1
|
Ventura LHA, Torres L, Camatta GC, Zamame J, Coelho MM, Ramalho-Pinto CH, Gervazio J, Caixeta F, Nascimento L, Oliveira MA, Martins VD, Oliveira MF, Costa MS, Sato HI, Guimarães HC, Barbuto RC, Veiga APR, Ataíde N, Caetano GP, Rangon S, Júnior MLO, Fortes FC, Zuccherato L, Speziali E, Martins-Filho OA, Coelho V, Avritchir R, Souza R, Ayupe M, Loureiro C, Passos ME, Neves ACM, Leite P, Teixeira SMR, Tupinambás U, Felicori LF, Silveira-Nunes G, Maioli TU, Fonseca DM, Teixeira-Carvalho A, Faria AMC. Immunosenescence Profile Is Associated With Increased Susceptibility to Severe COVID-19. Aging Cell 2025:e70077. [PMID: 40388115 DOI: 10.1111/acel.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 05/20/2025] Open
Abstract
In this study, we tested the hypothesis that the immunosenescence profile could account for the disproportional susceptibility of the elderly to severe forms of COVID-19. The immunological profiles of volunteers residing in endemic and non-endemic areas for chronic infectious diseases were analyzed at the early stage of SARS-CoV-2 infection. A unique signature of inflammatory plasma mediators was identified in COVID-19 volunteers when compared to individuals with other flu-like syndromes. COVID-19 severity correlated with high levels of inflammatory mediators; among them, CXCL9, a serum marker of aging. Patients who progressed to hospitalization displayed high frequencies of CD8+ and CD4+ T cells expressing exhaustion and senescence markers and showed reduced and more mature B cell repertoires, which are typical of senescence. They also had an acceleration of epigenetic age measured by DNA methylation. Therefore, severe COVID-19 correlated with phenotypic, functional, and epigenetic features of accelerated immunosenescence at the onset of infection.
Collapse
Affiliation(s)
- Lucas Haniel A Ventura
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Giovanna Caliman Camatta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jofer Zamame
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Monique Macedo Coelho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cecília Horta Ramalho-Pinto
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - João Gervazio
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felipe Caixeta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Nascimento
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Almeida Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinícius Dantas Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcos Felipe Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Murilo Soares Costa
- Departamento de Clínica Médica, Faculdade de Medicina e Programa de Pós-graduação em Infectologia e Doenças Tropicais, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hugo Itaru Sato
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Najara Ataíde
- Instituto de Infectologia Emílio Ribas, São Paulo, Brazil
| | | | - Sarah Rangon
- Instituto de Infectologia Emílio Ribas, São Paulo, Brazil
| | | | - Fernanda Calvo Fortes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Zuccherato
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elaine Speziali
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Universidade Edson Antônio Velano, Fundação de Ensino e Tecnologia de Alfenas, Belo Horizonte, Brazil
| | | | - Verônica Coelho
- Instituto Do Coração, Universidade de São Paulo, São Paulo, Brazil
| | | | - Rafael Souza
- Instituto de Infectologia Emílio Ribas, São Paulo, Brazil
| | - Marina Ayupe
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Caio Loureiro
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Eduarda Passos
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Ana Clara Mota Neves
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Pauline Leite
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Santuza Maria Ribeiro Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Unaí Tupinambás
- Departamento de Clínica Médica, Faculdade de Medicina e Programa de Pós-graduação em Infectologia e Doenças Tropicais, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Liza Figueiredo Felicori
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Silveira-Nunes
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Tatiani Uceli Maioli
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Morais Fonseca
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Cheng J, Zheng J, Ma C, Li Y, Hao H. T-cell senescence: Unlocking the tumor immune "Dark Box" - A multidimensional analysis from mechanism to tumor immunotherapeutic intervention. Semin Cancer Biol 2025; 113:190-209. [PMID: 40381926 DOI: 10.1016/j.semcancer.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Immunosenescence is the dysfunction of the immune system that occurs with age, a process that is complex and characterized by several features, of which T-cell senescence is one of the key manifestations. In the tumor microenvironment, senescent T cells lead to the inability of tumor cells to be effectively eliminated, triggering immunosuppression, which in turn affects the efficacy of immunotherapy. This is a strong indication that T-cell senescence significantly weakens the immune function of the body, making individuals, especially elderly patients with cancer, more vulnerable to cancer attacks. Despite the many challenges, T-cell senescence is important as a potential therapeutic target. This review provides insights into the molecular mechanisms of T-cell senescence and its research advances in patients with cancer, especially in older adults, and systematically analyzes potential intervention strategies, including molecular mechanism-based interventions, the use of immune checkpoint inhibitors, and CAR-T cell therapy. It is hoped that this will establish a theoretical framework for T-cell senescence in the field of tumor immunology and provide a scientific and prospective reference basis for subsequent in-depth research and clinical practice on senescent T cells.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361004, China; Xiamen Municipal Key Laboratory of Gastrointestinal Oncology, Xiamen 361004, China.
| | - Jian Zheng
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Chen Ma
- Department of Emergency Internal Medicine, Zibo Central Hospital, Zibo 255024, China
| | - Yongzhang Li
- Department of Urology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang 050017, China.
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.
| |
Collapse
|
3
|
Zhang K, Zhang Y, Xiang P, Wang Y, Li Y, Jiang S, Zhang Y, Chen M, Su W, Li X, Li S. Advances in T Cell-Based Cancer Immunotherapy: From Fundamental Mechanisms to Clinical Prospects. Mol Pharm 2025. [PMID: 40359327 DOI: 10.1021/acs.molpharmaceut.4c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
T cells and their T cell receptors (TCRs) play crucial roles in the adaptive immune system's response against pathogens and tumors. However, immunosenescence, characterized by declining T cell function and quantity with age, significantly impairs antitumor immunity. Recent years have witnessed remarkable progress in T cell-based cancer treatments, driven by a deeper understanding of T cell biology and innovative screening technologies. This review comprehensively examines T cell maturation mechanisms, T cell-mediated antitumor responses, and the implications of thymic involution on T cell diversity and cancer prognosis. We discuss recent advances in adoptive T cell therapies, including tumor-infiltrating lymphocyte (TIL) therapy, engineered T cell receptor (TCR-T) therapy, and chimeric antigen receptor T cell (CAR-T) therapy. Notably, we highlight emerging DNA-encoded library technologies in mammalian cells for high-throughput screening of TCR-antigen interactions, which are revolutionizing the discovery of novel tumor antigens and optimization of TCR affinity. The review also explores strategies to overcome challenges in the solid tumor microenvironment and emerging approaches to enhance the efficacy of T cell therapy. As our understanding of T cell biology deepens and screening technologies advances, T cell-based immunotherapies show increasing promise for delivering durable clinical benefits to a broader patient population.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Pan Xiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Wang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shuze Jiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuxuan Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Chen
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoling Li
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Shuai Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
4
|
Yu XT, Cui J, Yang XG, Gao X, Yu L. Novel modulation of T effector memory cells-expressing CD45RA by prednisone in inoperable advanced type B thymoma patients. Genes Immun 2025:10.1038/s41435-025-00329-3. [PMID: 40328968 DOI: 10.1038/s41435-025-00329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 03/17/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025]
Abstract
Due to the covert onset of thymoma, nearly 30% of patients are diagnosed at stage III or IV, losing the opportunity for surgical treatment. We have initiated the application of prednisone in treating refractory thymoma and explored biomarkers to identify potential cases that might benefit from prednisone treatment. In a study involving 96 patients with thymoma, we confirmed a significant tumor shrinkage with prednisone acetate treatment. A reduced diameter ratio indicated that type B1 and B2 thymomas exhibited the most obvious response to prednisone acetate, especially type B2 thymoma. However, the reduced diameter ratio was < 30% in type A, AB, and B3 thymomas. Immunofluorescence and flow cytometry of tumor tissues indicated that TEMRA (T Effector Memory-Expressing CD45RA) cells primarily exist in type B thymoma. However, the percentage of interleukin-8 + TEMRA cells decreased only in B1 and B2 thymoma tissues after prednisone acetate treatment. These findings are particularly significant for patients with type B thymoma with stage III or IV.
Collapse
Affiliation(s)
- Xin-Tao Yu
- Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang Street, Dongcheng District, Beijing City, 100730, China
| | - Jian Cui
- Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang Street, Dongcheng District, Beijing City, 100730, China
| | - Xing-Guo Yang
- Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang Street, Dongcheng District, Beijing City, 100730, China
| | - Xiang Gao
- Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang Street, Dongcheng District, Beijing City, 100730, China
| | - Lei Yu
- Department of Thoracic Surgery, Beijing Tongren Hospital, Capital Medical University, No.1 Dongjiaominxiang Street, Dongcheng District, Beijing City, 100730, China.
| |
Collapse
|
5
|
Kieronska-Rudek A, Zuhra K, Ascenção K, Chlopicki S, Szabo C. The PARP inhibitor olaparib promotes senescence in murine macrophages. GeroScience 2025:10.1007/s11357-025-01679-6. [PMID: 40327273 DOI: 10.1007/s11357-025-01679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025] Open
Abstract
Cellular senescence is a multifaceted process involving cell cycle arrest, telomere shortening, and the accumulation of DNA damage associated with aging and cellular stress. It is marked by persistent cell cycle arrest and DNA damage accumulation, and plays an increasingly recognized role in age-related diseases and cancer therapy. Olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, is approved for use in ovarian cancer treatment. We hypothesized that olaparib may influence senescence by inhibiting DNA damage repair, and investigated its effects on non-senescent and replicatively senescent murine macrophages (RAW 264.7 cells). Senescent cells exhibited elevated baseline levels of PARP1 expression, PARylation, and DNA damage relative to non-senescent control cells. Olaparib amplified these differences by upregulating senescence markers (SA-β-gal and p21), inhibiting proliferation, and exacerbating DNA damage. Many of its effects were more pronounced in senescent cells. At higher concentrations (10-30 µM), olaparib induced significant cytotoxicity through mixed apoptotic and necrotic mechanisms, with senescent cells exhibiting a predominantly necrotic response. Interestingly, both mitochondrial activity and cellular bioenergetics were elevated in senescent cells at baseline, and were more severely impaired by olaparib compared to non-senescent control cells. These findings underscore olaparib's enhanced cytotoxic and pro-senescent effects in senescent immune cells and suggest potential implications for its use in elderly cancer patients with an increased burden of senescent cells.
Collapse
Affiliation(s)
- Anna Kieronska-Rudek
- Section of Pharmacology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Karim Zuhra
- Section of Pharmacology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Kelly Ascenção
- Section of Pharmacology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Csaba Szabo
- Section of Pharmacology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
6
|
Ramonell RP, Oriss TB, McCreary-Partyka JC, Kale SL, Brandon NR, Ross MA, Gauthier MC, Yue M, Nee TJ, Das S, Chen W, Joglekar AV, Ray P, St Croix CM, Rajasundaram D, Wenzel SE, Ray A. CD8+ TEMRAs in severe asthma associate with asthma symptom duration and escape proliferation arrest. JCI Insight 2025; 10:e185061. [PMID: 40048261 PMCID: PMC12016929 DOI: 10.1172/jci.insight.185061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/04/2025] [Indexed: 04/23/2025] Open
Abstract
Aberrant immune response is a hallmark of asthma, with 5%-10% of patients suffering from severe disease exhibiting poor response to standard treatment. A better understanding of the immune responses contributing to disease heterogeneity is critical for improving asthma management. T cells are major players in the orchestration of asthma, in both mild and severe disease, but it is unclear whether specific T cell subsets influence asthma symptom duration. Here we show a significant association of airway CD8+ effector memory T cells re-expressing CD45RA (TEMRAs), but not CD8+CD45RO+ or tissue-resident memory T cells, with asthma duration in patients with severe asthma (SA) but not mild to moderate asthma (MMA). Higher frequencies of IFN-γ+CD8+ TEMRAs compared with IFN-γ+CD45RO+ T cells were detected in SA airways, and the TEMRAs from patients with SA but not MMA proliferated ex vivo, although both expressed cellular senescence-associated biomarkers. Prompted by the transcriptomic profile of SA CD8+ TEMRAs and proliferative response to IL-15, airway IL15 expression was higher in patients with SA compared with MMA. Additionally, IL15 expression in asthmatic airways negatively correlated with lung function. Our findings add what we believe is a new dimension to understanding asthma heterogeneity, identifying IL-15 as a potential target for treatment.
Collapse
Affiliation(s)
- Richard P. Ramonell
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Asthma and Environmental Lung Health Institute at UPMC
| | - Timothy B. Oriss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
| | | | - Sagar L. Kale
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
| | | | - Mark A. Ross
- Department of Cell Biology
- Center for Biological Imaging
| | - Marc C. Gauthier
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Asthma and Environmental Lung Health Institute at UPMC
| | | | - Taylor J. Nee
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Asthma and Environmental Lung Health Institute at UPMC
| | - Sudipta Das
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
| | | | | | - Prabir Ray
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Asthma and Environmental Lung Health Institute at UPMC
- Department of Immunology
| | | | | | - Sally E. Wenzel
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Asthma and Environmental Lung Health Institute at UPMC
- Department of Immunology
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anuradha Ray
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine
- Asthma and Environmental Lung Health Institute at UPMC
- Department of Immunology
| |
Collapse
|
7
|
Bracken OV, De Maeyer RPH, Akbar AN. Enhancing immunity during ageing by targeting interactions within the tissue environment. Nat Rev Drug Discov 2025; 24:300-315. [PMID: 39875569 DOI: 10.1038/s41573-024-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Immunity declines with age. This results in a higher risk of age-related diseases, diminished ability to respond to new infections and reduced response to vaccines. The causes of this immune dysfunction are cellular senescence, which occurs in both lymphoid and non-lymphoid tissue, and chronic, low-grade inflammation known as 'inflammageing'. In this Review article, we highlight how the processes of inflammation and senescence drive each other, leading to loss of immune function. To break this cycle, therapies are needed that target the interactions between the altered tissue environment and the immune system instead of targeting each component alone. We discuss the relative merits and drawbacks of therapies that are directed at eliminating senescent cells (senolytics) and those that inhibit inflammation (senomorphics) in the context of tissue niches. Furthermore, we discuss therapeutic strategies designed to directly boost immune cell function and improve immune surveillance in tissues.
Collapse
Affiliation(s)
| | - Roel P H De Maeyer
- Division of Medicine, University College London, London, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
8
|
Zhang C, Liu K. A subtype of T cells impedes tissue repair in aged spinal cord after injury. Neuron 2025; 113:643-645. [PMID: 40049145 DOI: 10.1016/j.neuron.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 05/13/2025]
Abstract
In this issue of Neuron, Kong et al.1 identify targetable natural killer-like T cells that seed the intact aged human and murine spinal cords and increase further after injury. These cells impede myeloid-cell-dependent wound healing in the aged injured cord through expressing natural killer cell granule protein 7 (NKG7).
Collapse
Affiliation(s)
- Chengle Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kai Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China; Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen, Guangdong 518057, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
9
|
Kong G, Song Y, Yan Y, Calderazzo SM, Saddala MS, De Labastida Rivera F, Cherry JD, Eckman N, Appel EA, Velenosi A, Swarup V, Kawaguchi R, Ng SS, Kwon BK, Gate D, Engwerda CR, Zhou L, Di Giovanni S. Clonally expanded, targetable, natural killer-like NKG7 T cells seed the aged spinal cord to disrupt myeloid-dependent wound healing. Neuron 2025; 113:684-700.e8. [PMID: 39809279 DOI: 10.1016/j.neuron.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/07/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
Spinal cord injury (SCI) increasingly affects aged individuals, where functional impairment and mortality are highest. However, the aging-dependent mechanisms underpinning tissue damage remain elusive. Here, we find that natural killer-like T (NKLT) cells seed the intact aged human and murine spinal cord and multiply further after injury. NKLT cells accumulate in the spinal cord via C-X-C motif chemokine receptor 6 and ligand 16 signaling to clonally expand by engaging with major histocompatibility complex (MHC)-I-expressing myeloid cells. NKLT cells expressing natural killer cell granule protein 7 (Nkg7) disrupt myeloid-cell-dependent wound healing in the aged injured cord. Nkg7 deletion in mice curbs NKLT cell degranulation to normalize the myeloid cell phenotype, thus promoting tissue repair and axonal integrity. Monoclonal antibodies neutralizing CD8+ T cells after SCI enhance neurological recovery by promoting wound healing. Our results unveil a reversible role for NKG7+CD8+ NKLT cells in exacerbating tissue damage, suggesting a clinically relevant treatment for SCI.
Collapse
Affiliation(s)
- Guiping Kong
- Molecular Neuroregeneration, Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Yayue Song
- Molecular Neuroregeneration, Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Yuyang Yan
- Molecular Neuroregeneration, Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Samantha M Calderazzo
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Madhu Sudhana Saddala
- Department of Neurobiology and Behaviour, School of Biological Sciences, University of California Irvine, Irvine, CA, USA
| | | | - Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Boston University Alzheimer's Disease and CTE Centers, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Noah Eckman
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Paediatrics, Endocrinology, Stanford University, Stanford, CA, USA; ChEM-H Institute, Stanford University, Stanford, CA, USA; Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Eric A Appel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Paediatrics, Endocrinology, Stanford University, Stanford, CA, USA; ChEM-H Institute, Stanford University, Stanford, CA, USA; Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Adam Velenosi
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Praxis Spinal Cord Institute, Vancouver, BC, Canada
| | - Vivek Swarup
- Department of Neurobiology and Behaviour, School of Biological Sciences, University of California Irvine, Irvine, CA, USA
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susanna S Ng
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - David Gate
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Luming Zhou
- Molecular Neuroregeneration, Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK; Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| | - Simone Di Giovanni
- Molecular Neuroregeneration, Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
10
|
Akiyama M, Wakasugi S, Yoshimoto K, Saito K, Ishigaki S, Inukai R, Matsuno Y, Alshehri W, Kondo Y, Kaneko Y. CX3CR1 + age-associated CD4 + T cells contribute to synovial inflammation in late-onset rheumatoid arthritis. Inflamm Regen 2025; 45:4. [PMID: 39910629 PMCID: PMC11800492 DOI: 10.1186/s41232-025-00367-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Recent evidence suggests that clonally expanded cytotoxic T cells play a role in various autoimmune diseases. Late-onset rheumatoid arthritis (LORA) exhibits unique characteristics compared to other RA forms, suggesting distinct immunological mechanisms. This study aimed to examine the involvement of cytotoxic T cells in LORA. METHODS Fresh peripheral blood samples were collected from 78 treatment-naïve active RA patients, 12 with difficult-to-treat RA, and 16 healthy controls. Flow cytometry was employed to measure the proportions of CX3CR1+cytotoxic CD4+ and CD8+ T cells in these samples. Additionally, immunohistochemical staining was performed on lymphoid node and synovial biopsy samples from patients with RA. RESULTS CX3CR1+cytotoxic CD4+ T cells were specifically increased in untreated, active patients with LORA, displaying features of CXCR3mid age-associated T helper cells known as "ThA". CX3CR1⁺CD4⁺ T cells were identified as a cytotoxic ThA subset, as nearly all of these cells specifically expressed granzyme B. These cells were observed in enlarged lymph nodes and were found to infiltrate synovial tissues from patients with LORA. The proportions of CX3CR1+CD4+ T cells positively correlated with arthritis activity in LORA. The number of cells decreased after treatment with methotrexate, tumor necrosis factor inhibitors, and interleukin-6 inhibitors, whereas T-cell activation modulators did not affect them. Moreover, PD-1+CD38+CX3CR1+CD4+ T cells were identified as a treatment-resistant T cell subset that was characteristically increased in difficult-to-treat RA. CX3CR1+CD8+ T cells showed no significant difference between RA patients and healthy individuals, and no correlation with disease activity was observed. However, a correlation with age was observed in RA patients. CONCLUSIONS Our findings suggest that the immunopathogenesis of RA differs by age of onset, with CX3CR1+ age-associated cytotoxic CD4+ T cells playing a significant role in LORA. Additionally, the presence of a specific CX3CR1+ T cell subset may be linked to treatment resistance.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Sohma Wakasugi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Koichi Saito
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Sho Ishigaki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Risa Inukai
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yoshiyuki Matsuno
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Waleed Alshehri
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yasushi Kondo
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
11
|
Subramanian P, Sayegh S, Laphanuwat P, Devine OP, Fantecelle CH, Sikora J, Chambers ES, Karagiannis SN, Gomes DCO, Kulkarni A, Rustin MHA, Lacy KE, Akbar AN. Multiple outcomes of the germline p16 INK4a mutation affecting senescence and immunity in human skin. Aging Cell 2025; 24:e14373. [PMID: 39420514 PMCID: PMC11822638 DOI: 10.1111/acel.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/25/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The integrated behaviour of multiple senescent cell types within a single human tissue leading to the development of malignancy is unclear. Patients with Familial Melanoma Syndrome (FMS) have heterozygous germline defects in the CDKN2A gene coding for the cyclin inhibitor p16INK4a. Melanocytes within skin biopsies from FMS patients express significantly less p16INK4a but express higher levels of the DNA-damage protein 𝛾H2AX a than fibroblastic cells. However, patient fibroblasts also exhibit defects since senescent cells do not increase in the skin during ageing and fibroblasts isolated from the skin of patients have increased replicative capacity compared to control fibroblasts in vitro, culminating in abnormal nuclear morphology. Patient derived fibroblasts also secreted less SASP than control cells. Predisposition of FMS patients to melanoma may therefore result from integrated dysregulation of senescence in multiple cell types in vivo. The inherently greater levels of DNA damage and the overdependence of melanocytes on p16 for cell cycle inhibition after DNA damage makes them exquisitely susceptible to malignant transformation. This may be accentuated by senescence-related defects in fibroblasts, in particular reduced SASP secretion that hinders recruitment of T cells in the steady state and thus reduces cutaneous immunosurveillance in vivo.
Collapse
Affiliation(s)
| | | | - Phatthamon Laphanuwat
- Division of MedicineUniversity College LondonLondonUK
- Department of Pharmacology, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | | | | | - Justyna Sikora
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Emma S. Chambers
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Sophia N. Karagiannis
- St. John's Institute for Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's HospitalLondonUK
- Breast Cancer Now Research UnitSchool of Cancer & Pharmaceutical Sciences, Guy's Cancer Centre, King's College LondonLondonUK
| | - Daniel C. O. Gomes
- Núcleo de Doenças InfecciosasUniversidade Federal Do Espírito SantoVitóriaBrazil
| | - Anjana Kulkarni
- Clinical Genetics DepartmentGuys and St. Thomas' NHS Foundation TrustLondonUK
| | | | - Katie E. Lacy
- St. John's Institute for Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's HospitalLondonUK
| | - Arne N. Akbar
- Division of MedicineUniversity College LondonLondonUK
| |
Collapse
|
12
|
Kim YW, Tebbutt SJ, Singh A. Gene Expression Trend Pattern Analysis in Peripheral Blood From Patients With Preclinical Systemic Sclerosis. Int J Rheum Dis 2025; 28:e70039. [PMID: 39740063 DOI: 10.1111/1756-185x.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Affiliation(s)
- Young Woong Kim
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
- Prevention of Organ Failure Centre of Excellence, Providence Research, Vancouver, Canada
| | - Scott J Tebbutt
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
- Prevention of Organ Failure Centre of Excellence, Providence Research, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Amrit Singh
- Department of Anesthesiology, Pharmacology & Therapeutics, The University of British Columbia, Vancouver, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, Canada
| |
Collapse
|
13
|
Xia T, Zhou Y, An J, Cui Z, Zhong X, Cui T, Lv B, Zhao X, Gao X. Benefit delayed immunosenescence by regulating CD4 +T cells: A promising therapeutic target for aging-related diseases. Aging Cell 2024; 23:e14317. [PMID: 39155409 PMCID: PMC11464113 DOI: 10.1111/acel.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
CD4+T cells play a notable role in immune protection at different stages of life. During aging, the interaction between the body's internal and external environment and CD4+T cells results in a series of changes in the CD4+T cells pool making it involved in immunosenescence. Many studies have extensively examined the subsets and functionality of CD4+T cells within the immune system, highlighted their pivotal role in disease pathogenesis, progression, and therapeutic interventions. However, the underlying mechanism of CD4+T cells senescence and its intricate association with diseases remains to be elucidated and comprehensively understood. By summarizing the immunosenescent progress and network of CD4+T cell subsets, we reveal the crucial role of CD4+T cells in the occurrence and development of age-related diseases. Furthermore, we provide new insights and theoretical foundations for diseases targeting CD4+T cell subsets aging as a treatment focus, offering novel approaches for therapy, especially in infections, cancers, autoimmune diseases, and other diseases in the elderly.
Collapse
Affiliation(s)
- Tingting Xia
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Zhou
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiayao An
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tianyi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Bin Lv
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
14
|
Lee H, Park SH, Shin EC. IL-15 in T-Cell Responses and Immunopathogenesis. Immune Netw 2024; 24:e11. [PMID: 38455459 PMCID: PMC10917573 DOI: 10.4110/in.2024.24.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
IL-15 belongs to the common gamma chain cytokine family and has pleiotropic immunological functions. IL-15 is a homeostatic cytokine essential for the development and maintenance of NK cells and memory CD8+ T cells. In addition, IL-15 plays a critical role in the activation, effector functions, tissue residency, and senescence of CD8+ T cells. IL-15 also activates virtual memory T cells, mucosal-associated invariant T cells and γδ T cells. Recently, IL-15 has been highlighted as a major trigger of TCR-independent activation of T cells. This mechanism is involved in T cell-mediated immunopathogenesis in diverse diseases, including viral infections and chronic inflammatory diseases. Deeper understanding of IL-15-mediated T-cell responses and their underlying mechanisms could optimize therapeutic strategies to ameliorate host injury by T cell-mediated immunopathogenesis. This review highlights recent advancements in comprehending the role of IL-15 in relation to T cell responses and immunopathogenesis under various host conditions.
Collapse
Affiliation(s)
- Hoyoung Lee
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
15
|
Wells SB, Rainbow DB, Mark M, Szabo PA, Ergen C, Maceiras AR, Caron DP, Rahmani E, Benuck E, Amiri VVP, Chen D, Wagner A, Howlett SK, Jarvis LB, Ellis KL, Kubota M, Matsumoto R, Mahbubani K, Saeb-Parsy K, Dominguez-Conde C, Richardson L, Xu C, Li S, Mamanova L, Bolt L, Wilk A, Teichmann SA, Farber DL, Sims PA, Jones JL, Yosef N. Multimodal profiling reveals tissue-directed signatures of human immune cells altered with age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573877. [PMID: 38260588 PMCID: PMC10802388 DOI: 10.1101/2024.01.03.573877] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The immune system comprises multiple cell lineages and heterogeneous subsets found in blood and tissues throughout the body. While human immune responses differ between sites and over age, the underlying sources of variation remain unclear as most studies are limited to peripheral blood. Here, we took a systems approach to comprehensively profile RNA and surface protein expression of over 1.25 million immune cells isolated from blood, lymphoid organs, and mucosal tissues of 24 organ donors aged 20-75 years. We applied a multimodal classifier to annotate the major immune cell lineages (T cells, B cells, innate lymphoid cells, and myeloid cells) and their corresponding subsets across the body, leveraging probabilistic modeling to define bases for immune variations across donors, tissue, and age. We identified dominant tissue-specific effects on immune cell composition and function across lineages for lymphoid sites, intestines, and blood-rich tissues. Age-associated effects were intrinsic to both lineage and site as manifested by macrophages in mucosal sites, B cells in lymphoid organs, and T and NK cells in blood-rich sites. Our results reveal tissue-specific signatures of immune homeostasis throughout the body and across different ages. This information provides a basis for defining the transcriptional underpinnings of immune variation and potential associations with disease-associated immune pathologies across the human lifespan.
Collapse
|
16
|
Hong KT, Kang YJ, Choi JY, Yun YJ, Chang IM, Shin HY, Kang HJ, Lee WW. Effects of Korean red ginseng on T-cell repopulation after autologous hematopoietic stem cell transplantation in childhood cancer patients. J Ginseng Res 2024; 48:68-76. [PMID: 38223820 PMCID: PMC10785244 DOI: 10.1016/j.jgr.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 01/16/2024] Open
Abstract
Background Although the survival outcomes of childhood cancer patients have improved, childhood cancer survivors suffer from various degrees of immune dysfunction or delayed immune reconstitution. This study aimed to investigate the effect of Korean Red Ginseng (KRG) on T cell recovery in childhood cancer patients who underwent autologous hematopoietic stem cell transplantation (ASCT) from the perspective of inflammatory and senescent phenotypes. Methods This was a single-arm exploratory trial. The KRG group (n = 15) received KRG powder from month 1 to month 12 post-ASCT. We compared the results of the KRG group with those of the control group (n = 23). The proportions of T cell populations, senescent phenotypes, and cytokine production profiles were analyzed at 1, 3, 6, and 12 months post-ASCT using peripheral blood samples. Results All patients in the KRG group completed the treatment without any safety issues and showed a comparable T cell repopulation pattern to that in the control group. In particular, KRG administration influenced the repopulation of CD4+ T cells via T cell expansion and differentiation into effector memory cell re-expressing CD45RA (EMRA) cells. Although the KRG group showed an increase in the number of CD4+ EMRA cells, the expression of senescent and exhausted markers in these cells decreased, and the capacity for senescence-related cytokine production in the senescent CD28- subset was ameliorated. Conclusions These findings suggest that KRG promotes the repopulation of CD4+ EMRA T cells and regulates phenotypical and functional senescent changes after ASCT in pediatric patients with cancer.
Collapse
Affiliation(s)
- Kyung Taek Hong
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Yeon Jun Kang
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Yoon Choi
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Young Ju Yun
- Department of Integrative Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | | | - Hee Young Shin
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Korea Red Cross, Wonju, Republic of Korea
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Wide River Institute of Immunology, Hongcheon, Republic of Korea
| | - Won-Woo Lee
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
17
|
Wang HH, Chen WL, Cui YY, Gong HH, Li H. Cellular senescence throws new insights into patient classification and pharmacological interventions for clinical management of hepatocellular carcinoma. World J Gastrointest Oncol 2023; 15:1567-1594. [PMID: 37746655 PMCID: PMC10514726 DOI: 10.4251/wjgo.v15.i9.1567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 08/06/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Cellular senescence, a state of stable growth arrest, is intertwined with human cancers. However, characterization of cellular senescence-associated phenotypes in hepatocellular carcinoma (HCC) remains unexplored. AIM To address this issue, we delineated cellular senescence landscape across HCC. METHODS We enrolled two HCC datasets, TCGA-LIHC and International Cancer Genome Consortium (ICGC). Unsupervised clustering was executed to probe tumor heterogeneity based upon cellular senescence genes. Least absolute shrinkage and selection operator algorithm were utilized to define a cellular senescence-relevant scoring system. TRNP1 expression was measured in HCCs and normal tissues through immunohistochemistry, immunoblotting and quantitative real-time polymerase chain reaction. The influence of TMF-regulated nuclear protein (TRNP)1 on HCC senescence and growth was proven via a series of experiments. RESULTS TCGA-LIHC patients were classified as three cellular senescence subtypes, named C1-3. The robustness and reproducibility of these subtypes were proven in the ICGC cohort. C2 had the worst overall survival, C1 the next, and C3 the best. C2 presented the highest levels of immune checkpoints, abundance of immune cells, and immunogenetic indicators. Thus, C2 might possibly respond to immunotherapy. C2 had the lowest somatic mutation rate, while C1 presented the highest copy number variations. A cellular senescence-relevant gene signature was generated, which can predict patient survival, and chemo- or immunotherapeutic response. Experimentally, it was proven that TRNP1 presented the remarkable upregulation in HCCs. TRNP1 knockdown induced apoptosis and senescence of HCC cells and attenuated tumor growth. CONCLUSION These findings provide a systematic framework for assessing cellular senescence in HCC, which decode the tumor heterogeneity and tailor the pharmacological interventions to improve clinical management.
Collapse
Affiliation(s)
- Hou-Hong Wang
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou 236800, Anhui Province, China
| | - Wen-Li Chen
- Department of General Surgery, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou 236800, Anhui Province, China
| | - Ya-Yun Cui
- Department of Cancer Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei 230000, Anhui Province, China
| | - Hui-Hui Gong
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Heng Li
- Department of Comprehensive Surgery, Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Hefei 230000, Anhui Province, China
| |
Collapse
|
18
|
Amin J, Gee C, Stowell K, Coulthard D, Boche D. T Lymphocytes and Their Potential Role in Dementia with Lewy Bodies. Cells 2023; 12:2283. [PMID: 37759503 PMCID: PMC10528562 DOI: 10.3390/cells12182283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative cause of dementia. People with DLB have an inferior prognosis compared to Alzheimer's disease (AD), but the diseases overlap in their neuropathology and clinical syndrome. It is imperative that we enhance our understanding of the aetiology and pathogenesis of DLB. The impact of peripheral inflammation on the brain in dementia has been increasingly explored in recent years, with T lymphocyte recruitment into brain parenchyma identified in AD and Parkinson's disease. There is now a growing range of literature emerging on the potential role of innate and adaptive immune cells in DLB, including T lymphocytes. In this review, we examine the profile of T lymphocytes in DLB, focusing on studies of post-mortem brain tissue, cerebrospinal fluid, and the blood compartment. We present an integrated viewpoint on the results of these studies by proposing how changes to the T lymphocyte profile in the brain and periphery may relate to each other. Improving our understanding of T lymphocytes in DLB has the potential to guide the development of disease-modifying treatments.
Collapse
Affiliation(s)
- Jay Amin
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Memory Assessment and Research Centre, Tom Rudd Unit, Moorgreen Hospital, Southern Health NHS Foundation Trust, Southampton SO30 3JB, UK
| | - Claire Gee
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Memory Assessment and Research Centre, Tom Rudd Unit, Moorgreen Hospital, Southern Health NHS Foundation Trust, Southampton SO30 3JB, UK
| | - Kiran Stowell
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Daisy Coulthard
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
19
|
Collier-Bain HD, Brown FF, Causer AJ, Emery A, Oliver R, Moore S, Murray J, Turner JE, Campbell JP. Harnessing the immunomodulatory effects of exercise to enhance the efficacy of monoclonal antibody therapies against B-cell haematological cancers: a narrative review. Front Oncol 2023; 13:1244090. [PMID: 37681023 PMCID: PMC10482436 DOI: 10.3389/fonc.2023.1244090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are standard care for many B-cell haematological cancers. The modes of action for these mAbs include: induction of cancer cell lysis by activating Fcγ-receptors on innate immune cells; opsonising target cells for antibody-dependent cellular cytotoxicity or phagocytosis, and/or triggering the classical complement pathway; the simultaneous binding of cancer cells with T-cells to create an immune synapse and activate perforin-mediated T-cell cytotoxicity against cancer cells; blockade of immune checkpoints to facilitate T-cell cytotoxicity against immunogenic cancer cell clones; and direct delivery of cytotoxic agents via internalisation of mAbs by target cells. While treatment regimens comprising mAb therapy can lead to durable anti-cancer responses, disease relapse is common due to failure of mAb therapy to eradicate minimal residual disease. Factors that limit mAb efficacy include: suboptimal effector cell frequencies, overt immune exhaustion and/or immune anergy, and survival of diffusely spread tumour cells in different stromal niches. In this review, we discuss how immunomodulatory changes arising from exposure to structured bouts of acute exercise might improve mAb treatment efficacy by augmenting (i) antibody-dependent cellular cytotoxicity, (ii) antibody-dependent cellular phagocytosis, (iii) complement-dependent cytotoxicity, (iv) T-cell cytotoxicity, and (v) direct delivery of cytotoxic agents.
Collapse
Affiliation(s)
| | - Frankie F. Brown
- Department for Health, University of Bath, Bath, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Adam J. Causer
- Department for Health, University of Bath, Bath, United Kingdom
| | - Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | - Rebecca Oliver
- Department for Health, University of Bath, Bath, United Kingdom
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Sally Moore
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James Murray
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
20
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|