1
|
Tang Y, Wei J, Ge X, Yu C, Lu W, Qian Y, Yang H, Fu D, Fang Y, Zhou X, Wang Z, Xiao Q, Ding K. Intratumoral injection of interferon gamma promotes the efficacy of anti-PD1 treatment in colorectal cancer. Cancer Lett 2024; 588:216798. [PMID: 38467181 DOI: 10.1016/j.canlet.2024.216798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Immune checkpoint inhibitors (ICIs) offer new options for the treatment of patients with solid cancers worldwide. The majority of colorectal cancers (CRC) are proficient in mismatch-repair (pMMR) genes, harboring fewer tumor antigens and are insensitive to ICIs. These tumors are often found to be immune-deserted. We hypothesized that forcing immune cell infiltration into the tumor microenvironment followed by immune ignition by PD1 blockade may initiate a positive immune cycle that can boost antitumor immunity. Bioinformatics using a public database suggested that IFNγ was a key indicator of immune status and prognosis in CRC. Intratumoral administration of IFNγ increased immune cells infiltration into the tumor, but induced PD-L1 expression. A combined treatment strategy using IFNγ and anti-PD-1 antibody significantly increased T cell killing of tumor cells in vitro and showed synergistic inhibition of tumor growth in a mouse model of CRC. CyTOF found drastic changes in the immune microenvironment upon combined immunotherapy. Treatment with IFNγ and anti-PD1 antibody in CT26 tumors significantly increased infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). IFNγ had a more pronounced effect in decreasing intratumoral M2-like macrophages, while PD1 blockade increased the population of CD8+Ly6C + T cells in the tumor microenvironment, creating a more pro-inflammatory microenvironment. Additionally, PD1 induced increased expression of lymphocyte activating 3 (LAG3) in a significant fraction of CD8+ T cells and Treg cells, indicating potential drug resistance and feedback mechanisms. In conclusion, our work provides preclinical data for the Combined immunotherapy of CRC using intratumoral delivery of IFNγ and systemic anti-PD1 monoclonoal antibody.
Collapse
Affiliation(s)
- Yang Tang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Jingsun Wei
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Xiaoxu Ge
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Chengxuan Yu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Wei Lu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Yucheng Qian
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Hang Yang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Dongliang Fu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Yimin Fang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Xinyi Zhou
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Zhanhuai Wang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for CANCER, China; Cancer Center of Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, China.
| |
Collapse
|
2
|
Manoutcharian K, Gevorkian G. Are we getting closer to a successful neoantigen cancer vaccine? Mol Aspects Med 2024; 96:101254. [PMID: 38354548 DOI: 10.1016/j.mam.2024.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Although significant advances in immunotherapy have revolutionized the treatment of many cancer types over the past decade, the field of vaccine therapy, an important component of cancer immunotherapy, despite decades-long intense efforts, is still transmitting signals of promises and awaiting strong data on efficacy to proceed with regulatory approval. The field of cancer vaccines faces standard challenges, such as tumor-induced immunosuppression, immune response in inhibitory tumor microenvironment (TME), intratumor heterogeneity (ITH), permanently evolving cancer mutational landscape leading to neoantigens, and less known obstacles: neoantigen gain/loss upon immunotherapy, the timing and speed of appearance of neoantigens and responding T cell clonotypes and possible involvement of immune interference/heterologous immunity, in the complex interplay between evolving tumor epitopes and the immune system. In this review, we discuss some key issues related to challenges hampering the development of cancer vaccines, along with the current approaches focusing on neoantigens. We summarize currently well-known ideas/rationales, thus revealing the need for alternative vaccine approaches. Such a discussion should stimulate vaccine researchers to apply out-of-box, unconventional thinking in search of new avenues to deal with critical, often yet unaddressed challenges on the road to a new generation of therapeutics and vaccines.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP, 04510, Mexico.
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), CDMX, Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP, 04510, Mexico.
| |
Collapse
|
3
|
Sueangoen N, Grove H, Chuangchot N, Prasopsiri J, Rungrotmongkol T, Sanachai K, Darai N, Thongchot S, Suriyaphol P, Sa-Nguanraksa D, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Stimulating T cell responses against patient-derived breast cancer cells with neoantigen peptide-loaded peripheral blood mononuclear cells. Cancer Immunol Immunother 2024; 73:43. [PMID: 38349410 PMCID: PMC10864427 DOI: 10.1007/s00262-024-03627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024]
Abstract
Breast cancer stands as a formidable global health challenge for women. While neoantigens exhibit efficacy in activating T cells specific to cancer and instigating anti-tumor immune responses, the accuracy of neoantigen prediction remains suboptimal. In this study, we identified neoantigens from the patient-derived breast cancer cells, PC-B-142CA and PC-B-148CA cells, utilizing whole-genome and RNA sequencing. The pVAC-Seq pipeline was employed, with minor modification incorporating criteria (1) binding affinity of mutant (MT) peptide with HLA (IC50 MT) ≤ 500 nm in 3 of 5 algorithms and (2) IC50 wild type (WT)/MT > 1. Sequencing results unveiled 2513 and 3490 somatic mutations, and 646 and 652 non-synonymous mutations in PC-B-142CA and PC-B-148CA, respectively. We selected the top 3 neoantigens to perform molecular dynamic simulation and synthesized 9-12 amino acid neoantigen peptides, which were then pulsed onto healthy donor peripheral blood mononuclear cells (PBMCs). Results demonstrated that T cells activated by ADGRL1E274K, PARP1E619K, and SEC14L2R43Q peptides identified from PC-B-142CA exhibited significantly increased production of interferon-gamma (IFN-γ), while PARP1E619K and SEC14L2R43Q peptides induced the expression of CD107a on T cells. The % tumor cell lysis was notably enhanced by T cells activated with MT peptides across all three healthy donors. Moreover, ALKBH6V83M and GAAI823T peptides from PC-B-148CA remarkably stimulated IFN-γ- and CD107a-positive T cells, displaying high cell-killing activity against target cancer cells. In summary, our findings underscore the successful identification of neoantigens with anti-tumor T cell functions and highlight the potential of personalized neoantigens as a promising avenue for breast cancer treatment.
Collapse
Grants
- R016341038 The Research and Innovation Grant, the National Research Council of Thailand, Ministry of Higher Education, Science, Research and Innovation
- R016341038 The Research and Innovation Grant, the National Research Council of Thailand, Ministry of Higher Education, Science, Research and Innovation
- R016334002 Siriraj Research Grant, Faculty of Medicine Siriraj Hospital, Mahidol University
- R016334002 Siriraj Research Grant, Faculty of Medicine Siriraj Hospital, Mahidol University
- Mahidol University
Collapse
Affiliation(s)
- Natthaporn Sueangoen
- Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Harald Grove
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nisa Chuangchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jaturawitt Prasopsiri
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Nitchakan Darai
- ASEAN Institute for Health Development, Mahidol University, Nakon Pathom, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prapat Suriyaphol
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Doonyapat Sa-Nguanraksa
- Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Chang C, Guo W, Yu X, Guo C, Zhou N, Guo X, Huang RL, Li Q, Zhu Y. Engineered M13 phage as a novel therapeutic bionanomaterial for clinical applications: From tissue regeneration to cancer therapy. Mater Today Bio 2023; 20:100612. [PMID: 37063776 PMCID: PMC10102448 DOI: 10.1016/j.mtbio.2023.100612] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Bacteriophages (phages) are nanostructured viruses with highly selective antibacterial properties that have gained attention beyond eliminating bacteria. Specifically, M13 phages are filamentous phages that have recently been studied in various aspects of nanomedicine due to their biological advantages and more compliant engineering capabilities over other phages. Having nanofiber-like morphology, M13 phages can reach varied target sites and self-assemble into multidimensional scaffolds in a relatively safe and stable way. In addition, genetic modification of the coat proteins enables specific display of peptides and antibodies on the phages, allowing for precise and individualized medicine. M13 phages have also been subjected to novel engineering approaches, including phage-based bionanomaterial engineering and phage-directed nanomaterial combinations that enhance the bionanomaterial properties of M13 phages. In view of these features, researchers have been able to utilize M13 phages for therapeutic applications such as drug delivery, biodetection, tissue regeneration, and targeted cancer therapy. In particular, M13 phages have been utilized as a novel bionanomaterial for precisely mimicking natural tissue environment in order to overcome the shortage in tissue and organ donors. Hence, in this review, we address the recent studies and advances of using M13 phages in the field of nanomedicine as therapeutic agents based upon their characteristics as novel bionanomaterial with biomolecules displayed. This paper also emphasizes the novel engineering approach that enhances M13 phage's bionanomaterial capabilities. Current limitations and future approaches are also discussed to provide insight in further progress for M13 phage-based clinical applications.
Collapse
Affiliation(s)
- Cheng Chang
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Wennan Guo
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Xinbo Yu
- Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China
| | - Chaoyi Guo
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Nan Zhou
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Xiaokui Guo
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Corresponding author.
| | - Qingtian Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Corresponding author.
| | - Yongzhang Zhu
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 200025, China
- Corresponding author.
| |
Collapse
|
5
|
Martínez-Cortés F, Domínguez-Romero AN, Pérez-Hernández EG, Orozco-Delgado DL, Avila S, Odales J, Guzman Valle J, Gevorkian G, Manoutcharian K. Tumor antigen-unbiased variable epitope library contains mimotopes with antitumor effect in a mouse model of breast cancer. Mol Immunol 2023; 157:91-100. [PMID: 37002957 DOI: 10.1016/j.molimm.2023.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Breast cancer is one of the leading causes of death that affects the female population worldwide. Despite advances in treatments and a greater understanding of the disease, there are still difficulties in successfully treating patients. Currently, the main challenge in the field of cancer vaccines is antigenic variability which can reduce antigen-specific T- cell response efficacy. The search for and validation of immunogenic antigen targets increased dramatically over the past few decades and, with the advent of modern sequencing techniques, permitting the fast and accurate identification of the neoantigen landscape of tumor cells, will undoubtedly continue to grow exponentially for years to come. We have previously implemented Variable Epitope Libraries (VEL) as an unconventional vaccine strategy in preclinical models and for identifying and selecting mutant epitope variants. Here, we used an alanine-based sequence to generate a 9-mer VEL-like combinatorial mimotope library G3d as a new class of vaccine immunogen. An in silico analysis of the 16,000 G3d-derived sequences revealed potential MHC-I binders and immunogenic mimotopes. We demonstrated the antitumor effect of treatment with G3d in the 4T1 murine model of breast cancer. Moreover, two different T cell proliferation screening assays against a panel of randomly selected G3d-derived mimotopes allowed the isolation of both stimulatory and inhibitory mimotopes showing differential therapeutic vaccine efficacy. Thus, the mimotope library is a promising vaccine immunogen and a reliable source for isolating molecular cancer vaccine components.
Collapse
Affiliation(s)
- Fernando Martínez-Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Allan Noé Domínguez-Romero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Eréndira G Pérez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Diana L Orozco-Delgado
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Sandra Avila
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Josué Odales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Jesus Guzman Valle
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, AP 70228, México City 04510, Mexico.
| |
Collapse
|
6
|
Odales J, Servín-Blanco R, Martínez-Cortés F, Guzman Valle J, Domínguez-Romero AN, Gevorkian G, Manoutcharian K. Antitumor efficacy of MUC1-derived variable epitope library treatments in a mouse model of breast cancer. Vaccine 2022; 40:4796-4805. [PMID: 35788294 DOI: 10.1016/j.vaccine.2022.06.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/13/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022]
Abstract
The identification of novel targets for cancer immunotherapy and the development of new vaccine immunogens are subjects of permanent interest. MUC1 is an overexpressed antigen found in most tumors, and its overexpression correlates with poor prognosis. Many attempts to direct the immune response against MUC1 in tumor cells have failed, including several clinical trials. We have previously developed an innovative Variable Epitope Library (VEL) vaccine platform that carries massively substituted mutant variants of defined epitopes or epitope regions as an alternative to using wild-type peptide sequences-based immunogens. Here, two murine MUC1-derived epitopes equivalent to the previously tested in cancer immunotherapy human MUC1 regions were used to generate VELs. We observed that vaccination with the 23L VEL immunogens, encompassing the entire signal peptide region of MUC1, reduces the tumor area compared to the wild-type sequence treatment. Contrastingly, vaccination with the MUC1 signal peptide-derived predicted CD8++ T cell epitope-based VEL, 9MUC1spL, showed similar tumor area reduction as the wild-type treatment; however, a decrease in lung metastasis after 9MUC1spL treatment was observed. In addition, vaccination induced a large pool of CD8+ T cells which recognized most variant epitopes from 9MUC1spL. Also, we generated MUC1 variable number tandem repeat (VNTR)-based VELs that reduced the metastatic burden when dendritic cells and M13 recombinant bacteriophages were used as vaccine carriers. Collectively, our data demonstrate the immunogenic and antitumor properties of MUC1 signal peptide- and VNTR-derived VEL immunogens.
Collapse
Affiliation(s)
- Josué Odales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF 04510, MÉXICO
| | - Rodolfo Servín-Blanco
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF 04510, MÉXICO
| | - Fernando Martínez-Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF 04510, MÉXICO
| | - Jesus Guzman Valle
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF 04510, MÉXICO
| | - Allan Noé Domínguez-Romero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF 04510, MÉXICO
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF 04510, MÉXICO
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF 04510, MÉXICO.
| |
Collapse
|
7
|
Neoantigen Cancer Vaccines: Generation, Optimization, and Therapeutic Targeting Strategies. Vaccines (Basel) 2022; 10:vaccines10020196. [PMID: 35214655 PMCID: PMC8877108 DOI: 10.3390/vaccines10020196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/30/2022] Open
Abstract
Alternatives to conventional cancer treatments are highly sought after for high-risk malignancies that have a poor response to established treatment modalities. With research advancing rapidly in the past decade, neoantigen-based immunotherapeutic approaches represent an effective and highly tolerable therapeutic option. Neoantigens are tumor-specific antigens that are not expressed in normal cells and possess significant immunogenic potential. Several recent studies have described the conceptual framework and methodologies to generate neoantigen-based vaccines as well as the formulation of appropriate clinical trials to advance this approach for patient care. This review aims to describe some of the key studies in the recent literature in this rapidly evolving field and summarize the current advances in neoantigen identification and selection, vaccine generation and delivery, and the optimization of neoantigen-based therapeutic strategies, including the early data from pivotal clinical studies.
Collapse
|
8
|
Martínez-Cortés F, Servín-Blanco R, Domínguez-Romero AN, Munguía ME, Guzman Valle J, Odales J, Gevorkian G, Manoutcharian K. Generation of cancer vaccine immunogens derived from Oncofetal antigen (OFA/iLRP) using variable epitope libraries tested in an aggressive breast cancer model. Mol Immunol 2021; 139:65-75. [PMID: 34454186 DOI: 10.1016/j.molimm.2021.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
After decades of cancer vaccine efforts, there is an imperious necessity for novel ideas that may result in better tumor control in patients. We have proposed the use of a novel Variable Epitope Library (VEL) vaccine strategy, which incorporates an unprecedented number of mutated epitopes to target antigenic variability and break tolerance against tumor-associated antigens. Here, we used an oncofetal antigen/immature laminin receptor protein-derived sequence to generate 9-mer and 43-mer VEL immunogens. 4T1 tumor-bearing mice developed epitope-specific CD8+IFN-γ+ and CD4+IFN-γ+ T cell responses after treatment. Tumor and lung analysis demonstrated that VELs could increase the number of tumor-infiltrating lymphocytes with diverse effector functions while reducing the number of immunosuppressive myeloid-derived suppressor and regulatory T cells. Most importantly, VEL immunogens inhibited tumor growth and metastasis after a single dose. The results presented here are consistent with our previous studies and provide evidence for VEL immunogens' feasibility as promising cancer immunotherapy.
Collapse
Affiliation(s)
- Fernando Martínez-Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Rodolfo Servín-Blanco
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Allan Noé Domínguez-Romero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - María Elena Munguía
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Jesus Guzman Valle
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Josué Odales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico.
| |
Collapse
|
9
|
Neumann S, Campbell K, Woodall MJ, Evans M, Clarkson AN, Young SL. Obesity Has a Systemic Effect on Immune Cells in Naïve and Cancer-Bearing Mice. Int J Mol Sci 2021; 22:ijms22168803. [PMID: 34445503 PMCID: PMC8395769 DOI: 10.3390/ijms22168803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is a major risk factor for developing cancer, with obesity-induced immune changes and inflammation in breast (BC) and colorectal cancer (CRC) providing a potential link between the two. This study investigates systemic effects of obesity on adaptive and innate immune cells in healthy and tumour-bearing mice. Immune cells from lean and obese mice were phenotyped prior to implantation of either BC (C57mg and EO771.LMB) or CRC (MC38) cells as tumour models. Tumour growth rate, tumour-infiltrating lymphocytes (TIL) and peripheral blood immune cell populations were compared between obese and lean mice. In vitro studies showed that naïve obese mice had higher levels of myeloid cells in the bone marrow and bone marrow-derived dendritic cells expressed lower levels of activation markers compared to cells from their lean counterparts. In the tumour setting, BC tumours grew faster in obese mice than in lean mice and lower numbers of TILs as well as higher frequency of exhausted T cells were observed. Data from peripheral blood showed lower levels of myeloid cells in tumour-bearing obese mice. This study highlights that systemic changes to the immune system are relevant for tumour burden and provides a potential mechanism behind the effects of obesity on cancer development and progression in patients.
Collapse
Affiliation(s)
- Silke Neumann
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.N.); (K.C.); (M.J.W.); (M.E.)
| | - Katrin Campbell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.N.); (K.C.); (M.J.W.); (M.E.)
| | - Matthew J. Woodall
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.N.); (K.C.); (M.J.W.); (M.E.)
| | - Meghan Evans
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (S.N.); (K.C.); (M.J.W.); (M.E.)
| | - Andrew N. Clarkson
- Brain Health Research Centre and Brain Research New Zealand, Department of Anatomy, University of Otago, Dunedin 9016, New Zealand;
| | - Sarah L. Young
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
- Correspondence:
| |
Collapse
|
10
|
Delivering Two Tumour Antigens Survivin and Mucin-1 on Virus-Like Particles Enhances Anti-Tumour Immune Responses. Vaccines (Basel) 2021; 9:vaccines9050463. [PMID: 34066318 PMCID: PMC8148150 DOI: 10.3390/vaccines9050463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women, with many patients experiencing recurrence following treatment. Antigens delivered on virus-like particles (VLPs) induce a targeted immune response and here we investigated whether the co-delivery of multiple antigens could induce a superior anti-cancer response for BC immunotherapy. VLPs were designed to recombinantly express murine survivin and conjugated with an aberrantly glycosylated mucin-1 (MUC1) peptide using an intracellular cleavable bis-arylhydrazone linker. Western blotting, electron microscopy and UV absorption confirmed survivin-VLP expression and MUC1 conjugation. To assess the therapeutic efficacy of VLPs, orthotopic BC tumours were established by injecting C57mg.MUC1 cells into the mammary fat pad of mice, which were then vaccinated with surv.VLP-SS-MUC1 or VLP controls. While wild-type mice vaccinated with surv.VLP-SS-MUC1 showed enhanced survival compared to VLPs delivering either antigen alone, MUC1 transgenic mice vaccinated with surv.VLP-SS-MUC1 showed no enhanced survival compared to controls. Hence, while co-delivery of two tumour antigens on VLPs can induce a superior anti-tumour immune response compared to the delivery of single antigens, additional strategies must be employed to break tolerance when targeted tumour antigens are expressed as endogenous self-proteins. Using VLPs for the delivery of multiple antigens represents a promising approach to improving BC immunotherapy, and has the potential to be an integral part of combination therapy in the future.
Collapse
|
11
|
Neoantigen Cancer Vaccines: Real Opportunity or Another Illusion? Arch Immunol Ther Exp (Warsz) 2021; 69:12. [PMID: 33909124 PMCID: PMC8080209 DOI: 10.1007/s00005-021-00615-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023]
Abstract
In this communication, we will analyze some important factors and immunological phenomena related to neoantigen cancer vaccines, with particular emphasis on recently published Phase I clinical trials. Several obstacles and issues are addressed that challenge the current paradigm and inquire if neoantigens, which are essentially single-use vaccine candidates, are legitimate targets to induce protective immune responses with regard to the evolving mutational landscape. We also share insights into the striking similarities between cancer and antigenically variable pathogens and suggest that any successful vaccine against either should demonstrate a similar property: efficient induction of a diverse pool of immune cells equipped to prevent immune escape. Hence, to confront antigenic variability directly, we have employed our innovative vaccine concept, Variable Epitope Libraries, composed of large combinatorial libraries of heavily mutated epitopes, as a "universal" vaccine platform. Collectively, we offer critical analyses on key issues, which ultimately reflect on the prospective clinical relevance of personalized neoantigen vaccines which is still undefined.
Collapse
|
12
|
BIRC5 is a prognostic biomarker associated with tumor immune cell infiltration. Sci Rep 2021; 11:390. [PMID: 33431968 PMCID: PMC7801710 DOI: 10.1038/s41598-020-79736-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022] Open
Abstract
BIRC5 is an immune-related gene that inhibits apoptosis and promotes cell proliferation. It is highly expressed in most tumors and leads to poor prognosis in cancer patients. This study aimed to analyze the relationship between the expression level of BIRC5 in different tumors and patient prognosis, clinical parameters, and its role in tumor immunity. Genes co-expressed with BIRC5 were analyzed, and functional enrichment analysis was performed. The relationship between BIRC5 expression and the immune and stromal scores of tumors in pan-cancer patients and the infiltration level of 22 tumor-infiltrating lymphocytes (TILs) was analyzed. The correlation of BIRC5 with immune checkpoints was conducted. Functional enrichment analysis showed that genes co-expressed with BIRC5 were significantly associated with the mitotic cell cycle, APC/C-mediated degradation of cell cycle proteins, mitotic metaphase, and anaphase pathways. Besides, the high expression of BIRC5 was significantly correlated with the expression levels of various DNA methyltransferases, indicating that BIRC5 regulates DNA methylation. We also found that BIRC5 was significantly correlated with multiple immune cells infiltrates in a variety of tumors. This study lays the foundation for future research on how BIRC5 modulates tumor immune cells, which may lead to the development of more effective targeted tumor immunotherapies.
Collapse
|