1
|
Sun J, Liu D, Jin S, Li X, Liu G, Li S, Chen F, Qin X, Zhang Y, Jiang F, Chen D, Pang Q, Hu C, Wu Y, Wang Z. Deletion of BTB and CNC Homology 1 Protects Against Staphylococcus aureus-Induced Acute Lung Injury. J Infect Dis 2025; 231:734-745. [PMID: 39171916 DOI: 10.1093/infdis/jiae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
BTB and CNC homology 1 (BACH1) plays a crucial role in the pathogenesis of acute lung injury (ALI) caused by gram-negative bacteria. However, its exact mechanisms in Staphylococcus aureus (SA)-induced ALI, a gram-positive bacterial infection, remain incompletely understood. In this study, we generated a BACH1-knockout mouse model (BACH1-/-) to investigate the role of BACH1 and its underlying mechanisms in regulating the development of sepsis-induced acute lung injury (ALI). Elevated levels of BACH1 were observed in both serum samples from septic patients and mouse models. Deletion of BACH1 alleviated ALI symptoms induced by sepsis. In bone marrow-derived macrophages, BACH1 deletion or knockdown suppressed NF-κB p65 phosphorylation and the induction of pro-inflammatory cytokines. Mechanistic studies demonstrated that BACH1 downregulated tumor necrosis factor-alpha-induced protein 3 (TNFAIP3) mRNA expression by binding to its promoter region. These findings uncover inhibiting BACH1 may be a promising therapeutic strategy for treating gram-positive bacteria-induced ALI.
Collapse
Affiliation(s)
- Jiaojiao Sun
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dapeng Liu
- Department of Anesthesia and Perioperative Medicine, Zao Zhuang Municipal Hospital, Zao Zhuang, China
| | - Sihao Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaolin Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Gang Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shengpeng Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaoyun Qin
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yanli Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fengjuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chunxiao Hu
- Department of Transplant Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhiqiang Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Günther K, Nischang V, Cseresnyés Z, Krüger T, Sheta D, Abboud Z, Heinekamp T, Werner M, Kniemeyer O, Beilhack A, Figge MT, Brakhage AA, Werz O, Jordan PM. Aspergillus fumigatus-derived gliotoxin impacts innate immune cell activation through modulating lipid mediator production in macrophages. Immunology 2024; 173:748-767. [PMID: 39268960 DOI: 10.1111/imm.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Gliotoxin (GT), a secondary metabolite and virulence factor of the fungal pathogen Aspergillus fumigatus, suppresses innate immunity and supports the suppression of host immune responses. Recently, we revealed that GT blocks the formation of the chemotactic lipid mediator leukotriene (LT)B4 in activated human neutrophils and monocytes, and in rodents in vivo, by directly inhibiting LTA4 hydrolase. Here, we elucidated the impact of GT on LTB4 biosynthesis and the entire lipid mediator networks in human M1- and M2-like monocyte-derived macrophages (MDMs) and in human tissue-resident alveolar macrophages. In activated M1-MDMs with high capacities to generate LTs, the formation of LTB4 was effectively suppressed by GT, connected to attenuated macrophage phagocytic activity as well as human neutrophil movement and migration. In resting macrophages, especially in M1-MDMs, GT elicited strong formation of prostaglandins, while bacterial exotoxins from Staphylococcus aureus evoked a broad spectrum of lipid mediator biosynthesis in both MDM phenotypes. We conclude that GT impairs functions of activated innate immune cells through selective suppression of LTB4 biosynthesis, while GT may also prime the immune system by provoking prostaglandin formation in macrophages.
Collapse
Affiliation(s)
- Kerstin Günther
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Vivien Nischang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Zoltan Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Dalia Sheta
- Department of Internal Medicine II, University Hospital Würzburg, Center of Experimental Molecular Medicine, Würzburg, Germany
| | - Zahraa Abboud
- Department of Internal Medicine II, University Hospital Würzburg, Center of Experimental Molecular Medicine, Würzburg, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Markus Werner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Center of Experimental Molecular Medicine, Würzburg, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
3
|
Jermihov A, iAkushev A, White A, Jerschow E. Updates on the Natural History and Clinical Characteristics of NSAID-ERD. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2889-2896. [PMID: 39038540 PMCID: PMC11560530 DOI: 10.1016/j.jaip.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024]
Abstract
Nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (NSAID-ERD) is a distinct clinical syndrome characterized by nonsteroidal anti-inflammatory drug (NSAID) hypersensitivity, asthma, and nasal polyposis. Its diagnosis is challenging owing to variable presentations and a lack of simple tests, leading to diagnostic delays. Recent research has revealed its genetic predispositions, environmental triggers, and associations with atopy and second-hand tobacco smoke exposure or smoking cessation. Despite its severity, diagnostic awareness remains low, leading to the delay in effective management. Therapeutically, NSAID-ERD necessitates multidisciplinary approaches, often combining surgical interventions with medical management, including aspirin desensitization and biologic agents. However, predictive biomarkers for treatment response remain elusive. Understanding the underlying mechanisms driving NSAID-ERD pathogenesis and identifying reliable biomarkers are crucial for enhancing diagnostic accuracy and refining targeted therapeutic strategies for this debilitating condition. This review aims to provide a thorough understanding of NSAID-ERD, covering its history, clinical features, epidemiology, diagnosis, systemic and molecular biomarkers, available treatment options, and avenues for future research.
Collapse
Affiliation(s)
- Anastasia Jermihov
- Department of Otolaryngology, San Antonio Uniformed Services Health Education Consortium, JBSA Fort Sam Houston, Texas
| | - Alex iAkushev
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, Minn
| | - Andrew White
- Division of Allergy, Asthma and Immunology, Scripps Clinic, San Diego, Calif
| | - Elina Jerschow
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
4
|
Jordan PM, Günther K, Nischang V, Ning Y, Deinhardt-Emmer S, Ehrhardt C, Werz O. Influenza A virus selectively elevates prostaglandin E 2 formation in pro-resolving macrophages. iScience 2024; 27:108775. [PMID: 38261967 PMCID: PMC10797193 DOI: 10.1016/j.isci.2023.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Respiratory influenza A virus (IAV) infections are major health concerns worldwide, where bacterial superinfections substantially increase morbidity and mortality. The underlying mechanisms of how IAV impairs host defense remain elusive. Macrophages are pivotal for the innate immune response and crucially regulate the entire inflammatory process, occurring as inflammatory M1- or pro-resolving M2-like phenotypes. Lipid mediators (LM), produced from polyunsaturated fatty acids by macrophages, are potent immune regulators and impact all stages of inflammation. Using LM metabololipidomics, we show that human pro-resolving M2-macrophages respond to IAV infections with specific and robust production of prostaglandin (PG)E2 along with upregulation of cyclooxygenase-2 (COX-2), which persists after co-infection with Staphylococcus aureus. In contrast, cytokine/interferon production in macrophages was essentially unaffected by IAV infection, and the functionality of M1-macrophages was not influenced. Conclusively, IAV infection of M2-macrophages selectively elevates PGE2 formation, suggesting inhibition of the COX-2/PGE2 axis as strategy to limit IAV exacerbation.
Collapse
Affiliation(s)
- Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Kerstin Günther
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Vivien Nischang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Yuping Ning
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | | | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, 07745 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
5
|
Yang K, Yang J, Chen R, Dong Q, Yang H, Gu S, Zhou Y. Antibacterial hyaluronic acid hydrogels with enhanced self-healing properties via multiple dynamic bond crosslinking. Int J Biol Macromol 2024; 256:128320. [PMID: 38040167 DOI: 10.1016/j.ijbiomac.2023.128320] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
The self-healing hydrogel offering intrinsic antibacterial activity is often required for the treatment of wounds because it can provide effective wound protection and prevent wound infection. Herein, antibacterial hyaluronic acid hydrogels with enhanced self-healing performances are prepared by multiple dynamic-bond crosslinking between aldehyde hyaluronic acid, 3, 3'- dithiobis (propionyl hydrazide) and fungal-sourced quaternized chitosan. Due to the formation of these different types of reversible interactions e.g. hydrazone bonds, disulfide bonds, and electrostatic interactions, the hyaluronic acid hydrogels can gel rapidly and exhibit excellent self-healing ability, which can heal completely within 1 h. Furthermore, the hydrogels show good antibacterial activity against E. coli and S. aureus with an inhibition ratio of ~100 % and above 75 %, respectively. Additionally, the hydrogels are cytocompatible, which makes them the potential for biomedical applications e.g. cell culture, tissue engineering, and wound dressing.
Collapse
Affiliation(s)
- Kaidan Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Junfeng Yang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Ruina Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Qi Dong
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Hongjun Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Shaojin Gu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Yingshan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, People's Republic of China; College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China.
| |
Collapse
|
6
|
Han J, Zhao X, Zhao X, Li P, Gu Q. Insight into the structure, biosynthesis, isolation method and biological function of teichoic acid in different gram-positive microorganisms: A review. Int J Biol Macromol 2023; 253:126825. [PMID: 37696369 DOI: 10.1016/j.ijbiomac.2023.126825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Teichoic acid (TA) is a weakly anionic polymer present in the cell walls of Gram-positive bacteria. It can be classified into wall teichoic acid (WTA) and lipoteichoic acid (LTA) based on its localization in the cell wall. The structure and biosynthetic pathway of TAs are strain-specific and have a significant role in maintaining cell wall stability. TAs have various beneficial functions, such as immunomodulatory, anticancer and antioxidant activities. However, the purity and yield of TAs are generally not high, and different isolation methods may even affect their structural integrity, which limits the research progress on the probiotic functions of TA. This paper reviews an overview of the structure and biosynthetic pathway of TAs in different strains, as well as the research progress of the isolation and purification methods of TAs. Furthermore, this review also highlights the current research status on the biological functions of TAs. Through a comprehensive understanding of this review, it is expected to pave the way for advancements in isolating and purifying high-quality TAs and, in turn, lay a foundation for contributing to the development of targeted probiotic therapies.
Collapse
Affiliation(s)
- Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xilian Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China.
| |
Collapse
|
7
|
Good CJ, Butrico CE, Colley ME, Gibson-Corley KN, Cassat JE, Spraggins JM, Caprioli RM. In situ lipidomics of Staphylococcus aureus osteomyelitis using imaging mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569690. [PMID: 38077019 PMCID: PMC10705574 DOI: 10.1101/2023.12.01.569690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Osteomyelitis occurs when Staphylococcus aureus invades the bone microenvironment, resulting in a bone marrow abscess with a spatially defined architecture of cells and biomolecules. Imaging mass spectrometry and microscopy are invaluable tools that can be employed to interrogate the lipidome of S. aureus-infected murine femurs to reveal metabolic and signaling consequences of infection. Here, nearly 250 lipids were spatially mapped to healthy and infection-associated morphological features throughout the femur, establishing composition profiles for tissue types. Ether lipids and arachidonoyl lipids were significantly altered between cells and tissue structures in abscesses, suggesting their roles in abscess formation and inflammatory signaling. Sterols, triglycerides, bis(monoacylglycero)phosphates, and gangliosides possessed ring-like distributions throughout the abscess, indicating dysregulated lipid metabolism in a subpopulation of leukocytes that cannot be discerned with traditional microscopy. These data provide chemical insight into the signaling function and metabolism of cells in the fibrotic border of abscesses, likely characteristic of lipid-laden macrophages.
Collapse
Affiliation(s)
- Christopher J. Good
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Madeline E. Colley
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Katherine N. Gibson-Corley
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey M. Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Richard M. Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
- Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
8
|
Dahlke P, Peltner LK, Jordan PM, Werz O. Differential impact of 5-lipoxygenase-activating protein antagonists on the biosynthesis of leukotrienes and of specialized pro-resolving mediators. Front Pharmacol 2023; 14:1219160. [PMID: 37680719 PMCID: PMC10481534 DOI: 10.3389/fphar.2023.1219160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Lipoxygenases (LOX) transform arachidonic acid (AA, C20:4) and docosahexaenoic acid (DHA, C22:6) into bioactive lipid mediators (LMs) that comprise not only pro-inflammatory leukotrienes (LTs) but also the specialized pro-resolving mediators (SPMs) that promote inflammation resolution and tissue regeneration. The 5-LOX-activating protein (FLAP) is known to provide AA as a substrate to 5-LOX for generating LTs, such as LTB4, a potent chemoattractant and activator of phagocytes. Notably, 5-LOX is also involved in the biosynthesis of certain SPMs, namely, lipoxins and D-resolvins, implying a role of FLAP in SPM formation. FLAP antagonists have been intensively developed as LT biosynthesis inhibitors, but how they impact SPM formation is a matter of debate. Here, we show that FLAP antagonism suppresses the conversion of AA by 5-LOX to LT and lipoxins, while the conversion of DHA to SPM is unaffected. Screening of multiple prominent FLAP antagonists for their effects on LM formation in human M1- and M2-monocyte-derived macrophages by comprehensive LM profiling showed that all nine compounds reduced the production of 5-LOX-derived LTs but increased the formation of SPMs from DHA, e.g., resolvin D5. Some FLAP antagonists, especially those that contain an indole or benzimidazole moiety, even elicited SPM formation in resting M2-monocyte-derived macrophages. Intriguingly, in coincubations of human neutrophils and platelets that produce substantial AA-derived lipoxin and DHA-derived RvD5, FLAP antagonism abolished lipoxin formation, but resolvin D5 levels remained unaffected. Conclusively, antagonism of FLAP suppresses the conversion of AA by 5-LOX to LTs and lipoxins but not the conversion of DHA by 5-LOX to SPM, which should be taken into account for the development of such compounds as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Philipp Dahlke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Lukas K. Peltner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
9
|
Radmark O. Formation of eicosanoids and other oxylipins in human macrophages. Biochem Pharmacol 2022; 204:115210. [PMID: 35973581 DOI: 10.1016/j.bcp.2022.115210] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
In this review it is attempted to summarize current studies about formation of eicosanoids and other oxylipins in different human macrophages. There are several reports on M1 and M2 cells, also other phenotypes have been described. The eicosanoids formed in the largest amounts are the COX products TxB2 and PGE2. Thus shortlived bioactive TxA2 is a dominating product both in M1- and in M2-lineages, one exception seems to be MGM-CSF, TGFβ cells. 5-LOX products are produced in both M1 and M2 macrophages, as well as in not fully polarized cells of both lineages. MM-CSF as well as M2 macrophages produced LTC4 more readily compared to M1 lineage cells. In MGM-CSF, TGFβ cells LTB4 is a major eicosanoid, in line with high expression of LTA4 hydrolase. Recent reports described increased formation of leukotrienes in macrophages subjected to trained immunity with inflammatory transcriptional reprogramming. Also in macrophages derived from monocytes collected from post-COVID-19 patients. 15-LOX-1 is strongly upregulated in CD206+ M2 cells (M2a), differentiated in presence of IL-4. These macrophages also express 15-LOX-2. In incubations with pathogenic E. coli as well as other stimuli 15(S)-HETE and 17(S)-HDHA were major oxylipins formed. Also, the SPM precursor 5,15-diHETE and the SPM RvD5 were produced in considerable amounts, while other SPMs were less abundant. In M2 macrophages incubated with E. coli or S. aureus the cytosolic 15-LOX-1 enzyme accumulated to punctuate structures in a Ca2+ dependent manner with a relatively slow time course, leading to formation of mediators from endogenous substrate. Chalcones, flavone-like anti-inflammatory natural products, induced translocation of 15-LOX-1 in M2 cells, with high formation of 15-LOX derived oxylipins.
Collapse
Affiliation(s)
- Olof Radmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Wang W, Ning Y, Wang Y, Deng G, Pace S, Barth SA, Menge C, Zhang K, Dai Y, Cai Y, Chen X, Werz O. Mycobacterium tuberculosis-Induced Upregulation of the COX-2/mPGES-1 Pathway in Human Macrophages Is Abrogated by Sulfasalazine. Front Immunol 2022; 13:849583. [PMID: 35663935 PMCID: PMC9160237 DOI: 10.3389/fimmu.2022.849583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Macrophages are the primary human host cells of intracellular Mycobacterium tuberculosis (M.tb) infection, where the magnitude of inflammatory reactions is crucial for determining the outcome of infection. Previously, we showed that the anti-inflammatory drug sulfasalazine (SASP) significantly reduced the M.tb bactericidal burden and histopathological inflammation in mice. Here, we asked which genes in human inflammatory macrophages are affected upon infection with M.tb and how would potential changes impact the functional state of macrophages. We used a flow cytometry sorting system which can distinguish the dead and alive states of M.tb harbored in human monocyte-derived macrophages (MDM). We found that the expression of cyclooxygenase-2 and microsomal prostaglandin E2 synthase (mPGES)-1 increased significantly in tagRFP+ MDM which were infected with alive M.tb. After exposure of polarized M1-MDM to M.tb (H37Rv strain)-conditioned medium (MTB-CM) or to the M.tb-derived 19-kD antigen, the production of PGE2 and pro-inflammatory cytokines increased 3- to 4-fold. Upon treatment of M1-MDM with SASP, the MTB-CM-induced expression of COX-2 and the release of COX products and cytokines decreased. Elevation of PGE2 in M1-MDM upon MTB-CM stimulation and modulation by SASP correlated with the activation of the NF-κB pathway. Together, infection of human macrophages by M.tb strongly induces COX-2 and mPGES-1 expression along with massive PGE2 formation which is abrogated by the anti-inflammatory drug SASP.
Collapse
Affiliation(s)
- Wenfei Wang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuping Ning
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yejun Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Guofang Deng
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Stefanie A Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Kehong Zhang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.,Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Youchao Dai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Yi Cai
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xinchun Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|