1
|
Fahad AS, Gutiérrez-Gonzalez MF, Madan B, DeKosky BJ. Beyond Single Clones: High-Throughput Sequencing in Antibody Discovery. Cold Spring Harb Protoc 2025; 2025:pdb.top107772. [PMID: 39586681 DOI: 10.1101/pdb.top107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Antibody repertoire sequencing and display library screening are powerful approaches for antibody discovery and engineering that can connect DNA sequence with antibody function. Antibody display and screening studies have made a tremendous impact on immunology and biotechnology over the last decade, accelerated by technological advances in high-throughput DNA sequencing techniques. Indeed, bioinformatic analysis of antibody DNA library data has now taken a central role in modern antibody drug discovery, and is also critical for many ongoing studies of human immune development. Here, we describe current trends in antibody DNA library screening and analysis, and introduce a selection of protocols describing fundamental bioinformatic techniques to enable scientists to efficiently study antibody DNA libraries.
Collapse
Affiliation(s)
- Ahmed S Fahad
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Matías F Gutiérrez-Gonzalez
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Bharat Madan
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Brandon J DeKosky
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
2
|
Fahad AS, Gutiérrez-Gonzalez MF, Madan B, DeKosky BJ. Clonal Lineage and Gene Diversity Analysis of Paired Antibody Heavy and Light Chains. Cold Spring Harb Protoc 2025; 2025:pdb.prot108628. [PMID: 39586682 PMCID: PMC12043018 DOI: 10.1101/pdb.prot108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Antibodies consist of unique variable heavy (VH) and variable light (VL) chains, and both are required to fully characterize an antibody. Methods to detect paired heavy and light chain variable regions (VH:VL) using high-throughput sequencing (HTS) have recently enabled large-scale analysis of complete functional antibody responses. Here, we describe an HTS computational pipeline to analyze paired VH:VL antibody sequences and obtain a comprehensive profile of immune diversity landscapes, including gene usage, antibody isotypes, and clonal lineage analysis. This protocol uses Illumina MiSeq 2 × 300-bp sequencing data and integrates with several different computational tools for flexible analyses of paired VH:VL gene repertoire data to enable efficient antibody discovery.
Collapse
Affiliation(s)
- Ahmed S Fahad
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matías F Gutiérrez-Gonzalez
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Bharat Madan
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
| | - Brandon J DeKosky
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
3
|
Qian R, Xue J, Xu Y, Huang J. Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery. J Chem Inf Model 2024; 64:7214-7237. [PMID: 39360948 DOI: 10.1021/acs.jcim.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Computational methods constitute efficient strategies for screening and optimizing potential drug molecules. A critical factor in this process is the binding affinity between candidate molecules and targets, quantified as binding free energy. Among various estimation methods, alchemical transformation methods stand out for their theoretical rigor. Despite challenges in force field accuracy and sampling efficiency, advancements in algorithms, software, and hardware have increased the application of free energy perturbation (FEP) calculations in the pharmaceutical industry. Here, we review the practical applications of FEP in drug discovery projects since 2018, covering both ligand-centric and residue-centric transformations. We show that relative binding free energy calculations have steadily achieved chemical accuracy in real-world applications. In addition, we discuss alternative physics-based simulation methods and the incorporation of deep learning into free energy calculations.
Collapse
Affiliation(s)
- Runtong Qian
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Xue
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - You Xu
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
4
|
Saravanan V, Chagaleti BK, Narayanan PL, Anandan VB, Manoharan H, Anjana GV, Peraman R, Namasivayam SKR, Kavisri M, Arockiaraj J, Muthu Kumaradoss K, Moovendhan M. Discovery and development of COVID-19 vaccine from laboratory to clinic. Chem Biol Drug Des 2024; 103:e14383. [PMID: 37953736 DOI: 10.1111/cbdd.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/01/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
The world has recently experienced one of the biggest and most severe public health disasters with severe acute respiratory syndrome coronavirus (SARS-CoV-2). SARS-CoV-2 is responsible for the coronavirus disease of 2019 (COVID-19) which is one of the most widespread and powerful infections affecting human lungs. Current figures show that the epidemic had reached 216 nations, where it had killed about 6,438,926 individuals and infected 590,405,710. WHO proclaimed the outbreak of the Ebola virus disease (EVD), in 2014 that killed hundreds of people in West Africa. The development of vaccines for SARS-CoV-2 becomes more difficult due to the viral mutation in its non-structural proteins (NSPs) especially NSP2 and NSP3, S protein, and RNA-dependent RNA polymerase (RdRp). Continuous monitoring of SARS-CoV-2, dynamics of the genomic sequence, and spike protein mutations are very important for the successful development of vaccines with good efficacy. Hence, the vaccine development for SARS-CoV-2 faces specific challenges starting from viral mutation. The requirement of long-term immunity development, safety, efficacy, stability, vaccine allocation, distribution, and finally, its cost is discussed in detail. Currently, 169 vaccines are in the clinical development stage, while 198 vaccines are in the preclinical development stage. The majority of these vaccines belong to the Ps-Protein subunit type which has 54, and the minor BacAg-SPV (Bacterial antigen-spore expression vector) type, at least 1 vaccination. The use of computational methods and models for vaccine development has revolutionized the traditional methods of vaccine development. Further, this updated review highlights the upcoming vaccine development strategies in response to the current pandemic and post-pandemic era, in the field of vaccine development.
Collapse
Affiliation(s)
- Venkatesan Saravanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Bharath Kumar Chagaleti
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Pavithra Lakshmi Narayanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Vijay Babu Anandan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Haritha Manoharan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - G V Anjana
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Ramalingam Peraman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur, Hajipur, India
| | - S Karthik Raja Namasivayam
- Department of Research & Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - M Kavisri
- Department of Civil Engineering, Saveetha School of Engineering, SIMATS Deemed University, Chennai, India
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Kathiravan Muthu Kumaradoss
- Dr. APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu District, India
| | - Meivelu Moovendhan
- Centre for Ocean Research, Col. Dr. Jeppiar Research Park, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
5
|
Khan T, Raza S. Exploration of Computational Aids for Effective Drug Designing and Management of Viral Diseases: A Comprehensive Review. Curr Top Med Chem 2023; 23:1640-1663. [PMID: 36725827 DOI: 10.2174/1568026623666230201144522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Microbial diseases, specifically originating from viruses are the major cause of human mortality all over the world. The current COVID-19 pandemic is a case in point, where the dynamics of the viral-human interactions are still not completely understood, making its treatment a case of trial and error. Scientists are struggling to devise a strategy to contain the pandemic for over a year and this brings to light the lack of understanding of how the virus grows and multiplies in the human body. METHODS This paper presents the perspective of the authors on the applicability of computational tools for deep learning and understanding of host-microbe interaction, disease progression and management, drug resistance and immune modulation through in silico methodologies which can aid in effective and selective drug development. The paper has summarized advances in the last five years. The studies published and indexed in leading databases have been included in the review. RESULTS Computational systems biology works on an interface of biology and mathematics and intends to unravel the complex mechanisms between the biological systems and the inter and intra species dynamics using computational tools, and high-throughput technologies developed on algorithms, networks and complex connections to simulate cellular biological processes. CONCLUSION Computational strategies and modelling integrate and prioritize microbial-host interactions and may predict the conditions in which the fine-tuning attenuates. These microbial-host interactions and working mechanisms are important from the aspect of effective drug designing and fine- tuning the therapeutic interventions.
Collapse
Affiliation(s)
- Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| |
Collapse
|
6
|
Peng HP, Yang AS. Computational Analysis of Antibody Paratopes for Antibody Sequences in Antibody Libraries. Methods Mol Biol 2023; 2552:437-445. [PMID: 36346607 DOI: 10.1007/978-1-0716-2609-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To ensure the functionalities of the antibodies in phage-displayed synthetic antibody libraries, we use computational method to evaluate the designs of the antibody libraries. The computational methodologies developed in our lab for designing antibody library provide rich information on the function of the designed antibody sequences-adequate antibody designs for a specific antigen type should have predicted paratopes for the antigen type. This computational assessment of the designed antibody sequences helps eliminate non-functional designs before proceeding to construct the library designs in the wet lab. As such, only reasonable antibody designs are constructed for antibody discoveries.
Collapse
Affiliation(s)
- Hung-Pin Peng
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
7
|
Antanasijevic A, Bowman CA, Kirchdoerfer RN, Cottrell CA, Ozorowski G, Upadhyay AA, Cirelli KM, Carnathan DG, Enemuo CA, Sewall LM, Nogal B, Zhao F, Groschel B, Schief WR, Sok D, Silvestri G, Crotty S, Bosinger SE, Ward AB. From structure to sequence: Antibody discovery using cryoEM. SCIENCE ADVANCES 2022; 8:eabk2039. [PMID: 35044813 PMCID: PMC8769551 DOI: 10.1126/sciadv.abk2039] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/23/2021] [Indexed: 06/02/2023]
Abstract
One of the rate-limiting steps in analyzing immune responses to vaccines or infections is the isolation and characterization of monoclonal antibodies. Here, we present a hybrid structural and bioinformatic approach to directly assign the heavy and light chains, identify complementarity-determining regions, and discover sequences from cryoEM density maps of serum-derived polyclonal antibodies bound to an antigen. When combined with next-generation sequencing of immune repertoires, we were able to specifically identify clonal family members, synthesize the monoclonal antibodies, and confirm that they interact with the antigen in a manner equivalent to the corresponding polyclonal antibodies. This structure-based approach for identification of monoclonal antibodies from polyclonal sera opens new avenues for analysis of immune responses and iterative vaccine design.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles A. Bowman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert N. Kirchdoerfer
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Christopher A. Cottrell
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amit A. Upadhyay
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA
- Yerkes Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, GA 30329, USA
| | - Kimberly M. Cirelli
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Diane G. Carnathan
- Yerkes Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, GA 30329, USA
| | - Chiamaka A. Enemuo
- Yerkes Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, GA 30329, USA
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bartek Nogal
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative–Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bettina Groschel
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R. Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Devin Sok
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative–Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Guido Silvestri
- Yerkes Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, GA 30329, USA
| | - Shane Crotty
- Vaccine Discovery Division, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Steven E. Bosinger
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30329, USA
- Yerkes Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Yerkes Nonhuman Primate Genomics Core, Emory University, Atlanta, GA 30329, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Cheung CSF, Fruehwirth A, Paparoditis PCG, Shen CH, Foglierini M, Joyce MG, Leung K, Piccoli L, Rawi R, Silacci-Fregni C, Tsybovsky Y, Verardi R, Wang L, Wang S, Yang ES, Zhang B, Zhang Y, Chuang GY, Corti D, Mascola JR, Shapiro L, Kwong PD, Lanzavecchia A, Zhou T. Identification and Structure of a Multidonor Class of Head-Directed Influenza-Neutralizing Antibodies Reveal the Mechanism for Its Recurrent Elicitation. Cell Rep 2021; 32:108088. [PMID: 32877670 DOI: 10.1016/j.celrep.2020.108088] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/12/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multidonor antibodies are of interest for vaccine design because they can in principle be elicited in the general population by a common set of immunogens. For influenza, multidonor antibodies have been observed against the hemagglutinin (HA) stem, but not the immunodominant HA head. Here, we identify and characterize a multidonor antibody class (LPAF-a class) targeting the HA head. This class exhibits potent viral entry inhibition against H1N1 A/California/04/2009 (CA09) virus. LPAF-a class antibodies derive from the HV2-70 gene and contain a "Tyr-Gly-Asp"-motif, which occludes the HA-sialic acid binding site as revealed by a co-crystal structure with HA. Both germline-reverted and mature LPAF antibodies potently neutralize CA09 virus and have nanomolar affinities for CA09 HA. Moreover, increased frequencies for LPFA-a class antibodies are observed in humans after a single vaccination. Overall, this work highlights the identification of a multidonor class of head-directed influenza-neutralizing antibodies and delineates the mechanism of their recurrent elicitation in humans.
Collapse
Affiliation(s)
- Crystal Sao-Fong Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Fruehwirth
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | | | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chiara Silacci-Fregni
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Davide Corti
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Chen Z, Engle RE, Shen CH, Zhao H, Schuck PW, Danoff EJ, Nguyen H, Nishimura N, Bock KW, Moore IN, Kwong PD, Purcell RH, Govindarajan S, Farci P. Distinct disease features in chimpanzees infected with a precore HBV mutant associated with acute liver failure in humans. PLoS Pathog 2020; 16:e1008793. [PMID: 32866189 PMCID: PMC7485984 DOI: 10.1371/journal.ppat.1008793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/11/2020] [Accepted: 07/08/2020] [Indexed: 01/04/2023] Open
Abstract
Transmission to chimpanzees of a precore hepatitis B virus (HBV) mutant implicated in acute liver failure (ALF) in humans did not cause ALF nor the classic form of acute hepatitis B (AHB) seen upon infection with the wild-type HBV strain, but rather a severe AHB with distinct disease features. Here, we investigated the viral and host immunity factors responsible for the unusual severity of AHB associated with the precore HBV mutant in chimpanzees. Archived serial serum and liver specimens from two chimpanzees inoculated with a precore HBV mutant implicated in ALF and two chimpanzees inoculated with wild-type HBV were studied. We used phage-display library and next-generation sequencing (NGS) technologies to characterize the liver antibody response. The results obtained in severe AHB were compared with those in classic AHB and HBV-associated ALF in humans. Severe AHB was characterized by: (i) the highest alanine aminotransferase (ALT) peaks ever seen in HBV transmission studies with a significantly shorter incubation period, compared to classic AHB; (ii) earlier HBsAg clearance and anti-HBs seroconversion with transient or undetectable hepatitis B e antigen (HBeAg); (iii) limited inflammatory reaction relative to hepatocellular damage at the ALT peak with B-cell infiltration, albeit less extensive than in ALF; (iv) detection of intrahepatic germline antibodies against hepatitis B core antigen (HBcAg) by phage-display libraries in the earliest disease phase, as seen in ALF; (v) lack of intrahepatic IgM anti-HBcAg Fab, as seen in classic AHB, but at variance with ALF; and (vi) higher proportion of antibodies in germline configuration detected by NGS in the intrahepatic antibody repertoire compared to classic AHB, but lower than in ALF. This study identifies distinct outcome-specific features associated with severe AHB caused by a precore HBV mutant in chimpanzees, which bear closer resemblance to HBV ALF than to classic AHB. Our data suggest that precore HBV mutants carry an inherently higher pathogenicity that, in addition to specific host factors, may play a critical role in determining the severity of acute HBV disease.
Collapse
Affiliation(s)
- Zhaochun Chen
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ronald E. Engle
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter W. Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Emily J. Danoff
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hanh Nguyen
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Norihisa Nishimura
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin W. Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert H. Purcell
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sugantha Govindarajan
- Department of Pathology, University of Southern California, Los Angeles, California, United States of America
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
|
11
|
Prabakaran P, Glanville J, Ippolito GC. Editorial: Next-Generation Sequencing of Human Antibody Repertoires for Exploring B-cell Landscape, Antibody Discovery and Vaccine Development. Front Immunol 2020; 11:1344. [PMID: 32714328 PMCID: PMC7344256 DOI: 10.3389/fimmu.2020.01344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/27/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
| | | | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
12
|
Soto C, Finn JA, Willis JR, Day SB, Sinkovits RS, Jones T, Schmitz S, Meiler J, Branchizio A, Crowe JE. PyIR: a scalable wrapper for processing billions of immunoglobulin and T cell receptor sequences using IgBLAST. BMC Bioinformatics 2020; 21:314. [PMID: 32677886 PMCID: PMC7364545 DOI: 10.1186/s12859-020-03649-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Recent advances in DNA sequencing technologies have enabled significant leaps in capacity to generate large volumes of DNA sequence data, which has spurred a rapid growth in the use of bioinformatics as a means of interrogating antibody variable gene repertoires. Common tools used for annotation of antibody sequences are often limited in functionality, modularity and usability. RESULTS We have developed PyIR, a Python wrapper and library for IgBLAST, which offers a minimal setup CLI and API, FASTQ support, file chunking for large sequence files, JSON and Python dictionary output, and built-in sequence filtering. CONCLUSIONS PyIR offers improved processing speed over multithreaded IgBLAST (version 1.14) when spawning more than 16 processes on a single computer system. Its customizable filtering and data encapsulation allow it to be adapted to a wide range of computing environments. The API allows for IgBLAST to be used in customized bioinformatics workflows.
Collapse
Affiliation(s)
- Cinque Soto
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jessica A Finn
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jordan R Willis
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Samuel B Day
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert S Sinkovits
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Taylor Jones
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Samuel Schmitz
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37212, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37212, USA
| | - Andre Branchizio
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
13
|
Systems serology for decoding infection and vaccine-induced antibody responses to HIV-1. Curr Opin HIV AIDS 2020; 14:253-264. [PMID: 31033729 DOI: 10.1097/coh.0000000000000558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Experimental and analytical advances have enabled systematic, high-resolution studies of humoral immune responses, and are beginning to define mechanisms of immunity to HIV. RECENT FINDINGS High-throughput, information-rich experimental and analytical methods, whether genomic, proteomic, or transcriptomic, have firmly established their value across a diversity of fields. Consideration of these tools as trawlers in 'fishing expeditions' has faded as 'data-driven discovery' has come to be valued as an irreplaceable means to develop fundamental understanding of biological systems. Collectively, studies of HIV-1 infection and vaccination including functional, biophysical, and biochemical humoral profiling approaches have provided insights into the phenotypic characteristics of individual and pools of antibodies. Relating these measures to clinical status, protection/efficacy outcomes, and cellular profiling data using machine learning has offered the possibility of identifying unanticipated mechanisms of action and gaining insights into fundamental immunological processes that might otherwise be difficult to decipher. SUMMARY Recent evidence establishes that systematic data collection and application of machine learning approaches can identify humoral immune correlates that are generalizable across distinct HIV-1 immunogens and vaccine regimens and translatable between model organisms and the clinic. These outcomes provide a strong rationale supporting the utility and further expansion of these approaches both in support of vaccine development and more broadly in defining mechanisms of immunity.
Collapse
|
14
|
Shen CH, DeKosky BJ, Guo Y, Xu K, Gu Y, Kilam D, Ko SH, Kong R, Liu K, Louder MK, Ou L, Zhang B, Chao CW, Corcoran MM, Feng E, Huang J, Normandin E, O'Dell S, Ransier A, Rawi R, Sastry M, Schmidt SD, Wang S, Wang Y, Chuang GY, Doria-Rose NA, Lin B, Zhou T, Boritz EA, Connors M, Douek DC, Karlsson Hedestam GB, Sheng Z, Shapiro L, Mascola JR, Kwong PD. VRC34-Antibody Lineage Development Reveals How a Required Rare Mutation Shapes the Maturation of a Broad HIV-Neutralizing Lineage. Cell Host Microbe 2020; 27:531-543.e6. [PMID: 32130953 PMCID: PMC7467872 DOI: 10.1016/j.chom.2020.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/31/2019] [Accepted: 01/30/2020] [Indexed: 01/07/2023]
Abstract
Rare mutations have been proposed to restrict the development of broadly neutralizing antibodies against HIV-1, but this has not been explicitly demonstrated. We hypothesized that such rare mutations might be identified by comparing broadly neutralizing and non-broadly neutralizing branches of an antibody-developmental tree. Because sequences of antibodies isolated from the fusion peptide (FP)-targeting VRC34-antibody lineage suggested it might be suitable for such rare mutation analysis, we carried out next-generation sequencing (NGS) on B cell transcripts from donor N123, the source of the VRC34 lineage, and functionally and structurally characterized inferred intermediates along broadly neutralizing and poorly neutralizing developmental branches. The broadly neutralizing VRC34.01 branch required the rare heavy-chain mutation Y33P to bind FP, whereas the early bifurcated VRC34.05 branch did not require this rare mutation and evolved less breadth. Our results demonstrate how a required rare mutation can restrict development and shape the maturation of a broad HIV-1-neutralizing antibody lineage.
Collapse
Affiliation(s)
- Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brandon J DeKosky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Chemical & Petroleum Engineering and Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66045, USA
| | - Yicheng Guo
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ying Gu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Divya Kilam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin M Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Eric Feng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesse Huang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erica Normandin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Ransier
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eli A Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
15
|
Sunita, Sajid A, Singh Y, Shukla P. Computational tools for modern vaccine development. Hum Vaccin Immunother 2020; 16:723-735. [PMID: 31545127 PMCID: PMC7227725 DOI: 10.1080/21645515.2019.1670035] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Vaccines play an essential role in controlling the rates of fatality and morbidity. Vaccines not only arrest the beginning of different diseases but also assign a gateway for its elimination and reduce toxicity. This review gives an overview of the possible uses of computational tools for vaccine design. Moreover, we have described the initiatives of utilizing the diverse computational resources by exploring the immunological databases for developing epitope-based vaccines, peptide-based drugs, and other resources of immunotherapeutics. Finally, the applications of multi-graft and multivalent scaffolding, codon optimization and antibodyomics tools in identifying and designing in silico vaccine candidates are described.
Collapse
Affiliation(s)
- Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Andaleeb Sajid
- National Institutes of Health, National Cancer Institute, Bethesda, MD, USA
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
16
|
Niu X, Yan Q, Yao Z, Zhang F, Qu L, Wang C, Wang C, Lei H, Chen C, Liang R, Luo J, Wang Q, Zhao L, Zhang Y, Luo K, Wang L, Wu H, Liu T, Li P, Zheng Z, Tan YJ, Feng L, Zhang Z, Han J, Zhang F, Chen L. Longitudinal analysis of the antibody repertoire of a Zika virus-infected patient revealed dynamic changes in antibody response. Emerg Microbes Infect 2020; 9:111-123. [PMID: 31906823 PMCID: PMC6968589 DOI: 10.1080/22221751.2019.1701953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Zika virus (ZIKV) is a mosquito-borne flavivirus that causes neonatal abnormalities and other disorders. Antibodies to the ZIKV envelope (E) protein can block infection. In this study, next-generation sequencing (NGS) of immunoglobulin heavy chain (IgH) mRNA transcripts was combined with single-cell PCR cloning of E-binding monoclonal antibodies for analysing antibody response in a patient from the early stages of infection to more than one year after the clearance of the virus. The patient's IgH repertoire 14 and 64 days after symptom onset showed dramatic dominant clonal expansion but low clonal diversity. IgH repertoire 6 months after disease-free status had few dominant clones but increased diversity. E-binding antibodies appeared abundantly in the repertoire during the early stages of infection but quickly declined after clearance of the virus. Certain VH genes such as VH5-10-1 and VH4-39 appeared to be preferentially enlisted for a rapid antibody response to ZIKV infection. Most of these antibodies require relatively few somatic hypermutations to acquire the ability to bind to the E protein, pointing to a possible mechanism for rapid defence against ZIKV infection. This study provides a unique and holistic view of the dynamic changes and characteristics of the antibody response to ZIKV infection.
Collapse
Affiliation(s)
- Xuefeng Niu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qihong Yan
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Zhipeng Yao
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Fan Zhang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Linbing Qu
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Chunlin Wang
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Chengrui Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui Lei
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Chaoming Chen
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Renshan Liang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jia Luo
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Qian Wang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Lingzhai Zhao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yudi Zhang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Kun Luo
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Longyu Wang
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, People's Republic of China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Tingting Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Pingchao Li
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Zhiqiang Zheng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Yee Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore
| | - Liqiang Feng
- Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Zhenhai Zhang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Han
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Guo Y, Chen K, Kwong PD, Shapiro L, Sheng Z. cAb-Rep: A Database of Curated Antibody Repertoires for Exploring Antibody Diversity and Predicting Antibody Prevalence. Front Immunol 2019; 10:2365. [PMID: 31649674 PMCID: PMC6794461 DOI: 10.3389/fimmu.2019.02365] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022] Open
Abstract
The diversity of B cell receptors provides a basis for recognizing numerous pathogens. Antibody repertoire sequencing has revealed relationships between B cell receptor sequences, their diversity, and their function in infection, vaccination, and disease. However, many repertoire datasets have been deposited without annotation or quality control, limiting their utility. To accelerate investigations of B cell immunoglobulin sequence repertoires and to facilitate development of algorithms for their analysis, we constructed a comprehensive public database of curated human B cell immunoglobulin sequence repertoires, cAb-Rep (https://cab-rep.c2b2.columbia.edu), which currently includes 306 immunoglobulin repertoires from 121 human donors, who were healthy, vaccinated, or had autoimmune disease. The database contains a total of 267.9 million V(D)J heavy chain and 72.9 million VJ light chain transcripts. These transcripts are full-length or near full-length, have been annotated with gene origin, antibody isotype, somatic hypermutations, and other biological characteristics, and are stored in FASTA format to facilitate their direct use by most current repertoire-analysis programs. We describe a website to search cAb-Rep for similar antibodies along with methods for analysis of the prevalence of antibodies with specific genetic signatures, for estimation of reproducibility of somatic hypermutation patterns of interest, and for delineating frequencies of somatically introduced N-glycosylation. cAb-Rep should be useful for investigating attributes of B cell sequence repertoires, for understanding characteristics of affinity maturation, and for identifying potential barriers to the elicitation of effective neutralizing antibodies in infection or by vaccination.
Collapse
Affiliation(s)
- Yicheng Guo
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Kevin Chen
- College of Arts and Science, Stony Brook University, Stony Brook, NY, United States
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.,Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Zizhang Sheng
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| |
Collapse
|
18
|
Nielsen SCA, Boyd SD. Human adaptive immune receptor repertoire analysis-Past, present, and future. Immunol Rev 2019; 284:9-23. [PMID: 29944765 DOI: 10.1111/imr.12667] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The genes encoding adaptive immune antigen receptors, namely the immunoglobulins expressed in membrane-bound or secreted forms by B cells, and the cell surface T cell receptors, are unique in human biology because they are generated by combinatorial rearrangement of the genomic DNA. The diversity of receptors so generated in populations of lymphocytes enables the human immune system to recognize antigens expressed by pathogens, but also underlies the pathological specificity of autoimmune diseases and the mistargeted immunity in allergies. Several recent technological developments, foremost among them the invention of high-throughput DNA sequencing instruments, have enabled much deeper and thorough evaluation of clones of human B cells and T cells and the antigen receptors they express during physiological and pathogenic immune responses. The evolutionary struggles between host adaptive immune responses and populations of pathogens are now open to greater scrutiny, elucidation of the underlying reasons for successful or failed immunity, and potential predictive modeling, than ever before. Here we give an overview of the foundations, recent progress, and future prospects in this dynamic area of research.
Collapse
Affiliation(s)
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, USA
| |
Collapse
|
19
|
Yeap LS, Meng FL. Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol 2019; 141:51-103. [PMID: 30904133 DOI: 10.1016/bs.ai.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen receptor diversification is a hallmark of adaptive immunity which allows specificity of the receptor to particular antigen. B cell receptor (BCR) or its secreted form, antibody, is diversified through antigen-independent and antigen-dependent mechanisms. During B cell development in bone marrow, BCR is diversified via V(D)J recombination mediated by RAG endonuclease. Upon stimulation by antigen, B cell undergo somatic hypermutation (SHM) to allow affinity maturation and class switch recombination (CSR) to change the effector function of the antibody. Both SHM and CSR are initiated by activation-induced cytidine deaminase (AID). Repair of AID-initiated lesions through different DNA repair pathways results in diverse mutagenic outcomes. Here, we focus on discussing cis- and trans-factors that target AID to its substrates and factors that affect different outcomes of AID-initiated lesions. The knowledge of mechanisms that govern AID targeting and outcomes could be harnessed to elicit rare functional antibodies and develop ex vivo antibody diversification approaches with diversifying base editors.
Collapse
Affiliation(s)
- Leng-Siew Yeap
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
20
|
Li L, Liu Y, Gorny MK. Association of Diverse Genotypes and Phenotypes of Immune Cells and Immunoglobulins With the Course of HIV-1 Infection. Front Immunol 2018; 9:2735. [PMID: 30534128 PMCID: PMC6275200 DOI: 10.3389/fimmu.2018.02735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
Disease progression among HIV-1-infected individuals varies widely, but the mechanisms underlying this variability remains unknown. Distinct disease outcomes are the consequences of many factors working in concert, including innate and adaptive immune responses, cell-mediated and humoral immunity, and both genetic and phenotypic factors. Current data suggest that these multifaceted aspects in infected individuals should be considered as a whole, rather than as separate unique elements, and that analyses must be performed in greater detail in order to meet the requirements of personalized medicine and guide optimal vaccine design. However, the wide adoption of antiretroviral therapy (ART) influences the implementation of systematic analyses of the HIV-1-infected population. Consequently, fewer data will be available for acquisition in the future, preventing the comprehensive investigations required to elucidate the underpinnings of variability in disease outcome. This review seeks to recapitulate the distinct genotypic and phenotypic features of the immune system, focusing in particular on comparing the surface proteins of immune cells among individuals with different HIV infection outcomes.
Collapse
Affiliation(s)
- Liuzhe Li
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Yan Liu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
21
|
HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure. Immunity 2018; 48:855-871. [DOI: 10.1016/j.immuni.2018.04.029] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
|
22
|
Rai J, Kaushik K. Reduction of Animal Sacrifice in Biomedical Science & Research through Alternative Design of Animal Experiments. Saudi Pharm J 2018; 26:896-902. [PMID: 30202234 PMCID: PMC6128677 DOI: 10.1016/j.jsps.2018.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/10/2018] [Indexed: 12/15/2022] Open
Abstract
Various upcoming techniques can be used in replacement of experiments requiring animal sacrifice or products of animal sacrifice. In many instances these techniques provide more reproducibility and control of parameter, compared to experiments involving animal or animal products. Use of these techniques can avoid the question of the animal sacrifice during experiment and subsequently permission of ethical approval. In silico simulation, informatics, 3D cell culture models, organ-on-chips are some innovative technology which can reduce the number of animals sacrifice. Scientist evolved some innovative culture procedures and production of animal friendly affinity reagents which are free from the product of animal sacrifice. Direct investigation on human body for treatment as well as further research, electronic health record is also helpful in the reduction of animals sacrifice in biomedical investigations. These techniques and strategies of research can be more cost effective as well as more relevant to various issues related to the human health. Some medical blunder has also been reported after the successful testing of drugs on animal’s model. Hence, the reliability of animal experiment in context with human health is questionable. Alternative to animal experiments help to reduce the number of animals required for research up to certain extent but is not able to eliminate the need for animals in research completely. Wisely use of animals in teaching & research is expected and the importance of animal experimentation in futuristic development in life science cannot be ignored.
Collapse
Affiliation(s)
- Jagdish Rai
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh 160014, India
| | - Kuldeep Kaushik
- Department of Zoology, Dev Samaj College for Women, Firozpur City, Punjab 152002, India
| |
Collapse
|
23
|
Hong B, Wu Y, Li W, Wang X, Wen Y, Jiang S, Dimitrov DS, Ying T. In-Depth Analysis of Human Neonatal and Adult IgM Antibody Repertoires. Front Immunol 2018; 9:128. [PMID: 29459861 PMCID: PMC5807330 DOI: 10.3389/fimmu.2018.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/16/2018] [Indexed: 11/25/2022] Open
Abstract
Although high-throughput sequencing and associated bioinformatics technologies have enabled the in-depth, sequence-based characterization of human immune repertoires, only a few studies on a relatively small number of sequences explored the characteristics of antibody repertoires in neonates, with contradictory conclusions. To gain a more comprehensive understanding of the human IgM antibody repertoire, we performed Illumina sequencing and IMGT/HighV-QUEST analysis of IgM heavy chain repertoire of the B lymphocytes from the cord blood (CB) of neonates, as well as the repertoire from peripheral blood of healthy human adults (HH). The comparative study revealed unexpectedly high levels of similarity between the neonatal and adult repertoires. In both repertoires, the VDJ gene usage showed no significant difference, and the most frequently used VDJ gene was IGHV4-59, IGHD3-10, and IGHJ3. The average amino acid (aa) length of CDR1 (CB: 8.5, HH: 8.4) and CDR2 (CB: 7.6, HH: 7.5), as well as the aa composition and the average hydrophobicity of the CDR3 demonstrated no significant difference between the two repertories. However, the average aa length of CDR3 was longer in the HH repertoire than the CB repertoire (CB: 14.5, HH: 15.5). Besides, the frequencies of aa mutations in CDR1 (CB: 19.33%, HH: 25.84%) and CDR2 (CB: 9.26%, HH: 17.82%) were higher in the HH repertoire compared to the CB repertoire. Interestingly, the most prominent difference between the two repertoires was the occurrence of N2 addition (CB: 64.87%, HH: 85.69%), a process that occurs during V-D-J recombination for introducing random nucleotide additions between D- and J-gene segments. The antibody repertoire of healthy adults was more diverse than that of neonates largely due to the higher occurrence of N2 addition. These findings may lead to a better understanding of antibody development and evolution pathways and may have potential practical value for facilitating the generation of more effective antibody therapeutics and vaccines.
Collapse
Affiliation(s)
- Binbin Hong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Li
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Xun Wang
- Shanghai Blood Center, WHO Collaborating Center for Blood Transfusion Services, Shanghai, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Hessell AJ, Malherbe DC, Haigwood NL. Passive and active antibody studies in primates to inform HIV vaccines. Expert Rev Vaccines 2018; 17:127-144. [PMID: 29307225 PMCID: PMC6587971 DOI: 10.1080/14760584.2018.1425619] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Prevention of infection remains the ultimate goal for HIV vaccination, and there is compelling evidence that antibodies directed to Envelope are necessary to block infection. Generating antibodies that are sufficiently broad, potent, and sustained to block infection by the diverse HIV-1 strains circulating worldwide remains an area of intense study. AREAS COVERED In this review, we have summarized progress from publications listed as PubMed citations in 2016-17 in the areas of passive antibody studies using human neutralizing monoclonal antibodies in nonhuman primates, HIV Envelope vaccine development and active vaccination studies to generate potent neutralizing antibodies. EXPERT COMMENTARY Passive transfer studies in nonhuman primates using human neutralizing monoclonal antibodies have informed the potency, specificity, and cooperativity of antibodies needed to prevent infection, leading to clinical studies now testing potent antibodies for prevention of HIV. Progress in understanding the structure of Envelope has led to novel vaccine constructs, including mimetics, scaffolds and native-like proteins. As yet, no single approach ensures protection against the circulating global HIV-1 strains, but there is progress in understanding why, and intense research continues in these and other areas for a solution. We offer perspectives on how this knowledge may shape the design of future HIV vaccines.
Collapse
|
25
|
Hurwitz JL, Bonsignori M. Multi-Envelope HIV-1 Vaccine Development: Two Targeted Immune Pathways, One Desired Protective Outcome. Viral Immunol 2018; 31:124-132. [PMID: 29315059 DOI: 10.1089/vim.2017.0144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In 2016, there were more than 30 million individuals living with HIV-1, ∼1.8 million new HIV-1 infections, and ∼1 million HIV-1-related deaths according to UNAIDS ( unaids.org ). Hence, a preventive HIV-1 vaccine remains a global priority. The variant envelopes of HIV-1 present a significant obstacle to vaccine development and the vaccine field has realized that immunization with a single HIV-1 envelope protein will not be sufficient to generate broadly neutralizing antibodies. Here we describe two nonmutually exclusive, targeted pathways with which a multi-envelope HIV-1 vaccine may generate protective immune responses against variant HIV-1. Pathways include (i) the induction of a polyclonal immune response, comprising a plethora of antibodies with subset-reactive and cross-reactive specificities, together able to neutralize diverse HIV-1 (termed Poly-nAb in this report) and (ii) the induction of one or a few monoclonal antibodies, each with a broadly neutralizing specificity (bnAb). With each pathway in mind, we describe challenges and strategies that may ultimately support HIV-1 vaccine success.
Collapse
Affiliation(s)
- Julia L Hurwitz
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee.,2 Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Mattia Bonsignori
- 3 Duke Human Vaccine Institute , Duke University School of Medicine, Duke University Medical Center, Durham, North Carolina.,4 Department of Medicine, Duke University School of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
26
|
Mayr LM, Su B, Moog C. Non-Neutralizing Antibodies Directed against HIV and Their Functions. Front Immunol 2017; 8:1590. [PMID: 29209323 PMCID: PMC5701973 DOI: 10.3389/fimmu.2017.01590] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
B cells produce a plethora of anti-HIV antibodies (Abs) but only few of them exhibit neutralizing activity. This was long considered a profound limitation for the enforcement of humoral immune responses against HIV-1 infection, especially since these neutralizing Abs (nAbs) are extremely difficult to induce. However, increasing evidence shows that additional non-neutralizing Abs play a significant role in decreasing the viral load, leading to partial and sometimes even total protection. Mechanisms suspected to participate in protection are numerous. They involve the Fc domain of Abs as well as their Fab part, and consequently the induced Ab isotype will be determinant for their functions, as well as the quantity and quality of the Fc-receptors (FcRs) expressed on immune cells. Fc-mediated inhibitory functions, such as Ab-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, aggregation, and even immune activation have been proposed. However, as for nAbs, the non-neutralizing activities are limited to a subset of anti-HIV Abs. An improved in-depth characterization of the Abs displaying these functional responses is required for the development of new vaccination strategies, which aim to selectively trigger the B cells able to induce the right functional Ab combinations both at the right place and at the right time. This review summarizes our current knowledge on non-neutralizing functional inhibitory Abs and discusses the potential benefit of inducing them via vaccination. We also provide new insight into the roles of the FcγR-mediated Ab therapeutics in clinical trials for HIV diseases.
Collapse
Affiliation(s)
- Luzia M Mayr
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Christiane Moog
- INSERM U1109, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
Kirik U, Persson H, Levander F, Greiff L, Ohlin M. Antibody Heavy Chain Variable Domains of Different Germline Gene Origins Diversify through Different Paths. Front Immunol 2017; 8:1433. [PMID: 29180996 PMCID: PMC5694033 DOI: 10.3389/fimmu.2017.01433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/16/2017] [Indexed: 02/04/2023] Open
Abstract
B cells produce antibodies, key effector molecules in health and disease. They mature their properties, including their affinity for antigen, through hypermutation events; processes that involve, e.g., base substitution, codon insertion and deletion, often in association with an isotype switch. Investigations of antibody evolution define modes whereby particular antibody responses are able to form, and such studies provide insight important for instance for development of efficient vaccines. Antibody evolution is also used in vitro for the design of antibodies with improved properties. To better understand the basic concepts of antibody evolution, we analyzed the mutational paths, both in terms of amino acid substitution and insertions and deletions, taken by antibodies of the IgG isotype. The analysis focused on the evolution of the heavy chain variable domain of sets of antibodies, each with an origin in 1 of 11 different germline genes representing six human heavy chain germline gene subgroups. Investigated genes were isolated from cells of human bone marrow, a major site of antibody production, and characterized by next-generation sequencing and an in-house bioinformatics pipeline. Apart from substitutions within the complementarity determining regions, multiple framework residues including those in protein cores were targets of extensive diversification. Diversity, both in terms of substitutions, and insertions and deletions, in antibodies is focused to different positions in the sequence in a germline gene-unique manner. Altogether, our findings create a framework for understanding patterns of evolution of antibodies from defined germline genes.
Collapse
Affiliation(s)
- Ufuk Kirik
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Helena Persson
- Science for Life Laboratory, Drug Discovery and Development Platform, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Immunotechnology, Lund University, Lund, Sweden
| | - Lennart Greiff
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden.,Science for Life Laboratory, Drug Discovery and Development Platform, Human Antibody Therapeutics, Lund University, Lund, Sweden.,U-READ, Lund School of Technology, Lund University, Lund, Sweden
| |
Collapse
|
28
|
He L, Lin X, de Val N, Saye-Francisco KL, Mann CJ, Augst R, Morris CD, Azadnia P, Zhou B, Sok D, Ozorowski G, Ward AB, Burton DR, Zhu J. Hidden Lineage Complexity of Glycan-Dependent HIV-1 Broadly Neutralizing Antibodies Uncovered by Digital Panning and Native-Like gp140 Trimer. Front Immunol 2017; 8:1025. [PMID: 28883821 PMCID: PMC5573810 DOI: 10.3389/fimmu.2017.01025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/08/2017] [Indexed: 11/30/2022] Open
Abstract
Germline precursors and intermediates of broadly neutralizing antibodies (bNAbs) are essential to the understanding of humoral response to HIV-1 infection and B-cell lineage vaccine design. Using a native-like gp140 trimer probe, we examined antibody libraries constructed from donor-17, the source of glycan-dependent PGT121-class bNAbs recognizing the N332 supersite on the HIV-1 envelope glycoprotein. To facilitate this analysis, a digital panning method was devised that combines biopanning of phage-displayed antibody libraries, 900 bp long-read next-generation sequencing, and heavy/light (H/L)-paired antibodyomics. In addition to single-chain variable fragments resembling the wild-type bNAbs, digital panning identified variants of PGT124 (a member of the PGT121 class) with a unique insertion in the heavy chain complementarity-determining region 1, as well as intermediates of PGT124 exhibiting notable affinity for the native-like trimer and broad HIV-1 neutralization. In a competition assay, these bNAb intermediates could effectively compete with mouse sera induced by a scaffolded BG505 gp140.681 trimer for the N332 supersite. Our study thus reveals previously unrecognized lineage complexity of the PGT121-class bNAbs and provides an array of library-derived bNAb intermediates for evaluation of immunogens containing the N332 supersite. Digital panning may prove to be a valuable tool in future studies of bNAb diversity and lineage development.
Collapse
Affiliation(s)
- Linling He
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Xiaohe Lin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Karen L Saye-Francisco
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Colin J Mann
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Ryan Augst
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Charles D Morris
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Parisa Azadnia
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States
| | - Bin Zhou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Devin Sok
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| | - Dennis R Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,International AIDS Vaccine Initiative Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jiang Zhu
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United States.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
29
|
Abstract
Despite major advances in our understanding of the biology of HIV-1 infection, and advances in antiretroviral therapy to treat the disease, there were 2.1 million new cases of HIV-1 infection in 2015, and 36.7 million people living with AIDS (http://www.unaids.org/en/resources/fact-sheet ). Thus, a vaccine that can prevent HIV-infection remains a global priority. Thirty-three years after the discovery of HIV-1(1 ), and the demonstration it was the cause of AIDS(2 ) and after 6 HIV-1 vaccine efficacy trials (3 –8 ), no HIV-1 candidate vaccine has shown enough efficacy to be approved for clinical use. Of several vaccine concepts tested in efficacy trials, only one, the RV144 pox virus prime, protein boost (ALVAC/AIDSVAX B/E) vaccine, showed a low level of vaccine protection with an estimated 31% vaccine efficacy (8 ). Candidate vaccines have sought to elicit both antibody and T-cell responses, but to fully prevent the acquisition of infection, a major focus has been on the induction of protective antibody responses (9 , 10 ). Hence, the focus of this issue of Immunologic Reviews is “Antibodies and Immunity to HIV”. Animal models have demonstrated that passive administration of HIV-1-- neutralizing antibodies can fully protect against infection, but the induction of such antibodies via immunization remains a major scientific challenge. With recent advances in the isolation and characterization of broadly neutralizing antibodies (bnAbs) from HIV-1-infected subjects, in elucidating structures of the HIV-1 envelope glycoprotein (Env), in defining novel approaches to immunogen design, and in improved understanding of the immunological pathways leading to bNAb elicitation, the challenge developing an HIV-1 vaccine appears to be more tractable. The articles in this issue highlight both major areas of HIV-1 vaccine development progress and remaining obstacles, and provide context for the renewed optimism that a highly effective vaccine, while not imminent, is possible.
Collapse
Affiliation(s)
- Barton F. Haynes
- Duke Human Vaccine Institute, Departments of Medicine and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|