1
|
Cai Y, Shang L, Zhou F, Zhang M, Li J, Wang S, Lin Q, Huang J, Yang S. Macrophage pyroptosis and its crucial role in ALI/ARDS. Front Immunol 2025; 16:1530849. [PMID: 40028334 PMCID: PMC11867949 DOI: 10.3389/fimmu.2025.1530849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Acute lung injury(ALI)/acute respiratory distress syndrome(ARDS) is a severe clinical syndrome characterized by high morbidity and mortality, primarily due to lung injury. However, the pathogenesis of ALI/ARDS remains a complex issue. In recent years, the role of macrophage pyroptosis in lung injury has garnered extensive attention worldwide. This paper reviews the mechanism of macrophage pyroptosis, discusses its role in ALI/ARDS, and introduces several drugs and intervening measures that can regulate macrophage pyroptosis to influence the progression of ALI/ARDS. By doing so, we aim to enhance the understanding of the mechanism of macrophage pyroptosis in ALI/ARDS and provide novel insights for its treatment.
Collapse
Affiliation(s)
- Yuju Cai
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luorui Shang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fangyuan Zhou
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengqi Zhang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinxiao Li
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhan Wang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qifeng Lin
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianghua Huang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenglan Yang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Ma C, Jiang Y, Xiang Y, Li C, Xie X, Zhang Y, You Y, Xie L, Gong J, Sun Y, Tong S, Song Q, Chen J, Xiao W. Metabolic Reprogramming of Macrophages by Biomimetic Melatonin-Loaded Liposomes Effectively Attenuates Acute Gouty Arthritis in a Mouse Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410107. [PMID: 39717013 PMCID: PMC11831490 DOI: 10.1002/advs.202410107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Gouty arthritis is characterized by an acute inflammatory response triggered by monosodium urate (MSU) crystals deposited in the joints and periarticular tissues. Current treatments bring little effects owing to serious side effects, necessitating the exploration of new and safer therapeutic options. Macrophages play a critical role in the initiation, progression, and resolution of acute gout, with the cellular profiles closely linked to their activation and polarization. This suggests that metabolic regulation can be of significance in managing gouty inflammation. In this study, it is demonstrated that melatonin, a natural hormone, modulates the metabolic remodeling of inflammatory macrophages by shifting their metabolism from glycolysis to oxidative phosphorylation, further altering functions of the pathogenic macrophage. To improve melatonin delivery to the inflamed sites, macrophage membrane-coated melatonin-loaded liposomes (MLT-MLP) are developed. Benefiting from the inflammation-homing characteristic of macrophage membrane, such engineered liposomes effectively target the inflamed site and demonstrate potent anti-inflammatory effects, achieving an enhanced amelioration of acute gouty arthritis. In conclusion, this study proposes a novel strategy aimed at metabolic reprogramming of macrophages to attenuate the pathological injuries in acute gout, providing a potential therapeutic strategy of gout-associated diseases, especially gouty arthritis.
Collapse
Affiliation(s)
- Chuchu Ma
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yuyu Jiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Yan Xiang
- Department of Pathogen Biology, Naval Medical University, Shanghai, 200433, China
| | - Chang Li
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Xiaoying Xie
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yunkai Zhang
- Naval Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Yang You
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Laozhi Xie
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Jianing Gong
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yinzhe Sun
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Shiqiang Tong
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Chen
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| |
Collapse
|
3
|
Dawson RE, Jenkins BJ. The Role of Inflammasome-Associated Innate Immune Receptors in Cancer. Immune Netw 2024; 24:e38. [PMID: 39513025 PMCID: PMC11538610 DOI: 10.4110/in.2024.24.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Dysregulated activation of the innate immune system is a critical driver of chronic inflammation that is associated with at least 30% of all cancers. Innate immunity can also exert tumour-promoting effects (e.g. proliferation) directly on cancer cells in an intrinsic manner. Conversely, innate immunity can influence adaptive immunity-based anti-tumour immune responses via Ag-presenting dendritic cells that activate natural killer and cytotoxic T cells to eradicate tumours. While adaptive anti-tumour immunity has underpinned immunotherapy approaches with immune checkpoint inhibitors and chimeric Ag receptor-T cells, the clinical utility of innate immunity in cancer is underexplored. Innate immune responses are governed by pattern recognition receptors, which comprise several families, including Toll-like, nucleotide-binding oligomerization domain-containing (NOD)-like and absent-in-melanoma 2 (AIM2)-like receptors. Notably, a subset of NOD-like and AIM2-like receptors can form large multiprotein "inflammasome" complexes which control maturation of biologically active IL-1β and IL-18 cytokines. Over the last decade, it has emerged that inflammasomes can coordinate contrasting pro- and anti-tumour responses in cancer and non-cancer (e.g. immune, stromal) cells. Considering the importance of inflammasomes to the net output of innate immune responses, here we provide an overview and discuss recent advancements on the diverse role of inflammasomes in cancer that have underpinned their potential targeting in diverse malignancies.
Collapse
Affiliation(s)
- Ruby E. Dawson
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| | - Brendan J. Jenkins
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Schiffelers LDJ, Tesfamariam YM, Jenster LM, Diehl S, Binder SC, Normann S, Mayr J, Pritzl S, Hagelauer E, Kopp A, Alon A, Geyer M, Ploegh HL, Schmidt FI. Antagonistic nanobodies implicate mechanism of GSDMD pore formation and potential therapeutic application. Nat Commun 2024; 15:8266. [PMID: 39327452 PMCID: PMC11427689 DOI: 10.1038/s41467-024-52110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Inflammasome activation results in the cleavage of gasdermin D (GSDMD) by pro-inflammatory caspases. The N-terminal domains (GSDMDNT) oligomerize and assemble pores penetrating the target membrane. As methods to study pore formation in living cells are insufficient, the order of conformational changes, oligomerization, and membrane insertion remained unclear. We have raised nanobodies (VHHs) against human GSDMD and find that cytosolic expression of VHHGSDMD-1 and VHHGSDMD-2 prevents oligomerization of GSDMDNT and pyroptosis. The nanobody-stabilized GSDMDNT monomers partition into the plasma membrane, suggesting that membrane insertion precedes oligomerization. Inhibition of GSDMD pore formation switches cell death from pyroptosis to apoptosis, likely driven by the enhanced caspase-1 activity required to activate caspase-3. Recombinant antagonistic nanobodies added to the extracellular space prevent pyroptosis and exhibit unexpected therapeutic potential. They may thus be suitable to treat the ever-growing list of diseases caused by activation of (non-) canonical inflammasomes.
Collapse
Affiliation(s)
- Lisa D J Schiffelers
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yonas M Tesfamariam
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lea-Marie Jenster
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Stefan Diehl
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sophie C Binder
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sabine Normann
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jonathan Mayr
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Steffen Pritzl
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Elena Hagelauer
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anja Kopp
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Assaf Alon
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Matthias Geyer
- Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Tengesdal IW, Banks M, Dinarello CA, Marchetti C. Screening NLRP3 drug candidates in clinical development: lessons from existing and emerging technologies. Front Immunol 2024; 15:1422249. [PMID: 39188718 PMCID: PMC11345644 DOI: 10.3389/fimmu.2024.1422249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/11/2024] [Indexed: 08/28/2024] Open
Abstract
Decades of evidence positioned IL-1β as a master regulatory cytokine in acute and chronic inflammatory diseases. Approved biologics aimed at inhibiting IL-1 signaling have shown efficacy but variable safety. More recently, targeting NLRP3 activation, an upstream mediator of IL-1β, has garnered the most attention. Aberrant NLRP3 activation has been demonstrated to participate in the progression of several pathological conditions from neurogenerative diseases to cardio-metabolic syndromes and cancer. Pharmacological and genetic strategies aimed to limit NLRP3 function have proven effective in many preclinical models of diseases. These evidences have lead to a significant effort in the generation and clinical testing of small orally active molecules that can target NLRP3. In this report, we discuss different properties of these molecules with translational potential and describe the technologies currently available to screen NLRP3 targeting molecules highlighting advantages and limitations of each method.
Collapse
Affiliation(s)
- Isak W. Tengesdal
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Migachelle Banks
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Carlo Marchetti
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Department of Research, Rocky Mountain Regional Veteran Affairs (VA) Medical Center, Aurora, CO, United States
| |
Collapse
|
6
|
Yu Y, Lv J, Ma D, Han Y, Zhang Y, Wang S, Wang Z. Microglial ApoD-induced NLRC4 inflammasome activation promotes Alzheimer's disease progression. Animal Model Exp Med 2024. [PMID: 38520135 DOI: 10.1002/ame2.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective therapies. It is well known that chronic neuroinflammation plays a critical role in the onset and progression of AD. Well-balanced neuronal-microglial interactions are essential for brain functions. However, determining the role of microglia-the primary immune cells in the brain-in neuroinflammation in AD and the associated molecular basis has been challenging. METHODS Inflammatory factors in the sera of AD patients were detected and their association with microglia activation was analyzed. The mechanism for microglial inflammation was investigated. IL6 and TNF-α were found to be significantly increased in the AD stage. RESULTS Our analysis revealed that microglia were extensively activated in AD cerebra, releasing sufficient amounts of cytokines to impair the neural stem cells (NSCs) function. Moreover, the ApoD-induced NLRC4 inflammasome was activated in microglia, which gave rise to the proinflammatory phenotype. Targeting the microglial ApoD promoted NSC self-renewal and inhibited neuron apoptosis. These findings demonstrate the critical role of ApoD in microglial inflammasome activation, and for the first time reveal that microglia-induced inflammation suppresses neuronal proliferation. CONCLUSION Our studies establish the cellular basis for microglia activation in AD progression and shed light on cellular interactions important for AD treatment.
Collapse
Affiliation(s)
- Yaliang Yu
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Jianzhou Lv
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Dan Ma
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Ya Han
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Yaheng Zhang
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Shanlong Wang
- Clinical Lab, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| | - Zhitao Wang
- Department of Neurology, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, P. R. China
| |
Collapse
|
7
|
Jing XH, Zhao GY, Wang GB, Huang QL, Zou WS, Huang LN, Li W, Qiu ZY, Xin RH. Naringin alleviates pneumonia caused by Klebsiella pneumoniae infection by suppressing NLRP3 inflammasome. Biomed Pharmacother 2024; 170:116028. [PMID: 38113627 DOI: 10.1016/j.biopha.2023.116028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Klebsiella pneumoniae (Kpn) is an important pathogen of hospital-acquired pneumonia, which can lead to sepsis and death in severe cases. In this study, we simulated pneumonia induced by Kpn infection in mice to investigate the therapeutic effect of naringin (NAR) on bacterial-induced lung inflammation. Mice infected with Kpn exhibited increases in white blood cells (WBC) and neutrophils in the peripheral blood and pathological severe injury of the lungs. This injury was manifested by increased expression of the inflammatory cytokines interleukin (IL)- 18, IL-1β, tumor necrosis factor-α (TNF-α) and IL-6, and elevated the expression of NLRP3 protein. NAR treatment could decrease the protein expression of NLRP3, alleviate lung inflammation, and reduce lung injury in mice caused by Kpn. Meanwhile, molecular docking results suggest NAR could bind to NLRP3 and Surface Plasmon Resonance (SPR) analyses also confirm this result. In vitro trials, we found that pretreated with NAR not only inhibited nuclear translocation of nuclear factor (NF)-κB protein P65 but also attenuated the protein interaction of NLRP3, caspase-1 and ASC and inhibited the assembly of NLRP3 inflammasome in mice AMs. Additionally, NAR could reduce intracellular potassium (K+) efflux, inhibiting NLRP3 inflammasome activation. These results indicated that NAR could protect against Kpn-induced pneumonia by inhibiting the overactivation of the NLRP3 inflammasome signaling pathway. The results of this study confirm the efficacy of NAR in treating bacterial pneumonia, refine the mechanism of action of NAR, and provide a theoretical basis for the research and development of NAR as an anti-inflammatory adjuvant.
Collapse
Affiliation(s)
- Xiao-Han Jing
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), China; Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, China; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R. China, China
| | - Guan-Yu Zhao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Gui-Bo Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), China; Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, China; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R. China, China
| | - Qi-Lin Huang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), China; Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, China; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R. China, China
| | - Wen-Shu Zou
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), China; Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, China; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R. China, China
| | - Li-Na Huang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, China
| | - Wei Li
- Lanzhou Center for Disease Control and Prevention, Lanzhou, China.
| | - Zheng-Ying Qiu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), China; Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, China; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R. China, China.
| | - Rui-Hua Xin
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences (CAAS), China; Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, China; Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs of P.R. China, China.
| |
Collapse
|
8
|
Ho LC, Chen YH, Wu TY, Kao LZ, Hung SY, Liou HH, Chen PC, Tsai PJ, Lin HK, Lee YC, Wang HH, Tsai YS. Phosphate burden induces vascular calcification through a NLRP3-caspase-1-mediated pyroptotic pathway. Life Sci 2023; 332:122123. [PMID: 37742736 DOI: 10.1016/j.lfs.2023.122123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
AIMS The aim of this study is to clarify the role of NLRP3 inflammasome in phosphate burden-induced vascular smooth muscle cell (VSMC) calcification. MAIN METHODS VSMC calcification was induced using a high concentration of inorganic phosphate. After pharmacological inhibition or genetic silencing of the NLRP3 inflammasome, pyroptosis, or potassium efflux, the cells were examined by RT-qPCR, immunofluorescence, and western blotting to identify the NLRP3-mediated pathway for VSMC calcification. KEY FINDINGS Calcified VSMCs with α-smooth muscle actin (α-SMA) disarray presented features of pyroptosis, including caspase-1 maturation, cleaved gasdermin D (GSDMD), and a high supernatant level of lactate dehydrogenase A. Pharmacological inhibitions of caspase-1 and pyroptosis attenuated VSMC calcification, whereas interleukin-1β receptor antagonism did not. Unlike canonical NLRP3 activation, osteogenic VSMCs did not upregulate NLRP3 expression. However, NLRP3 genetic silencing or inhibitions, which targets different domains of the NLRP3 protein, could ameliorate VSMC calcification by aborting caspase-1 and GSDMD activation. Furthermore, potassium efflux through the inward-rectifier potassium channel, and not through the P2X7 receptor, triggered NLRP3 inflammasome activation and VSMC calcification. SIGNIFICANCE In the present study, we identified a potassium efflux-triggered NLRP3-caspase-1-mediated pyroptotic pathway for VSMC calcification that is unique and different from the canonical NLRP3 inflammasome activation. Therefore, targeting this pathway may serve as a novel therapeutic strategy for vascular calcification.
Collapse
Affiliation(s)
- Li-Chun Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Division of General Medicine, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.
| | - Yu-Hsin Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yun Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Zhen Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Yuan Hung
- Division of Nephrology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hung-Hsiang Liou
- Division of Nephrology, Department of Internal Medicine, Hsin-Jen Hospital, New Taipei City, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA
| | - Yi-Che Lee
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Hsi-Hao Wang
- Division of Nephrology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, USA; Clinical Medicine Research Center, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
9
|
Sposito F, Northey S, Charras A, McNamara PS, Hedrich CM. Hypertonic saline induces inflammation in human macrophages through the NLRP1 inflammasome. Genes Immun 2023; 24:263-269. [PMID: 37573430 PMCID: PMC10575766 DOI: 10.1038/s41435-023-00218-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Nebulized hypertonic saline (3-7%) is commonly used to increase mucociliary clearance in patients with chronic airway disease and/or virus infections. However, altered salt concentrations may contribute to inflammatory responses. The aim of this study was to investigate whether 500 mM NaCl (3%) triggers inflammation in human macrophages and identify the molecular mechanisms involved. NaCl-induced pyroptosis, IL-1β, IL-18 and ASC speck release were measured in primary human monocyte-derived macrophages. Treatment with the recombinant IL-1 receptor antagonist anakinra or the NLRP3 inhibitor MCC950 did not affect NaCl-mediated inflammasome assembly. Knock-down of NLRP1 expression, but not of NLRP3 and NLRC4, reduced NaCl-induced pyroptosis, pro-inflammatory cytokine and ASC speck release from human THP-1-derived macrophages. Data from this study suggest that 3% NaCl-induced inflammatory responses in human macrophages depend on NLRP1 and inflammasome assembly. Targeting inflammation in addition to inhalation with hypertonic saline may benefit patients with inflammatory airway disease.
Collapse
Affiliation(s)
- Francesca Sposito
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Sarah Northey
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Amandine Charras
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Paul S McNamara
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Respiratory Medicine, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| | - Christian M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK.
| |
Collapse
|
10
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
11
|
Nagar A, Bharadwaj R, Shaikh MOF, Roy A. What are NLRP3-ASC specks? an experimental progress of 22 years of inflammasome research. Front Immunol 2023; 14:1188864. [PMID: 37564644 PMCID: PMC10411722 DOI: 10.3389/fimmu.2023.1188864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Speck assembly is the hallmark of NLRP3 inflammasome activation. The 1µm structure comprising of NLRP3 and ASC is the first observable phenotype of NLRP3 activation. While the common consensus is that the specks are the site of inflammasome activity, no direct experimental evidence exists to support this notion. In these 22 years, since the inflammasome discovery, several research studies have been published which directly or indirectly support or refute the idea of speck being the inflammasome. This review compiles the data from two decades of research to answer a long-standing question: "What are NLRP3-ASC specks?"
Collapse
Affiliation(s)
- Abhinit Nagar
- Department of Flow Cytometry, Cytek Biosciences, Fremont, CA, United States
| | - Ravi Bharadwaj
- MassBiologics of the University of Massachusetts Medical School, Boston, MA, United States
| | - Mohammad Omar Faruk Shaikh
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA, United States
| | - Abhishek Roy
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
12
|
de Carvalho Ribeiro M, Iracheta-Vellve A, Babuta M, Calenda CD, Copeland C, Zhuang Y, Lowe PP, Hawryluk D, Catalano D, Cho Y, Barton B, Dasarathy S, McClain C, McCullough AJ, Mitchell MC, Nagy LE, Radaeva S, Lien E, Golenbock DT, Szabo G. Alcohol-induced extracellular ASC specks perpetuate liver inflammation and damage in alcohol-associated hepatitis even after alcohol cessation. Hepatology 2023; 78:225-242. [PMID: 36862512 PMCID: PMC11921786 DOI: 10.1097/hep.0000000000000298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/19/2022] [Indexed: 03/03/2023]
Abstract
BACKGROUND AIMS Prolonged systemic inflammation contributes to poor clinical outcomes in severe alcohol-associated hepatitis (AH) even after the cessation of alcohol use. However, mechanisms leading to this persistent inflammation remain to be understood. APPROACH RESULTS We show that while chronic alcohol induces nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in the liver, alcohol binge results not only in NLRP3 inflammasome activation but also in increased circulating extracellular apoptosis-associated speck-like protein containing a caspase recruitment domain (ex-ASC) specks and hepatic ASC aggregates both in patients with AH and in mouse models of AH. These ex-ASC specks persist in circulation even after the cessation of alcohol use. Administration of alcohol-induced-ex-ASC specks in vivo in alcohol-naive mice results in sustained inflammation in the liver and circulation and causes liver damage. Consistent with the key role of ex-ASC specks in mediating liver injury and inflammation, alcohol binge failed to induce liver damage or IL-1β release in ASC-deficient mice. Our data show that alcohol induces ex-ASC specks in liver macrophages and hepatocytes, and these ex-ASC specks can trigger IL-1β release in alcohol-naive monocytes, a process that can be prevented by the NLRP3 inhibitor, MCC950. In vivo administration of MCC950 reduced hepatic and ex-ASC specks, caspase-1 activation, IL-1β production, and steatohepatitis in a murine model of AH. CONCLUSIONS Our study demonstrates the central role of NLRP3 and ASC in alcohol-induced liver inflammation and unravels the critical role of ex-ASC specks in the propagation of systemic and liver inflammation in AH. Our data also identify NLRP3 as a potential therapeutic target in AH.
Collapse
Affiliation(s)
- Marcelle de Carvalho Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Arvin Iracheta-Vellve
- Monte Rosa Therapeutics, Boston, Massachusetts, 02210, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Mrigya Babuta
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Charles D Calenda
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Copeland
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Yuan Zhuang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick P Lowe
- Brigham and Women's General Hospital, Boston, Massachusetts, USA
| | - Danielle Hawryluk
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Yeonhee Cho
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Bruce Barton
- Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Srinivasan Dasarathy
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Craig McClain
- Division of Gastroenterology, University of Louisville, Louisville, Kentucky, USA
| | - Arthur J McCullough
- Department of Gastroenterology, Hepatology and Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mack C Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura E Nagy
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Lerner Research Institute of the Cleveland Clinic, Cleveland, Ohio, USA
| | - Svetlana Radaeva
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Egil Lien
- Department of Medicine, Division of INfectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Douglas T Golenbock
- Department of Medicine, Division of INfectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Massachusetts, USA
| |
Collapse
|
13
|
Faass L, Hauke M, Stein SC, Josenhans C. Innate activation of human neutrophils and neutrophil-like cells by the pro-inflammatory bacterial metabolite ADP-heptose and Helicobacter pylori. Int J Med Microbiol 2023; 313:151585. [PMID: 37399704 DOI: 10.1016/j.ijmm.2023.151585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Lipopolysaccharide inner core heptose metabolites, including ADP-heptose, play a substantial role in the activation of cell-autonomous innate immune responses in eukaryotic cells, via the ALPK1-TIFA signaling pathway, as demonstrated for various pathogenic bacteria. The important role of LPS heptose metabolites during Helicobacter pylori infection of the human gastric niche has been demonstrated for gastric epithelial cells and macrophages, while the role of heptose metabolites on human neutrophils has not been investigated. In this study, we aimed to gain a better understanding of the activation potential of bacterial heptose metabolites for human neutrophil cells. To do so, we used pure ADP-heptose and, as a bacterial model, H. pylori, which can transport heptose metabolites into the human host cell via the Cag Type 4 Secretion System (CagT4SS). Main questions were how bacterial heptose metabolites impact on the pro-inflammatory activation, alone and in the bacterial context, and how they influence maturation of human neutrophils. Results of the present study demonstrated that neutrophils respond with high sensitivity to pure heptose metabolites, and that global regulation networks and neutrophil maturation are influenced by heptose exposure. Furthermore, activation of human neutrophils by live H. pylori is strongly impacted by the presence of LPS heptose metabolites and the functionality of its CagT4SS. Similar activities were determined in cell culture neutrophils of different maturation states and in human primary neutrophils. In conclusion, we demonstrated that specific heptose metabolites or bacteria producing heptoses exhibit a strong activity on cell-autonomous innate responses of human neutrophils.
Collapse
Affiliation(s)
- Larissa Faass
- Max von Pettenkofer Institute for Medical Microbiology and Hospital Epidemiology, Ludwig Maximilians-University München, Pettenkoferstrasse 9a, 80336 München, Germany
| | - Martina Hauke
- Max von Pettenkofer Institute for Medical Microbiology and Hospital Epidemiology, Ludwig Maximilians-University München, Pettenkoferstrasse 9a, 80336 München, Germany
| | - Saskia C Stein
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute for Medical Microbiology and Hospital Epidemiology, Ludwig Maximilians-University München, Pettenkoferstrasse 9a, 80336 München, Germany; DZIF Partner Site Munich, Germany.
| |
Collapse
|
14
|
Zhang Y, Gao Y, Ding Y, Jiang Y, Chen H, Zhan Z, Liu X. Targeting KAT2A inhibits inflammatory macrophage activation and rheumatoid arthritis through epigenetic and metabolic reprogramming. MedComm (Beijing) 2023; 4:e306. [PMID: 37313329 PMCID: PMC10258526 DOI: 10.1002/mco2.306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023] Open
Abstract
Epigenetic regulation of inflammatory macrophages governs inflammation initiation and resolution in the pathogenesis of rheumatoid arthritis (RA). Nevertheless, the mechanisms underlying macrophage-mediated arthritis injuries remain largely obscure. Here, we found that increased expression of lysine acetyltransferase 2A (KAT2A) in synovial tissues was closely correlated with inflammatory joint immunopathology in both RA patients and experimental arthritis mice. Administration of MB-3, the KAT2A-specific chemical inhibitor, significantly ameliorated the synovitis and bone destruction in collagen-induced arthritis model. Both pharmacological inhibition and siRNA silencing of KAT2A, not only suppressed innate stimuli-triggered proinflammatory gene (such as Il1b and Nlrp3) transcription but also impaired NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in vivo and in vitro. Mechanistically, KAT2A facilitated macrophage glycolysis reprogramming through suppressing nuclear factor-erythroid 2-related factor 2 (NRF2) activity as well as downstream antioxidant molecules, which supported histone 3 lysine 9 acetylation (H3K9ac) and limited NRF2-mediated transcriptional repression of proinflammatory genes. Our study proves that acetyltransferase KAT2A licenses metabolic and epigenetic reprogramming for NLRP3 inflammasome activation in inflammatory macrophages, thereby targeting KAT2A represents a potential therapeutic approach for patients suffering from RA and relevant inflammatory diseases.
Collapse
Affiliation(s)
- Yunkai Zhang
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
- National Key Laboratory of Immunity & InflammationNaval Medical UniversityShanghaiChina
| | - Ying Gao
- Department of RheumatologyChanghai Hospital, Naval Medical UniversityShanghaiChina
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Yingying Ding
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
| | - Yuyu Jiang
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
| | - Huiying Chen
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
| | - Zhenzhen Zhan
- Key Laboratory of Arrhythmias of the Ministry of Education of ChinaShanghai East Hospital, Tongji University School of MedicineShanghaiChina
- Department of Liver Surgery, Shanghai Institute of TransplantationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xingguang Liu
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina
- National Key Laboratory of Immunity & InflammationNaval Medical UniversityShanghaiChina
| |
Collapse
|
15
|
Ren M, Chen J, Xu H, Li W, Wang T, Chi Z, Lin Y, Zhang A, Chen G, Wang X, Sun X, Liang G, Wang J, Luo W. Ergolide covalently binds NLRP3 and inhibits NLRP3 inflammasome-mediated pyroptosis. Int Immunopharmacol 2023; 120:110292. [PMID: 37182452 DOI: 10.1016/j.intimp.2023.110292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND NLR family pyrin domain-containing 3 (NLRP3)-mediated pyroptosis plays a key role in various acute and chronic inflammatory diseases. Targeted inhibition of NLRP3-mediated pyroptosis may be a potential therapeutic strategy for various inflammatory diseases. Ergolide (ERG) is a sesquiterpene lactone natural product derived from the traditional Chinese medicinal herb, Inula britannica. ERG has been shown to have anti-inflammatory and anti-cancer activities, but the target is remains unknown. HYPOTHESIS/PURPOSE This study performed an in-depth investigation of the anti-inflammatory mechanism of ERG in NLRP3-mediated pyroptosis and NLPR3 inflammasome related sepsis and acute lung injury model. METHODS ELISA and Western blot were used to determine the IL-1β and P20 levels. Co-immunoprecipitation assays were used to detect the interaction between proteins. Drug affinity response target stability (DARTS) assays were used to explore the potential target of ERG. C57BL/6J mice were intraperitoneally injected with E. coli DH5α (2 × 109 CFU/mouse) to establish a sepsis model. Acute lung injury was induced by intratracheal administrationof lipopolysaccharide in wild-type mice and NLRP3 knockout mice with or without ERG treatment. RESULTS We showed that ERG is an efficient inhibitor of NLRP3-mediated pyroptosis in the first and second signals of NLRP3 inflammasome activation. Furthermore, we demonstrated that ERG irreversibly bound to the NACHT domain of NLRP3 to prevent the assembly and activation of the NLRP3 inflammasome. ERG remarkably improved the survival rate of wild-type septic mice. In lipopolysaccharide-induced acute lung injury model, ERG alleviated acute lung injury of wild-type mice but not NLRP3 knockout mice. CONCLUSION Our results revealed that the anti-pyroptosis effect of ERG are dependent on NLRP3 and NLRP3 NACHT domain is ERG's direct target. Therefore, ERG can serve as a precursor drug for the development of novel NLRP3 inhibitors to treat NLRP3 inflammasome mediated inflammatory diseases.
Collapse
Affiliation(s)
- Miao Ren
- The Department of Anesthesiology and Operation Room, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiahao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haowen Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weifeng Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tingting Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317099, China
| | - Zhanghuan Chi
- Wenzhou Third Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yi Lin
- Wenzhou Third Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Anqi Zhang
- The Department of Anesthesiology and Operation Room, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoyu Sun
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| | - Junlu Wang
- The Department of Anesthesiology and Operation Room, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Wu Luo
- Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
16
|
Kheradmand F, Zhang Y, Corry DB. Contribution of adaptive immunity to human COPD and experimental models of emphysema. Physiol Rev 2023; 103:1059-1093. [PMID: 36201635 PMCID: PMC9886356 DOI: 10.1152/physrev.00036.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) and the undisputed role of innate immune cells in this condition have dominated the field in the basic research arena for many years. Recently, however, compelling data suggesting that adaptive immune cells may also contribute to the progressive nature of lung destruction associated with COPD in smokers have gained considerable attention. The histopathological changes in the lungs of smokers can be limited to the large or small airways, but alveolar loss leading to emphysema, which occurs in some individuals, remains its most significant and irreversible outcome. Critically, however, the question of why emphysema progresses in a subset of former smokers remained a mystery for many years. The recognition of activated and organized tertiary T- and B-lymphoid aggregates in emphysematous lungs provided the first clue that adaptive immune cells may play a crucial role in COPD pathophysiology. Based on these findings from human translational studies, experimental animal models of emphysema were used to determine the mechanisms through which smoke exposure initiates and orchestrates adaptive autoreactive inflammation in the lungs. These models have revealed that T helper (Th)1 and Th17 subsets promote a positive feedback loop that activates innate immune cells, confirming their role in emphysema pathogenesis. Results from genetic studies and immune-based discoveries have further provided strong evidence for autoimmunity induction in smokers with emphysema. These new findings offer a novel opportunity to explore the mechanisms underlying the inflammatory landscape in the COPD lung and offer insights for development of precision-based treatment to halt lung destruction.
Collapse
Affiliation(s)
- Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| | - Yun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
17
|
Crocin Attenuates NLRP3 Inflammasome Activation by Inhibiting Mitochondrial Reactive Oxygen Species and Ameliorates Monosodium Urate-Induced Mouse Peritonitis. Curr Issues Mol Biol 2023; 45:2090-2104. [PMID: 36975504 PMCID: PMC10047758 DOI: 10.3390/cimb45030134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Crocin is a hydrophilic carotenoid pigment found in the stigma of Crocus sativus or the fruit of Gardenia jasminoides. In this study, we investigated the effects of Crocin on the activation of the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 (NLRP3) inflammasome in J774A.1 murine macrophage cells and monosodium urate (MSU)-induced peritonitis. Crocin significantly inhibited Nigericin-, adenosine triphosphate (ATP)-, MSU-induced interleukin (IL)-1β secretion, and caspase-1 cleavage without affecting pro-IL-1β and pro-caspase-1. Crocin also suppressed gasdermin-D cleavage and lactate dehydrogenase release and enhanced cell viability, indicating that Crocin reduces pyroptosis. Similar effects were observed in primary mouse macrophages. However, Crocin did not affect poly(dA:dT)-induced absent in melanoma 2 (AIM2) and muramyl dipeptide-induced NLRP1 inflammasomes. Crocin decreased Nigericin-induced oligimerization and the speck formation of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Crocin also dramatically alleviated the ATP-induced production of mitochondrial reactive oxygen species (mtROS). Finally, Crocin ameliorated the MSU-induced production of IL-1β and IL-18 and the recruitment of neutrophils during peritoneal inflammation. These results suggest that Crocin suppresses NLRP3 inflammasome activation by blocking mtROS production and ameliorates MSU-induced mouse peritonitis. Thus, Crocin may have therapeutic potential in various NLRP3 inflammasome-related inflammatory diseases.
Collapse
|
18
|
Roy S, Arif Ansari M, Choudhary K, Singh S. NLRP3 inflammasome in depression: A review. Int Immunopharmacol 2023; 117:109916. [PMID: 36827927 DOI: 10.1016/j.intimp.2023.109916] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
The present article provides a detailed concept of the role of NLRP3 inflammasome in the pathophysiology of depression-like chronic diseases where inflammation and release of various cytokines plays a pivotal role in exaggerating the condition. The various pathways involved in NLRP3 activation are the main target of NLRP3 inhibitors for the therapeutic management of depression as per the recent clinical and research studies conducted so far. Further various drug inhibitors for NLRP3 available in preclinical and clinical trials have been discussed in detail. Hence, blockage of the action of NLRP3 inflammasome is crucial to anticipate the inflammatory cytokine release from the mediators that contributes to cause depression.
Collapse
Affiliation(s)
- Salona Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Md Arif Ansari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Khushboo Choudhary
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India.
| |
Collapse
|
19
|
Cypryk W, Czernek L, Horodecka K, Chrzanowski J, Stańczak M, Nurmi K, Bilicka M, Gadzinowski M, Walczak-Drzewiecka A, Stensland M, Eklund K, Fendler W, Nyman TA, Matikainen S. Lipopolysaccharide Primes Human Macrophages for Noncanonical Inflammasome-Induced Extracellular Vesicle Secretion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:322-334. [PMID: 36525001 DOI: 10.4049/jimmunol.2200444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/18/2022] [Indexed: 01/04/2023]
Abstract
Human macrophages secrete extracellular vesicles (EVs) loaded with numerous immunoregulatory proteins. Vesicle-mediated protein secretion in macrophages is regulated by poorly characterized mechanisms; however, it is now known that inflammatory conditions significantly alter both the quantities and protein composition of secreted vesicles. In this study, we employed high-throughput quantitative proteomics to characterize the modulation of EV-mediated protein secretion during noncanonical caspase-4/5 inflammasome activation via LPS transfection. We show that human macrophages activate robust caspase-4-dependent EV secretion upon transfection of LPS, and this process is also partially dependent on NLRP3 and caspase-5. A similar effect occurs with delivery of the LPS with Escherichia coli-derived outer membrane vesicles. Moreover, sensitization of the macrophages through TLR4 by LPS priming prior to LPS transfection dramatically augments the EV-mediated protein secretion. Our data demonstrate that this process differs significantly from canonical inflammasome activator ATP-induced vesiculation, and it is dependent on the autocrine IFN signal associated with TLR4 activation. LPS priming preceding the noncanonical inflammasome activation significantly enhances vesicle-mediated secretion of inflammasome components caspase-1, ASC, and lytic cell death effectors GSDMD, MLKL, and NINJ1, suggesting that inflammatory EV transfer may exert paracrine effects in recipient cells. Moreover, using bioinformatics methods, we identify 15-deoxy-Δ12,14-PGJ2 and parthenolide as inhibitors of caspase-4-mediated inflammation and vesicle secretion, indicating new therapeutic potential of these anti-inflammatory drugs.
Collapse
Affiliation(s)
- Wojciech Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Liliana Czernek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Katarzyna Horodecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | - Jędrzej Chrzanowski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Stańczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Katariina Nurmi
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marcelina Bilicka
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mariusz Gadzinowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz, Poland
| | | | - Maria Stensland
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway; and
| | - Kari Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Tuula A Nyman
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway; and
| | - Sampsa Matikainen
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
20
|
Chao YY, Puhach A, Frieser D, Arunkumar M, Lehner L, Seeholzer T, Garcia-Lopez A, van der Wal M, Fibi-Smetana S, Dietschmann A, Sommermann T, Ćiković T, Taher L, Gresnigt MS, Vastert SJ, van Wijk F, Panagiotou G, Krappmann D, Groß O, Zielinski CE. Human T H17 cells engage gasdermin E pores to release IL-1α on NLRP3 inflammasome activation. Nat Immunol 2023; 24:295-308. [PMID: 36604548 PMCID: PMC9892007 DOI: 10.1038/s41590-022-01386-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Abstract
It has been shown that innate immune responses can adopt adaptive properties such as memory. Whether T cells utilize innate immune signaling pathways to diversify their repertoire of effector functions is unknown. Gasdermin E (GSDME) is a membrane pore-forming molecule that has been shown to execute pyroptotic cell death and thus to serve as a potential cancer checkpoint. In the present study, we show that human T cells express GSDME and, surprisingly, that this expression is associated with durable viability and repurposed for the release of the alarmin interleukin (IL)-1α. This property was restricted to a subset of human helper type 17 T cells with specificity for Candida albicans and regulated by a T cell-intrinsic NLRP3 inflammasome, and its engagement of a proteolytic cascade of successive caspase-8, caspase-3 and GSDME cleavage after T cell receptor stimulation and calcium-licensed calpain maturation of the pro-IL-1α form. Our results indicate that GSDME pore formation in T cells is a mechanism of unconventional cytokine release. This finding diversifies our understanding of the functional repertoire and mechanistic equipment of T cells and has implications for antifungal immunity.
Collapse
Affiliation(s)
- Ying-Yin Chao
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany.,Center for Translational Cancer Research & Institute of Virology, Technical University of Munich, Munich, Germany
| | - Alisa Puhach
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - David Frieser
- Center for Translational Cancer Research & Institute of Virology, Technical University of Munich, Munich, Germany
| | - Mahima Arunkumar
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Laurens Lehner
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Thomas Seeholzer
- Research Unit Cellular Signal Integration, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Albert Garcia-Lopez
- Department of Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Marlot van der Wal
- Center for Translational Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Silvia Fibi-Smetana
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Axel Dietschmann
- Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Thomas Sommermann
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Tamara Ćiković
- Institute of Neuropathology, Medical Center & Signalling Research Centres BIOSS and CIBSS & Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Mark S Gresnigt
- Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Sebastiaan J Vastert
- Center for Translational Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Gianni Panagiotou
- Department of Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Medical Center & Signalling Research Centres BIOSS and CIBSS & Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina E Zielinski
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, Germany. .,Center for Translational Cancer Research & Institute of Virology, Technical University of Munich, Munich, Germany. .,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany. .,German Center for Infection Research, Munich, Germany. .,Department of Cellular Immunoregulation, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
21
|
de Rivero Vaccari JP, Mim C, Hadad R, Cyr B, Stefansdottir TA, Keane RW. Mechanism of action of IC 100, a humanized IgG4 monoclonal antibody targeting apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Transl Res 2023; 251:27-40. [PMID: 35793783 PMCID: PMC10615563 DOI: 10.1016/j.trsl.2022.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/09/2023]
Abstract
Inflammasomes are multiprotein complexes of the innate immune response that recognize a diverse range of intracellular sensors of infection or cell damage and recruit the adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) into an inflammasome signaling complex. The recruitment, polymerization and cross-linking of ASC is upstream of caspase-1 activation and interleukin-1β release. Here we provide evidence that IC 100, a humanized IgG4κ monoclonal antibody against ASC, is internalized into the cell and localizes with endosomes, while another part is recycled and redistributed out of the cell. IC 100 binds intracellular ASC and blocks interleukin-1β release in a human whole blood cell inflammasome assay. In vitro studies demonstrate that IC 100 interferes with ASC polymerization and assembly of ASC specks. In vivo bioluminescence imaging showed that IC 100 has broad tissue distribution, crosses the blood brain barrier, and readily penetrates the brain and spinal cord parenchyma. Confocal microscopy of fluorescent-labeled IC 100 revealed that IC 100 is rapidly taken up by macrophages via a mechanism utilizing the Fc region of IC 100. Coimmunoprecipitation experiments and confocal immunohistochemistry showed that IC 100 binds to ASC and to the atypical antibody receptor Tripartite motif-containing protein-21 (TRIM21). In A549 WT and TRIM21 KO cells treated with either IC 100 or IgG4κ isotype control, the levels of intracellular IC 100 were higher than in the IgG4κ-treated controls at 2 hours, 1 day and 3 days after administration, indicating that IC 100 escapes degradation by the proteasome. Lastly, electron microscopy studies demonstrate that IC 100 binds to ASC filaments and alters the architecture of ASC filaments. Thus, IC 100 readily penetrates a variety of cell types, and it binds to intracellular ASC, but it is not degraded by the TRIM21 antibody-dependent intracellular neutralization pathway.
Collapse
Affiliation(s)
- Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL
| | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Kungliga Tekniska Högscholan (Royal Institute of Technology), Sweden
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
| | - Brianna Cyr
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL
| | - Thorunn Anna Stefansdottir
- Department of Biomedical Engineering and Health Systems, Kungliga Tekniska Högscholan (Royal Institute of Technology), Sweden
| | - Robert W Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL.
| |
Collapse
|
22
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|
23
|
Tang H, Sun Y, Fachim HA, Cheung TKD, Reynolds GP, Harte MK. Elevated Expression of Two Pore Potassium Channel THIK-1 in Alzheimer's Disease: An Inflammatory Mechanism. J Alzheimers Dis 2023; 95:1757-1769. [PMID: 37718820 DOI: 10.3233/jad-230616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Tandem pore domain halothane-inhibited K+ channel 1 (THIK-1, coded by KCNK13) provides an upstream regulation of the activation of the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome, which has been suggested as one of the key mechanisms of the pathological process in neurodegeneration mainly from in vitro and in vivo model systems studies. However, unequivocal evidence from neurodegenerative disorders has been lacking. OBJECTIVE To investigate the involvement of the THIK-1/NLRP3 pathway in the pathological process of Alzheimer's disease (AD) and Parkinson's disease (PD). METHODS This study investigated gene expression of markers in the THIK-1/NLRP3 pathway in an animal model representing AD as well as in human postmortem brains of AD and PD by quantitative real-time PCR. THIK-1 protein expression was determined using automated capillary electrophoresis immunoblotting. Furthermore, DNA methylation of KCNK13 was analysed in AD cohort by pyrosequencing. RESULTS A substantial upregulation of KCNK13, glial activation markers, NLRP3 inflammasome components, and IL1B was observed in the animal study. Increased expression of KCNK13 support an inflammatory glial cell activation in both advanced AD and PD. The increase in KCNK13 expression was also supported by downregulation in DNA methylation of KCNK13 in AD. CONCLUSIONS The association between THIK-1 K+ channels expression and pathology changes indicates a THIK-1-induced activation of this glial subtype in AD and PD. Therefore, specific blocks of the microglial THIK-1 K+ channels at the early stage of AD and PD may be beneficial for the patients.
Collapse
Affiliation(s)
- Hao Tang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, China
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yuhong Sun
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Helene A Fachim
- The School of Medicine and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | | | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Michael K Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Burian M, Schmidt MF, Yazdi AS. The NLRP1 inflammasome in skin diseases. Front Immunol 2023; 14:1111611. [PMID: 36911693 PMCID: PMC9996011 DOI: 10.3389/fimmu.2023.1111611] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Healthy human skin is constantly exposed to sterile and microbial agents. The skin immune system plays an important role in immune surveillance between tolerance and immune activation. This is mainly mediated by neutrophils, macrophages and most importantly lymphocytes. Keratinocytes, which form the outer skin barrier (epidermis) are also critical for cutaneous homeostasis. Being a non-professional immune cell, recognition of danger signals in keratinocytes is mediated by innate immune receptors (pattern recognition receptors, PRR). While Toll-like receptors are located on the cell membrane or the endosomes, nucleotide-binding domain and leucine-rich repeat containing gene family receptors (NLR) are intracellular PRRs. Some of these, once activated, trigger the formation of inflammasomes. Inflammasomes are multiprotein complexes and serve as platforms that mediate the release of innate cytokines after successful recognition, thereby attracting immune cells. Moreover, they mediate the pro-inflammatory cell death pyroptosis. Best characterized is the NLRP3 inflammasome. The function of inflammasomes differs significantly between different cell types (keratinocytes versus immune cells) and between different species (human versus mouse). In recent years, great progress has been made in deciphering the activation mechanisms. Dysregulation of inflammasomes can lead to diseases with varying degrees of severity. Here we focus on the structure, function, and associated pathologies of the NLRP1 inflammasome, which is the most relevant inflammasome in keratinocytes.
Collapse
Affiliation(s)
- Marc Burian
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| | - Morna F Schmidt
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
25
|
Chen C, Zhou Y, Ning X, Li S, Xue D, Wei C, Zhu Z, Sheng L, Lu B, Li Y, Ye X, Fu Y, Bai C, Cai W, Ding Y, Lin S, Yan G, Huang Y, Yin W. Directly targeting ASC by lonidamine alleviates inflammasome-driven diseases. J Neuroinflammation 2022; 19:315. [PMID: 36577999 PMCID: PMC9798610 DOI: 10.1186/s12974-022-02682-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Dysregulated activation of the inflammasome is involved in various human diseases including acute cerebral ischemia, multiple sclerosis and sepsis. Though many inflammasome inhibitors targeting NOD-like receptor protein 3 (NLRP3) have been designed and developed, none of the inhibitors are clinically available. Growing evidence suggests that targeting apoptosis-associated speck-like protein containing a CARD (ASC), the oligomerization of which is the key event for the assembly of inflammasome, may be another promising therapeutic strategy. Lonidamine (LND), a small-molecule inhibitor of glycolysis used as an antineoplastic drug, has been evidenced to have anti-inflammation effects. However, its anti-inflammatory mechanism is still largely unknown. METHODS Middle cerebral artery occlusion (MCAO), experimental autoimmune encephalomyelitis (EAE) and LPS-induced sepsis mice models were constructed to investigate the therapeutic and anti-inflammasome effects of LND. The inhibition of inflammasome activation and ASC oligomerization by LND was evaluated using western blot (WB), immunofluorescence (IF), quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) in murine bone marrow-derived macrophages (BMDMs). Direct binding of LND with ASC was assessed using molecular mock docking, surface plasmon resonance (SPR), and drug affinity responsive target stability (DARTS). RESULTS Here, we find that LND strongly attenuates the inflammatory injury in experimental models of inflammasome-associated diseases including autoimmune disease-multiple sclerosis (MS), ischemic stroke and sepsis. Moreover, LND blocks diverse types of inflammasome activation independent of its known targets including hexokinase 2 (HK2). We further reveal that LND directly binds to the inflammasome ligand ASC and inhibits its oligomerization. CONCLUSIONS Taken together, our results identify LND as a broad-spectrum inflammasome inhibitor by directly targeting ASC, providing a novel candidate drug for the treatment of inflammasome-driven diseases in clinic.
Collapse
Affiliation(s)
- Chen Chen
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuWei Zhou
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XinPeng Ning
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - ShengLong Li
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - DongDong Xue
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - CaiLv Wei
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Zhu Zhu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - LongXiang Sheng
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - BingZheng Lu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yuan Li
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - XiaoYuan Ye
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - YunZhao Fu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Chuan Bai
- grid.12981.330000 0001 2360 039XInstitute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Cai
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YuXuan Ding
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - SuiZhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, 510663 China
| | - GuangMei Yan
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - YiJun Huang
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Yin
- grid.12981.330000 0001 2360 039XDepartment of Molecular Biology and Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
26
|
Yin J, Gong G, Wan W, Liu X. Pyroptosis in spinal cord injury. Front Cell Neurosci 2022; 16:949939. [PMID: 36467606 PMCID: PMC9715394 DOI: 10.3389/fncel.2022.949939] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 10/21/2023] Open
Abstract
Spinal cord injury (SCI) often brings devastating consequences to patients and their families. Pathophysiologically, the primary insult causes irreversible damage to neurons and glial cells and initiates the secondary damage cascade, further leading to inflammation, ischemia, and cells death. In SCI, the release of various inflammatory mediators aggravates nerve injury. Pyroptosis is a new pro-inflammatory pattern of regulated cell death (RCD), mainly mediated by caspase-1 or caspase-11/4/5. Gasdermins family are pore-forming proteins known as the executor of pyroptosis and the gasdermin D (GSDMD) is best characterized. Pyroptosis occurs in multiple central nervous system (CNS) cell types, especially plays a vital role in the development of SCI. We review here the evidence for pyroptosis in SCI, and focus on the pyroptosis of different cells and the crosstalk between them. In addition, we discuss the interaction between pyroptosis and other forms of RCD in SCI. We also summarize the therapeutic strategies for pyroptosis inhibition, so as to provide novel ideas for improving outcomes following SCI.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Di Filippo M, Hennig P, Karakaya T, Slaufova M, Beer HD. NLRP1 in Cutaneous SCCs: An Example of the Complex Roles of Inflammasomes in Cancer Development. Int J Mol Sci 2022; 23:12308. [PMID: 36293159 PMCID: PMC9603439 DOI: 10.3390/ijms232012308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Protein complexes termed inflammasomes ensure tissue protection from pathogenic and sterile stressors by induction of inflammation. This is mediated by different caspase-1-induced downstream pathways, including activation of the pro-inflammatory cytokines proIL-1β and -18, induction of a lytic type of cell death, and regulation of the release of other pro-inflammatory molecules. Aberrant inflammasome activation underlies the pathology of numerous (auto)inflammatory diseases. Furthermore, inflammasomes support or suppress tumor development in a complex cell-type- and stage-dependent manner. In human keratinocytes and skin, NLRP1 is the central inflammasome sensor activated by cellular perturbation induced, for example, by UVB radiation. UVB represents the main inducer of skin cancer, which is the most common type of malignancy in humans. Recent evidence demonstrates that activation of NLRP1 in human skin supports the development of cutaneous squamous cell carcinomas (cSCCs) by inducing skin inflammation. In contrast, the NLRP1 inflammasome pathway is restrained in established cSCCs, suggesting that, at this stage, the protein complex has a tumor suppressor role. A better understanding of the complex functions of NLRP1 in the development of cSCCs and in general of inflammasomes in cancer might pave the way for novel strategies for cancer prevention and therapy. These strategies might include stage-specific modulation of inflammasome activation or its downstream pathways by mono- or combination therapy.
Collapse
Affiliation(s)
- Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Tugay Karakaya
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Marta Slaufova
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
28
|
Giuliani KTK, Grivei A, Nag P, Wang X, Rist M, Kildey K, Law B, Ng MS, Wilkinson R, Ungerer J, Forbes JM, Healy H, Kassianos AJ. Hypoxic human proximal tubular epithelial cells undergo ferroptosis and elicit an NLRP3 inflammasome response in CD1c + dendritic cells. Cell Death Dis 2022; 13:739. [PMID: 36030251 PMCID: PMC9420140 DOI: 10.1038/s41419-022-05191-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Inflammasomes are multiprotein platforms responsible for the release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Mouse studies have identified inflammasome activation within dendritic cells (DC) as pivotal for driving tubulointerstitial fibrosis and inflammation, the hallmarks of chronic kidney disease (CKD). However, translation of this work to human CKD remains limited. Here, we examined the complex tubular cell death pathways mediating inflammasome activation in human kidney DC and, thus, CKD progression. Ex vivo patient-derived proximal tubular epithelial cells (PTEC) cultured under hypoxic (1% O2) conditions modelling the CKD microenvironment showed characteristics of ferroptotic cell death, including mitochondrial dysfunction, reductions in the lipid repair enzyme glutathione peroxidase 4 (GPX4) and increases in lipid peroxidation by-product 4-hydroxynonenal (4-HNE) compared with normoxic PTEC. The addition of ferroptosis inhibitor, ferrostatin-1, significantly reduced hypoxic PTEC death. Human CD1c+ DC activated in the presence of hypoxic PTEC displayed significantly increased production of inflammasome-dependent cytokines IL-1β and IL-18. Treatment of co-cultures with VX-765 (caspase-1/4 inhibitor) and MCC950 (NLRP3 inflammasome inhibitor) significantly attenuated IL-1β/IL-18 levels, supporting an NLRP3 inflammasome-dependent DC response. In line with these in vitro findings, in situ immunolabelling of human fibrotic kidney tissue revealed a significant accumulation of tubulointerstitial CD1c+ DC containing active inflammasome (ASC) specks adjacent to ferroptotic PTEC. These data establish ferroptosis as the primary pattern of PTEC necrosis under the hypoxic conditions of CKD. Moreover, this study identifies NLRP3 inflammasome signalling driven by complex tubulointerstitial PTEC-DC interactions as a key checkpoint for therapeutic targeting in human CKD.
Collapse
Affiliation(s)
- Kurt T. K. Giuliani
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Anca Grivei
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Purba Nag
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Xiangju Wang
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Melissa Rist
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Katrina Kildey
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia
| | - Becker Law
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1024.70000000089150953Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD Australia
| | - Monica S. Ng
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Institute of Molecular Biosciences, University of Queensland, Brisbane, QLD Australia ,grid.412744.00000 0004 0380 2017Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD Australia
| | - Ray Wilkinson
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1024.70000000089150953Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD Australia
| | - Jacobus Ungerer
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Josephine M. Forbes
- grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Mater Research Institute, University of Queensland, Brisbane, QLD Australia
| | - Helen Healy
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - Andrew J. Kassianos
- grid.415606.00000 0004 0380 0804Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD Australia ,grid.416100.20000 0001 0688 4634Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia ,grid.1024.70000000089150953Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD Australia
| |
Collapse
|
29
|
Borrego A, Colombo F, de Souza JG, Jensen JR, Dassano A, Piazza R, Rodrigues dos Santos BA, Ribeiro OG, De Franco M, Cabrera WHK, Icimoto MY, Starobinas N, Magalhães G, Monteleone LF, Eto SF, DeOcesano-Pereira C, Goldfeder MB, Pasqualoto KFM, Dragani TA, Ibañez OCM. Pycard and BC017158 Candidate Genes of Irm1 Locus Modulate Inflammasome Activation for IL-1β Production. Front Immunol 2022; 13:899569. [PMID: 35799794 PMCID: PMC9254735 DOI: 10.3389/fimmu.2022.899569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
We identified Pycard and BC017158 genes as putative effectors of the Quantitative Trait locus (QTL) that we mapped at distal chromosome 7 named Irm1 for Inflammatory response modulator 1, controlling acute inflammatory response (AIR) and the production of IL-1β, dependent on the activation of the NLRP3 inflammasome. We obtained the mapping through genome-wide linkage analysis of Single Nucleotide Polymorphisms (SNPs) in a cross between High (AIRmax) and Low (AIRmin) responder mouse lines that we produced by several generations of bidirectional selection for Acute Inflammatory Response. A highly significant linkage signal (LOD score peak of 72) for ex vivo IL-1β production limited a 4 Mbp interval to chromosome 7. Sequencing of the locus region revealed 14 SNPs between “High” and “Low” responders that narrowed the locus to a 420 Kb interval. Variants were detected in non-coding regions of Itgam, Rgs10 and BC017158 genes and at the first exon of Pycard gene, resulting in an E19K substitution in the protein ASC (apoptosis associated speck-like protein containing a CARD) an adaptor molecule in the inflammasome complex. Silencing of BC017158 inhibited IL1-β production by stimulated macrophages and the E19K ASC mutation carried by AIRmin mice impaired the ex vivo IL-1β response and the formation of ASC specks in stimulated cells. IL-1β and ASC specks play major roles in inflammatory reactions and in inflammation-related diseases. Our results delineate a novel genetic factor and a molecular mechanism affecting the acute inflammatory response.
Collapse
Affiliation(s)
- Andrea Borrego
- Laboratory of Immunogenetics, Instituto Butantan, São Paulo, Brazil
| | - Francesca Colombo
- Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Nazionale dei Tumori, Milan, Italy
| | - Jean Gabriel de Souza
- Laboratory of Immunogenetics, Instituto Butantan, São Paulo, Brazil
- Centre of New Target Discovery (CENTD), Instituto Butantan/GlaxoSmithKline (GSK)/Sao Paulo Research Foundation (FAPESP), São Paulo, Brazil
| | | | - Alice Dassano
- Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Nazionale dei Tumori, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | | | | | | | | | | | - Nancy Starobinas
- Laboratory of Immunogenetics, Instituto Butantan, São Paulo, Brazil
| | - Geraldo Magalhães
- Laboratory of Immunopathology, Instituto Butantan, São Paulo, Brazil
| | | | - Silas Fernandes Eto
- Laboratory of Development and Innovation, Instituto Butantan, São Paulo, Brazil
| | - Carlos DeOcesano-Pereira
- Centre of New Target Discovery (CENTD), Instituto Butantan/GlaxoSmithKline (GSK)/Sao Paulo Research Foundation (FAPESP), São Paulo, Brazil
| | | | | | - Tommaso A. Dragani
- Department of Research, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Nazionale dei Tumori, Milan, Italy
| | - Olga Célia Martinez Ibañez
- Laboratory of Immunogenetics, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Olga Célia Martinez Ibañez,
| |
Collapse
|
30
|
Discovery of 4-((E)-3,5-dimethoxy-2-((E)-2-nitrovinyl)styryl)aniline derivatives as potent and orally active NLRP3 inflammasome inhibitors for colitis. Eur J Med Chem 2022; 236:114357. [DOI: 10.1016/j.ejmech.2022.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/26/2022] [Accepted: 04/03/2022] [Indexed: 11/19/2022]
|
31
|
Bertheloot D, Wanderley CW, Schneider AH, Schiffelers LD, Wuerth JD, Tödtmann JM, Maasewerd S, Hawwari I, Duthie F, Rohland C, Ribeiro LS, Jenster LM, Rosero N, Tesfamariam YM, Cunha FQ, Schmidt FI, Franklin BS. Nanobodies dismantle post-pyroptotic ASC specks and counteract inflammation in vivo. EMBO Mol Med 2022; 14:e15415. [PMID: 35438238 PMCID: PMC9174887 DOI: 10.15252/emmm.202115415] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes sense intracellular clues of infection, damage, or metabolic imbalances. Activated inflammasome sensors polymerize the adaptor ASC into micron‐sized “specks” to maximize caspase‐1 activation and the maturation of IL‐1 cytokines. Caspase‐1 also drives pyroptosis, a lytic cell death characterized by leakage of intracellular content to the extracellular space. ASC specks are released among cytosolic content, and accumulate in tissues of patients with chronic inflammation. However, if extracellular ASC specks contribute to disease, or are merely inert remnants of cell death remains unknown. Here, we show that camelid‐derived nanobodies against ASC (VHHASC) target and disassemble post‐pyroptotic inflammasomes, neutralizing their prionoid, and inflammatory functions. Notably, pyroptosis‐driven membrane perforation and exposure of ASC specks to the extracellular environment allowed VHHASC to target inflammasomes while preserving pre‐pyroptotic IL‐1β release, essential to host defense. Systemically administrated mouse‐specific VHHASC attenuated inflammation and clinical gout, and antigen‐induced arthritis disease. Hence, VHHASC neutralized post‐pyroptotic inflammasomes revealing a previously unappreciated role for these complexes in disease. VHHASC are the first biologicals that disassemble pre‐formed inflammasomes while preserving their functions in host defense.
Collapse
Affiliation(s)
- Damien Bertheloot
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Carlos Ws Wanderley
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Ayda H Schneider
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Lisa Dj Schiffelers
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jennifer D Wuerth
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jan Mp Tödtmann
- Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany
| | - Salie Maasewerd
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ibrahim Hawwari
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Fraser Duthie
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Cornelia Rohland
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lucas S Ribeiro
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lea-Marie Jenster
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nathalia Rosero
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yonas M Tesfamariam
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Fernando Q Cunha
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany.,Core Facility Nanobodies, Medical Faculty, University of Bonn, Bonn, Germany
| | - Bernardo S Franklin
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
32
|
Lučiūnaitė A, Dalgėdienė I, Žilionis R, Mašalaitė K, Norkienė M, Šinkūnas A, Gedvilaitė A, Kučinskaitė-Kodzė I, Žvirblienė A. Activation of NLRP3 Inflammasome by Virus-Like Particles of Human Polyomaviruses in Macrophages. Front Immunol 2022; 13:831815. [PMID: 35355981 PMCID: PMC8959312 DOI: 10.3389/fimmu.2022.831815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
Viral antigens can activate phagocytes, inducing inflammation, but the mechanisms are barely explored. The aim of this study is to investigate how viral oligomeric proteins of different structures induce inflammatory response in macrophages. Human THP-1 cell line was used to prepare macrophages that were treated with filamentous nucleocapsid-like particles (NLPs) of paramyxoviruses and spherical virus-like particles (VLPs) of human polyomaviruses. The effects of viral proteins on cell viability, pro-inflammatory cytokines’ production, and NLRP3 inflammasome activation were investigated. Filamentous NLPs did not induce inflammation while spherical VLPs mediated inflammatory response followed by NLRP3 inflammasome activation. Inhibitors of cathepsins and K+ efflux decreased IL-1β release and cell death, indicating a complex inflammasome activation process. A similar activation pattern was observed in primary human macrophages. Single-cell RNAseq analysis of THP-1 cells revealed several cell activation states different in inflammation-related genes. This study provides new insights into the interaction of viral proteins with immune cells and suggests that structural properties of oligomeric proteins may define cell activation pathways.
Collapse
Affiliation(s)
- Asta Lučiūnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Indrė Dalgėdienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rapolas Žilionis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,R&D Department, Droplet Genomics, Vilnius, Lithuania
| | - Kristina Mašalaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Norkienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Alma Gedvilaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Aurelija Žvirblienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
33
|
Liu J, Fan G, Tao N, Sun T. Role of Pyroptosis in Respiratory Diseases and its Therapeutic Potential. J Inflamm Res 2022; 15:2033-2050. [PMID: 35370413 PMCID: PMC8974246 DOI: 10.2147/jir.s352563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
Pyroptosis is an inflammatory type of regulated cell death that is dependent on inflammasome activation and downstream proteases such as caspase-1 or caspase 4/5/11. The main executors are gasdermins, which have an inherent pore-forming function on the membrane and release inflammatory cytokines, such as interleukin (IL)-1β, IL-18 and high mobility group box 1. Emerging evidence demonstrates that pyroptosis is involved in the pathogenesis of various pulmonary diseases. In this review, we mainly discuss the biological mechanisms of pyroptosis, explore the relationship between pyroptosis and respiratory diseases, and discuss emerging therapeutic strategies for respiratory diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Guoqing Fan
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Ningning Tao
- Department of Respiratory Medicine and Critical Care, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Tieying Sun
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- Correspondence: Tieying Sun, Department of Respiratory Medicine and Critical Care, Beijing Hospital, Dongcheng District, Beijing, 100730, People’s Republic of China, Tel +86 15153169108, Email
| |
Collapse
|
34
|
Cyr B, Hadad R, Keane RW, de Rivero Vaccari JP. The Role of Non-canonical and Canonical Inflammasomes in Inflammaging. Front Mol Neurosci 2022; 15:774014. [PMID: 35221912 PMCID: PMC8864077 DOI: 10.3389/fnmol.2022.774014] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Neurodegenerative diseases currently affect millions of people worldwide and continues to increase in the expanding elderly population. Neurodegenerative diseases usually involve cognitive decline and are among the top causes of death. Thus, there is a critical need for the development of treatments and preventive strategies for neurodegenerative diseases. One of the risk factors of neurodegeneration is inflammaging, a low level of chronic inflammation due to old age. We have previously shown that the inflammasome contributes to inflammaging in the central nervous system (CNS). The inflammasome is a multiprotein complex of the innate immune response consisting of a sensor protein, apoptosis speck-like protein containing a CARD (ASC), and caspase-1. Our lab has developed a humanized monoclonal antibody against ASC (anti-ASC). Here, we analyzed cortical lysates from young (3 months old), aged (18 months old), and aged anti-ASC treated mice for the expression of canonical and non-canonical inflammasome proteins. We show that the protein levels of NLRP1, ASC, caspase-1, and caspase-8 were elevated in the cortex of aged mice, and that anti-ASC decreased the expression of these proteins, consistent with lower levels of the pro-inflammatory cytokine interleukin (IL)-1β. Additionally, we show that these proteins form a novel NLRP1-caspase-8 non-canonical inflammasome comprised of NLRP1, caspase-8 and ASC. Moreover, these inflammasome proteins were present in neurons in young and aged mice. Together, these results indicate that a novel NLRP1-caspase-8 non-canonical inflammasome is present in the cortex of mice and that anti-ASC is a potential therapeutic to decrease inflammasome-mediated inflammaging in the CNS.
Collapse
Affiliation(s)
- Brianna Cyr
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Roey Hadad
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Robert W. Keane
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Juan Pablo de Rivero Vaccari,
| |
Collapse
|
35
|
Abstract
The involvement of inflammasomes in the proinflammatory response observed in chronic liver diseases, such as alcohol-associated liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD), is widely recognized. Although there are different types of inflammasomes, most studies to date have given attention to NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3) in the pathogenesis of ALD, NAFLD/nonalcoholic steatohepatitis, and fibrosis. Canonical inflammasomes are intracellular multiprotein complexes that are assembled after the sensing of danger signals and activate caspase-1, which matures interleukin (IL)-1β, IL-18, and IL-37 and also induces a form of cell death called pyroptosis. Noncanonical inflammasomes activate caspase-11 to induce pyroptosis. We discuss the different types of inflammasomes involved in liver diseases with a focus on (a) signals and mechanisms of inflammasome activation, (b) the role of different types of inflammasomes and their products in the pathogenesis of liver diseases, and (c) potential therapeutic strategies targeting components of the inflammasomes or cytokines produced upon inflammasome activation.
Collapse
Affiliation(s)
- Marcelle de Carvalho Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA; ,
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA; ,
| |
Collapse
|
36
|
Zangiabadi S, Abdul-Sater AA. Regulation of the NLRP3 Inflammasome by Posttranslational Modifications. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:286-292. [PMID: 35017218 DOI: 10.4049/jimmunol.2100734] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Inflammasomes are important in human health and disease, whereby they control the secretion of IL-1β and IL-18, two potent proinflammatory cytokines that play a key role in inflammatory responses to pathogens and danger signals. Several inflammasomes have been discovered over the past two decades. NLRP3 inflammasome is the best characterized and can be activated by a wide variety of inducers. It is composed of a sensor, NLRP3, an adapter protein, ASC, and an effector enzyme, caspase-1. After activation, caspase-1 mediates the cleavage and secretion of bioactive IL-1β and IL-18 via gasdermin-D pores in the plasma membrane. Aberrant activation of NLRP3 inflammasomes has been implicated in a multitude of human diseases, including inflammatory, autoimmune, and metabolic diseases. Therefore, several mechanisms have evolved to control their activity. In this review, we describe the posttranslational modifications that regulate NLRP3 inflammasome components, including ubiquitination, phosphorylation, and other forms of posttranslational modifications.
Collapse
Affiliation(s)
- Safoura Zangiabadi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Ali A Abdul-Sater
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Yue F, Feng S, Lu C, Zhang T, Tao G, Liu J, Yue C, Jing N. Synthetic amyloid-β oligomers drive early pathological progression of Alzheimer's disease in nonhuman primates. iScience 2021; 24:103207. [PMID: 34704001 PMCID: PMC8524197 DOI: 10.1016/j.isci.2021.103207] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
As an insidious and slowly progressive neurodegenerative disorder, Alzheimer’s disease (AD) uniquely develops in humans but fails in other species. Therefore, it has been challenged to rebuild human AD in animals, including in non-human primates. Here, we bilaterally delivered synthetic Aβ oligomers (AβOs) into the cerebral parenchyma of cynomolgus monkeys, which rapidly drove the formation of massive Aβ plaques and concomitant neurofibrillary tangles in the cynomolgus brain. The amyloid and tau pathology as well as their co-occurrence in AβO-monkeys were reminiscent of those in patients with AD. In addition, the activated astrocytes and microglia surrounding Aβ plaques indicated the triggered neuroinflammation. The degenerative neurons and synapses around Aβ plaques also emerged in cynomolgus brain. Together, soluble AβOs caused the cascade of pathologic events associated with AD in monkeys as occurred in patients at the early phase, which could facilitate the development of a promising animal model for human AD in non-human primates. The Aβ oligomers (AβOs) drive to develop massive Aβ plaque in the monkey brain Neurofibrillary tangles form in multiple brain regions of AβO-monkeys The co-occurrence of amyloid and tau pathology in AβO-monkeys as in patients with AD The neuroinflammation and neurodegeneration are triggered in AβO-monkeys
Collapse
Affiliation(s)
- Feng Yue
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.,Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Su Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Chunling Lu
- Wincon TheraCells Biotechnologies Co, LTD, Nanning, 530000, China
| | - Ting Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, 200080, China.,National Clinical Research Center for Ophthalmic Diseases, Shanghai, 200080, China
| | - Guoxian Tao
- Wincon TheraCells Biotechnologies Co, LTD, Nanning, 530000, China
| | - Jing Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Chunmei Yue
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.,Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai, 200031, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
38
|
Caseley EA, Lara-Reyna S, Poulter JA, Topping J, Carter C, Nadat F, Spickett GP, Savic S, McDermott MF. An Atypical Autoinflammatory Disease Due to an LRR Domain NLRP3 Mutation Enhancing Binding to NEK7. J Clin Immunol 2021; 42:158-170. [PMID: 34671876 PMCID: PMC8528658 DOI: 10.1007/s10875-021-01161-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
The NLRP3 inflammasome is a vital mediator of innate immune responses. There are numerous NLRP3 mutations that cause NLRP3-associated autoinflammatory diseases (NLRP3-AIDs), mostly in or around the NACHT domain. Here, we present a patient with a rare leucine-rich repeat (LRR) domain mutation, p.Arg920Gln (p.R920Q), associated with an atypical NLRP3-AID with recurrent episodes of sore throat and extensive oropharyngeal ulceration. Unlike previously reported patients, who responded well to anakinra, her oral ulcers did not significantly improve until the PDE4 inhibitor, apremilast, was added to her treatment regimen. Here, we show that this mutation enhances interactions between NLRP3 and its endogenous inhibitor, NIMA-related kinase 7 (NEK7), by affecting charge complementarity between the two proteins. We also demonstrate that additional inflammatory mediators, including the NF-кB and IL-17 signalling pathways and IL-8 chemokine, are upregulated in the patient’s macrophages and may be directly involved in disease pathogenesis. These results highlight the role of the NLRP3 LRR domain in NLRP3-AIDs and demonstrate that the p.R920Q mutation can cause diverse phenotypes between families.
Collapse
Affiliation(s)
- Emily A Caseley
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - James A Poulter
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - Joanne Topping
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - Clive Carter
- Transplant and Cellular Immunology, St James's University Hospital, Leeds, UK
| | - Fatima Nadat
- Transplant and Cellular Immunology, St James's University Hospital, Leeds, UK
| | - Gavin P Spickett
- Regional Department of Immunology, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK.,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK.,National Institute for Health Research-Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK.
| |
Collapse
|
39
|
Liu T, Wang L, Liang P, Wang X, Liu Y, Cai J, She Y, Wang D, Wang Z, Guo Z, Bates S, Xia X, Huang J, Cui J. USP19 suppresses inflammation and promotes M2-like macrophage polarization by manipulating NLRP3 function via autophagy. Cell Mol Immunol 2021; 18:2431-2442. [PMID: 33097834 PMCID: PMC8484569 DOI: 10.1038/s41423-020-00567-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophage polarization to proinflammatory M1-like or anti-inflammatory M2-like cells is critical to mount a host defense or repair tissue. The exact molecular mechanisms controlling this process are still elusive. Here, we report that ubiquitin-specific protease 19 (USP19) acts as an anti-inflammatory switch that inhibits inflammatory responses and promotes M2-like macrophage polarization. USP19 inhibited NLRP3 inflammasome activation by increasing autophagy flux and decreasing the generation of mitochondrial reactive oxygen species. In addition, USP19 inhibited the proteasomal degradation of inflammasome-independent NLRP3 by cleaving its polyubiquitin chains. USP19-stabilized NLRP3 promoted M2-like macrophage polarization by direct association with interferon regulatory factor 4, thereby preventing its p62-mediated selective autophagic degradation. Consistent with these observations, compared to wild-type mice, Usp19-/- mice had decreased M2-like macrophage polarization and increased interleukin-1β secretion, in response to alum and chitin injections. Thus, we have uncovered an unexpected mechanism by which USP19 switches the proinflammatory function of NLRP3 into an anti-inflammatory function, and suggest that USP19 is a potential therapeutic target for inflammatory interventions.
Collapse
Affiliation(s)
- Tao Liu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Liqiu Wang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Puping Liang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Xiaojuan Wang
- grid.12981.330000 0001 2360 039XDepartment of Experimental Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Yukun Liu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Jing Cai
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Yuanchu She
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Dan Wang
- grid.12981.330000 0001 2360 039XDepartment of Experimental Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Zhi Wang
- grid.12981.330000 0001 2360 039XGuanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, 510060 Guangzhou, Guangdong People’s Republic of China
| | - Zhiyong Guo
- grid.12981.330000 0001 2360 039XOrgan Transplant Center, The First Affiliated Hospital, Sun Yat-Sen University, 510080 Guangzhou, Guangdong People’s Republic of China
| | - Samuel Bates
- grid.38142.3c000000041936754XChanning Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Xiaojun Xia
- grid.12981.330000 0001 2360 039XDepartment of Experimental Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Junjiu Huang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China
| | - Jun Cui
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, Guangdong People’s Republic of China ,grid.12981.330000 0001 2360 039XDepartment of Experimental Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| |
Collapse
|
40
|
de Souza JG, Starobinas N, Ibañez OCM. Unknown/enigmatic functions of extracellular ASC. Immunology 2021; 163:377-388. [PMID: 34042182 DOI: 10.1111/imm.13375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Apoptosis-associated speck-like protein containing a caspase recruit domain (ASC), encoded by PYCARD gene, is a 22 kDa small molecule, which aggregates into ASC specks during inflammasome activation. ASC protein is an adaptor protein present in several inflammasome complexes that performs several intra- and extracellular functions, in monomeric form or as ASC specks, during physiological and pathological processes related to inflammation and adaptive immunity. Extracellular ASC specks (eASC specks) released during cell death by pyroptosis can contribute as a danger signal to the propagation of inflammation via phagocytosis and activation of surrounding cells. ASC specks are found in the circulation of patients with chronic inflammatory diseases and have been considered as relevant blood biomarkers of inflammation. eASC amplifies the inflammatory signal, may induce the production of autoantibodies, transports molecules that bind to this complex, contributing to the generation of antibodies, and can induce the maturation of cytokines promoting the modelling of the adaptive immunity. Although several advances have been registered in the last 21 years, there are numerous unknown or enigmatic gaps in the understanding of the role of eASC specks in the organism. Here, we provide an overview about the ASC protein focusing on the probable roles of eASC specks in several diseases, up to the most recent studies concerning COVID-19.
Collapse
Affiliation(s)
- Jean Gabriel de Souza
- Laboratory of Immunogenetics, Butantan Institute, São Paulo, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil.,Immunology Catalyst, GlaxoSmithKline, Stevenag, UK
| | - Nancy Starobinas
- Laboratory of Immunogenetics, Butantan Institute, São Paulo, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Olga Celia Martinez Ibañez
- Laboratory of Immunogenetics, Butantan Institute, São Paulo, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
41
|
Liang A, Zhong S, Xi B, Zhou C, Jiang X, Zhu R, Yang Y, Zhong L, Wan D. High expression of PYCARD is an independent predictor of unfavorable prognosis and chemotherapy resistance in glioma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:986. [PMID: 34277786 PMCID: PMC8267320 DOI: 10.21037/atm-21-2346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/28/2021] [Indexed: 11/06/2022]
Abstract
Background PYD and CARD domain-containing (PYCARD) was upregulated in TMZ-resistant cell lines and glioma tissue and was correlated with poor prognosis, its role in glioma is unclear known. The aim of this study was to elucidate the relationship between PYCARD and glioma based on Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and Chinese Glioma Genome Atlas (CGGA) databases. Methods Glioma-resistant cells were compared with parental cells based on the GSE53014 and GSE113510 data sets. The relationship between PYCARD, tumor microenvironment, and long noncoding RNAs (lncRNAs) was assessed using logistic regression. Moreover, Kaplan-Meier and Cox regression were used to analyze the relationship between PYCARD expression and survival rate. Gene set enrichment analysis (GSEA) was also used to determine the biological function of PYCARD and lncRNAs. Cell viability and cell migration assays were used to evaluate the ability of cells to migrate and proliferate. Finally, we analyzed the expression patterns of PYCARD genes in a wide range of cancers. Results Elevated expression of PYCARD promoted glioma cell proliferation and migration. PYCARD expression was significantly positively associated with gamma delta T cells but negatively correlated with M2 macrophages in glioblastoma multiforme (GBM). Likewise, PYCARD expression was significantly positively associated with monocytes but negatively associated with activated mast cells in low grade glioma (LGG). We also found that 3 PYCARD-related lncRNAs in GBM and 4 PYCARD-related lncRNAs in LGG had a predictive value for glioma patients. The pan-cancer analysis showed that PYCARD expression was higher in most cancer groups. Conclusions High expression of PYCARD is an independent predictor of unfavorable prognosis and chemotherapy resistance in glioma.
Collapse
Affiliation(s)
- Aijun Liang
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Shupeng Zhong
- Department of Oncology, Zhongshan City People's Hospital, Zhongshan, China
| | - Bin Xi
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Chaoyang Zhou
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Xingxing Jiang
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Ronglan Zhu
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Yu Yang
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Liangchen Zhong
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Dengfeng Wan
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Chao-Yang G, Peng C, Hai-Hong Z. Roles of NLRP3 inflammasome in intervertebral disc degeneration. Osteoarthritis Cartilage 2021; 29:793-801. [PMID: 33609693 DOI: 10.1016/j.joca.2021.02.204] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
Intervertebral disc degeneration (IVDD) is one of the leading causes of low back pain and one of the most common health problems in the world. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing-3 (NLRP3) inflammasome, as a pattern recognition receptor, has been shown to be associated with the pathological processes of many diseases in recent years. With the exploration of the mechanism of IVDD, recent studies have shown that activation of the NLRP3 inflammasome is associated with intervertebral disc (IVD) inflammation, pyroptosis, extracellular matrix degradation and apoptosis of IVD cells. In this review, we summarize the structural characteristics of NLRP3 inflammasome and the activation signalling mechanisms. We also describe the role of the NLRP3 inflammasome in the pathological process of IVDD and the application of the targeting the NLRP3 inflammasome in IVDD treatment.
Collapse
Affiliation(s)
- G Chao-Yang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China
| | - C Peng
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China
| | - Z Hai-Hong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, PR China.
| |
Collapse
|
43
|
Münzer P, Negro R, Fukui S, di Meglio L, Aymonnier K, Chu L, Cherpokova D, Gutch S, Sorvillo N, Shi L, Magupalli VG, Weber ANR, Scharf RE, Waterman CM, Wu H, Wagner DD. NLRP3 Inflammasome Assembly in Neutrophils Is Supported by PAD4 and Promotes NETosis Under Sterile Conditions. Front Immunol 2021; 12:683803. [PMID: 34122445 PMCID: PMC8195330 DOI: 10.3389/fimmu.2021.683803] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophil extracellular trap formation (NETosis) and the NLR family pyrin domain containing 3 (NLRP3) inflammasome assembly are associated with a similar spectrum of human disorders. While NETosis is known to be regulated by peptidylarginine deiminase 4 (PAD4), the role of the NLRP3 inflammasome in NETosis was not addressed. Here, we establish that under sterile conditions the cannonical NLRP3 inflammasome participates in NETosis. We show apoptosis-associated speck-like protein containing a CARD (ASC) speck assembly and caspase-1 cleavage in stimulated mouse neutrophils without LPS priming. PAD4 was needed for optimal NLRP3 inflammasome assembly by regulating NLRP3 and ASC protein levels post-transcriptionally. Genetic ablation of NLRP3 signaling resulted in impaired NET formation, because NLRP3 supported both nuclear envelope and plasma membrane rupture. Pharmacological inhibition of NLRP3 in either mouse or human neutrophils also diminished NETosis. Finally, NLRP3 deficiency resulted in a lower density of NETs in thrombi produced by a stenosis-induced mouse model of deep vein thrombosis. Altogether, our results indicate a PAD4-dependent formation of the NLRP3 inflammasome in neutrophils and implicate NLRP3 in NETosis under noninfectious conditions in vitro and in vivo.
Collapse
Affiliation(s)
- Patrick Münzer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Department of Cardiology and Angiology, University of Tübingen, Tübingen, Germany.,Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Roberto Negro
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Shoichi Fukui
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Lucas di Meglio
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States.,Laboratory of Vascular Translational Science, U1148 INSERM University of Paris, Paris, France
| | - Karen Aymonnier
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Long Chu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Deya Cherpokova
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Sarah Gutch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Nicoletta Sorvillo
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Lai Shi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Venkat Giri Magupalli
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Alexander N R Weber
- Department of Immunology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Rüdiger E Scharf
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Division of Experimental and Clinical Hemostasis, Hemotherapy, and Transfusion Medicine, and Hemophilia Comprehensive Care Center, Institute of Transplantation Diagnostics and Cell Therapy, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Clare M Waterman
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States.,Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, United States
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
44
|
Brevilin A inhibits NLRP3 inflammasome activation in vivo and in vitro by acting on the upstream of NLRP3-induced ASC oligomerization. Mol Immunol 2021; 135:116-126. [PMID: 33892379 DOI: 10.1016/j.molimm.2021.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/12/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
Brevilin A (BA), is a natural biologically active ingredient derived from Centipeda minima with several reports of anti-cancer, while its anti-inflammatory activity is rarely reported. Current studies have found the dysregulated activation of NLRP3 inflammasome cause a variety of inflammatory diseases. Targeting the NLRP3 inflammasome contributes to the treatment of NLRP3-induced diseases. Here, we found that BA significantly attenuates the activation of caspase-1 and the subsequent secretion of the interleukin-1β (IL-1β) in mouse macrophages and human THP-1 cells, showing the inhibitory effect of BA on the NLRP3 inflammasome activation. Moreover, BA specifically inhibits NLRs inflammasomes activation triggered by multi-stimuli, but it has no effect on the AIM2 inflammasome activation, indicating that BA is a specific inhibitor of the NLRs inflammasomes. Research on the mechanism found BA inhibits NLRP3 inflammasome activation by blocking the upstream of ASC oligomerization. Importantly, in vivo experiments showed that BA markedly reduces the secretion of IL-1β to suppress NLRP3 inflammasome in the LPS-induced inflammation and MSU-challenged peritonitis model. In conclusion, our experiments show that BA is an effective NLRP3 inflammasome inhibitor and can be regarded as a drug candidate for NLRP3 inflammasome-driven diseases.
Collapse
|
45
|
An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 2021; 18:1141-1160. [PMID: 33850310 PMCID: PMC8093260 DOI: 10.1038/s41423-021-00670-3] [Citation(s) in RCA: 424] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a multiprotein complex involved in the release of mature interleukin-1β and triggering of pyroptosis, which is of paramount importance in a variety of physiological and pathological conditions. Over the past decade, considerable advances have been made in elucidating the molecular mechanisms underlying the priming/licensing (Signal 1) and assembly (Signal 2) involved in NLRP3 inflammasome activation. Recently, a number of studies have indicated that the priming/licensing step is regulated by complicated mechanisms at both the transcriptional and posttranslational levels. In this review, we discuss the current understanding of the mechanistic details of NLRP3 inflammasome activation with a particular emphasis on protein-protein interactions, posttranslational modifications, and spatiotemporal regulation of the NLRP3 inflammasome machinery. We also present a detailed summary of multiple positive and/or negative regulatory pathways providing upstream signals that culminate in NLRP3 inflammasome complex assembly. A better understanding of the molecular mechanisms underlying NLRP3 inflammasome activation will provide opportunities for the development of methods for the prevention and treatment of NLRP3 inflammasome-related diseases.
Collapse
|
46
|
Friker LL, Scheiblich H, Hochheiser IV, Brinkschulte R, Riedel D, Latz E, Geyer M, Heneka MT. β-Amyloid Clustering around ASC Fibrils Boosts Its Toxicity in Microglia. Cell Rep 2021; 30:3743-3754.e6. [PMID: 32187546 PMCID: PMC8729885 DOI: 10.1016/j.celrep.2020.02.025] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease is the world’s most common neurodegenerative disorder. It is associated with neuroinflammation involving activation of microglia by β-amyloid (Aβ) deposits. Based on previous studies showing apoptosis-associated speck-like protein containing a CARD (ASC) binding and cross-seeding extracellular Aβ, we investigate the propagation of ASC between primary microglia and the effects of ASC-Aβ composites on microglial inflammasomes and function. Indeed, ASC released by a pyroptotic cell can be functionally built into the neighboring microglia NOD-like receptor protein (NLRP3) inflammasome. Compared with protein-only application, exposure to ASC-Aβ composites amplifies the proinflammatory response, resulting in pyroptotic cell death, setting free functional ASC and inducing a feedforward stimulating vicious cycle. Clustering around ASC fibrils also compromises clearance of Aβ by microglia. Together, these data enable a closer look at the turning point from acute to chronic Aβ-related neuroinflammation through formation of ASC-Aβ composites. Friker et al. investigate the reaction of primary microglia to exogenous ASC and ASC-Aβ composites. They uncover a vicious circle involving amplified NLRP3 inflammasome activity and reduced Aβ clearance in the presence of ASC that might play a key role in Alzheimer’s disease progression.
Collapse
Affiliation(s)
- Lea L Friker
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Hannah Scheiblich
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Inga V Hochheiser
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | | | - Dietmar Riedel
- Max Planck Institute for Biophysical Chemistry, Department of Structural Dynamics, 37077 Göttingen, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, 53127 Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Disease and Gerontopsychiatry/Neurology, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
47
|
Angosto-Bazarra D, Molina-López C, Peñín-Franch A, Hurtado-Navarro L, Pelegrín P. Techniques to Study Inflammasome Activation and Inhibition by Small Molecules. Molecules 2021; 26:1704. [PMID: 33803783 PMCID: PMC8003184 DOI: 10.3390/molecules26061704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammasomes are immune cytosolic oligomers involved in the initiation and progression of multiple pathologies and diseases. The tight regulation of these immune sensors is necessary to control an optimal inflammatory response and recover organism homeostasis. Prolonged activation of inflammasomes result in the development of chronic inflammatory diseases, and the use of small drug-like inhibitory molecules are emerging as promising anti-inflammatory therapies. Different aspects have to be taken in consideration when designing inflammasome inhibitors. This review summarizes the different techniques that can be used to study the mechanism of action of potential inflammasome inhibitory molecules.
Collapse
Affiliation(s)
- Diego Angosto-Bazarra
- Línea de Inflamación Molecular, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain; (C.M.-L.); (A.P.-F.); (L.H.-N.)
| | | | | | | | - Pablo Pelegrín
- Línea de Inflamación Molecular, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain; (C.M.-L.); (A.P.-F.); (L.H.-N.)
| |
Collapse
|
48
|
Yang F, Ye XJ, Chen MY, Li HC, Wang YF, Zhong MY, Zhong CS, Zeng B, Xu LH, He XH, Ouyang DY. Inhibition of NLRP3 Inflammasome Activation and Pyroptosis in Macrophages by Taraxasterol Is Associated With Its Regulation on mTOR Signaling. Front Immunol 2021; 12:632606. [PMID: 33679781 PMCID: PMC7925414 DOI: 10.3389/fimmu.2021.632606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Taraxasterol (TAS) is an active ingredient of Dandelion (Taraxacum mongolicum Hand. -Mazz.), a medicinal plant that has long been used in China for treatment of inflammatory disorders. But the underlying mechanism for its therapeutic effects on inflammatory disorders is not completely clear. Inflammasome activation is a critical step of innate immune response to infection and aseptic inflammation. Among the various types of inflammasome sensors that has been reported, NLR family pyrin domain containing 3 (NLRP3) is implicated in various inflammatory diseases and therefore has been most extensively studied. In this study, we aimed to explore whether TAS could influence NLPR3 inflammasome activation in macrophages. The results showed that TAS dose-dependently suppressed the activation of caspase-1 in lipopolysaccharide (LPS)-primed murine primary macrophages upon nigericin treatment, resulting in reduced mature interleukin-1β (IL-1β) release and gasdermin D (GSDMD) cleavage. TAS greatly reduced ASC speck formation upon the stimulation of nigericin or extracellular ATP. Consistent with reduced cleavage of GSDMD, nigericin-induced pyroptosis was alleviated by TAS. Interestingly, TAS time-dependently suppressed the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) and mTORC2 signaling induced by LPS priming. Like TAS, both INK-128 (inhibiting both mTORC1 and mTORC2) and rapamycin (inhibiting mTORC1 only) also inhibited NLRP3 inflammasome activation, though their effects on mTOR signaling were different. Moreover, TAS treatment alleviated mitochondrial damage by nigericin and improved mouse survival from bacterial infection, accompanied by reduced IL-1β levels in vivo. Collectively, by inhibiting the NLRP3 inflammasome activation, TAS displayed anti-inflammatory effects likely through regulation of the mTOR signaling in macrophages, highlighting a potential action mechanism for the anti-inflammatory activity of Dandelion in treating inflammation-related disorders, which warrants further clinical investigation.
Collapse
Affiliation(s)
- Fan Yang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xun-jia Ye
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ming-ye Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hong-chun Li
- Wuzhongpei Memorial Hospital of Shunde, Foshan, China
| | - Yao-feng Wang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mei-yan Zhong
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chun-su Zhong
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bo Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Li-hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian-hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dong-yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
49
|
Kong Y, Feng W, Zhao X, Zhang P, Li S, Li Z, Lin Y, Liang B, Li C, Wang W, Huang H. Statins ameliorate cholesterol-induced inflammation and improve AQP2 expression by inhibiting NLRP3 activation in the kidney. Am J Cancer Res 2020; 10:10415-10433. [PMID: 32929357 PMCID: PMC7482822 DOI: 10.7150/thno.49603] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Chronic kidney diseases (CKD) are usually associated with dyslipidemia. Statin therapy has been primarily recommended for the prevention of cardiovascular risk in patients with CKD; however, the effects of statins on kidney disease progression remain controversial. This study aims to investigate the effects of statin treatment on renal handling of water in patients and in animals on a high-fat diet. Methods: Retrospective cohort patient data were reviewed and the protein expression levels of aquaporin-2 (AQP2) and NLRP3 inflammasome adaptor ASC were examined in kidney biopsy specimens. The effects of statins on AQP2 and NLRP3 inflammasome components were examined in nlrp3-/- mice, 5/6 nephroectomized (5/6Nx) rats with a high-fat diet (HFD), and in vitro. Results: In the retrospective cohort study, serum cholesterol was negatively correlated to eGFR and AQP2 protein expression in the kidney biopsy specimens. Statins exhibited no effect on eGFR but abolished the negative correlation between cholesterol and AQP2 expression. Whilst nlrp3+/+ mice showed an increased urine output and a decreased expression of AQP2 protein after a HFD, which was moderately attenuated in nlrp3 deletion mice with HFD. In 5/6Nx rats on a HFD, atorvastatin markedly decreased the urine output and upregulated the protein expression of AQP2. Cholesterol stimulated the protein expression of NLRP3 inflammasome components ASC, caspase-1 and IL-1β, and decreased AQP2 protein abundance in vitro, which was markedly prevented by statins, likely through the enhancement of ASC speck degradation via autophagy. Conclusion: Serum cholesterol level has a negative correlation with AQP2 protein expression in the kidney biopsy specimens of patients. Statins can ameliorate cholesterol-induced inflammation by promoting the degradation of ASC speck, and improve the expression of aquaporin in the kidneys of animals on a HFD.
Collapse
|
50
|
Bosso M, Prelli Bozzo C, Hotter D, Volcic M, Stürzel CM, Rammelt A, Ni Y, Urban S, Becker M, Schelhaas M, Wittmann S, Christensen MH, Schmidt FI, Gramberg T, Sparrer KMJ, Sauter D, Kirchhoff F. Nuclear PYHIN proteins target the host transcription factor Sp1 thereby restricting HIV-1 in human macrophages and CD4+ T cells. PLoS Pathog 2020; 16:e1008752. [PMID: 32760121 PMCID: PMC7433898 DOI: 10.1371/journal.ppat.1008752] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/18/2020] [Accepted: 06/26/2020] [Indexed: 02/02/2023] Open
Abstract
Members of the family of pyrin and HIN domain containing (PYHIN) proteins play an emerging role in innate immunity. While absent in melanoma 2 (AIM2) acts a cytosolic sensor of non-self DNA and plays a key role in inflammasome assembly, the γ-interferon-inducible protein 16 (IFI16) restricts retroviral gene expression by sequestering the transcription factor Sp1. Here, we show that the remaining two human PYHIN proteins, i.e. myeloid cell nuclear differentiation antigen (MNDA) and pyrin and HIN domain family member 1 (PYHIN1 or IFIX) share this antiretroviral function of IFI16. On average, knock-down of each of these three nuclear PYHIN proteins increased infectious HIV-1 yield from human macrophages by more than an order of magnitude. Similarly, knock-down of IFI16 strongly increased virus transcription and production in primary CD4+ T cells. The N-terminal pyrin domain (PYD) plus linker region containing a nuclear localization signal (NLS) were generally required and sufficient for Sp1 sequestration and anti-HIV-1 activity of IFI16, MNDA and PYHIN1. Replacement of the linker region of AIM2 by the NLS-containing linker of IFI16 resulted in a predominantly nuclear localization and conferred direct antiviral activity to AIM2 while attenuating its ability to form inflammasomes. The reverse change caused nuclear-to-cytoplasmic relocalization of IFI16 and impaired its antiretroviral activity but did not result in inflammasome assembly. We further show that the Zn-finger domain of Sp1 is critical for the interaction with IFI16 supporting that pyrin domains compete with DNA for Sp1 binding. Finally, we found that human PYHIN proteins also inhibit Hepatitis B virus and simian vacuolating virus 40 as well as the LINE-1 retrotransposon. Altogether, our data show that IFI16, PYHIN1 and MNDA restrict HIV-1 and other viral pathogens by interfering with Sp1-dependent gene expression and support an important role of nuclear PYHIN proteins in innate antiviral immunity.
Collapse
Affiliation(s)
- Matteo Bosso
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Annika Rammelt
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Miriam Becker
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
| | - Sabine Wittmann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|