1
|
Ye Q, Yao H, Xiao Z, Zhao L, Tan WS. Insights into IAV Replication and Lipid Metabolism in Suspension-Adapted MDCK-STAT1-KO Cells. Vaccines (Basel) 2025; 13:106. [PMID: 40006653 PMCID: PMC11860519 DOI: 10.3390/vaccines13020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVES The industrial production of influenza vaccines is facing significant challenges, particularly in improving virus production efficiency. Despite advances in cell culture technologies, our understanding of the production characteristics of high-yield suspension cell lines remains limited, thereby impeding the development of efficient vaccine production platforms. This study aims to investigate the key features of STAT1 knockout suspension-adapted MDCK cells (susMDCK-STAT1-KO) in enhancing influenza A virus (IAV) production. METHODS Suspension-adapted susMDCK-STAT1-KO cells were compared to suspension-adapted wild-type MDCK cells (susMDCK) for IAV production. Virus quantification, gene expression analysis, and cholesterol deprivation assays were performed. Metabolite profiles, viral RNA quantification, and lipid and dry weight measurements were also conducted to assess the viral replication and release efficiency. RESULTS The susMDCK-STAT1-KO cells exhibited significantly improved virus adsorption (64%) and entry efficiency (75%) for the H1N1 virus, as well as accelerated viral transcription and replication for both the H1N1 and H9N2 viruses. Virus release was identified as a limiting factor, with a 100-fold higher intracellular-to-extracellular viral RNA ratio. However, the STAT1-KO cells showed a 2.39-fold higher release rate (750 virions/cell/h) and 3.26-fold greater RNA release for the H1N1 virus compared to wild-type cells. A gene expression analysis revealed enhanced lipid metabolism, particularly cholesterol synthesis, as a key factor in viral replication and release. Cholesterol deprivation resulted in reduced viral titers, confirming the critical role of intracellular cholesterol in IAV production. CONCLUSIONS This study demonstrates the enhanced influenza virus production capacity of susMDCK-STAT1-KO cells, with significant improvements in viral yield, replication, and release efficiency. The findings highlight the importance of STAT1-mediated immune modulation and cholesterol metabolism in optimizing virus production. These insights provide a foundation for the development of more efficient vaccine production platforms, with implications for large-scale industrial applications.
Collapse
Affiliation(s)
- Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.)
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
| | - Hong Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.)
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
| | - Zhiying Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.)
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.)
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
- Shanghai BioEngine Sci-Tech Co., Ltd., Shanghai 201203, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (Q.Y.)
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
- Shanghai BioEngine Sci-Tech Co., Ltd., Shanghai 201203, China
| |
Collapse
|
2
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Rannikko JH, Hollmén M. Clinical landscape of macrophage-reprogramming cancer immunotherapies. Br J Cancer 2024; 131:627-640. [PMID: 38831013 PMCID: PMC11333586 DOI: 10.1038/s41416-024-02715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Tumour-associated macrophages (TAMs) sustain a tumour-supporting and immunosuppressive milieu and therefore aggravate cancer prognosis. To modify TAM behaviour and unlock their anti-tumoural potential, novel TAM-reprogramming immunotherapies are being developed at an accelerating rate. At the same time, scientific discoveries have highlighted more sophisticated TAM phenotypes with complex biological functions and contradictory prognostic associations. To understand the evolving clinical landscape, we reviewed current and past clinically evaluated TAM-reprogramming cancer therapeutics and summarised almost 200 TAM-reprogramming agents investigated in more than 700 clinical trials. Observable overall trends include a high frequency of overlapping strategies against the same therapeutic targets, development of more complex strategies to improve previously ineffective approaches and reliance on combinatory strategies for efficacy. However, strong anti-tumour efficacy is uncommon, which encourages re-directing efforts on identifying biomarkers for eligible patient populations and comparing similar treatments earlier. Future endeavours will benefit from considering the shortcomings of past treatment strategies and accommodating the emerging complexity of TAM biology.
Collapse
Affiliation(s)
- Jenna H Rannikko
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
- Turku Doctoral Program of Molecular Medicine, University of Turku, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland.
- Faron Pharmaceuticals Ltd, Turku, Finland.
| |
Collapse
|
4
|
Zheng W, Yang L, Jiang S, Chen M, Li J, Liu Z, Wu Z, Gong J, Chen Y. Role of Kupffer cells in tolerance induction after liver transplantation. Front Cell Dev Biol 2023; 11:1179077. [PMID: 37601106 PMCID: PMC10435084 DOI: 10.3389/fcell.2023.1179077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Currently, liver transplantation has reached a level of maturity where it is considered an effective treatment for end-stage liver disease and can significantly prolong the survival time of patients. However, acute and chronic rejection remain major obstacles to its efficacy. Although long-term use of immunosuppressants can prevent rejection, it is associated with serious side effects and significant economic burden for patients. Therefore, the investigation of induced immune tolerance holds crucial theoretical significance and socio-economic value. In fact, the establishment of immune tolerance in liver transplantation is intricately linked to the unique innate immune system of the liver. Kupffer cells, as a crucial component of this system, play a pivotal role in maintaining the delicate balance between inflammatory response and immune tolerance following liver transplantation. The important roles of different functions of Kupffer cells, such as phagocytosis, cell polarization, antigen presentation and cell membrane proteins, in the establishment of immune tolerance after transplantation is comprehensively summarized in this paper. Providing theoretical basis for further study and clinical application of Kupffer cells in liver transplantation.
Collapse
Affiliation(s)
- Weixiong Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingxiang Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiming Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingxiang Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzheng Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zuojing Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Chen G, Xiong S, Jing Q, van Gestel CAM, van Straalen NM, Roelofs D, Sun L, Qiu H. Maternal exposure to polystyrene nanoparticles retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158666. [PMID: 36108837 DOI: 10.1016/j.scitotenv.2022.158666] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Microplastics can enter the human body via direct body contact or the food chain, increasing the likelihood of adverse impacts on pregnancy and fetal development. We investigated the potential effects and modes of action of polystyrene nanoplastics (PS-NPs) in placenta and fetus using mice as a model species. Maternal PS-NP exposure (100 nm; 1 and 10 mg/L) via drinking water induced a significant decline in fetal weights at the higher exposure concentration. Abnormal morphologies of cells in the placenta and fetus were observed after exposure. For the placenta, transcriptomic analyses indicated that PS-NPs significantly disturbed cholesterol metabolism and complement and coagulation cascades pathways. Metabolomics showed appreciable metabolic disorders, particularly affecting sucrose and daidzein concentrations. For the fetal skeletal muscle, transcriptomics identified many significantly regulated genes, involving muscle tissue development, lipid metabolism, and skin formation. Transcriptomic analysis of the placenta and fetal skeletal muscle at the high PS-NP concentration showed that APOA4 and its transcriptional factors, facilitating cholesterol transportation, were significantly regulated in both tissues. Our study revealed that PS-NPs caused fetal growth restriction and significantly disturbed cholesterol metabolism in both placenta and fetus, offering new insights into the mechanisms underlying the placental and fetal effects in mice exposed to PS-NPs.
Collapse
Affiliation(s)
- Guangquan Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Qiao Jing
- Department of Pediatrics, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Nico M van Straalen
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Dick Roelofs
- KeyGene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands
| | - Luming Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Gulubova MV, Chonov DC, Ivanova KV, Hristova MK, Krasimirova-Ignatova MM, Vlaykova TI. Intratumoural expression of IL-6/STAT3, IL-17 and FOXP3 immune cells in the immunosuppressive tumour microenvironment of colorectal cancer Immune cells-positive for IL-6, STAT3, IL-17 and FOXP3 and colorectal cancer development. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2072765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
| | - Dimitur Chavdarov Chonov
- Department of General and Operative Surgery, Trakia University, Medical Faculty, Stara Zagora Bulgaria
- Ward of Operative Surgery, University Hospital “Prof. D-r Stoyan Kirkovich”, Stara Zagora, Bulgaria
| | - Koni Vancho Ivanova
- Department of Pathology, Trakia University, Medical Faculty, Stara Zagora, Bulgaria
| | | | | | - Tatyana Ivanova Vlaykova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
7
|
Masgrau-Alsina S, Wackerbarth LM, Lim DS, Sperandio M. MST1 controls murine neutrophil homeostasis via the G-CSFR/STAT3 axis. Front Immunol 2022; 13:1038936. [PMID: 36618429 PMCID: PMC9816424 DOI: 10.3389/fimmu.2022.1038936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The release of neutrophils from the bone marrow into the blood circulation is essential for neutrophil homeostasis and the protection of the organism from invading microorganisms. Granulocyte colony-stimulating factor (G-CSF) plays a pivotal role in this process and guides granulopoiesis as well as the release of bone marrow neutrophils into the blood stream both during homeostasis and in case of infection through activation of the G-CSF receptor/signal transduction and activation of transcription 3 (STAT3) signaling pathway. Here, we investigated the role of the mammalian sterile 20-like kinase 1 (MST1) for neutrophil homeostasis and neutrophil mobilization. We found increased plasma levels of G-CSF in Mst1 -/- mice compared to wild type mice both under homeostatic conditions as well as after stimulation with the proinflammatory cytokine TNF-α. In addition, G-CSF-induced mobilization of neutrophils from the bone marrow into the blood circulation in vivo was markedly reduced in the absence of MST1. Interestingly, this was not accompanied by differences in the number of blood neutrophils. Addressing the underlying molecular mechanism of MST1-regulated neutrophil mobilization, we found reduced STAT3 phosphorylation and impaired upregulation of CXCR2 in Mst1 -/- bone marrow neutrophils compared to wild type cells, while JAK2 phosphorylation was not altered. Taken together, we identify MST1 as a critical modulator of neutrophil homeostasis and neutrophil mobilization from the bone marrow, which adds another important aspect to the complex role of MST1 in regulating innate immunity.
Collapse
Affiliation(s)
- Sergi Masgrau-Alsina
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Lou Martha Wackerbarth
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Dae-sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Munich, Germany,*Correspondence: Markus Sperandio,
| |
Collapse
|
8
|
Krishna N, Vishwakarma S, Katara P. Identification and annotation of milk associated genes from milk somatic cells using expression and RNA-seq data. Bioinformation 2022; 18:703-709. [PMID: 37323558 PMCID: PMC10266364 DOI: 10.6026/97320630018703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 09/20/2023] Open
Abstract
It is of interest to identify and annotate milk associated genes using expression profiling and RNA-Seq data from milk somatic cells. RNA-Seq data was pre-processed and mapping was done to identify differentially expressed genes (DEG). The functional insights about the up and down regulated genes were gleaned using the protein-protein interaction Network in the STRING database followed by CytoHubba analysis in Cytoscope. Gene ontology, annotation and pathway enrichment was completed using ShinyGO, David tool and QTL analysis. These analysis shows that 21 genes are linked with the secretion of milk.
Collapse
Affiliation(s)
- Neelam Krishna
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj - 211002, India
| | - Shraddha Vishwakarma
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj - 211002, India
| | - Pramod Katara
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj - 211002, India
| |
Collapse
|
9
|
Hao X, Luan J, Jiao C, Ma C, Feng Z, Zhu L, Zhang Y, Fu J, Lai E, Zhang B, Wang Y, Kopp JB, Pi J, Zhou H. LNA-anti-miR-150 alleviates renal interstitial fibrosis by reducing pro-inflammatory M1/M2 macrophage polarization. Front Immunol 2022; 13:913007. [PMID: 35990680 PMCID: PMC9389080 DOI: 10.3389/fimmu.2022.913007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathological feature contributing to chronic injury and maladaptive repair following acute kidney injury. Currently, there is no effective therapy for RIF. We have reported that locked nuclear acid (LNA)-anti-miR-150 antagonizes pro-fibrotic pathways in human renal tubular cells by regulating the suppressor of cytokine signal 1 (SOCS1)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. In the present study, we aimed to clarify whether LNA-anti-miR-150 attenuates folic acid-induced RIF mice by regulating this pathway and by reducing pro-inflammatory M1/M2 macrophage polarization. We found that renal miR-150 was upregulated in folic acid-induced RIF mice at day 30 after injection. LNA-anti-miR-150 alleviated the degree of RIF, as shown by periodic acid–Schiff and Masson staining and by the expression of pro-fibrotic proteins, including alpha-smooth muscle actin and fibronectin. In RIF mice, SOCS1 was downregulated, and p-JAK1 and p-STAT1 were upregulated. LNA-anti-miR-150 reversed the changes in renal SOCS1, p-JAK1, and p-STAT1 expression. In addition, renal infiltration of total macrophages, pro-inflammatory M1 and M2 macrophages as well as their secreted cytokines were increased in RIF mice compared to control mice. Importantly, in folic acid-induced RIF mice, LNA-anti-miR-150 attenuated the renal infiltration of total macrophages and pro-inflammatory subsets, including M1 macrophages expressing CD11c and M2 macrophages expressing CD206. We conclude that the anti-renal fibrotic role of LNA-anti-miR-150 in folic acid-induced RIF mice may be mediated by reducing pro-inflammatory M1 and M2 macrophage polarization via the SOCS1/JAK1/STAT1 pathway.
Collapse
Affiliation(s)
- Xiangnan Hao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Congcong Jiao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cong Ma
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixuan Feng
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingzi Zhu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Enyin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiru Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK/NIH, Bethesda, MD, United States
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Hua Zhou,
| |
Collapse
|
10
|
Piao H, Fu L, Wang Y, Liu Y, Wang Y, Meng X, Yang D, Xiao X, Zhang J. A positive feedback loop between gastric cancer cells and tumor-associated macrophage induces malignancy progression. J Exp Clin Cancer Res 2022; 41:174. [PMID: 35562774 PMCID: PMC9107227 DOI: 10.1186/s13046-022-02366-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/17/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hypoxia and inflammation tumor microenvironment (TME) play a crucial role in tumor development and progression. Although increased understanding of TME contributed to gastric cancer (GC) progression and prognosis, the direct interaction between macrophage and GC cells was not fully understood. METHODS Hypoxia and normoxia macrophage microarrays of GEO database was analyzed. The peripheral blood mononuclear cell acquired from the healthy volunteers. The expression of C-X-C Motif Chemokine Ligand 8 (CXCL8) in GC tissues and cell lines was detected by quantitative reverse transcription PCR (qRT-PCR), western-blot, Elisa and immunofluorescence. Cell proliferation, migration, and invasion were evaluated by cell counting kit 8 (CCK8), colony formation, real-time imaging of cell migration and transwell. Flow Cytometers was applied to identify the source of cytokines. Luciferase reporter assays and chromatin immunoprecipitation were used to identify the interaction between transcription factor and target gene. Especially, a series of truncated and mutation reporter genes were applied to identify precise binding sites. The corresponding functions were verified in the complementation test and in vivo animal experiment. RESULTS Our results revealed that hypoxia triggered macrophage secreted CXCL8, which induced GC invasion and proliferation. This macrophage-induced GC progression was CXCL8 activated C-X-C Motif Chemokine Receptor 1/2 (CXCR1/2) on the GC cell membrane subsequently hyperactivated Janus kinase 1/ Signal transducer and activator of transcription 1 (JAK/STAT1) signaling pathway. Then, the transcription factor STAT1 directly led to the overexpression and secretion of Interleukin 10 (IL-10). Correspondingly, IL-10 induced the M2-type polarization of macrophages and continued to increase the expression and secretion of CXCL8. It suggested a positive feedback loop between macrophage and GC. In clinical GC samples, increased CXCL8 predicted a patient's pessimistic outcome. CONCLUSION Our work identified a positive feedback loop governing cancer cells and macrophage in GC that contributed to tumor progression and patient outcome.
Collapse
Affiliation(s)
- Haiyan Piao
- grid.412449.e0000 0000 9678 1884Medical Oncology Department of Gastrointestinal Cancer, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning China
| | - Lingfeng Fu
- grid.274841.c0000 0001 0660 6749Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan
- grid.274841.c0000 0001 0660 6749Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuxin Wang
- grid.417404.20000 0004 1771 3058Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- grid.274841.c0000 0001 0660 6749Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yang Liu
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China
| | - Yue Wang
- grid.412449.e0000 0000 9678 1884Gastric Cancer Department, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning China
| | - Xiangyu Meng
- grid.412449.e0000 0000 9678 1884Gastric Cancer Department, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning China
| | - Dong Yang
- grid.412449.e0000 0000 9678 1884Gastric Cancer Department, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning China
| | - Xiang Xiao
- Shanghai Yanji Biomedical Technology, Shanghai, China
| | - Jun Zhang
- grid.274841.c0000 0001 0660 6749Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556 Japan
- grid.274841.c0000 0001 0660 6749Gastrointestinal Cancer Biology, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
- grid.412449.e0000 0000 9678 1884Gastric Cancer Department, Liaoning Province Cancer Hospital & Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning China
| |
Collapse
|
11
|
Zhao CC, Han QJ, Ying HY, Gu XX, Yang N, Li LY, Zhang QZ. TNFSF15 facilitates differentiation and polarization of macrophages toward M1 phenotype to inhibit tumor growth. Oncoimmunology 2022; 11:2032918. [PMID: 35127254 PMCID: PMC8812784 DOI: 10.1080/2162402x.2022.2032918] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Can-Can Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qiu-Ju Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Hao-Yan Ying
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiang-Xiang Gu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Qiang-Zhe Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
12
|
López-López S, Romero de Ávila MJ, Hernández de León NC, Ruiz-Marcos F, Baladrón V, Nueda ML, Laborda J, García-Ramírez JJ, Monsalve EM, Díaz-Guerra MJM. NOTCH4 Exhibits Anti-Inflammatory Activity in Activated Macrophages by Interfering With Interferon-γ and TLR4 Signaling. Front Immunol 2021; 12:734966. [PMID: 34925319 PMCID: PMC8671160 DOI: 10.3389/fimmu.2021.734966] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/11/2021] [Indexed: 01/14/2023] Open
Abstract
NOTCH4 is a member of the NOTCH family of receptors whose expression is intensively induced in macrophages after their activation by Toll-like receptors (TLR) and/or interferon-γ (IFN-γ). In this work, we show that this receptor acts as a negative regulator of macrophage activation by diminishing the expression of proinflammatory cytokines, such as IL-6 and IL-12, and costimulatory proteins, such as CD80 and CD86. We have observed that NOTCH4 inhibits IFN-γ signaling by interfering with STAT1-dependent transcription. Our results show that NOTCH4 reprograms the macrophage response to IFN-γ by favoring STAT3 versus STAT1 phosphorylation without affecting their expression levels. This lower activation of STAT1 results in diminished transcriptional activity and expression of STAT1-dependent genes, including IRF1, SOCS1 and CXCL10. In macrophages, NOTCH4 inhibits the canonical NOTCH signaling pathway induced by LPS; however, it can reverse the inhibition exerted by IFN-γ on NOTCH signaling, favoring the expression of NOTCH-target genes, such as Hes1. Indeed, HES1 seems to mediate, at least in part, the enhancement of STAT3 activation by NOTCH4. NOTCH4 also affects TLR signaling by interfering with NF-κB transcriptional activity. This effect could be mediated by the diminished activation of STAT1. These results provide new insights into the mechanisms by which NOTCH, TLR and IFN-γ signal pathways are integrated to modulate macrophage-specific effector functions and reveal NOTCH4 acting as a new regulatory element in the control of macrophage activation that could be used as a target for the treatment of pathologies caused by an excess of inflammation.
Collapse
Affiliation(s)
- Susana López-López
- Medical School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | - María José Romero de Ávila
- Medical School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | | | | | - Victoriano Baladrón
- Medical School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | - María Luisa Nueda
- Pharmacy School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | - Jorge Laborda
- Pharmacy School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | - José Javier García-Ramírez
- Medical School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | - Eva M Monsalve
- Medical School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| | - María José M Díaz-Guerra
- Medical School, Centro Regional Investigaciones Biomedicas (CRIB)/Biomedicine Unit, University of Castilla-La Mancha/Centro Superior Investigaciones Científicas (CSIC), Albacete, Spain
| |
Collapse
|
13
|
Liu H, Zhu X, Cao X, Chi A, Dai J, Wang Z, Deng C, Zhang M. IL-1β-primed mesenchymal stromal cells exert enhanced therapeutic effects to alleviate Chronic Prostatitis/Chronic Pelvic Pain Syndrome through systemic immunity. Stem Cell Res Ther 2021; 12:514. [PMID: 34563249 PMCID: PMC8466748 DOI: 10.1186/s13287-021-02579-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) seriously affects patient health. Despite the elusiveness of innate therapeutic effects, mesenchymal stromal cells (MSCs) hold great promise for inflammation-related diseases. Recent evidence indicates that disease-specific inflammatory cytokines could enhance the therapeutic effects of MSCs. METHODS By establishing a CP/CPPS mouse model and pretreating MSCs with the cytokine interleukin-1β (IL-1β), we studied the IL-1β-primed MSC immunoregulatory ability and targeted migration ability in vitro and in CP/CPPS mice. RESULTS IL-1β levels significantly increased in the prostate tissue and serum of experimental autoimmune prostatitis (EAP) mice. Pretreatment with IL-1β enhanced the immunomodulatory potential and targeted migration of MSCs in vitro. Furthermore, intravenous infusion of IL-1β-primed MSCs dampened inflammation in prostate tissues and alleviated hyperalgesia in EAP mice. The infused MSCs inhibited monocyte infiltration and promoted regulatory T lymphocyte formation in prostate tissue, thus remodeling the local environment. Surprisingly, IL-1β-primed MSCs exhibited improved accumulation in the spleen but not in prostate tissue. Accordingly, infused MSCs reshaped systemic immunity by reducing the proportion of Ly6ChighCD11b+ monocytes and boosting the proportion of CD4+Foxp3+ regulatory T lymphocytes in the spleen and lung. Inflammatory chemokine (C-C motif) ligand 2 (CCL2) decreased through the downregulation of the NF-κB and JNK/MAPK pathways by inflammatory resolution via MSCs infusion to alleviate pain. CONCLUSION In summary, IL-1β-primed MSCs restored systemic immunologic homeostasis to alleviate CP/CPPS by modulating systemic immunity. These findings provide a novel strategy to boost the therapeutic effects of MSC-based therapy for CP/CPPS and reveal the essential role of systematic immunity in the treatment of CP/CPPS with MSC infusion.
Collapse
Affiliation(s)
- Hanchao Liu
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Xinning Zhu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaohui Cao
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, School of Medicine, Hubei Polytechnic University, 16 North Guilin Road, Huangshi, 435003, Hubei, China
| | - Ani Chi
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Jian Dai
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 51008, China
| | - Zhenqing Wang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Second Road, Guangzhou, China.
| |
Collapse
|
14
|
Mintoff D, Benhadou F, Pace NP, Frew JW. Metabolic syndrome and hidradenitis suppurativa: epidemiological, molecular, and therapeutic aspects. Int J Dermatol 2021; 61:1175-1186. [PMID: 34530487 DOI: 10.1111/ijd.15910] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Hidradenitis suppurativa (HS) is a chronic, suppurative condition of the pilosebaceous unit. Patients suffering from HS demonstrate a molecular profile in keeping with a state of systemic inflammation and are often found to fit the criteria for a diagnosis of metabolic syndrome (MetS). In this paper, we review the literature with regards to established data on the prevalence of MetS in HS patients and revise the odds ratio of comorbid disease. Furthermore, we attempt to draw parallels between inflammatory pathways in HS and MetS and evaluate how convergences may explain the risk of comorbid disease, necessitating the need for multidisciplinary care.
Collapse
Affiliation(s)
- Dillon Mintoff
- Department of Dermatology, Mater Dei Hospital, Msida, Malta.,European Hidradenitis Suppurativa Foundation e.V, Dessau, Germany.,Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Farida Benhadou
- European Hidradenitis Suppurativa Foundation e.V, Dessau, Germany.,Department of Dermatology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Nikolai P Pace
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - John W Frew
- Department of Dermatology, Liverpool Hospital, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
15
|
Miglietta G, Russo M, Duardo RC, Capranico G. G-quadruplex binders as cytostatic modulators of innate immune genes in cancer cells. Nucleic Acids Res 2021; 49:6673-6686. [PMID: 34139015 PMCID: PMC8266585 DOI: 10.1093/nar/gkab500] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid structures involved in fundamental biological processes. As G4s are promising anticancer targets, in past decades the search for effective anticancer G4 binders aimed at the discovery of more cytotoxic ligands interfering with specific G4 structures at oncogenes or telomeres. Here, we have instead observed a significant activation of innate immune genes by two unrelated ligands at non-cytotoxic concentrations. The studied G4 binders (pyridostatin and PhenDC3) can induce an increase of micronuclei triggering the activation of the cytoplasmic STING (stimulator of interferon response cGAMP interactor 1) signaling pathway in human and murine cancer cells. Ligand activity can then lead to type I interferon production and innate immune gene activation. Moreover, specific gene expression patterns mediated by a G4 binder in cancer cells correlate with immunological hot features and better survival in human TCGA (The Cancer Genome Atlas) breast tumors. The findings open to the development of cytostatic G4 binders as effective immunomodulators for combination immunotherapies in unresponsive tumors.
Collapse
Affiliation(s)
- Giulia Miglietta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Renée C Duardo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
16
|
Targeting JAK/STAT signaling pathways in treatment of inflammatory bowel disease. Inflamm Res 2021; 70:753-764. [PMID: 34212215 DOI: 10.1007/s00011-021-01482-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 01/05/2023] Open
Abstract
Janus kinase/signal transduction and transcriptional activator (JAK/STAT) signaling pathway is a transport hub for cytokine secretion and exerts its effects. The activation of JAK/STAT signaling pathway is essential for the regulation of inflammatory responses. Inappropriate activation or deletion of JAK/STAT signaling pathway is the initiator of the inflammatory response. JAK/STAT signaling pathway has been demonstrated to be involved in the process of innate and adaptive immune response to inflammatory bowel disease (IBD). In this review, we discuss the role of the JAK/STAT signaling pathway in the regulation of different cells in IBD, as well as new findings on the involvement of the JAK/STAT signaling pathway in the regulation of the intestinal immune response. The current status of JAK inhibitors in the treatment of IBD is summarized as well. This review highlights natural remedies that can serve as potential JAK inhibitors. These phytochemicals may be useful in the identification of precursor compounds in the process of designing and developing novel JAK inhibitors.
Collapse
|
17
|
Zhang L, Zhang J, Liu Y, Zhang P, Nie J, Zhao R, Shi Q, Sun H, Jiao D, Chen Y, Zhao X, Huang Y, Li Y, Zhao JY, Xu W, Zhao SM, Wang C. Mitochondrial STAT5A promotes metabolic remodeling and the Warburg effect by inactivating the pyruvate dehydrogenase complex. Cell Death Dis 2021; 12:634. [PMID: 34148062 PMCID: PMC8214628 DOI: 10.1038/s41419-021-03908-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Signal transducer and activator 5a (STAT5A) is a classical transcription factor that plays pivotal roles in various biological processes, including tumor initiation and progression. A fraction of STAT5A is localized in the mitochondria, but the biological functions of mitochondrial STAT5A remain obscure. Here, we show that STAT5A interacts with pyruvate dehydrogenase complex (PDC), a mitochondrial gatekeeper enzyme connecting two key metabolic pathways, glycolysis and the tricarboxylic acid cycle. Mitochondrial STAT5A disrupts PDC integrity, thereby inhibiting PDC activity and remodeling cellular glycolysis and oxidative phosphorylation. Mitochondrial translocation of STAT5A is increased under hypoxic conditions. This strengthens the Warburg effect in cancer cells and promotes in vitro cell growth under hypoxia and in vivo tumor growth. Our findings indicate distinct pro-oncogenic roles of STAT5A in energy metabolism, which is different from its classical function as a transcription factor.
Collapse
Affiliation(s)
- Liang Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Jianong Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Yan Liu
- Institute of metabolism and integrative biology (IMIB), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Pingzhao Zhang
- Fudan University Shanghai Cancer Center and Department of Pathology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Ji Nie
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Rui Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Qin Shi
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Huiru Sun
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Dongyue Jiao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Yingji Chen
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Xiaying Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Yan Huang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Yao Li
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Jian-Yuan Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200438, Shanghai, China
| | - Wei Xu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, 20032, Shanghai, China
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China.
| | - Chenji Wang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), School of Life Sciences, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
18
|
Kuang S, He F, Liu G, Sun X, Dai J, Chi A, Tang Y, Li Z, Gao Y, Deng C, Lin Z, Xiao H, Zhang M. CCR2-engineered mesenchymal stromal cells accelerate diabetic wound healing by restoring immunological homeostasis. Biomaterials 2021; 275:120963. [PMID: 34153785 DOI: 10.1016/j.biomaterials.2021.120963] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 02/06/2023]
Abstract
Impaired wound healing presents great health risks to patients. While encouraging, the current clinical successes of mesenchymal stromal cell (MSC)-based therapies for tissue repair have been limited. Genetic engineering could endow MSCs with more robust regenerative capacities. Here, we identified that C-C motif chemokine receptor 2 (CCR2) overexpression enhanced the targeted migration and immunoregulatory potential of MSCs in response to C-C motif chemokine ligand 2 (CCL2) in vitro. Intravenously infusion of CCR2-engineered MSCs (MSCsCCR2) exhibited improved homing efficiencies to injured sites and lungs of diabetic mice. Accordingly, MSCCCR2 infusion inhibited monocyte infiltration, reshaped macrophage inflammatory properties, prompted the accumulation of regulatory T cells (Treg cells) in injured sites, and reshaped systemic immune responses via the lung and spleen in mouse diabetic wound models. In summary, CCR2-engineered MSCs restore immunological homeostasis to accelerate diabetic wound healing via their improved homing and immunoregulatory potentials in response to CCL2. Therefore, these findings provide a novel strategy to explore genetically engineered MSCs as tools to facilitate tissue repair in diabetic wounds.
Collapse
Affiliation(s)
- Shuhong Kuang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Feng He
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Guihua Liu
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xiangzhou Sun
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian Dai
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ani Chi
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yali Tang
- Core Lab Plat for Medical Science, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhuoran Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yong Gao
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chunhua Deng
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 51008, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China.
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Min Zhang
- Department of Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
19
|
Ghafouri-Fard S, Hussen BM, Nicknafs F, Nazer N, Sayad A, Taheri M. Expression Analysis of Protein Inhibitor of Activated STAT in Inflammatory Demyelinating Polyradiculoneuropathy. Front Immunol 2021; 12:659038. [PMID: 34054823 PMCID: PMC8149797 DOI: 10.3389/fimmu.2021.659038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
Protein inhibitors of activated STAT (PIAS) are involved in the regulation of the JAK/STAT signaling pathway and have interactions with NF-κB, p73 and p53. These proteins regulate immune responses; therefore dysregulation in their expression leads to several immune-mediated disorders. In the present study, we examined expression of PIAS1-4 in peripheral blood of patients with acute/chronic inflammatory demyelinating polyradiculoneuropathy (AIDP/CIDP) compared with healthy subjects. We demonstrated down-regulation of all PIAS genes in both AIDP and CIDP cases compared with controls. Similarly, comparisons in gender-based groups revealed down-regulation of these gene0s in patients of each gender compared with gender-matched controls. There was no significant difference in expression of PIAS genes between AIDP and CIDP cases. Based on the area under the receiver operating characteristic curves, PIAS1-4 genes could distinguish between inflammatory demyelinating polyradiculoneuropathy and healthy status with accuracy values of 0.87, 0.87, 0.79 and 0.80, respectively. In differentiation between AIDP cases and healthy controls, these values were 0.92, 0.92, 0.83 and 0.86, respectively. Finally, PIAS1-4 genes could discriminate CIDP from healthy status with accuracy values of 0.82, 0.83, 0.75 and 0.75, respectively. The current study underscores the role of PIAS genes in the pathogenesis of inflammatory demyelinating polyradiculoneuropathy and their potential usage as biomarkers.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Fwad Nicknafs
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghme Nazer
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Chen Y, Ding X, Wang S, Ding P, Xu Z, Li J, Wang M, Xiang R, Wang X, Wang H, Feng Q, Qiu J, Wang F, Huang Z, Zhang X, Tang G, Tang S. A single-cell atlas of mouse olfactory bulb chromatin accessibility. J Genet Genomics 2021; 48:147-162. [PMID: 33926839 DOI: 10.1016/j.jgg.2021.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 10/21/2022]
Abstract
Olfaction, the sense of smell, is a fundamental trait crucial to many species. The olfactory bulb (OB) plays pivotal roles in processing and transmitting odor information from the environment to the brain. The cellular heterogeneity of the mouse OB has been studied using single-cell RNA sequencing. However, the epigenetic landscape of the mOB remains mostly unexplored. Herein, we apply single-cell assay for transposase-accessible chromatin sequencing to profile the genome-wide chromatin accessibility of 9,549 single cells from the mOB. Based on single-cell epigenetic signatures, mOB cells are classified into 21 clusters corresponding to 11 cell types. We identify distinct sets of putative regulatory elements specific to each cell cluster from which putative target genes and enriched potential functions are inferred. In addition, the transcription factor motifs enriched in each cell cluster are determined to indicate the developmental fate of each cell lineage. Our study provides a valuable epigenetic data set for the mOB at single-cell resolution, and the results can enhance our understanding of regulatory circuits and the therapeutic capacity of the OB at the single-cell level.
Collapse
Affiliation(s)
- Yin Chen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Xiangning Ding
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Shiyou Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Peiwen Ding
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Zaoxu Xu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiankang Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Mingyue Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Rong Xiang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaoling Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Haoyu Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Qikai Feng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Jiaying Qiu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Feiyue Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; BGI-Shenzhen, Shenzhen 518083, China; School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhen Huang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Xingliang Zhang
- Shenzhen Children's Hospital, Shenzhen 518083, China; Department of Pediatrics, the Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China.
| | - Gen Tang
- Shenzhen Children's Hospital, Shenzhen 518083, China.
| | - Shengping Tang
- Shenzhen Children's Hospital, Shenzhen 518083, China; Zunyi Medical University, Zunyi, Guizhou 563099, China; China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
21
|
Zhang W, Cao D, Wang M, Wu Y, Gong J, Li J, Liu Y. XBP1s repression regulates Kupffer cell polarization leading to immune suppressive effects protecting liver allograft in rats. Int Immunopharmacol 2021; 91:107294. [PMID: 33395585 DOI: 10.1016/j.intimp.2020.107294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Polarized kupffer cells (KCs) influence the immune response after liver transplantation. We report an undiscovered immune regulatory role of X-box binding protein 1 (XBP1) on immune function of kupffer cells (KCs). METHODS Acute rejection model using rats. RESULTS We found that suppression of XBP1s in lipopolysaccharide (LPS) -activated KCs could increase the expression of arginase-1 (Arg-1) and CD204 but also decrease the expression levels of MHC-II and CD40 and shift the phenotype markers of KCs toward M2 via the janus kinase (JAK) 3- Signal Transducer And Activator Of Transcription (STAT) 6 pathway, presenting an immunosuppressive function by enhancing anti-inflammatory cytokine secretion and accelerating apoptosis of activated T cells. XBP1s over-expression in KCs shift the phenotype markers on KCs towards M1 via the JAK1-STAT1 pathway and have shown a strong pro-inflammatory property. Down-regulation of XBP1s in KCs changed the phenotype and cytokine secretion profile towards M2 and markedly protected the function and structure of allograft liver, prolonging the recipient's survival compared with control and normal saline groups in rats. CONCLUSIONS Our findings reveal a novel regulatory mechanism of XBP1 in an induced immuno-suppressive state to protect rat's liver allograft via JAK-STAT mediated KCs polarization.
Collapse
Affiliation(s)
- Weikang Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ding Cao
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | - Menghao Wang
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yakun Wu
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Jianping Gong
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Jingzheng Li
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yiming Liu
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
22
|
Kim DH, Lee JY, Kim YJ, Kim HJ, Park W. Rubi Fructus Water Extract Alleviates LPS-Stimulated Macrophage Activation via an ER Stress-Induced Calcium/CHOP Signaling Pathway. Nutrients 2020; 12:nu12113577. [PMID: 33266427 PMCID: PMC7700618 DOI: 10.3390/nu12113577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022] Open
Abstract
Despite the availability of antibiotics and vaccines, many intractable infectious diseases still threaten human health across the globe. Uncontrolled infections can lead to systemic inflammatory response syndrome and the excessive production of inflammatory cytokines, known as a cytokine storm. As cytokines also play necessary and positive roles in fighting infections, it is important to identify nontoxic and anti-inflammatory natural products that can modulate cytokine production caused by infections. Rubi Fructus, the unripe fruits of Rubus coreanus Miquel, are known to possess antioxidative properties. In this study, the effect of the water extract of Rubi Fructus (RF) on the lipopolysaccharide (LPS)-induced inflammatory response in RAW 264.7 macrophages was investigated using biochemical and cell biology techniques. Our data indicated that RF inhibits p38 phosphorylation, intracellular calcium release, and the production of nitric oxide (NO), interleukin (IL)-6, monocyte chemotactic activating factor (MCP)-1, tumor necrosis factor (TNF)-α, leukemia inhibitory factor (LIF), lipopolysaccharide-induced CXC chemokine (LIX), granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), macrophage colony-stimulating factor (M-CSF), macrophage inflammatory protein (MIP)-1α, MIP-1β, MIP-2, and regulated on activation, normal T cell expressed and secreted (RANTES) in LPS-treated macrophages. In addition, we observed decreasing mRNA expression of Chop, Camk2a, Stat1, Stat3, Jak2, Fas, c-Jun, c-Fos, Nos2, and Ptgs2 without cytotoxic effects. We concluded that RF demonstrated immunoregulatory activity on LPS-stimulated macrophages via an endoplasmic reticulum (ER) stress-induced calcium/CCAAT-enhancer-binding protein homologous protein (CHOP) pathway and the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway.
Collapse
Affiliation(s)
- Do-Hoon Kim
- Department of Medical Classics and History, College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Ji-Young Lee
- Department of Pathology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.-Y.L.); (Y.-J.K.); (H.-J.K.)
| | - Young-Jin Kim
- Department of Pathology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.-Y.L.); (Y.-J.K.); (H.-J.K.)
| | - Hyun-Ju Kim
- Department of Pathology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.-Y.L.); (Y.-J.K.); (H.-J.K.)
| | - Wansu Park
- Department of Pathology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (J.-Y.L.); (Y.-J.K.); (H.-J.K.)
- Correspondence: ; Tel.: +82-31-750-8821
| |
Collapse
|
23
|
Zhuang Q, Cai H, Cao Q, Li Z, Liu S, Ming Y. Tolerogenic Dendritic Cells: The Pearl of Immunotherapy in Organ Transplantation. Front Immunol 2020; 11:552988. [PMID: 33123131 PMCID: PMC7573100 DOI: 10.3389/fimmu.2020.552988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Over a half century, organ transplantation has become an effective method for the treatment of end-stage visceral diseases. Although the application of immunosuppressants (IS) minimizes the rate of allograft rejection, the common use of IS bring many adverse effects to transplant patients. Moreover, true transplant tolerance is very rare in clinical practice. Dendritic cells (DCs) are thought to be the most potent antigen-presenting cells, which makes a bridge between innate and adaptive immunity. Among their subsets, a small portion of DCs with immunoregulatory function was known as tolerogenic DC (Tol-DC). Previous reports demonstrated the ability of adoptively transferred Tol-DC to approach transplant tolerance in animal models. In this study, we summarized the properties, ex vivo generation, metabolism, and clinical attempts of Tol-DC. Tol-DC is expected to become a substitute for IS to enable patients to achieve immune tolerance in the future.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Haozheng Cai
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Qingtai Cao
- Hunan Normal University School of Medicine, Changsha, China
| | - Zixin Li
- Hunan Normal University School of Medicine, Changsha, China
| | - Shu Liu
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yingzi Ming
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
24
|
Yu Y, Cui H, Zhang C, Zhang D, Yin J, Wen G, Chai Y. Human nail bed extracellular matrix facilitates bone regeneration via macrophage polarization mediated by the JAK2/STAT3 pathway. J Mater Chem B 2020; 8:4067-4079. [PMID: 32242565 DOI: 10.1039/c9tb02910a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Critical-sized bone defects caused by trauma, tumor resection or serious infection represent one of the most challenging problems faced by orthopedic surgeons. However, the construction of bone grafts with good osteointegration and osteoinductivity is a clinical challenge. It has been elaborated that the nail bed tissue is an essential element for digit tip regeneration, suggesting that the nail bed may serve as a new material to manipulate bone regeneration. Herein, it was found that human nail bed extracellular matrix derived from amputated patients stimulates macrophage polarization toward a pro-healing phenotype and the expression of BMP2, to facilitate the osteogenic differentiation of bone marrow stromal cells (BMSCs) in vitro. The in vivo osteogenic capacity of decellularized nail bed scaffolds was then confirmed using a rat model of critical-sized calvarial defects. The in-depth analysis of immune responses to implanted scaffolds revealed that macrophage polarization toward the pro-regenerative M2 phenotype directs osteogenesis, as confirmed by macrophage depletion. A combination of proteomics analysis and RNA interference verified that the JAK2/STAT3 pathway is the positive regulator of macrophage polarization initiated by the decellularized nail bed during the promoted osteogenesis process. Thus, the decellularized human nail bed scaffold developed in this work is a promising biomaterial for bone regeneration.
Collapse
Affiliation(s)
- Yaling Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Shen L, Kang L, Wang D, Xun J, Chen C, Du L, Zhang M, Gong J, Mi X, Yue S, Zhang Y, Song X, Xiang R, Zhang Z, Tan X. Legumain-deficient macrophages promote senescence of tumor cells by sustaining JAK1/STAT1 activation. Cancer Lett 2019; 472:40-49. [PMID: 31857155 DOI: 10.1016/j.canlet.2019.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 02/05/2023]
Abstract
Macrophages serve as the first line of communication between tumors and the rest of the immune system, and understanding the interplay between macrophage and tumor cells is essential for developing novel macrophage-based strategy against tumor. Here, we show that deletion of legumain in macrophages activates senescence of tumor cells. Macrophage derived IL-1β mediates the pro-senescent effect of Lgmn-/- macrophages since blockage of IL-1β reverses the senescence phenotype in both a coculture model of macrophage and tumor cells and an orthotopic mouse model of breast cancer. Sustained activation of JAK1/STAT1 signaling and increased iNOS were found in the tumor cell-cocultured Lgmn-/- macrophages, which were necessary for IL-1β expression and secretion. Applying a specific STAT1 agonist mimics the inductive effect of legumain deletion on IL-1β expression in macrophages, and the effect can be blocked via inhibition of iNOS. Legumain and integrin αvβ3 interact to prevent STAT1 signaling in macrophages, and blockage of integrin αvβ3 stimulates STAT1 activation. Therapeutically, transplantation of bone marrow from Lgmn-/- mice suppresses the malignant growth of tumor by upregulating tumor cell senescence. Therefore, our finding highlights legumain in macrophages as a potential therapeutic target for tumors.
Collapse
Affiliation(s)
- Long Shen
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lichun Kang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Dekun Wang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jing Xun
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Chuan'ai Chen
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Lingfang Du
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Mianzhi Zhang
- Dongfang Hospital Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Junbo Gong
- Tianjin Key Laboratory of Modern Drug Delivery and High Efficiency, Tianjin University, Tianjin, 300072, China
| | - Xue Mi
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Shijing Yue
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yuying Zhang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Xiang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Zhujun Zhang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Xiaoyue Tan
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
26
|
Combating viral contaminants in CHO cells by engineering innate immunity. Sci Rep 2019; 9:8827. [PMID: 31222165 PMCID: PMC6586939 DOI: 10.1038/s41598-019-45126-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Viral contamination in biopharmaceutical manufacturing can lead to shortages in the supply of critical therapeutics. To facilitate the protection of bioprocesses, we explored the basis for the susceptibility of CHO cells to RNA virus infection. Upon infection with certain ssRNA and dsRNA viruses, CHO cells fail to generate a significant interferon (IFN) response. Nonetheless, the downstream machinery for generating IFN responses and its antiviral activity is intact in these cells: treatment of cells with exogenously-added type I IFN or poly I:C prior to infection limited the cytopathic effect from Vesicular stomatitis virus (VSV), Encephalomyocarditis virus (EMCV), and Reovirus-3 virus (Reo-3) in a STAT1-dependent manner. To harness the intrinsic antiviral mechanism, we used RNA-Seq to identify two upstream repressors of STAT1: Gfi1 and Trim24. By knocking out these genes, the engineered CHO cells exhibited activation of cellular immune responses and increased resistance to the RNA viruses tested. Thus, omics-guided engineering of mammalian cell culture can be deployed to increase safety in biotherapeutic protein production among many other biomedical applications.
Collapse
|
27
|
Liu L, Liang L, Liang H, Wang M, Lu B, Xue M, Deng J, Chen Y. Fusobacterium nucleatum Aggravates the Progression of Colitis by Regulating M1 Macrophage Polarization via AKT2 Pathway. Front Immunol 2019; 10:1324. [PMID: 31249571 PMCID: PMC6582778 DOI: 10.3389/fimmu.2019.01324] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
Disordered intestinal flora and discordant immune response are associated with the development of ulcerative colitis (UC). Recent work has described the ability of macrophages to undergo repolarization toward a proinflammatory M1 or anti-inflammatory M2 phenotype in response to particular bacterium-derived signals. Fusobacterium nucleatum (F. nucleatum, Fn) is a species of intestinal commensal bacteria with potential pathogenicity, but its association with UC and how it may contribute to progression of UC is largely unknown. In this study, we provide new evidence that F. nucleatum accumulated heavily in the intestine of UC patients and was accompanied by the secretion of IFN-γ and the skewing of M1 macrophages. Mechanistically, our data showed that F. nucleatum aggravated dextran sodium sulfate (DSS)-induced colitis in the production of Th1-related cytokines IFN-γ through the AKT2 signaling pathway in vitro and in vivo. To further confirm the disease-relevance of these shifts in macrophage repolarization in response to F. nucleatum, stimulated bone marrow-derived macrophages (BMDMs) were transferred into recipient mice with DSS colitis. This transfer resulted in increased disease activity and inflammatory cytokine production. Taken together, we show clearly that F. nucleatum can promote the progression of UC via proinflammatory M1 macrophage skewing, and targeting F. nucleatum or AKT2 signaling may be a viable means of blocking development of UC.
Collapse
Affiliation(s)
- Le Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Liang
- Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huifen Liang
- Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingming Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bingyun Lu
- Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Xue
- Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Deng
- Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, State Key Laboratory of Organ Failure Research, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Chrisikos TT, Zhou Y, Slone N, Babcock R, Watowich SS, Li HS. Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer. Mol Immunol 2019; 110:24-39. [PMID: 29549977 PMCID: PMC6139080 DOI: 10.1016/j.molimm.2018.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 01/04/2018] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are the principal antigen-presenting cells of the immune system and play key roles in controlling immune tolerance and activation. As such, DCs are chief mediators of tumor immunity. DCs can regulate tolerogenic immune responses that facilitate unchecked tumor growth. Importantly, however, DCs also mediate immune-stimulatory activity that restrains tumor progression. For instance, emerging evidence indicates the cDC1 subset has important functions in delivering tumor antigens to lymph nodes and inducing antigen-specific lymphocyte responses to tumors. Moreover, DCs control specific therapeutic responses in cancer including those resulting from immune checkpoint blockade. DC generation and function is influenced profoundly by cytokines, as well as their intracellular signaling proteins including STAT transcription factors. Regardless, our understanding of DC regulation in the cytokine-rich tumor microenvironment is still developing and must be better defined to advance cancer treatment. Here, we review literature focused on the molecular control of DCs, with a particular emphasis on cytokine- and STAT-mediated DC regulation. In addition, we highlight recent studies that delineate the importance of DCs in anti-tumor immunity and immune therapy, with the overall goal of improving knowledge of tumor-associated factors and intrinsic DC signaling cascades that influence DC function in cancer.
Collapse
Affiliation(s)
- Taylor T Chrisikos
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Yifan Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natalie Slone
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rachel Babcock
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Qiu Q, Feng Q, Tan X, Guo M. JAK3-selective inhibitor peficitinib for the treatment of rheumatoid arthritis. Expert Rev Clin Pharmacol 2019; 12:547-554. [PMID: 31059310 DOI: 10.1080/17512433.2019.1615443] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease characterized by synovitis as well as symmetric and destructive arthropathy. Although several disease modified antirheumatic-drugs (DMARDs) have widely used in clinical practice, certain patients are nonresponsive to or cannot take such medications due to adverse reactions. It is evident that Janus kinase (JAK) inhibitors have the potential to provide a significant breakthrough in the treatment of RA. These potent, orally administered, JAK inhibitors simplify the treatment options for patients. Areas covered: We discuss the pharmacodynamics, pharmacokinetics, efficacy, and safety of peficitinib for the treatment of RA. Expert opinion: Peficitinib is a novel JAK3 inhibitor potently inhibiting JAK3 enzymatic activity and JAK1/3-mediated cell proliferation. Its selectivity for JAK family kinases is similar to that of tofacitinib, but slightly less potent for JAK2. It is currently being evaluated by the FDA to treat adult patients with moderately to severely active RA who show inadequate response to or are intolerant of methotrexate. It can be used either as monotherapy or combination therapy with methotrexate, or other DMARDs. However, we think that more cautious consideration and measurement for adverse events are needed, after considering the safety results of ongoing clinical studies of peficitinib.
Collapse
Affiliation(s)
- Qian Qiu
- a Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Qilin Feng
- a Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Xueying Tan
- b College of pharmacy , Zhejiang Pharmaceutical College , Ningbo , China
| | - Mingxing Guo
- c Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
30
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Zhang X, Zhao Y, Zhu X, Guo Y, Yang Y, Jiang Y, Liu B. Active vitamin D regulates macrophage M1/M2 phenotypes via the STAT-1-TREM-1 pathway in diabetic nephropathy. J Cell Physiol 2018; 234:6917-6926. [PMID: 30478987 DOI: 10.1002/jcp.27450] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/27/2018] [Indexed: 12/29/2022]
Abstract
AIM Imbalance of M1/M2 macrophages phenotype activation is a key point in diabetic nephropathy (DN). This study aimed to investigate whether active vitamin D (VD) suppresses macrophage transition to the M1 phenotype via inhibiting the high glucose-induced STAT-1 phosphorylation to reduce TREM-1 expression. METHODS In vivo, pathological changes in kidney tissue were detected and the expression of CD68 TREM-1, STAT-1, M1 makers, and M2 makers were acquired in renal tissue of patients with DN and 18w DN rats. In vitro, RAW 264.7 cells were incubated in the presence of high glucose with or without VD. Silencing and overexpression of TREM-1 and silencing and activate of STAT-1 were explored to elucidate the underlying mechanism. The expression of TREM-1 and STAT-1 and the changes of macrophage phenotype were examined separately by western blot and immunofluorescence staining. RESULTS (a) Expression of TREM-1, p-STAT-1, and M1 markers (iNOS and TNF-α) were increased and positively correlated in kidneys from patients with DN. (b) In DN rats, the enlargement of glomerular surface area, expansion of glomerular mesangial matrix, the expression of CD68, TREM-1, p-STAT-1, and M1 marker (iNOS) were significantly increased in comparison with the normal control group, whereas above changes were markedly decreased in the diabetic group treated with the VD group. (c) In vitro, VD significantly decreased high glucose-induced CD68, TREM-1, p-STAT-1, and M1 marker (iNOS) expression. However, above-mentioned effects of VD are abolished when TREM-1 is overexpressed or STAT-1 is activated. Reductions in STAT-1 expression decreased the TREM-1 expression. CONCLUSION VD can inhibit macrophage transition to the M1 phenotype through the STAT-1/TREM-1 pathway.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China
| | - Yu Zhao
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China
| | - Xiaodong Zhu
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China
| | - Yinfeng Guo
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China
| | - Ying Yang
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China
| | - Yuteng Jiang
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China
| | - Bicheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Li Y, Liu G, Zhang J, Zhong X, He Z. Identification of key genes in human airway epithelial cells in response to respiratory pathogens using microarray analysis. BMC Microbiol 2018; 18:58. [PMID: 29884128 PMCID: PMC5994059 DOI: 10.1186/s12866-018-1187-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 05/16/2018] [Indexed: 11/14/2022] Open
Abstract
Background Airway epithelium is the primary target for pathogens. It functions not only as a mechanical barrier, but also as an important sentinel of the innate immune system. However, the interactions and processes between host airway epithelium and pathogens are not fully understood. Results In this study, we identified responses of the human airway epithelium cells to respiratory pathogen infection. We retrieved three mRNA expression microarray datasets from the Gene Expression Omnibus database, and identified 116 differentially expressed genes common to all three datasets. Gene functional annotations were performed using Gene Ontology and pathway analyses. Using protein-protein interaction network analysis and text mining, we identified a subset of genes functioned as a group and associated with infection, inflammation, tissue adhesion, and receptor internalization in infected epithelial cells. These genes were further identified in BESE-2B cells in response to Talaromyces marneffei by Real-Time quantitative PCR (qRT-PCR). In addition, we performed an in silico prediction of microRNA-target interactions and examined our findings. Conclusions Using bioinformatics analysis, we identified several genes that may serve as biomarkers for the diagnosis or the surveillance of early respiratory tract infection, and identified additional genes and miRNAs that warrant further fundamental experimental research. Electronic supplementary material The online version of this article (10.1186/s12866-018-1187-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinghua Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guangnan Liu
- Department of Respiratory Medicine, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China
| | - Jianquan Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiyi He
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
33
|
Salvador P, Macías-Ceja DC, Gisbert-Ferrándiz L, Hernández C, Bernardo D, Alós R, Navarro-Vicente F, Esplugues JV, Ortiz-Masiá D, Barrachina MD, Calatayud S. CD16+ Macrophages Mediate Fibrosis in Inflammatory Bowel Disease. J Crohns Colitis 2018; 12:589-599. [PMID: 29304229 DOI: 10.1093/ecco-jcc/jjx185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/29/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Fibrosis is a common complication of Crohn's disease [CD], and is related to dysregulated tissular repair following inflammation, in which macrophages play a central role. We have previously observed that STAT6-/- mice present delayed mucosal recovery after 2,4,6-trinitrobenzenesulfonic acid [TNBS]-induced colitis due to a deficiency in reparatory interleukin-4 [IL4]/STAT6-dependent M2 macrophages, which can be reverted by the exogenous transfer of this cell type. In the present study, we analyse the role of STAT6-dependent macrophages in intestinal fibrosis. METHODS Colitis was induced by weekly intra-rectal administration of TNBS [6 weeks] to STAT6-/- mice and wild-type [WT] animals. Colonic surgical resections were obtained from CD patients and from colon cancer patients. RESULTS Chronic colitis provoked a fibrogenic response in STAT6-/- mice, but not in WT animals. An accumulation of M2 macrophages, defined as CD206+ cells, was observed in WT mice, but not in STAT6-/- animals. Instead, the latter group showed an increase in CD16+ macrophages that correlated with the expression of fibrogenic markers. CD16+ macrophages were also increased in the damaged mucosa of Crohn's disease patients with stenotic or penetrating complications. Finally, administration of IL4-treated WT macrophages to STAT6-/- mice reduced TNBS-induced fibrosis. CONCLUSIONS Our study demonstrates that STAT6 deficiency dysregulates the macrophage response to inflammatory outbursts by increasing the presence of a population of CD16+ macrophages that seems to contribute to intestinal fibrosis.
Collapse
Affiliation(s)
- Pedro Salvador
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - Laura Gisbert-Ferrándiz
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - David Bernardo
- Unidad de Gastroenterología, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rafael Alós
- Servicio de Cirugía, Hospital de Sagunto, Sagunto, Valencia, Spain
| | | | - Juan Vicente Esplugues
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masiá
- Departamento de Medicina and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Maria Dolores Barrachina
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Sara Calatayud
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
34
|
IL-17 contributes to the pathogenesis of obliterative bronchiolitis via regulation of M1 macrophages polarization in murine heterotopic trachea transplantation models. Int Immunopharmacol 2017; 52:51-60. [DOI: 10.1016/j.intimp.2017.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/02/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
|
35
|
Li L, Bai H, Yang J, Cao D, Shen K. Genome-wide DNA copy number analysis in clonally expanded human ovarian cancer cells with distinct invasive/migratory capacities. Oncotarget 2017; 8:15136-15148. [PMID: 28122348 PMCID: PMC5362473 DOI: 10.18632/oncotarget.14767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/10/2017] [Indexed: 01/26/2023] Open
Abstract
Ovarian cancer has the worst prognosis of any gynecological malignancy, and generally presents with metastasis at advanced stages. Copy number variation (CNV) frequently contributes to the alteration of oncogenic drivers. In this study, we sought to identify genetic targets in heterogeneous clones from human ovarian cancers cells. We used array-based technology to systematically assess all the genes with CNVs in cell models clonally expanded from A2780 and SKOV3 ovarian cancer cell lines with distinct highly and minimally invasive/migratory capacities. We found that copy number alterations differed between matched highly and minimally invasive/migratory subclones, differentially affecting specific functional processes including immune response processes, DNA damage repair, cell cycle and cell proliferation. We also identified seven genes as strong candidates, including DDB1, ERCC1, ERCC2, PRPF19, BCAT1, CDKN1B and MARK4, by integrating the above data with gene expression and clinical outcome data. Thus, by determining the molecular signatures of heterogeneous invasive/migratory ovarian cancer cells, we identified genes that could be specifically targeted for the treatment and prognosis of advanced ovarian cancers.
Collapse
Affiliation(s)
- Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huimin Bai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Steiert SA, Zissler UM, Chaker AM, Esser-von-Bieren J, Dittlein D, Guerth F, Jakwerth CA, Piontek G, Zahner C, Drewe J, Traidl-Hoffmann C, Schmidt-Weber CB, Gilles S. Anti-inflammatory effects of the petasin phyto drug Ze339 are mediated by inhibition of the STAT pathway. Biofactors 2017; 43:388-399. [PMID: 28139053 DOI: 10.1002/biof.1349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/29/2016] [Accepted: 12/10/2016] [Indexed: 01/13/2023]
Abstract
Ze339, an herbal extract from Petasites hybridus leaves is effective in treatment of allergic rhinitis by inhibition of a local production of IL-8 and eicosanoid LTB4 in allergen-challenged patients. However, the mechanism of action and anti-inflammatory potential in virally induced exacerbation of the upper airways is unknown. This study investigates the anti-inflammatory mechanisms of Ze339 on primary human nasal epithelial cells (HNECs) upon viral, bacterial and pro-inflammatory triggers. To investigate the influence of viral and bacterial infections on the airways, HNECs were stimulated with viral mimics, bacterial toll-like-receptor (TLR)-ligands or cytokines, in presence or absence of Ze339. The study uncovers Ze339 modulated changes in pro-inflammatory mediators and decreased neutrophil chemotaxis as well as a reduction of the nuclear translocation and phosphorylation of STAT molecules. Taken together, this study suggests that phyto drug Ze339 specifically targets STAT-signalling pathways in HNECs and has high potential as a broad anti-inflammatory drug that exceeds current indication. © 2016 BioFactors, 43(3):388-399, 2017.
Collapse
Affiliation(s)
- Sabrina A Steiert
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Otolaryngology and Head and Neck Surgery, TUM Medical School, Technical University of Munich, Munich, Germany
| | - Julia Esser-von-Bieren
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Daniela Dittlein
- Chair and institute of environmental medicine, UNIKA-T, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Augsburg, Germany
- CK CARE - Christine Kühne Center for allergy research and education, Davos, Switzerland
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Guido Piontek
- Department of Otolaryngology and Head and Neck Surgery, TUM Medical School, Technical University of Munich, Munich, Germany
| | | | | | - Claudia Traidl-Hoffmann
- Chair and institute of environmental medicine, UNIKA-T, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Augsburg, Germany
- CK CARE - Christine Kühne Center for allergy research and education, Davos, Switzerland
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Germany, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stefanie Gilles
- Chair and institute of environmental medicine, UNIKA-T, Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Augsburg, Germany
- CK CARE - Christine Kühne Center for allergy research and education, Davos, Switzerland
| |
Collapse
|
37
|
Penafuerte C, Feldhammer M, Mills JR, Vinette V, Pike KA, Hall A, Migon E, Karsenty G, Pelletier J, Zogopoulos G, Tremblay ML. Downregulation of PTP1B and TC-PTP phosphatases potentiate dendritic cell-based immunotherapy through IL-12/IFNγ signaling. Oncoimmunology 2017; 6:e1321185. [PMID: 28680757 PMCID: PMC5486178 DOI: 10.1080/2162402x.2017.1321185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 12/28/2022] Open
Abstract
PTP1B and TC-PTP are highly related protein-tyrosine phosphatases (PTPs) that regulate the JAK/STAT signaling cascade essential for cytokine-receptor activation in immune cells. Here, we describe a novel immunotherapy approach whereby monocyte-derived dendritic cell (moDC) function is enhanced by modulating the enzymatic activities of PTP1B and TC-PTP. To downregulate or delete the activity/expression of these PTPs, we generated mice with PTP-specific deletions in the dendritic cell compartment or used PTP1B and TC-PTP specific inhibitor. While total ablation of PTP1B or TC-PTP expression leads to tolerogenic DCs via STAT3 hyperactivation, downregulation of either phosphatase remarkably shifts the balance toward an immunogenic DC phenotype due to hyperactivation of STAT4, STAT1 and Src kinase. The resulting increase in IL-12 and IFNγ production subsequently amplifies the IL-12/STAT4/IFNγ/STAT1/IL-12 positive autocrine loop and enhances the therapeutic potential of mature moDCs in tumor-bearing mice. Furthermore, pharmacological inhibition of both PTPs improves the maturation of defective moDCs derived from pancreatic cancer (PaC) patients. Our study provides a new advance in the use of DC-based cancer immunotherapy that is complementary to current cancer therapeutics.
Collapse
Affiliation(s)
| | - Matthew Feldhammer
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - John R Mills
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Valerie Vinette
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Kelly A Pike
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Anita Hall
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,McGill University Health Centre-Research Institute, MUHC-RI, Montreal, QC, Canada
| | - Eva Migon
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | | | - Jerry Pelletier
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - George Zogopoulos
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,McGill University Health Centre-Research Institute, MUHC-RI, Montreal, QC, Canada
| | - Michel L Tremblay
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
38
|
Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S, Müller R. The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Front Oncol 2017; 7:24. [PMID: 28275576 PMCID: PMC5319992 DOI: 10.3389/fonc.2017.00024] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
The reciprocal interplay of cancer cells and host cells is an indispensable prerequisite for tumor growth and progression. Cells of both the innate and adaptive immune system, in particular tumor-associated macrophages (TAMs) and T cells, as well as cancer-associated fibroblasts enter into a malicious liaison with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Ovarian cancer, the most lethal of all gynecological malignancies, is characterized by a unique TME that enables specific and efficient metastatic routes, impairs immune surveillance, and mediates therapy resistance. A characteristic feature of the ovarian cancer TME is the role of resident host cells, in particular activated mesothelial cells, which line the peritoneal cavity in huge numbers, as well as adipocytes of the omentum, the preferred site of metastatic lesions. Another crucial factor is the peritoneal fluid, which enables the transcoelomic spread of tumor cells to other pelvic and peritoneal organs, and occurs at more advanced stages as a malignancy-associated effusion. This ascites is rich in tumor-promoting soluble factors, extracellular vesicles and detached cancer cells as well as large numbers of T cells, TAMs, and other host cells, which cooperate with resident host cells to support tumor progression and immune evasion. In this review, we summarize and discuss our current knowledge of the cellular and molecular interactions that govern this interplay with a focus on signaling networks formed by cytokines, lipids, and extracellular vesicles; the pathophysiologial roles of TAMs and T cells; the mechanism of transcoelomic metastasis; and the cell type selective processing of signals from the TME.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, Marburg, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University , Marburg , Germany
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM) , Marburg , Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University , Marburg , Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| |
Collapse
|
39
|
Zhang J, Chen Z, Zhou Z, Yang P, Wang CY. Sumoylation Modulates the Susceptibility to Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:299-322. [DOI: 10.1007/978-3-319-50044-7_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Bergman P, Seyedoleslami Esfahani S, Engström Y. Drosophila as a Model for Human Diseases—Focus on Innate Immunity in Barrier Epithelia. Curr Top Dev Biol 2017; 121:29-81. [DOI: 10.1016/bs.ctdb.2016.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Goropevšek A, Holcar M, Avčin T. The Role of STAT Signaling Pathways in the Pathogenesis of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2016; 52:164-181. [DOI: 10.1007/s12016-016-8550-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Deng J, Pennati A, Cohen JB, Wu Y, Ng S, Wu JH, Flowers CR, Galipeau J. GIFT4 fusokine converts leukemic B cells into immune helper cells. J Transl Med 2016; 14:106. [PMID: 27118475 PMCID: PMC4847253 DOI: 10.1186/s12967-016-0865-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/12/2016] [Indexed: 01/22/2023] Open
Abstract
Background Chronic lymphocytic leukemia (CLL) remains incurable with standard therapy, and is characterized by excessive expansion of monoclonal abnormal mature B cells and more regulatory immune properties of T cell compartment. Thus, developing novel strategies to enhance immune function merits further investigation as a possible therapy for CLL. Methods We generated a fusion cytokine (fusokine) arising from the combination of human GM-CSF and IL-4 (named GIFT4). Primary CLL cells were treated with GIFT4 or GM-CSG and IL-4 in vitro. GIFT4-triggered STAT5 signaling in CLL cells was examined by Western blot. The phenotype and secretome of GIFT4-treated CLL cells (GIFT4-CLL cells), and the immune stimulatory function of GIFT4-CLL cells on autologous T cells were analyzed by flow cytometry and luminex assay. Results GIFT4-CLL up-regulated the expression of co-stimulatory molecules CD40, CD80 and CD86 and adhesion molecule CD54. GIFT4-CLL cells secreted IL-1β, IL-6, ICAM-1 and substantial IL-2 relative to unstimulated CLL cells. GIFT4 treatment led to JAK1, JAK2 and JAK3-mediated hyper-phosphorylation of STAT5 in primary CLL cells, which is essential for GIFT4-triggered conversion of CLL cells. GIFT4-CLL cells directly propelled the expansion of autologous IFN-γ-producing CD314+ cytotoxic T cells in vitro, and that these could lyse autologous CLL cells. Furthermore, administration of GIFT4 protein promoted the expansion of human T cells in NOD-scid IL2Rγnull immune deficient mice adoptively pre-transferred with peripheral blood mononuclear cells from subjects with CLL. Conclusion GIFT4 has potent capability to converts primary CLL cells into APC-like immune helper cells that initiate a T cell driven anti-CLL immune response.
Collapse
Affiliation(s)
- Jiusheng Deng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA.
| | - Andrea Pennati
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Jonathon B Cohen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Yuanqiang Wu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Spencer Ng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Jian Hui Wu
- Department of Oncology, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Christopher R Flowers
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA
| | - Jacques Galipeau
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 1365B Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
43
|
Kaminska B, Mota M, Pizzi M. Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2016; 1862:339-51. [DOI: 10.1016/j.bbadis.2015.10.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
|
44
|
Bayik D, Gursel I, Klinman DM. Structure, mechanism and therapeutic utility of immunosuppressive oligonucleotides. Pharmacol Res 2016; 105:216-25. [PMID: 26779666 DOI: 10.1016/j.phrs.2015.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 12/27/2022]
Abstract
Synthetic oligodeoxynucleotides that can down-regulate cellular elements of the immune system have been developed and are being widely studied in preclinical models. These agents vary in sequence, mechanism of action, and cellular target(s) but share the ability to suppress a plethora of inflammatory responses. This work reviews the types of immunosuppressive oligodeoxynucleotide (Sup ODN) and compares their therapeutic activity against diseases characterized by pathologic levels of immune stimulation ranging from autoimmunity to septic shock to cancer (see graphical abstract). The mechanism(s) underlying the efficacy of Sup ODN and the influence size, sequence and nucleotide backbone on function are considered.
Collapse
Affiliation(s)
- Defne Bayik
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Bilkent University, Molecular Biology and Genetic Department, Therapeutic ODN Research Laboratory, Ankara, Turkey
| | - Ihsan Gursel
- Bilkent University, Molecular Biology and Genetic Department, Therapeutic ODN Research Laboratory, Ankara, Turkey.
| | - Dennis M Klinman
- Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
45
|
Schmitz ML, Kracht M. Cyclin-Dependent Kinases as Coregulators of Inflammatory Gene Expression. Trends Pharmacol Sci 2015; 37:101-113. [PMID: 26719217 DOI: 10.1016/j.tips.2015.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Cyclin-dependent kinases (CDKs) exert a variety of functions through regulation of the cell cycle and gene expression, thus implicating them in diverse biological processes. Recent studies have deciphered the molecular mechanisms employed by nuclear CDKs to support the expression of inflammatory mediators. Induced transcription of many proinflammatory genes is increased during the G1 phase of the cell cycle in a CDK-dependent manner. This process involves the cytokine-induced recruitment of CDK6 to the nuclear chromatin fraction where it associates with transcription factors of the NF-κB, STAT, and AP-1 families. The ability of CDK6 to trigger the expression of VEGF-A and p16(INK4A) and to recruit the NF-κB subunit p65 to its target sites is largely independent of its kinase function. The involvement of CDKs in proinflammatory gene expression also allows therapeutic targeting of their functions to interfere with tumor-promoting inflammation or chronic inflammatory diseases.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Michael Kracht
- Rudolf-Buchheim-Institute for Pharmacology, Medical Faculty, Schubertstrasse 81, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
46
|
Ando R, Shima H, Tamahara T, Sato Y, Watanabe-Matsui M, Kato H, Sax N, Motohashi H, Taguchi K, Yamamoto M, Nio M, Maeda T, Ochiai K, Muto A, Igarashi K. The Transcription Factor Bach2 Is Phosphorylated at Multiple Sites in Murine B Cells but a Single Site Prevents Its Nuclear Localization. J Biol Chem 2015; 291:1826-1840. [PMID: 26620562 DOI: 10.1074/jbc.m115.661702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 12/22/2022] Open
Abstract
The transcription factor Bach2 regulates the immune system at multiple points, including class switch recombination (CSR) in activated B cells and the function of T cells in part by restricting their terminal differentiation. However, the regulation of Bach2 expression and its activity in the immune cells are still unclear. Here, we demonstrated that Bach2 mRNA expression decreased in Pten-deficient primary B cells. Bach2 was phosphorylated in primary B cells, which was increased upon the activation of the B cell receptor by an anti-immunoglobulin M (IgM) antibody or CD40 ligand. Using specific inhibitors of kinases, the phosphorylation of Bach2 in activated B cells was shown to depend on the phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway. The complex of mTOR and Raptor phosphorylated Bach2 in vitro. We identified multiple new phosphorylation sites of Bach2 by mass spectrometry analysis of epitope-tagged Bach2 expressed in the mature B cell line BAL17. Among the sites identified, serine 535 (Ser-535) was critical for the regulation of Bach2 because a single mutation of Ser-535 abolished cytoplasmic accumulation of Bach2, promoting its nuclear accumulation in pre-B cells, whereas Ser-509 played an auxiliary role. Bach2 repressor activity was enhanced by the Ser-535 mutation in B cells. These results suggest that the PI3K-Akt-mTOR pathway inhibits Bach2 by both repressing its expression and inducing its phosphorylation in B cells.
Collapse
Affiliation(s)
- Ryo Ando
- From the Departments of Biochemistry,; Pediatric Surgery, and
| | - Hiroki Shima
- From the Departments of Biochemistry,; CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575, and
| | - Toru Tamahara
- From the Departments of Biochemistry,; CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575, and; the Department of Preventive Dentistry, Tohoku University Graduate School of Dentistry, Seiryo-machi 4-1, Sendai 980-8575
| | | | | | | | - Nicolas Sax
- From the Departments of Biochemistry,; CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575, and
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging, and Cancer, Tohoku University, Seiryo-machi 4-1, Sendai 980-8575
| | - Keiko Taguchi
- Medical Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575
| | - Masayuki Yamamoto
- Medical Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575
| | | | - Tatsuya Maeda
- the Laboratory of Membrane Proteins, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo 113-0032, Japan
| | - Kyoko Ochiai
- From the Departments of Biochemistry,; CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575, and; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575
| | - Akihiko Muto
- From the Departments of Biochemistry,; CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575, and
| | - Kazuhiko Igarashi
- From the Departments of Biochemistry,; CREST, Japan Science and Technology Agency, Seiryo-machi 2-1, Sendai 980-8575, and; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575,.
| |
Collapse
|
47
|
Altered activation of innate immunity associates with white matter volume and diffusion in first-episode psychosis. PLoS One 2015; 10:e0125112. [PMID: 25970596 PMCID: PMC4430522 DOI: 10.1371/journal.pone.0125112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
First-episode psychosis (FEP) is associated with inflammatory and brain structural changes, but few studies have investigated whether systemic inflammation associates with brain structural changes in FEP. Thirty-seven FEP patients (median 27 days on antipsychotic medication), and 19 matched controls were recruited. Serum levels of 38 chemokines and cytokines, and cardiovascular risk markers were measured at baseline and 2 months later. We collected T1- and diffusion-weighted MRIs with a 3 T scanner from the patients at baseline. We analyzed the association of psychosis-related inflammatory markers with gray and white matter (WM) volume using voxel-based morphometry and WM diffusion using tract-based spatial statistics with whole-brain and region-of-interest (ROI) analyses. FEP patients had higher CCL22 and lower TGFα, CXCL1, CCL7, IFN-α2 and ApoA-I than controls. CCL22 decreased significantly between baseline and 2 months in patients but was still higher than in controls. The association between inflammatory markers and FEP remained significant after adjusting for age, sex, smoking and BMI. We did not observe a correlation of inflammatory markers with any symptoms or duration of antipsychotic treatment. Baseline CCL22 levels correlated negatively with WM volume and positively with mean diffusivity and radial diffusivity bilaterally in the frontal lobes in ROI analyses. Decreased serum level of ApoA-I was associated with smaller volume of the medial temporal WM. In whole-brain analyses, CCL22 correlated positively with mean diffusivity and radial diffusivity, and CXCL1 associated negatively with fractional anisotropy and positively with mean diffusivity and radial diffusivity in several brain regions. This is the first report to demonstrate an association between circulating chemokine levels and WM in FEP patients. Interestingly, CCL22 has been previously implicated in autoimmune diseases associated with WM pathology. The results suggest that an altered activation of innate immunity may contribute to WM damage in psychotic disorders.
Collapse
|
48
|
Singh H. Transcriptional and epigenetic networks orchestrating immune cell development and function. Immunol Rev 2015; 261:5-8. [PMID: 25123273 DOI: 10.1111/imr.12210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Harinder Singh
- Division of Immunobiology and the Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|