1
|
Kokinakos K, Botwinick M, Weidner M, Drachtman R. Pernicious Anemia in a Pediatric Patient With Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. JCEM CASE REPORTS 2025; 3:luaf090. [PMID: 40322634 PMCID: PMC12046220 DOI: 10.1210/jcemcr/luaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Indexed: 05/08/2025]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is an autosomal recessive disease caused by a monogenic pathogenic mutation in the autoimmune regulator (AIRE) gene. AIRE is a transcriptional regulatory gene expressed within thymic medullary cells, which play a critical role in developing central immune tolerance. APECED is classically associated with the triad of chronic mucocutaneous candidiasis, hypoparathyroidism, and adrenal insufficiency. We report a case of a pediatric patient with a known history of APECED who presented with symptomatic megaloblastic anemia and was found to have vitamin B12 deficiency secondary to the presence of antibodies to intrinsic factors. Interestingly, our patient did not have gastric parietal cell antibodies, which are present in 90% of pernicious anemia cases. Pernicious anemia itself is relatively rare and primarily manifests in the elderly population. There is limited literature involving pernicious anemia within the pediatric population, specifically within the subgroup that has APECED. Screening and early recognition of pernicious anemia in this relatively rare condition is crucial, as it has the potential to be life-threatening if left unaddressed.
Collapse
Affiliation(s)
- Konstandina Kokinakos
- Department of Pediatrics, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Marissa Botwinick
- Department of Pediatrics, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Department of Pediatric Hematology and Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Melissa Weidner
- Department of Pediatrics, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Richard Drachtman
- Department of Pediatrics, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Department of Pediatric Hematology and Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Tanaka PP, Monteiro CJ, Duarte MJ, Oliveira ED, Monteleone-Cassiano AC, Mascarenhas RS, Vieira Machado MC, Matos AA, Brito LA, Oliveira AO, Cunha TM, Donadi EA, Passos GA. The CRISPR-Cas9 System Is Used to Edit the Autoimmune Regulator Gene in Vitro and in Vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:269-283. [PMID: 40067591 DOI: 10.1007/978-3-031-77921-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Although mutations in the AIRE gene in patients with autoimmune polyendocrine syndrome type 1 (APS-1) syndrome are associated with the onset of this autoimmune disease, much of what is known about its mechanisms has been obtained through studies with Aire mutant Mus musculus mouse model or with Aire mutant medullary thymic epithelial cells (mTEC) cultured in vitro. The in vivo murine model was soon established, and ten mutant strains are currently described. Most Aire mutant mice were obtained through homologous recombination, which generated Aire knockout (KO) animals. Nevertheless, long-term cultures of mTECs from APS-1 patients or Aire mutant mice are difficult to establish. The CRISPR-Cas9 system to edit Aire in a murine mTEC line in vitro and mouse embryo has been successfully used to overcome this. The ribonucleoprotein (RNP) complexes composed of the guide RNA (gRNA), the Cas9 enzyme, and single-stranded oligonucleotides (ssODN) were designed to target Aire exons 6 and 8 separately. The CRISPR-Cas9 makes it possible to produce NHEJ-derived indels or HDR-derived mutations. Efforts are being concentrated on using RNP complex rather than plasmid vectors, as RNP makes recurrent NHEJ-derived mutations among in vitro and in vivo editions. One recurrent mutation was described in the Aire exon 6 (del 3554G) and the other in the exon 8 (del 5676_5677TG), i.e., the exon 6 mutation was kept in an mTEC clone edited in vitro and in vivo in a mouse, and the exon 8 mutation was kept in several mTEC clones in vitro. In contrast, none of the mutations obtained with the nickase system (plasmid expression vector) were recurrent, indicating the participation of the RNP complex in recurring mutation, which offers advantages, as it does not involve recombinant plasmids and does not generate a genetically modified organism but rather a mutant animal or cell.
Collapse
Affiliation(s)
- Pedro P Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Cíntia J Monteiro
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Max J Duarte
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ernna D Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana C Monteleone-Cassiano
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
- Program in Basic and Applied Immunology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Romário S Mascarenhas
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mayara C Vieira Machado
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Adriana A Matos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Letícia A Brito
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alina O Oliveira
- Cryopreservation Laboratory, Central Animal Facility, USP, Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Clinical Medicine, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry (FORP-USP), University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Klein L, Petrozziello E. Antigen presentation for central tolerance induction. Nat Rev Immunol 2025; 25:57-72. [PMID: 39294277 DOI: 10.1038/s41577-024-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/20/2024]
Abstract
The extent of central T cell tolerance is determined by the diversity of self-antigens that developing thymocytes 'see' on thymic antigen-presenting cells (APCs). Here, focusing on insights from the past decade, we review the functional adaptations of medullary thymic epithelial cells, thymic dendritic cells and thymic B cells for the purpose of tolerance induction. Their distinct cellular characteristics range from unconventional phenomena, such as promiscuous gene expression or mimicry of peripheral cell types, to strategic positioning in distinct microenvironments and divergent propensities to preferentially access endogenous or exogenous antigen pools. We also discuss how 'tonic' inflammatory signals in the thymic microenvironment may extend the intrathymically visible 'self' to include autoantigens that are otherwise associated with highly immunogenic peripheral environments.
Collapse
Affiliation(s)
- Ludger Klein
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.
| | - Elisabetta Petrozziello
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Muro R, Nitta T, Nitta S, Tsukasaki M, Asano T, Nakano K, Okamura T, Nakashima T, Okamoto K, Takayanagi H. Transcript splicing optimizes the thymic self-antigen repertoire to suppress autoimmunity. J Clin Invest 2024; 134:e179612. [PMID: 39403924 PMCID: PMC11473167 DOI: 10.1172/jci179612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/15/2024] [Indexed: 10/19/2024] Open
Abstract
Immunological self-tolerance is established in the thymus by the expression of virtually all self-antigens, including tissue-restricted antigens (TRAs) and cell-type-restricted antigens (CRAs). Despite a wealth of knowledge about the transcriptional regulation of TRA genes, posttranscriptional regulation remains poorly understood. Here, we show that protein arginine methylation plays an essential role in central immune tolerance by maximizing the self-antigen repertoire in medullary thymic epithelial cells (mTECs). Protein arginine methyltransferase-5 (Prmt5) was required for pre-mRNA splicing of certain key genes in tolerance induction, including Aire as well as various genes encoding TRAs. Mice lacking Prmt5 specifically in thymic epithelial cells exhibited an altered thymic T cell selection, leading to the breakdown of immune tolerance accompanied by both autoimmune responses and enhanced antitumor immunity. Thus, arginine methylation and transcript splicing are essential for establishing immune tolerance and may serve as a therapeutic target in autoimmune diseases as well as cancer immunotherapy.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Sachiko Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsukasaki
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Asano
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Immune Environment Dynamics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Michelson DA, Mathis D. Thymic Mimetic Cells: Ontogeny as Immunology. Annu Rev Cell Dev Biol 2024; 40:283-300. [PMID: 38608315 PMCID: PMC11446667 DOI: 10.1146/annurev-cellbio-112122-023316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Medullary thymic epithelial cells (mTECs) generate immunological self-tolerance by ectopically expressing peripheral-tissue antigens (PTAs) within the thymus to preview the peripheral self to maturing T cells. Recent work, drawing inspiration from old histological observations, has shown that subtypes of mTECs, collectively termed mimetic cells, co-opt developmental programs from throughout the organism to express biologically coherent groups of PTAs. Here, we review key aspects of mimetic cells, especially as they relate to the larger contexts of molecular, cellular, developmental, and evolutionary biology. We highlight lineage-defining transcription factors as key regulators of mimetic cells and speculate as to what other factors, including Aire and the chromatin potential of mTECs, permit mimetic cell differentiation and function. Last, we consider what mimetic cells can teach us about not only the thymus but also other tissues.
Collapse
Affiliation(s)
- Daniel A Michelson
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, USA;
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
6
|
Perrino M, Voulaz E, Balin S, Cazzato G, Fontana E, Franzese S, Defendi M, De Vincenzo F, Cordua N, Tamma R, Borea F, Aliprandi M, Airoldi M, Cecchi LG, Fazio R, Alloisio M, Marulli G, Santoro A, Di Tommaso L, Ingravallo G, Russo L, Da Rin G, Villa A, Della Bella S, Zucali PA, Mavilio D. Autoimmunity in thymic epithelial tumors: a not yet clarified pathologic paradigm associated with several unmet clinical needs. Front Immunol 2024; 15:1288045. [PMID: 38629065 PMCID: PMC11018877 DOI: 10.3389/fimmu.2024.1288045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/29/2024] [Indexed: 04/19/2024] Open
Abstract
Thymic epithelial tumors (TETs) are rare mediastinal cancers originating from the thymus, classified in two main histotypes: thymoma and thymic carcinoma (TC). TETs affect a primary lymphoid organ playing a critical role in keeping T-cell homeostasis and ensuring an adequate immunological tolerance against "self". In particular, thymomas and not TC are frequently associated with autoimmune diseases (ADs), with Myasthenia Gravis being the most common AD present in 30% of patients with thymoma. This comorbidity, in addition to negatively affecting the quality and duration of patients' life, reduces the spectrum of the available therapeutic options. Indeed, the presence of autoimmunity represents an exclusion criteria for the administration of the newest immunotherapeutic treatments with checkpoint inhibitors. The pathophysiological correlation between TETs and autoimmunity remains a mystery. Several studies have demonstrated the presence of a residual and active thymopoiesis in adult patients affected by thymomas, especially in mixed and lymphocytic-rich thymomas, currently known as type AB and B thymomas. The aim of this review is to provide the state of art in regard to the histological features of the different TET histotype, to the role of the different immune cells infiltrating tumor microenvironments and their impact in the break of central immunologic thymic tolerance in thymomas. We discuss here both cellular and molecular immunologic mechanisms inducing the onset of autoimmunity in TETs, limiting the portfolio of therapeutic strategies against TETs and greatly impacting the prognosis of associated autoimmune diseases.
Collapse
Affiliation(s)
- Matteo Perrino
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Emanuele Voulaz
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Simone Balin
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Gerardo Cazzato
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Elena Fontana
- Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council (CNR), Milan, Italy
- Human Genome and Biomedical Technologies Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Martina Defendi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Fabio De Vincenzo
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Nadia Cordua
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Roberto Tamma
- Section of Human Anatomy and Histology, Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
| | - Federica Borea
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marta Aliprandi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Airoldi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luigi Giovanni Cecchi
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberta Fazio
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Alloisio
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giuseppe Marulli
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Armando Santoro
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Pathology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, Bari, Italy
| | - Laura Russo
- Clinical Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giorgio Da Rin
- Clinical Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Anna Villa
- Istituto di Ricerca Genetica e Biomedica (IRGB), National Research Council (CNR), Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paolo Andrea Zucali
- Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
7
|
Källberg E, Mehmeti-Ajradini M, Björk Gunnarsdottir F, Göransson M, Bergenfelz C, Allaoui Fredriksson R, Hagerling C, Johansson ME, Welinder C, Jirström K, Leandersson K. AIRE is expressed in breast cancer TANs and TAMs to regulate the extrinsic apoptotic pathway and inflammation. J Leukoc Biol 2024; 115:664-678. [PMID: 38060995 DOI: 10.1093/jleuko/qiad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 04/02/2024] Open
Abstract
The autoimmune regulator (AIRE) is a transcriptional regulator expressed in the thymus and is necessary for maintaining immunological self-tolerance. Extrathymic AIRE expression is rare, and a role for AIRE in tumor-associated innate immune cells has not yet been established. In this study, we show that AIRE is expressed in human pro-tumor neutrophils. In breast cancer, AIRE was primarily located to tumor-associated neutrophils (TANs), and to a lesser extent to tumor-associated macrophages (TAMs) and tumor cells. Expression of AIRE in TAN/TAMs, but not in cancer cells, was associated with an adverse prognosis. We show that the functional role for AIRE in neutrophils and macrophages is to regulate expression of immune mediators and the extrinsic apoptotic pathway involving the Fas/TNFR death receptors and cathepsin G. Here, we propose that the role for AIRE in TAN/TAMs in breast tumors is to regulate cell death and inflammation, thus promoting tumor progression.
Collapse
Affiliation(s)
- Eva Källberg
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Meliha Mehmeti-Ajradini
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Frida Björk Gunnarsdottir
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Marcus Göransson
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Caroline Bergenfelz
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Roni Allaoui Fredriksson
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Catharina Hagerling
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| | - Martin E Johansson
- Sahlgrenska Center for Cancer Research, Department of Biomedicine, Vasaparken Universitetsplatsen 1, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Department for Clinical Sciences, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - Karin Jirström
- Oncology and Therapeutic Pathology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Jan Waldenströmsg 35, 214 28 Malmö, Sweden
| |
Collapse
|
8
|
Michelson DA, Mathis D. Thymic mimetic cells: tolerogenic masqueraders. Trends Immunol 2022; 43:782-791. [PMID: 36008259 PMCID: PMC9509455 DOI: 10.1016/j.it.2022.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Medullary thymic epithelial cells (mTECs) clonally delete or divert autoreactive T cells by ectopically expressing a diverse array of peripheral-tissue antigens (PTAs) within the thymus. Although thymic stromal cells with histological features of extra-thymic cell types, like myocytes or neurons, have been observed by light microscopy since the mid-1800s, most modern work on PTA expression has focused on the transcription factor Aire. Here, we highlight recent work that has refocused attention on such 'misplaced' thymic cells, referred to collectively as thymic mimetic cells. We review the molecular underpinnings of mimetic cells and their roles in establishing T cell tolerance, and we propose that mimetic cells play important roles in autoimmunity. Finally, we suggest future directions for this emerging area.
Collapse
Affiliation(s)
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Carter JA, Strömich L, Peacey M, Chapin SR, Velten L, Steinmetz LM, Brors B, Pinto S, Meyer HV. Transcriptomic diversity in human medullary thymic epithelial cells. Nat Commun 2022; 13:4296. [PMID: 35918316 PMCID: PMC9345899 DOI: 10.1038/s41467-022-31750-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
The induction of central T cell tolerance in the thymus depends on the presentation of peripheral self-epitopes by medullary thymic epithelial cells (mTECs). This promiscuous gene expression (pGE) drives mTEC transcriptomic diversity, with non-canonical transcript initiation, alternative splicing, and expression of endogenous retroelements (EREs) representing important but incompletely understood contributors. Here we map the expression of genome-wide transcripts in immature and mature human mTECs using high-throughput 5' cap and RNA sequencing. Both mTEC populations show high splicing entropy, potentially driven by the expression of peripheral splicing factors. During mTEC maturation, rates of global transcript mis-initiation increase and EREs enriched in long terminal repeat retrotransposons are up-regulated, the latter often found in proximity to differentially expressed genes. As a resource, we provide an interactive public interface for exploring mTEC transcriptomic diversity. Our findings therefore help construct a map of transcriptomic diversity in the healthy human thymus and may ultimately facilitate the identification of those epitopes which contribute to autoimmunity and immune recognition of tumor antigens.
Collapse
Affiliation(s)
- Jason A. Carter
- grid.225279.90000 0004 0387 3667Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA ,grid.36425.360000 0001 2216 9681Medical Scientist Training Program, Stony Brook University, Stony Brook, NY USA ,grid.34477.330000000122986657Department of Surgery, University of Washington, Seattle, WA USA
| | - Léonie Strömich
- grid.7497.d0000 0004 0492 0584German Cancer Research Center, Heidelberg, Germany ,grid.7445.20000 0001 2113 8111Present Address: Imperial College London, London, UK
| | - Matthew Peacey
- grid.225279.90000 0004 0387 3667School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | - Sarah R. Chapin
- grid.225279.90000 0004 0387 3667Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | - Lars Velten
- grid.473715.30000 0004 6475 7299Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lars M. Steinmetz
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany ,grid.168010.e0000000419368956Department of Genetics, Stanford University School of Medicine, Stanford, CA USA ,grid.168010.e0000000419368956Stanford Genome Technology Center, Palo Alto, CA USA
| | - Benedikt Brors
- grid.7497.d0000 0004 0492 0584German Cancer Research Center, Heidelberg, Germany
| | - Sheena Pinto
- grid.7497.d0000 0004 0492 0584German Cancer Research Center, Heidelberg, Germany
| | - Hannah V. Meyer
- grid.225279.90000 0004 0387 3667Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| |
Collapse
|
10
|
Michelson DA, Hase K, Kaisho T, Benoist C, Mathis D. Thymic epithelial cells co-opt lineage-defining transcription factors to eliminate autoreactive T cells. Cell 2022; 185:2542-2558.e18. [PMID: 35714609 PMCID: PMC9469465 DOI: 10.1016/j.cell.2022.05.018] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022]
Abstract
Medullary thymic epithelial cells (mTECs) ectopically express thousands of peripheral-tissue antigens (PTAs), which drive deletion or phenotypic diversion of self-reactive immature T cells during thymic differentiation. Failure of PTA expression causes multiorgan autoimmunity. By assaying chromatin accessibility in individual mTECs, we uncovered signatures of lineage-defining transcription factors (TFs) for skin, lung, liver, and intestinal cells-including Grhl, FoxA, FoxJ1, Hnf4, Sox8, and SpiB-in distinct mTEC subtypes. Transcriptomic and histologic analyses showed that these subtypes, which we collectively term mimetic cells, expressed PTAs in a biologically logical fashion, mirroring extra-thymic cell types while maintaining mTEC identity. Lineage-defining TFs bound to mimetic-cell open chromatin regions and were required for mimetic cell accumulation, whereas the tolerogenic factor Aire was partially and variably required. Expression of a model antigen in mimetic cells sufficed to induce cognate T cell tolerance. Thus, mTECs co-opt lineage-defining TFs to drive mimetic cell accumulation, PTA expression, and self-tolerance.
Collapse
Affiliation(s)
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Rode I, Rodewald HR. Transcription factor hijacking in the name of tolerance. Cell 2022; 185:2398-2400. [DOI: 10.1016/j.cell.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 10/17/2022]
|
12
|
Centenary of Haldane's ‘rule’: why male sterility may be normal, not ‘idiopathic’. J Genet 2022. [DOI: 10.1007/s12041-022-01369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Scott-Browne J, Shih HY. Stability and change in epigenetic regulation of immune cells. Immunol Rev 2022; 305:5-8. [PMID: 35034371 DOI: 10.1111/imr.13060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- James Scott-Browne
- National Jewish Health, Department of Immunology and Genomic Medicine, USA.,Department of Immunology and Microbiology, University of Colorado, USA
| | - Han-Yu Shih
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|