1
|
Staniek J, Rizzi M. Signaling Activation and Modulation in Extrafollicular B Cell Responses. Immunol Rev 2025; 330:e70004. [PMID: 39917832 PMCID: PMC11803499 DOI: 10.1111/imr.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
The differentiation of naive follicular B cells into either the germinal center (GC) or extrafollicular (EF) pathway plays a critical role in shaping the type, affinity, and longevity of effector B cells. This choice also governs the selection and survival of autoreactive B cells, influencing their potential to enter the memory compartment. During the first 2-3 days following antigen encounter, initially activated B cells integrate activating signals from T cells, Toll-like receptors (TLRs), and cytokines, alongside inhibitory signals mediated by inhibitory receptors. This integration modulates the intensity of signaling, particularly of the PI3K/AKT/mTOR pathway, which plays a central role in guiding developmental decisions. These early signaling events determine whether B cells undergo GC maturation or differentiate rapidly into antibody-secreting cells (ASCs) via the EF pathway. Dysregulation of these signaling pathways-whether through excessive activation or defective regulatory mechanisms-can disrupt the balance between GC and EF fates, predisposing individuals to autoimmunity. Accordingly, aberrant PI3K/AKT/mTOR signaling has been implicated in the defective selection of autoreactive B cells, increasing the risk of autoimmune disease. This review focuses on the signaling events in newly activated B cells, with an emphasis on the induction and regulation of the PI3K/AKT/mTOR pathway. It also highlights gaps in our understanding of how alternative B cell fates are regulated. Both the physiological context and the implications of inborn errors of immunity (IEIs) and complex autoimmune conditions will be discussed in this regard.
Collapse
Affiliation(s)
- Julian Staniek
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Faculty of Medicine, Center for Chronic Immunodeficiency, University Medical Center FreiburgUniversity of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- CIBSS—Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| |
Collapse
|
2
|
Yang J, Ma C, Feng Z, Xiao F, Kang Y, Zhang W, Liao X. Soluble CD72 concurrently impairs T cell functions while enhances inflammatory response in sepsis. Int Immunopharmacol 2025; 147:113981. [PMID: 39793226 DOI: 10.1016/j.intimp.2024.113981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Sepsis is defined as multi-organ dysfunction caused by dysregulated host response to infection. This dysregulated host response includes enhanced inflammatory responses and suppressed adaptive immunity, but the molecular mechanisms behind it have not yet been elucidated. CD72, a type II transmembrane protein that is primarily expressed in B cells, was found to play an immunomodulatory role in the immune system and was associated with mortality in patients with sepsis. However, whether CD72 affects the pathogenesis of sepsis by influencing the immune response remains unclear. METHODS We first collected peripheral blood from 40 healthy volunteers and 57 septic patients and analyzed the mRNA levels of CD72 and the expression of its soluble form sCD72 using Realtime-PCR and ELISA. We then employed the CRISPR/Cas9 system to generate CD72 knockout mice (CD72-KO) and established a cecal ligation and puncture (CLP) model to analyze the effects of CD72 gene deletion on the survival, organ injury and immune response of septic mice by Kaplan-Meier survival analysis, pathological sections and flow cytometry. We also observe the effects of excess sCD72 on survival and immune response in sepsis by injecting recombinant CD72 protein into mice. Finally, the mechanism of sCD72 affecting sepsis immunity was analyzed by fluorescence staining, confocal microscopy and flow cytometry. RESULTS We found that when sepsis occurs, the levels of CD72 mRNA and cell surface CD72 in immune cells decrease, while the level of soluble sCD72 in the blood increases significantly. Excessive sCD72 increased sepsis mortality in a dose-dependent manner, which can bind to CD100 on the surface of T cells and enter the cytoplasm, leading to impaired T cell functions, including a decrease in CD4+IFN-γ+, CD8+Perforin+, CD8+GZMB+, and CD8+FASL+ population and an increase in inflammatory CD4+TNF-α+ population, thereby suppressing adaptive immunity while enhancing inflammatory response. CONCLUSION The immunosuppression of sepsis has been recognized, but the underlying mechanism has not been fully elucidated. Our study identified for the first time that sCD72 is an important mediator that cause adaptive immunosuppression during sepsis, which leads to T cell suppression by competitively binding to CD100 on the surface of T cells. Our study provides novel insights in our understanding of sepsis-related immunosuppression and may provide translational opportunities for the design of new diagnostic biomarkers and therapeutic targets for sepsis.
Collapse
MESH Headings
- Animals
- Sepsis/immunology
- Humans
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/blood
- Mice, Knockout
- Male
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Mice
- Female
- Mice, Inbred C57BL
- Inflammation/immunology
- T-Lymphocytes/immunology
- Disease Models, Animal
- Middle Aged
- Adult
Collapse
Affiliation(s)
- Jing Yang
- Institute of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Chengyong Ma
- Department of Critical Care Medicine, West China Hospital, Sichuan University, China
| | - Zhongxue Feng
- Institute of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, China.
| | - Wei Zhang
- Institute of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China.
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, China.
| |
Collapse
|
3
|
Akatsu C, Tsuneshige T, Numoto N, Long W, Uchiumi T, Kaneko Y, Asano M, Ito N, Tsubata T. CD72 is an inhibitory pattern recognition receptor that recognizes ribosomes and suppresses production of anti-ribosome autoantibody. J Autoimmun 2024; 146:103245. [PMID: 38754236 DOI: 10.1016/j.jaut.2024.103245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
B cell responses to nucleic acid-containing self-antigens that involve intracellular nucleic acid sensors play a crucial role in autoantibody production in SLE. CD72 is an inhibitory B cell co-receptor that down-regulates BCR signaling, and prevents the development of SLE. We previously showed that CD72 recognizes the RNA-containing self-antigen Sm/RNP, a target of SLE-specific autoantibodies, and induces B cell tolerance to Sm/RNP by specifically inhibiting B cell response to this self-antigen. Here, we address whether CD72 inhibits B cell response to ribosomes because the ribosome is an RNA-containing self-antigen and is a target of SLE-specific autoantibodies as well as Sm/RNP. We demonstrate that CD72 recognizes ribosomes as a ligand, and specifically inhibits BCR signaling induced by ribosomes. Although conventional protein antigens by themselves do not induce proliferation of specific B cells, ribosomes induce proliferation of B cells reactive to ribosomes in a manner dependent on RNA. This proliferative response is down-regulated by CD72. These results suggest that ribosomes activate B cells by inducing dual signaling through BCR and intracellular RNA sensors and that CD72 inhibits B cell response to ribosomes. Moreover, CD72-/- but not CD72+/+ mice spontaneously produce anti-ribosome autoantibodies. Taken together, CD72 induces B cell self-tolerance to ribosomes by recognizing ribosomes and inhibiting RNA-dependent B cell response to this self-antigen. CD72 appears to prevent development of SLE by inhibiting autoimmune B cell responses to multiple RNA-containing self-antigens. Because these self-antigens but not protein self-antigens induce RNA-dependent B cell activation, self-tolerance to RNA-containing self-antigens may require a distinct tolerance mechanism mediated by CD72.
Collapse
MESH Headings
- Animals
- Ribosomes/metabolism
- Ribosomes/immunology
- Mice
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/immunology
- Autoantibodies/immunology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, CD/metabolism
- Antigens, CD/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Signal Transduction/immunology
- Autoantigens/immunology
- Mice, Knockout
- Lymphocyte Activation/immunology
- Cell Proliferation
- Immune Tolerance
- Humans
Collapse
Affiliation(s)
- Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Tsuneshige
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Nihon University School of Dentistry, Tokyo, Japan
| | - Nobutaka Numoto
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wang Long
- Nihon University School of Dentistry, Tokyo, Japan
| | - Toshio Uchiumi
- Department of Biology, Niigata University School of Science, Niigata, Japan
| | - Yoshikatsu Kaneko
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Nobutoshi Ito
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
4
|
Corneth OBJ, Neys SFH, Hendriks RW. Aberrant B Cell Signaling in Autoimmune Diseases. Cells 2022; 11:cells11213391. [PMID: 36359789 PMCID: PMC9654300 DOI: 10.3390/cells11213391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aberrant B cell signaling plays a critical in role in various systemic and organ-specific autoimmune diseases. This is supported by genetic evidence by many functional studies in B cells from patients or specific animal models and by the observed efficacy of small-molecule inhibitors. In this review, we first discuss key signal transduction pathways downstream of the B cell receptor (BCR) that ensure that autoreactive B cells are removed from the repertoire or functionally silenced. We provide an overview of aberrant BCR signaling that is associated with inappropriate B cell repertoire selection and activation or survival of peripheral B cell populations and plasma cells, finally leading to autoantibody formation. Next to BCR signaling, abnormalities in other signal transduction pathways have been implicated in autoimmune disease. These include reduced activity of several phosphates that are downstream of co-inhibitory receptors on B cells and increased levels of BAFF and APRIL, which support survival of B cells and plasma cells. Importantly, pathogenic synergy of the BCR and Toll-like receptors (TLR), which can be activated by endogenous ligands, such as self-nucleic acids, has been shown to enhance autoimmunity. Finally, we will briefly discuss therapeutic strategies for autoimmune disease based on interfering with signal transduction in B cells.
Collapse
|
5
|
Xing J, Jia Z, Li Y, Han Y. Construction of immunotherapy-related prognostic gene signature and small molecule drug prediction for cutaneous melanoma. Front Oncol 2022; 12:939385. [PMID: 35957907 PMCID: PMC9358033 DOI: 10.3389/fonc.2022.939385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background Cutaneous melanoma (CM), a kind of skin cancer with a high rate of advanced mortality, exhibits a wide variety of driver and transmitter gene alterations in the immunological tumor microenvironment (TME) associated with tumor cell survival and proliferation. Methods We analyzed the immunological infiltration of TME cells in normal and malignant tissues using 469 CM and 556 normal skin samples. We used a single sample gene set enrichment assay (ssGSEA) to quantify the relative abundance of 28 cells, then used the LASSO COX regression model to develop a riskScore prognostic model, followed by a small molecule drug screening and molecular docking validation, which was then validated using qRT-PCR and IHC. Results We developed a prognosis model around seven essential protective genes for the first time, dramatically elevated in tumor tissues, as did immune cell infiltration. Multivariate Cox regression results indicated that riskScore is an independent and robust prognostic indicator, and its predictive value in immunotherapy was verified. Additionally, we identified Gabapentin as a possible small molecule therapeutic for CM. Conclusions A riskScore model was developed in this work to analyze patient prognosis, TME cell infiltration features, and treatment responsiveness. The development of this model not only aids in predicting patient response to immunotherapy but also has significant implications for the development of novel immunotherapeutic agents and the promotion of tailored treatment regimens.
Collapse
Affiliation(s)
- Jiahua Xing
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Ziqi Jia
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Li
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yan Han, ; Yan Li,
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yan Han, ; Yan Li,
| |
Collapse
|
6
|
Matsuzaka Y, Yashiro R. Immune Modulation Using Extracellular Vesicles Encapsulated with MicroRNAs as Novel Drug Delivery Systems. Int J Mol Sci 2022; 23:ijms23105658. [PMID: 35628473 PMCID: PMC9146104 DOI: 10.3390/ijms23105658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/13/2022] Open
Abstract
Self-tolerance involves protection from self-reactive B and T cells via negative selection during differentiation, programmed cell death, and inhibition of regulatory T cells. The breakdown of immune tolerance triggers various autoimmune diseases, owing to a lack of distinction between self-antigens and non-self-antigens. Exosomes are non-particles that are approximately 50–130 nm in diameter. Extracellular vesicles can be used for in vivo cell-free transmission to enable intracellular delivery of proteins and nucleic acids, including microRNAs (miRNAs). miRNAs encapsulated in exosomes can regulate the molecular pathways involved in the immune response through post-transcriptional regulation. Herein, we sought to summarize and review the molecular mechanisms whereby exosomal miRNAs modulate the expression of genes involved in the immune response.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku 108-8639, Tokyo, Japan
- Correspondence: ; Tel.: +81-3-5449-5372
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan; or
| |
Collapse
|
7
|
Pelanda R, Zikherman J. Many Achilles' heels of B and T cell tolerance. Immunol Rev 2022; 307:5-11. [PMID: 35301733 PMCID: PMC8986605 DOI: 10.1111/imr.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engelman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143
| |
Collapse
|