study on the function of Atoh1 in retinal development. Here, we crossed Atoh1Cre/+ mice to mice carrying a Cre-dependent TdTomato reporter to track potential Atoh1-lineage neurons in retinas. We characterized a heterogeneous group of TdTomato+ retinal neurons that were detected at the postnatal stage, including glutamatergic amacrine cells, AII amacrine cells, and BC3b bipolar cells. Unexpectedly, we did not observe TdTomato+ retinal neurons in the mice with an Atoh1-FlpO knock-in allele and a Flp-dependent TdTomato reporter, suggesting Atoh1 is not expressed in the mouse retina. Consistent with these data, conditional removal of Atoh1 in the retina did not cause any observable phenotypes. Importantly, we did not detect Atoh1 expression in the retina at multiple ages using mice with Atoh1-GFP knock-in allele. Therefore, we conclude that Atoh1Cre/+ mice have ectopic Cre expression in the retina and that Atoh1 is not required for retinal development.
Collapse
Affiliation(s)
- Sih-Rong Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Huda Y Zoghbi
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
4
|
Iida K, Suga K, Suzuki K, Kurihara S, Yabe Y, Kageyama T, Meguro K, Tanaka S, Iwata A, Suto A, Nakajima H. A role of Achaete-scute complex homolog 2 in T follicular regulatory cell development. Biochem Biophys Res Commun 2023; 664:9-19. [PMID: 37130460 DOI: 10.1016/j.bbrc.2023.04.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
T follicular regulatory (Tfr) cells, a subset of CD4+ Foxp3+ regulatory T (Treg) cells, locate to the lymphoid follicle and germinal center (GC) and regulate antibody responses. Tfr cells express the functional molecules of follicular helper T (Tfh) cells, including CXCR5 and Bcl6. CD25- mature Tfr cells differentiate from CD25+ Treg cells through CD25+ immature Tfr cells. Others and we have shown that Achaete-scute complex homolog 2 (Ascl2) plays a role in Tfh cell development; however, the role of Ascl2 in the development of Tfr cells remains unclear. Here, we found that Ascl2 was highly and preferentially expressed in CD25+ Tfr cells and CD25- Tfr cells, and that the differentiation from CD25+ Tfr cells to CD25- Tfr cells was impaired by the absence of Ascl2. Furthermore, the forced Ascl2 expression in Treg cells downregulated CD25 expression and suppressed IL-2-induced phosphorylation of STAT5, which is known to suppress CD25- Tfr cell development. Finally, we found that the downregulation of CD25 by Ascl2 in Treg cells is independent of Bach2, which also regulates CD25 downregulation in CD25+ Tfr cells. These results suggest that Ascl2 plays a vital role in developing Tfr cells, possibly by downregulating CD25 expression in a Bach2-independent mechanism.
Collapse
Affiliation(s)
- Kazuma Iida
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Kensuke Suga
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Shunjiro Kurihara
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Yoko Yabe
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Kazuyuki Meguro
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan; Chiba University Synergy Institute for Futuristic Mucosal Vaccine Research and Development (cSIMVa), Chiba, Japan.
| |
Collapse
|
5
|
Liu Z, Hu X, Liang Y, Yu J, Li H, Shokhirev MN, Zheng Y. Glucocorticoid signaling and regulatory T cells cooperate to maintain the hair-follicle stem-cell niche. Nat Immunol 2022; 23:1086-1097. [PMID: 35739197 PMCID: PMC9283297 DOI: 10.1038/s41590-022-01244-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/17/2022] [Indexed: 01/03/2023]
Abstract
Maintenance of tissue homeostasis is dependent on the communication between stem cells and supporting cells in the same niche. Regulatory T cells (Treg cells) are emerging as a critical component of the stem-cell niche for supporting their differentiation. How Treg cells sense dynamic signals in this microenvironment and communicate with stem cells is mostly unknown. In the present study, by using hair follicles (HFs) to study Treg cell-stem cell crosstalk, we show an unrecognized function of the steroid hormone glucocorticoid in instructing skin-resident Treg cells to facilitate HF stem-cell (HFSC) activation and HF regeneration. Ablation of the glucocorticoid receptor (GR) in Treg cells blocks hair regeneration without affecting immune homeostasis. Mechanistically, GR and Foxp3 cooperate in Treg cells to induce transforming growth factor β3 (TGF-β3), which activates Smad2/3 in HFSCs and facilitates HFSC proliferation. The present study identifies crosstalk between Treg cells and HFSCs mediated by the GR-TGF-β3 axis, highlighting a possible means of manipulating Treg cells to support tissue regeneration.
Collapse
Affiliation(s)
- Zhi Liu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xianting Hu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Otolaryngology Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yuqiong Liang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingting Yu
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Huabin Li
- Department of Otolaryngology Head and Neck Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ye Zheng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
6
|
Andrews LP, Vignali KM, Szymczak-Workman AL, Burton AR, Brunazzi EA, Ngiow SF, Harusato A, Sharpe AH, Wherry EJ, Taniuchi I, Workman CJ, Vignali DAA. A Cre-driven allele-conditioning line to interrogate CD4 + conventional T cells. Immunity 2021; 54:2209-2217.e6. [PMID: 34551314 DOI: 10.1016/j.immuni.2021.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/04/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023]
Abstract
CD4+ T cells share common developmental pathways with CD8+ T cells, and upon maturation, CD4+ T conventional T (Tconv) cells lack phenotypic markers that distinguish these cells from FoxP3+ T regulatory cells. We developed a tamoxifen-inducible ThPOKCreERT2.hCD2 line with Frt sites inserted on either side of the CreERT2-hCD2 cassette, and a Foxp3Ametrine-FlpO strain, expressing Ametrine and FlpO in Foxp3+ cells. Breeding these mice resulted in a CD4conviCreERT2-hCD2 line that allows for the specific manipulation of a gene in CD4+ Tconv cells. As FlpO removes the CreERT2-hCD2 cassette, CD4+ Treg cells are spared from Cre activity, which we refer to as allele conditioning. Comparison with an E8IiCreERT2.GFP mouse that enables inducible targeting of CD8+ T cells, and deletion of two inhibitory receptors, PD-1 and LAG-3, in a melanoma model, support the fidelity of these lines. These engineered mouse strains present a resource for the temporal manipulation of genes in CD4+ T cells and CD4+ Tconv cells.
Collapse
Affiliation(s)
- Lawrence P Andrews
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Kate M Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | | | - Amanda R Burton
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erin A Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Shin Foong Ngiow
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akihito Harusato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ichiro Taniuchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA.
| |
Collapse
|
7
|
Jairaman A, Othy S, Dynes JL, Yeromin AV, Zavala A, Greenberg ML, Nourse JL, Holt JR, Cahalan SM, Marangoni F, Parker I, Pathak MM, Cahalan MD. Piezo1 channels restrain regulatory T cells but are dispensable for effector CD4 + T cell responses. SCIENCE ADVANCES 2021; 7:7/28/eabg5859. [PMID: 34233878 PMCID: PMC8262815 DOI: 10.1126/sciadv.abg5859] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/24/2021] [Indexed: 05/03/2023]
Abstract
T lymphocytes encounter complex mechanical cues during an immune response. The mechanosensitive ion channel, Piezo1, drives inflammatory responses to bacterial infections, wound healing, and cancer; however, its role in helper T cell function remains unclear. In an animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we found that mice with genetic deletion of Piezo1 in T cells showed diminished disease severity. Unexpectedly, Piezo1 was not essential for lymph node homing, interstitial motility, Ca2+ signaling, T cell proliferation, or differentiation into proinflammatory T helper 1 (TH1) and TH17 subsets. However, Piezo1 deletion in T cells resulted in enhanced transforming growth factor-β (TGFβ) signaling and an expanded pool of regulatory T (Treg) cells. Moreover, mice with deletion of Piezo1 specifically in Treg cells showed significant attenuation of EAE. Our results indicate that Piezo1 selectively restrains Treg cells, without influencing activation events or effector T cell functions.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Joseph L Dynes
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Andriy V Yeromin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Angel Zavala
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Milton L Greenberg
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Jamison L Nourse
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Jesse R Holt
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| | - Stuart M Cahalan
- Howard Hughes Medical Institute, Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
- Vertex Pharmaceuticals, 3215 Merryfield Row, San Diego, CA 92121, USA
| | - Francesco Marangoni
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
| | - Ian Parker
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Medha M Pathak
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
- Center for Complex Systems Biology, University of California, Irvine, CA 92697, USA
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4561, USA.
- Institute for Immunology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Lindner L, Cayrou P, Rosahl TW, Zhou HH, Birling MC, Herault Y, Pavlovic G. Droplet digital PCR or quantitative PCR for in-depth genomic and functional validation of genetically altered rodents. Methods 2021; 191:107-119. [PMID: 33838271 DOI: 10.1016/j.ymeth.2021.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Gene targeting and additive (random) transgenesis have proven to be powerful technologies with which to decipher the mammalian genome. With the advent of CRISPR/Cas9 genome editing, the ability to inactivate or modify the function of a gene has become even more accessible. However, the impact of each generated modification may be different from what was initially desired. Minimal validation of mutant alleles from genetically altered (GA) rodents remains essential to guarantee the interpretation of experimental results. The protocol described here combines design strategies for genomic and functional validation of genetically modified alleles with droplet digital PCR (ddPCR) or quantitative PCR (qPCR) for target DNA or mRNA quantification. In-depth analysis of the results obtained with GA models through the analysis of target DNA and mRNA quantification is also provided, to evaluate which pitfalls can be detected using these two methods, and we propose recommendations for the characterization of different type of mutant allele (knock-out, knock-in, conditional knock-out, FLEx, IKMC model or transgenic). Our results also highlight the possibility that mRNA expression of any mutated allele can be different from what might be expected in theory or according to common assumptions. For example, mRNA analyses on knock-out lines showed that nonsense-mediated mRNA decay is generally not achieved with a critical-exon approach. Likewise, comparison of multiple conditional lines crossed with the same CreERT2 deleter showed that the inactivation outcome was very different for each conditional model. DNA quantification by ddPCR of G0 to G2 generations of transgenic rodents generated by pronuclear injection showed an unexpected variability, demonstrating that G1 generation rodents cannot be considered as established lines.
Collapse
Affiliation(s)
- Loic Lindner
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Pauline Cayrou
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Thomas W Rosahl
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Heather H Zhou
- Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Marie-Christine Birling
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Yann Herault
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Guillaume Pavlovic
- PHENOMIN-Institut Clinique de la Souris, CELPHEDIA, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France.
| |
Collapse
|
9
|
Wu D, Wong CK, Han JM, Orban PC, Huang Q, Gillies J, Mojibian M, Gibson WT, Levings MK. T reg-specific insulin receptor deletion prevents diet-induced and age-associated metabolic syndrome. J Exp Med 2021; 217:151826. [PMID: 32478834 PMCID: PMC7398165 DOI: 10.1084/jem.20191542] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/02/2019] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue (AT) regulatory T cells (T regs) control inflammation and metabolism. Diet-induced obesity causes hyperinsulinemia and diminishes visceral AT (VAT) T reg number and function, but whether these two phenomena were mechanistically linked was unknown. Using a T reg–specific insulin receptor (Insr) deletion model, we found that diet-induced T reg dysfunction is driven by T reg–intrinsic insulin signaling. Compared with Foxp3cre mice, after 13 wk of high-fat diet, Foxp3creInsrfl/fl mice exhibited improved glucose tolerance and insulin sensitivity, effects associated with lower AT inflammation and increased numbers of ST2+ T regs in brown AT, but not VAT. Similarly, Foxp3creInsrfl/fl mice were protected from the metabolic effects of aging, but surprisingly had reduced VAT T regs and increased VAT inflammation compared with Foxp3cre mice. Thus, in both diet- and aging-associated hyperinsulinemia, excessive Insr signaling in T regs leads to undesirable metabolic outcomes. Ablation of Insr signaling in T regs represents a novel approach to mitigate the detrimental effects of hyperinsulinemia on immunoregulation of metabolic syndrome.
Collapse
Affiliation(s)
- Dan Wu
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Chi Kin Wong
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jonathan M Han
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Paul C Orban
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Qing Huang
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jana Gillies
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - Majid Mojibian
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada
| | - William T Gibson
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Perryman M, Milling S. A retrospective view of 2020: A unique year for Immunology. Immunology 2020; 162:1-2. [PMID: 33305861 DOI: 10.1111/imm.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
2020 was a year unlike any other for Immunology. Through the SARS-CoV-2 pandemic, with fantastic support from the global immunology community, we worked together to reach new heights. Here, we look back at some of the highlights for Immunology in a challenging and memorable year.
Collapse
Affiliation(s)
| | - Simon Milling
- Institute of Immunity, Infection, and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
Luchicchi A, Pattij T, Viaña JNM, de Kloet S, Marchant N. Tracing goes viral: Viruses that introduce expression of fluorescent proteins in chemically-specific neurons. J Neurosci Methods 2020; 348:109004. [PMID: 33242528 DOI: 10.1016/j.jneumeth.2020.109004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022]
Abstract
Over the last century, there has been great progress in understanding how the brain works. In particular, the last two decades have been crucial in gaining more awareness over the complex functioning of neurotransmitter systems. The use of viral vectors in neuroscience has been pivotal for such development. Exploiting the properties of viral particles, modifying them according to the research needs, and making them target chemically-specific neurons, techniques such as optogenetics and chemogenetics have been developed, which could lead to a giant step toward gene therapy for brain disorders. In this review, we aim to provide an overview of some of the most widely used viral techniques in neuroscience. We will discuss advantages and disadvantages of these methods. In particular, attention is dedicated to the pivotal role played by the introduction of adeno-associated virus and the retrograde tracer canine-associated-2 Cre virus in order to achieve optimal visualization, and interrogation, of chemically-specific neuronal populations and their projections.
Collapse
Affiliation(s)
- Antonio Luchicchi
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands.
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands
| | - John Noel M Viaña
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, de Boelelaan 1085, 1081HZ, Amsterdam, the Netherlands; Australian National Centre for the Public Awareness of Science, ANU College of Science, The Australian National University, Linnaeus Way, Acton, ACT 2601, Australia
| | - Sybren de Kloet
- Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, de Boelelaan 1085, 1081HZ, Amsterdam, the Netherlands
| | - Nathan Marchant
- Department of Anatomy and Neurosciences, Amsterdam UMC, VU University Medical Center, de Boelelaan 1108, 1081HZ, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Stéphan P, Lautraite R, Voisin A, Grinberg-Bleyer Y. Transcriptional Control of Regulatory T Cells in Cancer: Toward Therapeutic Targeting? Cancers (Basel) 2020; 12:E3194. [PMID: 33143070 PMCID: PMC7693300 DOI: 10.3390/cancers12113194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Extensive research in the past decades has highlighted the tight link between immunity and cancer, leading to the development of immunotherapies that have revolutionized cancer care. However, only a fraction of patients display durable responses to these treatments, and a deeper understanding of the cellular and mechanisms orchestrating immune responses to tumors is mandatory for the discovery of novel therapeutic targets. Among the most scrutinized immune cells, Forkhead Box Protein P3 (Foxp3)+ Regulatory T cells (Treg cells) are central inhibitors of protective anti-tumor immunity. These tumor-promoting functions render Treg cells attractive immunotherapy targets, and multiple strategies are being developed to inhibit their recruitment, survival, and function in the tumor microenvironment. In this context, it is critical to decipher the complex and multi-layered molecular mechanisms that shape and stabilize the Treg cell transcriptome. Here, we provide a global view of the transcription factors, and their upstream signaling pathways, involved in the programming of Treg cell homeostasis and functions in cancer. We also evaluate the feasibility and safety of novel therapeutic approaches aiming at targeting specific transcriptional regulators.
Collapse
Affiliation(s)
| | | | | | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Centre Léon Bérard, 69008 Lyon, France; (P.S.); (R.L.); (A.V.)
| |
Collapse
|
13
|
Grant FM, Yang J, Nasrallah R, Clarke J, Sadiyah F, Whiteside SK, Imianowski CJ, Kuo P, Vardaka P, Todorov T, Zandhuis N, Patrascan I, Tough DF, Kometani K, Eil R, Kurosaki T, Okkenhaug K, Roychoudhuri R. BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression. J Exp Med 2020; 217:e20190711. [PMID: 32515782 PMCID: PMC7478731 DOI: 10.1084/jem.20190711] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 12/19/2019] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Regulatory T (Treg) cell populations are composed of functionally quiescent resting Treg (rTreg) cells which differentiate into activated Treg (aTreg) cells upon antigen stimulation. How rTreg cells remain quiescent despite chronic exposure to cognate self- and foreign antigens is unclear. The transcription factor BACH2 is critical for early Treg lineage specification, but its function following lineage commitment is unresolved. Here, we show that BACH2 is repurposed following Treg lineage commitment and promotes the quiescence and long-term maintenance of rTreg cells. Bach2 is highly expressed in rTreg cells but is down-regulated in aTreg cells and during inflammation. In rTreg cells, BACH2 binds to enhancers of genes involved in aTreg differentiation and represses their TCR-driven induction by competing with AP-1 factors for DNA binding. This function promotes rTreg cell quiescence and long-term maintenance and is required for immune homeostasis and durable immunosuppression in cancer. Thus, BACH2 supports a "division of labor" between quiescent rTreg cells and their activated progeny in Treg maintenance and function, respectively.
Collapse
Affiliation(s)
- Francis M. Grant
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Jie Yang
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Rabab Nasrallah
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - James Clarke
- La Jolla Institute for Allergy and Immunology, La Jolla, CA
- Cancer Research UK & National Institute for Health Research Experimental Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Firas Sadiyah
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Sarah K. Whiteside
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Charlotte J. Imianowski
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Paula Kuo
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Panagiota Vardaka
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Tihomir Todorov
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Nordin Zandhuis
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Ilinca Patrascan
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David F. Tough
- Epigenetics DPU, Immunoinflammation Therapeutic Area Unit, GSK Medicines Research Centre, Stevenage, UK
| | - Kohei Kometani
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Robert Eil
- Oregon Health and Science University School of Medicine, Portland, OR
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Andrusaite A, Milling S. Should we be more cre-tical? A cautionary tale of recombination. Immunology 2020; 159:131-132. [PMID: 31926027 DOI: 10.1111/imm.13170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The cre-loxP system has been revolutionary in the field of immunology. The technology enables genetic deletion in mice with unprecedented precision. It is therefore now widely used to investigate gene functions in animal models of disease, and in fundamental studies of the immune response. This widespread adoption of cre-loxP technology has allowed a thorough investigation of its strengths and weaknesses. Here we highlight an important paper which not only describes potential problems with the commonly-used screening procedures used when identifying offspring of the correct genotype, but also describes how this screening can be improved to ensure that the right animals are produced.
Collapse
Affiliation(s)
- Anna Andrusaite
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Simon Milling
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|