1
|
Li B, Adam Eichhorn PJ, Chng WJ. Targeting the ubiquitin pathway in lymphoid malignancies. Cancer Lett 2024; 594:216978. [PMID: 38795760 DOI: 10.1016/j.canlet.2024.216978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Ubiquitination and related cellular processes control a variety of aspects in human cell biology, and defects in these processes contribute to multiple illnesses. In recent decades, our knowledge about the pathological role of ubiquitination in lymphoid cancers and therapeutic strategies to target the modified ubiquitination system has evolved tremendously. Here we review the altered signalling mechanisms mediated by the aberrant expression of cancer-associated E2s/E3s and deubiquitinating enzymes (DUBs), which result in the hyperactivation of oncoproteins or the frequently allied downregulation of tumour suppressors. We discuss recent highlights pertaining to the several different therapeutic interventions which are currently being evaluated to effectively block abnormal ubiquitin-proteasome pathway and the use of heterobifunctional molecules which recruit the ubiquitination system to degrade or stabilize non-cognate substrates. This review aids in comprehension of ubiquitination aberrance in lymphoid cancers and current targeting strategies and elicits further investigations to deeply understand the link between cellular ubiquitination and lymphoid pathogenesis as well as to ameliorate corresponding treatment interventions.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Pieter Johan Adam Eichhorn
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia; Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore; Department of Medicine, School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Yang H, Zhou L, Shi M, Yu J, Xie Y, Sun Y. Ubiquitination-Related Gene Signature, Nomogram and Immune Features for Prognostic Prediction in Patients with Head and Neck Squamous Cell Carcinoma. Genes (Basel) 2024; 15:880. [PMID: 39062659 PMCID: PMC11276148 DOI: 10.3390/genes15070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of this research was to create a prognostic model focused on genes related to ubiquitination (UbRGs) for evaluating their clinical significance in head and neck squamous cell carcinoma (HNSCC) patients. The transcriptome expression data of UbRGs were obtained from The Cancer Genome Atlas (TCGA) database, and weighted gene co-expression network analysis (WGCNA) was used to identify specific UbRGs within survival-related hub modules. A multi-gene signature was formulated using LASSO Cox regression analysis. Furthermore, various analyses, including time-related receiver operating characteristics (ROCs), Kaplan-Meier, Cox regression, nomogram prediction, gene set enrichment, co-expression, immune, tumor mutation burden (TMB), and drug sensitivity, were conducted. Ultimately, a prognostic signature consisting of 11 gene pairs for HNSCC was established. The Kaplan-Meier curves indicated significantly improved overall survival (OS) in the low-risk group compared to the high-risk group (p < 0.001), suggesting its potential as an independent and dependable prognostic factor. Additionally, a nomogram with AUC values of 0.744, 0.852, and 0.861 at 1-, 3-, and 5-year intervals was developed. Infiltration of M2 macrophages was higher in the high-risk group, and the TMB was notably elevated compared to the low-risk group. Several chemotherapy drugs targeting UbRGs were recommended for low-risk and high-risk patients, respectively. The prognostic signature derived from UbRGs can effectively predict prognosis and provide new personalized therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Huiwen Yang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Mengwen Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Jintao Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
| | - Yi Xie
- Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (H.Y.); (L.Z.); (M.S.); (J.Y.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Xu Y, Zheng C, Ashaq MS, Zhou Q, Li Y, Lu C, Zhao B. Regulatory role of E3 ubiquitin ligases in normal B lymphopoiesis and B-cell malignancies. Life Sci 2023; 331:122043. [PMID: 37633415 DOI: 10.1016/j.lfs.2023.122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
E3 ubiquitin ligases play an essential role in protein ubiquitination, which is involved in the regulation of protein degradation, protein-protein interactions and signal transduction. Increasing evidences have shed light on the emerging roles of E3 ubiquitin ligases in B-cell development and related malignances. This comprehensive review summarizes the current understanding of E3 ubiquitin ligases in B-cell development and their contribution to B-cell malignances, which could help explore the molecular mechanism of normal B-cell development and provide potential therapeutic targets of the related diseases.
Collapse
Affiliation(s)
- Yan Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chengzu Zheng
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Muhammad Sameer Ashaq
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qian Zhou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Chunhua Lu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baobing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
4
|
Yang L, Li JN. E3 ubiquitin ligase neural precursor cell-expressed developmentally downregulated gene 4 motivates FOXA1 ubiquitination and restrains proliferation of diffuse large B-cell lymphoma cells via the Wnt/β-Catenin pathway. Cell Biol Int 2023; 47:1688-1701. [PMID: 37415495 DOI: 10.1002/cbin.12061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
Neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4) is an E3 ubiquitin ligase that recognizes substrates via protein-protein interactions and takes part in tumor development. This study aims to clarify NEDD4's functions in diffuse large B-cell lymphoma (DLBCL) and its downstream mechanisms. Collection of 53 DLBCL tissues and adjacent normal lymphoid tissues, and detection of NEDD4 and Forkhead box protein A1 (FOXA1) in the tissues were conducted. The selection of DLBCL cells was for FARAGE, and test of cells' advancement was after transfection. Analysis of NEDD4 and FOXA1's link, and test of Wnt/β-catenin pathway were implemented. In vivo tumor xenograft experiments were put into effect. Detection of the pathological conditions of tumor tissues and the positive Ki67 in the family was implemented. It came out NEDD4 was reduced in DLBCL tissues and cell lines, and FOXA1 was elevated; Enhancing NEDD4 or repressing FOXA1 refrained DLBCL cells' advancement; NEDD4 could combine with FOXA1 and trigger its ubiquitination and degradation; NEDD4 inactivates the Wnt/β-catenin pathway by motivating FOXA1 ubiquitination; NEDD4 enhancement refrained DLBCL growth in vivo. In conclusion, the E3 ubiquitin ligase NEDD4 accelerates FOXA1 ubiquitination but refrains DLBCL cell proliferation via the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| | - Jun Nan Li
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| |
Collapse
|
5
|
Zhou N, Choi J, Grothusen G, Kim BJ, Ren D, Cao Z, Liu Y, Li Q, Inamdar A, Beer T, Tang HY, Perkey E, Maillard I, Bonasio R, Shi J, Ruella M, Wan L, Busino L. DLBCL-associated NOTCH2 mutations escape ubiquitin-dependent degradation and promote chemoresistance. Blood 2023; 142:973-988. [PMID: 37235754 PMCID: PMC10656726 DOI: 10.1182/blood.2022018752] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma. Up to 40% of patients with DLBCL display refractory disease or relapse after standard chemotherapy treatment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone [R-CHOP]), leading to significant morbidity and mortality. The molecular mechanisms of chemoresistance in DLBCL remain incompletely understood. Using a cullin-really interesting new gene (RING) ligase-based CRISPR-Cas9 library, we identify that inactivation of the E3 ubiquitin ligase KLHL6 promotes DLBCL chemoresistance. Furthermore, proteomic approaches helped identify KLHL6 as a novel master regulator of plasma membrane-associated NOTCH2 via proteasome-dependent degradation. In CHOP-resistant DLBCL tumors, mutations of NOTCH2 result in a protein that escapes the mechanism of ubiquitin-dependent proteolysis, leading to protein stabilization and activation of the oncogenic RAS signaling pathway. Targeting CHOP-resistant DLBCL tumors with the phase 3 clinical trial molecules nirogacestat, a selective γ-secretase inhibitor, and ipatasertib, a pan-AKT inhibitor, synergistically promotes DLBCL destruction. These findings establish the rationale for therapeutic strategies aimed at targeting the oncogenic pathway activated in KLHL6- or NOTCH2-mutated DLBCL.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jaewoo Choi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Grant Grothusen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bang-Jin Kim
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY
| | - Diqiu Ren
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Zhendong Cao
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yiman Liu
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Qinglan Li
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Arati Inamdar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Thomas Beer
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA
| | - Eric Perkey
- Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ivan Maillard
- Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Roberto Bonasio
- Epigenetics Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Marco Ruella
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Liling Wan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Lee KR, Lee JO, Lee JS, Paik JH. Bcl-6-dependent risk stratification by nuclear expression of Peli1 in diffuse large B-cell lymphoma. J Cancer 2022; 13:3598-3605. [PMID: 36606193 PMCID: PMC9809313 DOI: 10.7150/jca.67569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background/Aim: Peli1 is an E3 ubiquitin ligase involving lymphomagenesis by lysine 63 ubiquitination-mediated stabilization of Bcl-6 with in diffuse large B-cell lymphoma (DLBCL). Materials and Methods: We categorized nuclear expression of Peli1 according to Bcl-6 status by immunohistochemistry in DLBCL (n=100), and analyzed clinicopathologic association with prognosis. Results: We established Bcl-6/Peli1 risk model composed of high risk (Bcl-6+/Peli1+ or Bcl-6-/Peli1-; n=64) and low risk (Bcl-6+/Peli1- or Bcl-6-/Peli1+; n=36). High risk group had more frequent non-GCB subtype (83% vs 64%; p=0.033) and Bcl-6-negativity (69% vs 28%; p<0.001) than low risk group. Univariate survival analysis for progression-free survival (PFS) and overall survival (OS) revealed Bcl-6/Peli1 risk group (p=0.026 and p=0.021) and other conventional variables including international prognostic index (IPI), stage, ECOG performance status, number of extranodal sites were significant prognostic factors, along with B symptoms for OS. In multivariate analysis for PFS, Bcl-6/Peli1 risk group (p=0.032; HR=3.29), IPI (p=0.013; HR=3.39) and ECOG PS (p=0.035; HR=3.08) were independent prognostic factors. In multivariate analysis for OS, Bcl-6/Peli1 risk group (p=0.048; HR=7.87) and IPI (p=0.001; HR=12.15) were associated with prognosis. Conclusions: DLBCL had distinctive risk groups according to pairs of nuclear Peli1 and Bcl-6 expression. These results suggest the potential role of Peli1 and Bcl-6 in risk assessment in DLBCL.
Collapse
Affiliation(s)
- Ki Rim Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea,Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong-Ok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong Seok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea,Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea,✉ Corresponding author: Jin Ho Paik, MD, PhD, Department of Pathology, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, South Korea. Tel.: +82-31-787-7717; Fax: +82-31-787-4012; E-mail:
| |
Collapse
|
7
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
8
|
Gilmore TD. NF-κB and Human Cancer: What Have We Learned over the Past 35 Years? Biomedicines 2021; 9:biomedicines9080889. [PMID: 34440093 PMCID: PMC8389606 DOI: 10.3390/biomedicines9080889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transcription factor NF-κB has been extensively studied for its varied roles in cancer development since its initial characterization as a potent retroviral oncogene. It is now clear that NF-κB also plays a major role in a large variety of human cancers, including especially ones of immune cell origin. NF-κB is generally constitutively or aberrantly activated in human cancers where it is involved. These activations can occur due to mutations in the NF-κB transcription factors themselves, in upstream regulators of NF-κB, or in pathways that impact NF-κB. In addition, NF-κB can be activated by tumor-assisting processes such as inflammation, stromal effects, and genetic or epigenetic changes in chromatin. Aberrant NF-κB activity can affect many tumor-associated processes, including cell survival, cell cycle progression, inflammation, metastasis, angiogenesis, and regulatory T cell function. As such, inhibition of NF-κB has often been investigated as an anticancer strategy. Nevertheless, with a few exceptions, NF-κB inhibition has had limited success in human cancer treatment. This review covers general themes that have emerged regarding the biological roles and mechanisms by which NF-κB contributes to human cancers and new thoughts on how NF-κB may be targeted for cancer prognosis or therapy.
Collapse
|
9
|
A novel model of alternative NF-κB pathway activation in anaplastic large cell lymphoma. Leukemia 2021; 35:1976-1989. [PMID: 33184494 PMCID: PMC9245089 DOI: 10.1038/s41375-020-01088-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 10/01/2020] [Accepted: 10/29/2020] [Indexed: 02/01/2023]
Abstract
Aberrant activation of NF-κB is the most striking oncogenic mechanism in B-cell lymphoma; however, its role in anaplastic large cell lymphomas (ALCL) has not been fully established and its activation mechanism(s) remain unclear. Using ALCL cell line models, we revealed the supporting roles for NFKB2 and the NIK pathway in some ALCL lines. To investigate the detailed activation mechanisms for this oncogenic pathway, we performed specifically designed alternative NF-κB reporter CRISPR screens followed by the RNA-seq analysis, which led us to identify STAT3 as the major mediator for NIK-dependent NF-κB activation in ALCL. Consistently, p-STAT3 level was correlated with NFKB2 nuclear accumulation in primary clinical samples. Mechanistically, we found that in NIK-positive ALK- ALCL cells, common JAK/STAT3 mutations promote transcriptional activity of STAT3 which directly regulates NFKB2 and CD30 expression. Endogenous expression of CD30 induces constitutive NF-κB activation through binding and degrading of TRAF3. In ALK+ ALCL, the CD30 pathway is blocked by the NPM-ALK oncoprotein, but STAT3 activity and resultant NFKB2 expression can still be induced by NPM-ALK, leading to minimal alternative NF-κB activation. Our data suggest combined NIK and JAK inhibitor therapy could benefit patients with NIK-positive ALK- ALCL carrying JAK/STAT3 somatic mutations.
Collapse
|
10
|
Masle-Farquhar E, Russell A, Li Y, Zhu F, Rui L, Brink R, Goodnow CC. Loss-of-function of Fbxo10, encoding a post-translational regulator of BCL2 in lymphomas, has no discernible effect on BCL2 or B lymphocyte accumulation in mice. PLoS One 2021; 16:e0237830. [PMID: 33914737 PMCID: PMC8084200 DOI: 10.1371/journal.pone.0237830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/25/2021] [Indexed: 11/28/2022] Open
Abstract
Regulation of the anti-apoptotic BCL2 protein determines cell survival and is frequently abnormal in B cell lymphomas. An evolutionarily conserved post-translational mechanism for over-expression of BCL2 in human B cell lymphomas and the BCL2 paralogue CED-9 in Caenorhabditis elegans results from loss-of-function mutations in human FBXO10 and its C.elegans paralogue DRE-1, a BCL2/CED-9-binding subunit of the SKP-CULLIN-FBOX (SCF) ubiquitin ligase. Here, we tested the role of FBXO10 in BCL2 regulation by producing mice with two different CRISPR/Cas9-engineered Fbxo10 mutations: an Asp54Lys (E54K) missense mutation in the FBOX domain and a Cys55SerfsTer55 frameshift (fs) truncating mutation. Mice homozygous for either mutant allele were born at the expected Mendelian frequency and appeared normal in body weight and appearance as adults. Spleen B cells from homozygous mutant mice did not have increased BCL2 protein, nor were the numbers of mature B cells or germinal centre B cells increased as would be expected if BCL2 was increased. Other lymphocyte subsets that are also regulated by BCL2 levels also displayed no difference in frequency in homozygous Fbxo10 mutant mice. These results support one of two conclusions: either FBXO10 does not regulate BCL2 in mice, or it does so redundantly with other ubiquitin ligase complexes. Possible candidates for the latter include FBXO11 or ARTS-XIAP. The difference between the role of FBXO10 in regulating BCL2 protein levels in C. elegans and in human DLBCL, relative to single-gene deficient mouse leukocytes, should be further investigated.
Collapse
Affiliation(s)
| | - Amanda Russell
- Immunology Division, Garvan Institute for Medical Research, Sydney, NSW, Australia
| | - Yangguang Li
- Department of Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Fen Zhu
- Department of Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Lixin Rui
- Department of Medicine, University of Wisconsin, Madison, WI, United States of America
| | - Robert Brink
- Immunology Division, Garvan Institute for Medical Research, Sydney, NSW, Australia
| | - Christopher C. Goodnow
- Immunology Division, Garvan Institute for Medical Research, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
11
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
12
|
Ubiquitin Modification of the Epstein-Barr Virus Immediate Early Transactivator Zta. J Virol 2020; 94:JVI.01298-20. [PMID: 32847852 DOI: 10.1128/jvi.01298-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
The Epstein-Barr virus (EBV) immediate early transactivator Zta plays a key role in regulating the transition from latency to the lytic replication stages of EBV infection. Regulation of Zta is known to be controlled through a number of transcriptional and posttranscriptional events. Here, we show that Zta is targeted for ubiquitin modification and that this can occur in EBV-negative and in EBV-infected cells. Genetic studies show critical roles for both an amino-terminal region of Zta and the basic DNA binding domain of Zta in regulating Zta ubiquitination. Pulse-chase experiments demonstrate that the bulk population of Zta is relatively stable but that at least a subset of ubiquitinated Zta molecules are targeted for degradation in the cell. Mutation of four out of a total of nine lysine residues in Zta largely abrogates its ubiquitination, indicating that these are primary ubiquitination target sites. A Zta mutant carrying mutations at these four lysine residues (lysine 12, lysine 188, lysine 207, and lysine 219) cannot induce latently infected cells to produce and/or release infectious virions. Nevertheless, this mutant can induce early gene expression, suggesting a possible defect at the level of viral replication or later in the lytic cascade. As far as we know, this is the first study that has investigated the targeting of Zta by ubiquitination or its role in Zta function.IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous human pathogen and associated with various human diseases. EBV undergoes latency and lytic replication stages in its life cycle. The transition into the lytic replication stage, at which virus is produced, is mainly regulated by the viral gene product, Zta. Therefore, the regulation of Zta function becomes a central issue regarding viral biology and pathogenesis. Known modifications of Zta include phosphorylation and sumoylation. Here, we report the role of ubiquitination in regulating Zta function. We found that Zta is subjected to ubiquitination in both EBV-infected and EBV-negative cells. The ubiquitin modification targets 4 lysine residues on Zta, leading to both mono- and polyubiquitination of Zta. Ubiquitination of Zta affects the protein's stability and likely contributes to the progression of viral lytic replication. The function and fate of Zta may be determined by the specific lysine residue being modified.
Collapse
|
13
|
Ennishi D, Hsi ED, Steidl C, Scott DW. Toward a New Molecular Taxonomy of Diffuse Large B-cell Lymphoma. Cancer Discov 2020; 10:1267-1281. [DOI: 10.1158/2159-8290.cd-20-0174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022]
|
14
|
Wei W, Lin Y, Song Z, Xiao W, Chen L, Yin J, Zhou Y, Barta SK, Petrus M, Waldmann TA, Yang Y. A20 and RBX1 Regulate Brentuximab Vedotin Sensitivity in Hodgkin Lymphoma Models. Clin Cancer Res 2020; 26:4093-4106. [PMID: 32299816 DOI: 10.1158/1078-0432.ccr-19-4137] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE For patients with refractory/relapsed Hodgkin lymphoma (roughly 20% of total cases), few effective therapeutic options exist. Currently, brentuximab vedotin (BV), a drug-conjugated anti-CD30 antibody, is one of the most effective approved therapy agents for these patients. However, many patients do not achieve complete remission and ultimately develop BV-resistant disease, necessitating a more detailed understanding of the molecular circuitry that drives BV sensitivity and the mechanism of BV resistance. EXPERIMENTAL DESIGN Here, we established a ubiquitin regulator-focused CRISPR library screening platform in Hodgkin lymphoma and carried out a drug sensitization screen against BV to identify genes regulating BV treatment sensitivity. RESULTS Our CRISPR library screens revealed the ubiquitin-editing enzymes A20 and RBX1 as key molecule effectors that regulate BV sensitivity in Hodgkin lymphoma line L428. A20 negatively regulates NF-κB activity which is required to prevent BV cytotoxicity. In line with these results, the RNA-seq analysis of the BV-resistant single-cell clones demonstrated a consistent upregulation of NF-κB signature genes, as well as the ABC transporter gene ABCB1. Mechanically, NF-κB regulates BV treatment sensitivity through mediating ABCB1 expression. Targeting NF-κB activity synergized well with BV in killing Hodgkin lymphoma cell lines, augmented BV sensitivity, and overcame BV resistance in vitro and in Hodgkin lymphoma xenograft mouse models. CONCLUSIONS Our identification of this previously unrecognized mechanism provides novel knowledge of possible BV responsiveness and resistance mechanisms in Hodgkin lymphoma, as well as leads to promising hypotheses for the development of therapeutic strategies to overcome BV resistance in this disease.
Collapse
Affiliation(s)
- Wei Wei
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yuquan Lin
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Zhihui Song
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Wenming Xiao
- Division of Bioinformatics and Biostatistics, NCTR/FDA, Jefferson, Arkansas
| | - Liqi Chen
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jiejing Yin
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Stefan K Barta
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Petrus
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yibin Yang
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
15
|
Chen MY, Li ZP, Sun ZN, Ma M. USP9X promotes the progression of hepatocellular carcinoma by regulating beta-catenin. Ir J Med Sci 2020; 189:865-871. [PMID: 32065347 DOI: 10.1007/s11845-020-02199-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/05/2020] [Indexed: 01/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the malignant tumors with highest mortality. The role of USP9X in the carcinogenesis of HCC has not yet been determined. In this study, USP9X was found significantly highly expressed in the intratumor tissues. Expression of intratumor USP9X was associated with tumor size and microvascular invasion while USP9X is independent risk factor of HCC disease-free survival and overall survival. In vitro studies revealed that knockdown of USP9X significantly inhibited the proliferation of HCC cells. Mechanically, USP9X promotes HCC cell proliferation by regulating the expression of beta-catenin. The results of the present study demonstrated that high expression of USP9X in intratumoral cells is associated with poor HCC prognosis, which may serve as a potential target for an adjuvant therapy.
Collapse
Affiliation(s)
- Mei-Yuan Chen
- Department of General Surgery, Weifang Yidu Central Hospital, Weifang, 262500, Shandong, China
| | - Zi-Ping Li
- Department of Neurology, Weifang Yidu Central Hospital, Weifang, 262500, Shandong, China
| | - Zhao-Na Sun
- Department of Cardiology, Weifang Yidu Central Hospital, Weifang, 262500, Shandong, China
| | - Ming Ma
- Department of Oncology, Linyi People's Hospital, Linyi, 276000, Shandong, China.
| |
Collapse
|
16
|
Bufalieri F, Caimano M, Lospinoso Severini L, Basili I, Paglia F, Sampirisi L, Loricchio E, Petroni M, Canettieri G, Santoro A, D’Angelo L, Infante P, Di Marcotullio L. The RNA-Binding Ubiquitin Ligase MEX3A Affects Glioblastoma Tumorigenesis by Inducing Ubiquitylation and Degradation of RIG-I. Cancers (Basel) 2020; 12:cancers12020321. [PMID: 32019099 PMCID: PMC7072305 DOI: 10.3390/cancers12020321] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GB) is the most malignant primary brain tumor in humans, with an overall survival of approximatively 15 months. The molecular heterogeneity of GB, as well as its rapid progression, invasiveness and the occurrence of drug-resistant cancer stem cells, limits the efficacy of the current treatments. In order to develop an innovative therapeutic strategy, it is mandatory to identify and characterize new molecular players responsible for the GB malignant phenotype. In this study, the RNA-binding ubiquitin ligase MEX3A was selected from a gene expression analysis performed on publicly available datasets, to assess its biological and still-unknown activity in GB tumorigenesis. We find that MEX3A is strongly up-regulated in GB specimens, and this correlates with very low protein levels of RIG-I, a tumor suppressor involved in differentiation, apoptosis and innate immune response. We demonstrate that MEX3A binds RIG-I and induces its ubiquitylation and proteasome-dependent degradation. Further, the genetic depletion of MEX3A leads to an increase of RIG-I protein levels and results in the suppression of GB cell growth. Our findings unveil a novel molecular mechanism involved in GB tumorigenesis and suggest MEX3A and RIG-I as promising therapeutic targets in GB.
Collapse
Affiliation(s)
- Francesca Bufalieri
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
| | - Miriam Caimano
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
| | - Ludovica Lospinoso Severini
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
| | - Irene Basili
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
| | - Francesco Paglia
- Dipartimento di Neurologia e Psichiatria, Neurochirurgia, Sapienza University, Viale dell’Università 30, 00185 Rome, Italy; (F.P.); (L.S.); (A.S.); (L.D.)
| | - Luigi Sampirisi
- Dipartimento di Neurologia e Psichiatria, Neurochirurgia, Sapienza University, Viale dell’Università 30, 00185 Rome, Italy; (F.P.); (L.S.); (A.S.); (L.D.)
| | - Elena Loricchio
- Center for Life Nano Science (CLNS@Sapienza), Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Marialaura Petroni
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti-Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy
| | - Antonio Santoro
- Dipartimento di Neurologia e Psichiatria, Neurochirurgia, Sapienza University, Viale dell’Università 30, 00185 Rome, Italy; (F.P.); (L.S.); (A.S.); (L.D.)
| | - Luca D’Angelo
- Dipartimento di Neurologia e Psichiatria, Neurochirurgia, Sapienza University, Viale dell’Università 30, 00185 Rome, Italy; (F.P.); (L.S.); (A.S.); (L.D.)
| | - Paola Infante
- Center for Life Nano Science (CLNS@Sapienza), Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Correspondence: (P.I.); (L.D.M.); Tel.: +39-06-49255132 (P.I.); +39-06-49255657 (L.D.M.); Fax: +39-06-49255660 (L.D.M.)
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy; (F.B.); (M.C.); (L.L.S.); (I.B.); (M.P.); (G.C.)
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti-Department of Molecular Medicine, Sapienza University, Viale Regina Elena 291, 00161 Rome, Italy
- Correspondence: (P.I.); (L.D.M.); Tel.: +39-06-49255132 (P.I.); +39-06-49255657 (L.D.M.); Fax: +39-06-49255660 (L.D.M.)
| |
Collapse
|
17
|
Choi J, Lee K, Ingvarsdottir K, Bonasio R, Saraf A, Florens L, Washburn MP, Tadros S, Green MR, Busino L. Loss of KLHL6 promotes diffuse large B-cell lymphoma growth and survival by stabilizing the mRNA decay factor roquin2. Nat Cell Biol 2018; 20:586-596. [PMID: 29695787 PMCID: PMC5926793 DOI: 10.1038/s41556-018-0084-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/13/2018] [Indexed: 12/30/2022]
Abstract
Kelch-like protein 6 (KLHL6) is an uncharacterized gene mutated in diffuse large B-cell lymphoma (DLBCL). We report that KLHL6 assembles with CULLIN3 to form a functional CULLIN-Ring ubiquitin ligase. Mutations of KLHL6 inhibit its ligase activity by disrupting the interaction with CULLIN3. Loss of KLHL6 favors DLBCL growth and survival both in vitro and in xenograft models. We further established the mRNA decay factor Roquin2 as a substrate of KLHL6. Degradation of Roquin2 is dependent on B-cell receptor activation, and requires the integrity of the tyrosine 691 in Roquin2 that is essential for its interaction with KLHL6. A non-degradable Roquin2 (Y691F) mutant requires its RNA binding ability to phenocopy the effect of KLHL6 loss. Stabilization of Roquin2 promotes mRNA decay of the tumor suppressor and NF-κB pathway inhibitor, tumor necrosis factor-α-inducible gene 3 (TNFAIP3). Collectively, our findings uncover the tumor suppressing mechanism of KLHL6.
Collapse
Affiliation(s)
- Jaewoo Choi
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyutae Lee
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin Ingvarsdottir
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Roberto Bonasio
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Anita Saraf
- The Stowers Institute of Medical Research, Kansas City, MO, USA
| | | | - Michael P Washburn
- The Stowers Institute of Medical Research, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Saber Tadros
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luca Busino
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA. .,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Abstract
There are three different marginal zone lymphomas (MZLs): the extranodal MZL of mucosa-associated lymphoid tissue (MALT) type (MALT lymphoma), the splenic MZL, and the nodal MZL. The three MZLs share common lesions and deregulated pathways but also present specific alterations that can be used for their differential diagnosis. Although trisomies of chromosomes 3 and 18, deletions at 6q23, deregulation of nuclear factor kappa B, and chromatin remodeling genes are frequent events in all of them, the three MZLs differ in the presence of recurrent translocations, mutations affecting the NOTCH pathway, and the transcription factor Kruppel like factor 2 ( KLF2) or the receptor-type protein tyrosine phosphatase delta ( PTPRD). Since a better understanding of the molecular events underlying each subtype may have practical relevance, this review summarizes the most recent and main advances in our understanding of the genetics and biology of MZLs.
Collapse
Affiliation(s)
- Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | - Davide Rossi
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| | - Emanuele Zucca
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland.,Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Bellinzona, Switzerland
| |
Collapse
|
19
|
Kulinski M, Achkar IW, Haris M, Dermime S, Mohammad RM, Uddin S. Dysregulated expression of SKP2 and its role in hematological malignancies. Leuk Lymphoma 2017; 59:1051-1063. [PMID: 28797197 DOI: 10.1080/10428194.2017.1359740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
S-phase kinase-associated protein 2 (SKP2) is a well-studied F-box protein and a critical part of the Skp1-Cul1-Fbox (SCF) E3 ligase complex. It controls cell cycle by regulating the expression level of p27 and p21 through ubiquitination and proteasomal degradation. SKP2-mediated loss of p27Kip1 is associated with poor clinical outcome in various types of cancers including hematological malignancies. It is however well established that SKP2 is an oncogene, and its targeting may be an attractive therapeutic strategy for the management of hematological malignancies. In this article, we have highlighted the recent findings from our group and other investigators regarding the role of SKP2 in the pathogenesis of hematological malignancies.
Collapse
Affiliation(s)
- Michal Kulinski
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Iman W Achkar
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Mohammad Haris
- b Translational Medicine Research Branch , Sidra Medical and Research Center , Doha , Qatar
| | - Said Dermime
- c National Center for Cancer Care and Research , Hamad Medical Corporation , Doha , Qatar
| | - Ramzi M Mohammad
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| | - Shahab Uddin
- a Translational Research Institute, Academic Health System , Hamad Medical Corporation , Doha , Qatar
| |
Collapse
|
20
|
Lentucci C, Belkina AC, Cederquist CT, Chan M, Johnson HE, Prasad S, Lopacinski A, Nikolajczyk BS, Monti S, Snyder-Cappione J, Tanasa B, Cardamone MD, Perissi V. Inhibition of Ubc13-mediated Ubiquitination by GPS2 Regulates Multiple Stages of B Cell Development. J Biol Chem 2016; 292:2754-2772. [PMID: 28039360 DOI: 10.1074/jbc.m116.755132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Non-proteolytic ubiquitin signaling mediated by Lys63 ubiquitin chains plays a critical role in multiple pathways that are key to the development and activation of immune cells. Our previous work indicates that GPS2 (G-protein Pathway Suppressor 2) is a multifunctional protein regulating TNFα signaling and lipid metabolism in the adipose tissue through modulation of Lys63 ubiquitination events. However, the full extent of GPS2-mediated regulation of ubiquitination and the underlying molecular mechanisms are unknown. Here, we report that GPS2 is required for restricting the activation of TLR and BCR signaling pathways and the AKT/FOXO1 pathway in immune cells based on direct inhibition of Ubc13 enzymatic activity. Relevance of this regulatory strategy is confirmed in vivo by B cell-targeted deletion of GPS2, resulting in developmental defects at multiple stages of B cell differentiation. Together, these findings reveal that GPS2 genomic and non-genomic functions are critical for the development and cellular homeostasis of B cells.
Collapse
Affiliation(s)
| | - Anna C Belkina
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | | | | | | | | | | | | | | | - Jennifer Snyder-Cappione
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | - Bogdan Tanasa
- the Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305
| | | | | |
Collapse
|
21
|
Liu N, Liu X, Yu Q, Chen X, Ding Y, He J, Gao R, Wang Y, Liu X. SPOP Regulates Endometrial Stromal Cell Decidualization in Mice. Reprod Sci 2016; 23:1565-1574. [DOI: 10.1177/1933719116648215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Na Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Xin Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Qiubo Yu
- Molecular Medical Laboratory, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, People’s Republic of China
| |
Collapse
|
22
|
Li L, Xu-Monette ZY, Ok CY, Tzankov A, Manyam GC, Sun R, Visco C, Zhang M, Montes-Moreno S, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Wang J, Parsons BM, Winter JN, Piris MA, Pham LV, Medeiros LJ, Young KH. Prognostic impact of c-Rel nuclear expression and REL amplification and crosstalk between c-Rel and the p53 pathway in diffuse large B-cell lymphoma. Oncotarget 2016; 6:23157-80. [PMID: 26324762 PMCID: PMC4695110 DOI: 10.18632/oncotarget.4319] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Dysregulated NF-κB signaling is critical for lymphomagenesis. The regulation, function, and clinical relevance of c-Rel/NF-κB activation in diffuse large B-cell lymphoma (DLBCL) have not been well studied. In this study we analyzed the prognostic significance and gene-expression signature of c-Rel nuclear expression as surrogate of c-Rel activation in 460 patients with de novo DLBCL. Nuclear c-Rel expression, observed in 137 (26.3%) DLBCL patients frequently associated with extranoal origin, did not show significantly prognostic impact in the overall- or germinal center B-like-DLBCL cohort, likely due to decreased pAKT and Myc levels, up-regulation of FOXP3, FOXO3, MEG3 and other tumor suppressors coincided with c-Rel nuclear expression, as well as the complicated relationships between NF-κB members and their overlapping function. However, c-Rel nuclear expression correlated with significantly poorer survival in p63+ and BCL-2− activated B-cell-like-DLBCL, and in DLBCL patients with TP53 mutations. Multivariate analysis indicated that after adjusting clinical parameters, c-Rel positivity was a significantly adverse prognostic factor in DLBCL patients with wild type TP53. Gene expression profiling suggested dysregulations of cell cycle, metabolism, adhesion, and migration associated with c-Rel activation. In contrast, REL amplification did not correlate with c-Rel nuclear expression and patient survival, likely due to co-amplification of genes that negatively regulate NF-κB activation. These insights into the expression, prognostic impact, regulation and function of c-Rel as well as its crosstalk with the p53 pathway underscore the importance of c-Rel and have significant therapeutic implications.
Collapse
Affiliation(s)
- Ling Li
- Zhengzhou University, The First Affiliated University Hospital, Zhengzhou, China.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruifang Sun
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mingzhi Zhang
- Zhengzhou University, The First Affiliated University Hospital, Zhengzhou, China
| | | | | | - April Chiu
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Attilio Orazi
- Weill Medical College of Cornell University, New York, NY, USA
| | - Youli Zu
- The Methodist Hospital, Houston, TX, USA
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Kristy L Richards
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - William W L Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | | | | | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miguel A Piris
- Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Lan V Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
23
|
Dias LM, Thodima V, Friedman J, Ma C, Guttapalli A, Mendiratta G, Siddiqi IN, Syrbu S, Chaganti RSK, Houldsworth J. Cross-platform assessment of genomic imbalance confirms the clinical relevance of genomic complexity and reveals loci with potential pathogenic roles in diffuse large B-cell lymphoma. Leuk Lymphoma 2015; 57:899-908. [PMID: 26294112 DOI: 10.3109/10428194.2015.1080364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genomic copy number alterations (CNAs) in diffuse large B-cell lymphoma (DLBCL) have roles in disease pathogenesis, but overall clinical relevance remains unclear. Herein, an unbiased algorithm was uniformly applied across three genome profiling datasets comprising 392 newly-diagnosed DLBCL specimens that defined 32 overlapping CNAs, involving 36 minimal common regions (MCRs). Scoring criteria were established for 50 aberrations within the MCRs while considering peak gains/losses. Application of these criteria to independent datasets revealed novel candidate genes with coordinated expression, such as CNOT2, potentially with pathogenic roles. No one single aberration significantly associated with patient outcome across datasets, but genomic complexity, defined by imbalance in more than one MCR, significantly portended adverse outcome in two of three independent datasets. Thus, the standardized scoring of CNAs currently developed can be uniformly applied across platforms, affording robust validation of genomic imbalance and complexity in DLBCL and overall clinical utility as biomarkers of patient outcome.
Collapse
Affiliation(s)
| | | | | | - Charles Ma
- a Cancer Genetics, Inc. , Rutherford , NJ , USA
| | | | | | - Imran N Siddiqi
- b Hematopathology Section , University of Southern California Keck School of Medicine , CA , USA
| | - Sergei Syrbu
- c Department of Pathology, Carver College of Medicine , University of Iowa , Iowa City , IA , USA
| | - R S K Chaganti
- d Cell Biology Program , Memorial Sloan-Kettering Cancer Center , New York , NY , USA ;,e Department of Medicine , Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| | | |
Collapse
|
24
|
Carroll M. When cancer and immunology meet. Immunol Rev 2014; 263:2-5. [PMID: 25510267 DOI: 10.1111/imr.12250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Carroll
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|