1
|
Jiao X, Zhou L, Zhao W, Yuan W, Yang B, Zhang L, Huang W, Long S, Xu J, Shen H, Tao S, Wang C. Significant Cross-Contamination Caused by Cooking Fume Transport between Dwelling Units in Multilayer Buildings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9665-9675. [PMID: 40340370 DOI: 10.1021/acs.est.4c13818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Cross-contamination in multiunit residential buildings is an inevitable but poorly studied issue. We conducted a 2-month monitoring campaign in a multilayer residential building, identifying 53 interunit kitchen exhaust transmission events (∼2 per day), causing enhanced exposure of particulate matters (PM), black carbon (BC), NOx, and CO and volatile organic compounds (VOCs) in both the kitchen and living room. These events resulted in a 40-80% increase in PM deposition in the respiratory systems for occupants in the living room, especially fine particles depositing in the alveolar region. Evidence indicates that these pollutant events originated from cooking fume transport. The geometric mean diameter of kitchen particles decreased from 76 nm during background periods to 62 nm during transport events, consistent with smaller PM from cooking activities. Furthermore, 30 cooking-related VOCs were identified as transport indicators, including hazardous species such as aldehydes. We confirmed that leakage of cooking fume through the shared kitchen exhaust duct led to cross-contamination, which can be effectively mitigated by using exhaust hoods, air cleaners, or opening windows during mealtimes. This research provides the first quantitative assessment of cooking emission transport between dwellings in multilayer housing, highlighting the significant impact of cross-contamination in high-density residential environments.
Collapse
Affiliation(s)
- Xiaoqiao Jiao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li Zhou
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wangchao Zhao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenting Yuan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lifang Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weilin Huang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiqian Long
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiwen Xu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shu Tao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Carbon Neutrality, Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Coastal Atmosphere and Climate of the Greater Bay Area Observation and Research Station of Guangdong Province, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Rahman ML, Portengen L, Blechter B, Breeze CE, Wong JY, Hu W, Downward GS, Zhang Y, Cardenas A, Ning B, Li J, Yang K, Hosgood HD, Silverman DT, Rothman N, Huang Y, Vermeulen R, Lan Q. Epigenome-wide association study of household air pollution exposure in an area with high lung cancer incidence. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.03.25325041. [PMID: 40236422 PMCID: PMC11998846 DOI: 10.1101/2025.04.03.25325041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background Lung cancer incidence among never-smoking women in Xuanwei, China, ranks among the highest worldwide and is largely attributed to household air pollution (HAP) from smoky (bituminous) coal combustion, with early-life exposures possibly playing a critical role. We conducted an epigenome-wide DNA methylation (DNAm) analysis across multiple exposure windows to elucidate molecular mechanisms. Methods Leukocyte DNAm was measured in 106 never-smoking women (23 with repeated measurements). Fuel use was obtained through questionnaires, and extensive personal and environmental monitoring was conducted. Validated exposure models estimated 43 HAP constituents, primarily polycyclic aromatic hydrocarbons (PAHs), across childhood, current, and cumulative exposure windows. Hierarchical clustering derived exposure clusters. We used generalized estimating equations to identify CpG sites associated with HAP exposure and PAH clusters, including 5-methylchrysene, a methylated PAH previously linked to lung cancer. Results We identified several differentially methylated CpG sites, predominantly hypomethylated with HAP exposure. Although some DNAm signatures overlapping with smoking (cg05575921; AHRR) were observed, most changes were distinct. A life-course assessment indicated persistent epigenetic variations across childhood and cumulative exposures, suggesting that early-life exposures may have lasting effects at certain sites (SLC43A2). Within the PAH clusters, 5-methylchrysene appears to be a significant contributor to DNAm variations. Top CpG sites were linked to immune regulation, cell growth and proliferation, and molecular mechanisms of cancer, including lung cancer. Conclusions Our findings provide novel insights into HAP-induced DNAm changes and their potential health effects. Future studies with larger sample sizes, and diverse coal use settings are needed to validate and extend these findings.
Collapse
Affiliation(s)
- Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Charles E. Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Jason Y.Y. Wong
- Laboratory of Genomic Instability and Cardiopulmonary Outcomes, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - George S. Downward
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Yongliang Zhang
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, California, USA
| | - Bou Ning
- Xuanwei Center of Diseases Control, Xuanwei, Yunnan, China
| | - Jihua Li
- Qujing Center for Diseases Control and Prevention, Qujing, Yunnan, China
| | - Kaiyun Yang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - H. Dean Hosgood
- Division of Epidemiology, Albert Einstein College of Medicine, New York, New York, USA
| | - Debra T. Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Yunchao Huang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
3
|
d'Errico A, Peraza S, Weiss I, Martinez W, Monge EA, Wouters IM, Wegman DH, Jakobsson K, Kromhout H. Occupational exposure to respirable and inhalable dust and its components in a Nicaraguan sugarcane plantation. Occup Environ Med 2025; 82:36-43. [PMID: 39971484 PMCID: PMC12015069 DOI: 10.1136/oemed-2024-109604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE To assess personal exposure to respirable and inhalable dust and its components endotoxin, black carbon and crystalline silica among sugarcane workers in Nicaragua. METHODS Individual exposures to respirable (measurements=98) and inhalable (measurements=36) dust were collected in January and March 2020, with the month of March generally being hotter and less humid. Respirable dust and its components black carbon and crystalline silica, as well as inhalable dust and its component endotoxin, were personally measured. Linear mixed models were used to identify the determinants of occupational dust exposure considering different job tasks and meteorological conditions. RESULTS Respirable dust and black carbon concentrations were higher in March among burned cane cutters compared with the other job groups (respirable dust geometric mean (GM)=1.9 mg m-3; black carbon GM=13.7 µg m-3), with considerably lower levels in January (respirable dust GM=0.2 mg m-3; black carbon GM=3.4 µg m-3). Almost all respirable crystalline silica measurements were below the limit of detection, except for four measurements, which ranged from 8 µg m-³ to 15 µg m-³. Seed cutters (GM=3.1 mg m-3) and weeders (GM=2.5 mg m-3) had the highest exposure to inhalable dust, while endotoxin concentrations were higher among seed cutters (GM=100 EU m-3) and burned cane cutters (GM=63 EU m-3) than the other work groups. CONCLUSIONS Overall, exposure levels to the assessed agents varied across work groups, with higher levels observed among burned cane and seed cutters.
Collapse
Affiliation(s)
- Antonio d'Errico
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Sandra Peraza
- La Isla Network, Washington, DC, USA
- Facultad de Quimica y Farmacia, Universidad de El Salvador, San Salvador, El Salvador
| | | | | | - Esteban Arias Monge
- La Isla Network, Washington, DC, USA
- Instituto Tecnologico de Costa Rica, Cartago, Costa Rica
| | - Inge Maria Wouters
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - David H Wegman
- University of Massachusetts Lowell, Lowell, Massachusetts, USA
- La Isla Network, District of Columbia, District of Columbia, USA
| | - Kristina Jakobsson
- La Isla Network, Washington, DC, USA
- Sahlgrenska University Hospital, Goteborg, Sweden
| | - Hans Kromhout
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Li Q, Wang X, Yip BHK, Wong SYS, Yang X. The impact of solid fuel use on major depression and the buffering effect of outdoor time in the UK adults: A 12-year cohort study. J Affect Disord 2025; 368:107-116. [PMID: 39271066 DOI: 10.1016/j.jad.2024.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/17/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND This study aims to investigate age- and gender-specific effects of household solid fuels for heating on major depression and buffering effects of outdoor time in a high-income country. METHODS Data were obtained from the UK Biobank. Participants with complete information on our studied variables and no prior diagnosis of major depression at baseline were included. Cox proportional hazards regression models were used to examine the effects of household solid fuels for heating on major depression. Subgroup analyses were conducted to investigate the buffering effects of outdoor time in summer and winter. Sensitivity analyses were performed to test the robustness of the main findings. RESULTS Of 255,505 participants (50.2 % women), the 12-year cumulative incidence of major depression was 4.4 %. Household solid fuels for heating increased the risk of major depression only in women aged <45 years (HR (95%CI) = 1.30 (1.04, 1.63)). In this group, the solid fuel effect was moderated by outdoor time spending both in summer (HR (95%CI), ≤2 h/day: 1.61 (1.13, 2.28); >2 h/day: 1.13 (0.84, 1.52)) and winter (≤1 h/day: 1.35 (1.01, 1.08); >1 h/day: 1.24 (0.86, 1.77)). LIMITATIONS Self-reported measures might lead to recall bias and some potential confounders, such as ventilation efficiency, were not measured and controlled in data analyses. CONCLUSIONS Younger women are more vulnerable to the impact of domestic air pollution on major depression. Promoting outdoor activities is a cost-effective and efficient approach to mitigating the risk of major depression caused by household solid fuels.
Collapse
Affiliation(s)
- Qian Li
- Centre for Health Behaviours Research, Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Xin Wang
- Centre for Health Behaviours Research, Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Benjamin Hon-Kei Yip
- Centre for Health Behaviours Research, Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Samuel Yeung-Shan Wong
- Centre for Health Behaviours Research, Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| | - Xue Yang
- Centre for Health Behaviours Research, Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Medgyesi DN, Mujtaba MN, Yang Q, Abubakari SW, Lee AG, Porter J, Chillrud SN, Kaali S, Jack DW, Asante KP. Geospatial determinants of maternal and child exposure to fine particulate matter in Kintampo, Ghana: Levels within the household and community, by surrounding building density and near roadways. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:802-813. [PMID: 37798345 PMCID: PMC10995107 DOI: 10.1038/s41370-023-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Personal exposure to fine particulate matter (PM2.5) from household air pollution is well-documented in sub-Saharan Africa, but spatiotemporal patterns of exposure are poorly characterized. OBJECTIVE We used paired GPS and personal PM2.5 data to evaluate changes in exposure across location-time environments (e.g., household and community, during cooking and non-cooking hours), building density and proximity to roadways. METHODS Our study included 259 sessions of geolocated, gravimetrically-calibrated one-minute personal PM2.5 measurements from participants in the GRAPHS Child Lung Function Study. The household vicinity was defined using a 50-meter buffer around participants' homes. Community boundaries were developed using a spatial clustering algorithm applied to an open-source dataset of building footprints in Africa. For each GPS location, we estimated building density (500 m buffer) and proximity to roadways (100 m buffer). We estimated changes in PM2.5 exposure by location (household, community), time of day (morning/evening cooking hours, night), building density, and proximity to roadways using linear mixed effect models. RESULTS Relative to nighttime household exposure, PM2.5 exposure during evening cooking hours was 2.84 (95%CI = 2.70-2.98) and 1.80 (95%CI = 1.54-2.10) times higher in the household and community, respectively. Exposures were elevated in areas with the highest versus lowest quartile of building density (FactorQ1vsQ4 = 1.60, 95%CI = 1.42-1.80). The effect of building density was strongest during evening cooking hours, and influenced levels in both the household and community (31% and 65% relative increase from Q1 to Q4, respectively). Being proximal to a trunk, tertiary or track roadway increased exposure by a factor of 1.16 (95%CI = 1.07-1.25), 1.68 (95%CI = 1.45-1.95) and 1.27 (95%CI = 1.06-1.53), respectively. IMPACT Household air pollution from cooking with solid fuels in sub-Saharan Africa is a major environmental concern for maternal and child health. Our study advances previous knowledge by quantifying the impact of household cooking activities on air pollution levels in the community, and identifying two geographic features, building density and roadways, that contribute to maternal and child daily exposure. Household cooking contributes to higher air pollution levels in the community especially in areas with greater building density. Findings underscore the need for equitable clean household energy transitions that reach entire communities to reduce health risks from household and outdoor air pollution.
Collapse
Affiliation(s)
- Danielle N Medgyesi
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Mohammed Nuhu Mujtaba
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo, North Municipality, Ghana
| | - Qiang Yang
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
- Elsevier Global STM Journals, New York, NY, USA
| | - Sulemana Watara Abubakari
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo, North Municipality, Ghana
| | - Alison G Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremy Porter
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
- Department of Sociology, School of Humanities and Social Sciences, Brooklyn College, Brooklyn, NY, USA
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | - Seyram Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo, North Municipality, Ghana
| | - Darby W Jack
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo, North Municipality, Ghana
| |
Collapse
|
6
|
Chen Z, Cheng X, Wang X, Ni S, Yu Q, Hu J. Identification of core carcinogenic elements based on the age-standardized mortality rate of lung cancer in Xuanwei Formation coal in China. Sci Rep 2024; 14:232. [PMID: 38167547 PMCID: PMC10761687 DOI: 10.1038/s41598-023-49975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, the core carcinogenic elements in Xuanwei Formation coal were identified. Thirty-one samples were collected based on the age-standardized mortality rate (ASMR) of lung cancer; Si, V, Cr, Co, Ni, As, Mo, Cd, Sb, Pb, and rare earth elements and yttrium (REYs) were analyzed and compared; multivariate statistical analyses (CA, PCA, and FDA) were performed; and comprehensive identification was carried out by combining multivariate statistical analyses with toxicology and mineralogy. The final results indicated that (1) the high-concentration Si, Ni, V, Cr, Co, and Cd in coal may have some potential carcinogenic risk. (2) The concentrations of Cr, Ni, As, Mo, Cd, and Pb meet the zoning characteristics of the ASMR, while the Si concentration is not completely consistent. (3) The REY distribution pattern in Longtan Formation coal is lower than that in Xuanwei Formation coal, indicating that the materials of these elements in coal are different. (5) The heatmap divides the sampling sites into two clusters and subtypes in accordance with carcinogenic zoning based on the ASMR. (6) PC1, PC2, and PC3 explain 62.629% of the total variance, identifying Co, Ni, As, Cd, Mo, Cr, and V. (7) Fisher discriminant analysis identifies Ni, Si, Cd, As, and Co based on the discriminant function. (8) Comprehensive identification reveals that Ni is the primary carcinogenic element, followed by Co, Cd, and Si in combination with toxicology. (9) The paragenesis of Si (nanoquartz), Ni, Co, and Cd is an interesting finding. In other words, carcinogenic elements Ni, Co, Cd, and Si and their paragenetic properties should receive more attention.
Collapse
Affiliation(s)
- Zailin Chen
- Engineering Center of Yunnan Education Department for Health Geological Survey and Evaluation, Kunming, 652501, China.
- Yunnan Land and Resources Vocational College, Kunming, 652501, China.
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China.
| | - Xianfeng Cheng
- Engineering Center of Yunnan Education Department for Health Geological Survey and Evaluation, Kunming, 652501, China
- Yunnan Land and Resources Vocational College, Kunming, 652501, China
| | - Xingyu Wang
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China
| | - Shijun Ni
- College of Earth Sciences, Chengdu University of Technology, Chengdu, 610059, China
| | - Qiulian Yu
- Engineering Center of Yunnan Education Department for Health Geological Survey and Evaluation, Kunming, 652501, China
- Yunnan Land and Resources Vocational College, Kunming, 652501, China
| | - Junchun Hu
- Coal Geology Prospecting Institute of Yunnan Province, Kunming, 650218, China
| |
Collapse
|
7
|
Victoria S, Trine L, Hystad P, Roper C. Indoor and Personal PM 2.5 Samples Differ in Chemical Composition and Alter Zebrafish Behavior Based on Primary Fuel Source. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21260-21271. [PMID: 38060427 DOI: 10.1021/acs.est.3c03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Fine particulate matter (PM2.5) exposure has been linked to diverse human health impacts. Little is known about the potential heterogeneous impacts of PM2.5 generated from different indoor fuel sources and how exposure differs between personal and indoor environments. Therefore, we used PM2.5 collected by one stationary sampler in a kitchen and personal samplers (female and male participants), in homes (n = 24) in Kheri, India, that used either biomass or liquified petroleum gas (LPG) as primary fuel sources. PM2.5 samples (pooled by fuel type and monitor placement) were analyzed for oxidative potential and chemical composition, including elements and 125 organic compounds. Zebrafish (Danio rerio) embryos were acutely exposed to varying concentrations of PM2.5 and behavioral analyses were conducted. We found relatively high PM2.5 concentrations (5-15 times above World Health Organization daily exposure guidelines) and varied human health-related chemical composition based on fuel type and monitor placement (up to 15% carcinogenic polycyclic aromatic hydrocarbon composition). Altered biological responses, including changes to mortality, morphology, and behavior, were elicited by exposure to all sample types. These findings reveal that although LPG is generally ranked the least harmful compared to biomass fuels, chemical characteristics and biological impacts were still present, highlighting the need for further research in determining the safety of indoor fuel sources.
Collapse
Affiliation(s)
- Shayla Victoria
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Lisandra Trine
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Courtney Roper
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
8
|
Blechter B, Wong JYY, Hu W, Cawthon R, Downward GS, Portengen L, Zhang Y, Ning B, Rahman ML, Ji BT, Li J, Yang K, Dean Hosgood H, Silverman DT, Huang Y, Rothman N, Vermeulen R, Lan Q. Exposure to smoky coal combustion emissions and leukocyte Alu retroelement copy number. Carcinogenesis 2023; 44:404-410. [PMID: 37119119 PMCID: PMC10414142 DOI: 10.1093/carcin/bgad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 04/28/2023] [Indexed: 04/30/2023] Open
Abstract
Household air pollution (HAP) from indoor combustion of solid fuel is a global health burden that has been linked to multiple diseases including lung cancer. In Xuanwei, China, lung cancer rate for non-smoking women is among the highest in the world and largely attributed to high levels of polycyclic aromatic hydrocarbons (PAHs) that are produced from combustion of smoky (bituminous) coal. Alu retroelements, repetitive mobile DNA sequences that can somatically multiply and promote genomic instability have been associated with risk of lung cancer and diesel engine exhaust exposure. We conducted analyses for 160 non-smoking women in an exposure assessment study in Xuanwei, China with a repeat sample from 49 subjects. Quantitative PCR was used to measure Alu repeat copy number relative to albumin gene copy number (Alu/ALB ratio). Associations between clusters derived from predicted levels of 43 HAP constituents, 5-methylchrysene (5-MC), a PAH previously associated with lung cancer in Xuanwei and was selected a priori for analysis, and Alu repeats were analyzed using generalized estimating equations. A cluster of 31 PAHs reflecting current exposure was associated with increased Alu copy number (β:0.03 per standard deviation change; 95% confidence interval (CI):0.01,0.04; P-value = 2E-04). One compound within this cluster, 5-MC, was also associated with increased Alu copy number (P-value = 0.02). Our findings suggest that exposure to PAHs due to indoor smoky coal combustion may contribute to genomic instability. Additionally, our study provides further support for 5-MC as a prominent carcinogenic component of smoky coal emissions. Further studies are needed to replicate our findings.
Collapse
Affiliation(s)
- Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Richard Cawthon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - George S Downward
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lützen Portengen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Yongliang Zhang
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Bofu Ning
- Xuanwei Center of Diseases Control, Xuanwei, Yunnan, China
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jihua Li
- Quijing Center for Diseases Control and Prevention, Quijing, Yunnan, China
| | - Kaiyun Yang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - H Dean Hosgood
- Division of Epidemiology, Albert Einstein College of Medicine, New York, NY, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yunchao Huang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
9
|
Blechter B, Cardenas A, Shi J, Wong JYY, Hu W, Rahman ML, Breeze C, Downward GS, Portengen L, Zhang Y, Ning B, Ji BT, Cawthon R, Li J, Yang K, Bozack A, Dean Hosgood H, Silverman DT, Huang Y, Rothman N, Vermeulen R, Lan Q. Household air pollution and epigenetic aging in Xuanwei, China. ENVIRONMENT INTERNATIONAL 2023; 178:108041. [PMID: 37354880 PMCID: PMC11812304 DOI: 10.1016/j.envint.2023.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Household air pollution (HAP) from indoor combustion of solid fuel is a global health burden linked to lung cancer. In Xuanwei, China, lung cancer rate for nonsmoking women is among the highest in the world and largely attributed to high levels of polycyclic aromatic hydrocarbons (PAHs) that are produced from combustion of smoky (bituminous) coal used for cooking and heating. Epigenetic age acceleration (EAA), a DNA methylation-based biomarker of aging, has been shown to be highly correlated with biological processes underlying the susceptibility of age-related diseases. We aim to assess the association between HAP exposure and EAA. METHODS We analyzed data from 106 never-smoking women from Xuanwei, China. Information on fuel type was collected using a questionnaire, and validated exposure models were used to predict levels of 43 HAP constituents. Exposure clusters were identified using hierarchical clustering. EAA was derived for five epigenetic clocks defined as the residuals resulting from regressing each clock on chronological age. We used generalized estimating equations to test associations between exposure clusters derived from predicted levels of HAP exposure, ambient 5-methylchrysene (5-MC), a PAH previously found to be associated with risk of lung cancer, and EAA, while accounting for repeated-measurements and confounders. RESULTS We observed an increase in GrimAge EAA for clusters with 31 and 33 PAHs reflecting current (β = 0.77 y per standard deviation (SD) increase, 95 % CI:0.36,1.19) and childhood (β = 0.92 y per SD, 95 % CI:0.40,1.45) exposure, respectively. 5-MC (ng/m3-year) was found to be associated with GrimAge EAA for current (β = 0.15 y, 95 % CI:0.05,0.25) and childhood (β = 0.30 y, 95 % CI:0.13,0.47) exposure. CONCLUSIONS Our findings suggest that exposure to PAHs from indoor smoky coal combustion, particularly 5-MC, is associated with GrimAge EAA, a biomarker of mortality.
Collapse
Affiliation(s)
- Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Junming Shi
- Department of Biostatistics, UC Berkeley School of Public Health, Berkeley, CA, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Charles Breeze
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - George S Downward
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Yongliang Zhang
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Bofu Ning
- Xuanwei Center of Diseases Control, Xuanwei, Yunnan, China
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Richard Cawthon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jihua Li
- Quijing Center for Diseases Control and Prevention, Quijing, Yunnan, China
| | - Kaiyun Yang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Anne Bozack
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - H Dean Hosgood
- Division of Epidemiology, Albert Einstein College of Medicine, New York, NY, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yunchao Huang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Roel Vermeulen
- Department of Biostatistics, UC Berkeley School of Public Health, Berkeley, CA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
10
|
Portengen L, Downward G, Bassig BA, Blechter B, Hu W, Wong JYY, Ning B, Rahman ML, Ji BT, Li J, Yang K, Hosgood HD, Silverman DT, Rothman N, Huang Y, Vermeulen R, Lan Q. Methylated polycyclic aromatic hydrocarbons from household coal use across the life course and risk of lung cancer in a large cohort of 42,420 subjects in Xuanwei, China. ENVIRONMENT INTERNATIONAL 2023; 173:107870. [PMID: 36921559 DOI: 10.1016/j.envint.2023.107870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND We previously showed that exposure to 5-methylchrysene (5MC) and other methylated polycyclic aromatic hydrocarbons (PAHs) best explains lung cancer risks in a case-control study among non-smoking women using smoky coal in China. Time-related factors (e.g., age at exposure) and non-linear relations were not explored. OBJECTIVE We investigated the relation between coal-derived air pollutants and lung cancer mortality using data from a large retrospective cohort. METHODS Participants were smoky (bituminous) or smokeless (anthracite) coal users from a cohort of 42,420 subjects from four communes in XuanWei. Follow-up was from 1976 to 2011, during which 4,827 deaths from lung-cancer occurred. Exposures were predicted for 43 different pollutants. Exposure clusters were identified using hierarchical clustering. Cox regression was used to estimate exposure-response relations for 5MC, while effect modification by age at exposure was investigated for cluster prototypes. A Bayesian penalized multi-pollutant model was fitted on a nested case-control sample, with more restricted models fitted to investigate non-linear exposure-response relations. RESULTS We confirmed the strong exposure-response relation for 5MC (Hazard Ratio [95% Confidence Interval] = 2.5 [2.4, 2.6] per standard-deviation (SD)). We identified four pollutant clusters, with all but two PAHs in a single cluster. Exposure to PAHs in the large cluster was associated with a higher lung cancer mortality rate (HR [95%CI] = 2.4 [2.2, 2.6] per SD), while exposure accrued before 18 years of age appeared more important than adulthood exposures. Results from the multi-pollutant model identified anthanthrene (ANT) and benzo(a)chrysene (BaC) as risk factors. 5MC remained strongly associated with lung cancer in models that included ANT and BaC and also benzo(a)pyrene (BaP). CONCLUSION We confirmed the link between PAH exposures and lung cancer in smoky coal users and found exposures before age 18 to be especially important. We found some evidence for the carcinogen 5MC and non-carcinogens ANT and BaC.
Collapse
Affiliation(s)
- Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands.
| | - George Downward
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands
| | - Bryan A Bassig
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Bofu Ning
- Xuanwei Center for Disease Control and Prevention, Xuanwei, Qujing, Yunnan, China
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jihua Li
- Qujing Center for Diseases Control and Prevention, Sanjiangdadao, Qujing, Yunnan, China
| | - Kaiyun Yang
- Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - H Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yunchao Huang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Utrecht, the Netherlands
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
11
|
Baeza_Romero MT, Dudzinska MR, Amouei Torkmahalleh M, Barros N, Coggins AM, Ruzgar DG, Kildsgaard I, Naseri M, Rong L, Saffell J, Scutaru AM, Staszowska A. A review of critical residential buildings parameters and activities when investigating indoor air quality and pollutants. INDOOR AIR 2022; 32:e13144. [PMID: 36437669 PMCID: PMC9828800 DOI: 10.1111/ina.13144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Indoor air in residential dwellings can contain a variety of chemicals, sometimes present at concentrations or in combinations which can have a negative impact on human health. Indoor Air Quality (IAQ) surveys are often required to characterize human exposure or to investigate IAQ concerns and complaints. Such surveys should include sufficient contextual information to elucidate sources, pathways, and the magnitude of exposures. The aim of this review was to investigate and describe the parameters that affect IAQ in residential dwellings: building location, layout, and ventilation, finishing materials, occupant activities, and occupant demography. About 180 peer-reviewed articles, published from 01/2013 to 09/2021 (plus some important earlier publications), were reviewed. The importance of the building parameters largely depends on the study objectives and whether the focus is on a specific pollutant or to assess health risk. When considering classical pollutants such as particulate matter (PM) or volatile organic compounds (VOCs), the building parameters can have a significant impact on IAQ, and detailed information of these parameters needs to be reported in each study. Research gaps and suggestions for the future studies together with recommendation of where measurements should be done are also provided.
Collapse
Affiliation(s)
- María Teresa Baeza_Romero
- Universidad de Castilla‐La Mancha. Dpto. Química‐Física, Escuela de Ingeniería Industrial y AeroespacialToledoSpain
| | | | - Mehdi Amouei Torkmahalleh
- Division of Environmental and Occupational Health Sciences, School of Public HealthUniversity of Illinois ChicagoChicagoIllinoisUSA
- Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Nelson Barros
- UFP Energy, Environment and Health Research Unit (FP‐ENAS)University Fernando PessoaPortoPortugal
| | - Ann Marie Coggins
- School of Natural Sciences & Ryan InstituteNational University of IrelandGalwayIreland
| | - Duygu Gazioglu Ruzgar
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Metallurgical and Materials Engineering DepartmentBursa Technical UniversityBursaTurkey
| | | | - Motahareh Naseri
- Department of Chemical and Materials Engineering, School of Engineering and Digital SciencesNazarbayev UniversityAstanaKazakhstan
| | - Li Rong
- Department of Civil and Architectural EngineeringAarhus UniversityAarhus CDenmark
| | | | | | - Amelia Staszowska
- Faculty of Environmental EngineeringLublin University of TechnologyLublinPoland
| |
Collapse
|
12
|
Wang Y, Shupler M, Birch A, Chu YL, Jeronimo M, Rangarajan S, Mustaha M, Heenan L, Seron P, Lanas F, Salazar L, Saavedra N, Oliveros MJ, Lopez-Jaramillo P, Camacho PA, Otero J, Perez-Mayorga M, Yeates K, West N, Ncube T, Ncube B, Chifamba J, Yusuf R, Khan A, Liu Z, Bo H, Wei L, Tse LA, Mohan D, Kumar P, Gupta R, Mohan I, Jayachitra KG, Mony PK, Rammohan K, Nair S, Lakshmi PVM, Sagar V, Khawaja R, Iqbal R, Kazmi K, Yusuf S, Brauer M, Hystad P. Measuring and predicting personal and household Black Carbon levels from 88 communities in eight countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151849. [PMID: 34822894 DOI: 10.1016/j.scitotenv.2021.151849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Black Carbon (BC) is an important component of household air pollution (HAP) in low- and middle- income countries (LMICs), but levels and drivers of exposure are poorly understood. As part of the Prospective Urban and Rural Epidemiological (PURE) study, we analyzed 48-hour BC measurements for 1187 individual and 2242 household samples from 88 communities in 8 LMICs (Bangladesh, Chile, China, Colombia, India, Pakistan, Tanzania, and Zimbabwe). Light absorbance (10-5 m-1) of collected PM2.5 filters, a proxy for BC concentrations, was calculated via an image-based reflectance method. Surveys of household/personal characteristics and behaviors were collected after monitoring. The geometric mean (GM) of personal and household BC measures was 2.4 (3.3) and 3.5 (3.9)·10-5 m-1, respectively. The correlation between BC and PM2.5 was r = 0.76 for personal and r = 0.82 for household measures. A gradient of increasing BC concentrations was observed for cooking fuels: BC increased 53% (95%CI: 30, 79) for coal, 142% (95%CI: 117, 169) for wood, and 190% (95%CI: 149, 238) for other biomass, compared to gas. Each hour of cooking was associated with an increase in household (5%, 95%CI: 3, 7) and personal (5%, 95%CI: 2, 8) BC; having a window in the kitchen was associated with a decrease in household (-38%, 95%CI: -45, -30) and personal (-31%, 95%CI: -44, -15) BC; and cooking on a mud stove, compared to a clean stove, was associated with an increase in household (125%, 95%CI: 96, 160) and personal (117%, 95%CI: 71, 117) BC. Male participants only had slightly lower personal BC (-0.6%, 95%CI: -1, 0.0) compared to females. In multivariate models, we were able to explain 46-60% of household BC variation and 33-54% of personal BC variation. These data and models provide new information on exposure to BC in LMICs, which can be incorporated into future exposure assessments, health research, and policy surrounding HAP and BC.
Collapse
Affiliation(s)
- Ying Wang
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Matthew Shupler
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, United Kingdom
| | - Aaron Birch
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yen Li Chu
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew Jeronimo
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sumathy Rangarajan
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Maha Mustaha
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Laura Heenan
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | - Paul A Camacho
- Fundación Oftalmológica de Santander (FOSCAL), Floridablanca, Colombia
| | - Johnna Otero
- Fundación Oftalmológica de Santander (FOSCAL), Floridablanca, Colombia
| | - Maritza Perez-Mayorga
- Facultad de Medicina Universidad Militar Nueva Granada and Clinica de Marly, Bogota, Colombia
| | - Karen Yeates
- Pamoja Tunaweza Research Centre, Moshi, Tanzania; Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Nicola West
- Pamoja Tunaweza Research Centre, Moshi, Tanzania
| | - Tatenda Ncube
- Department of Biomedical Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Brian Ncube
- Department of Biomedical Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Jephat Chifamba
- Department of Biomedical Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Rita Yusuf
- School of Life Sciences, Independent University, Dhaka, Bangladesh
| | - Afreen Khan
- School of Life Sciences, Independent University, Dhaka, Bangladesh
| | - Zhiguang Liu
- Beijing An Zhen Hospital of the Capital University of Medical Sciences, China
| | - Hu Bo
- Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, China
| | - Li Wei
- Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, China
| | - L A Tse
- Jockey Club School of Public health and Primary Care, the Chinese University of Hong Kong, HKSAR, China
| | - Deepa Mohan
- Madras Diabetes Research Foundation, Chennai, India
| | | | - Rajeev Gupta
- Eternal Heart Care Centre & Research Institute, Jaipur, India
| | - Indu Mohan
- Mahatma Gandhi University of Medical Sciences and Technology, Jaipur, India
| | - K G Jayachitra
- St. John's Medical College & Research Institute, Bangalore, India
| | - Prem K Mony
- St. John's Medical College & Research Institute, Bangalore, India
| | - Kamala Rammohan
- Health Action By People, Government Medical College, Trivandrum, India
| | - Sanjeev Nair
- Health Action By People, Government Medical College, Trivandrum, India
| | - P V M Lakshmi
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivek Sagar
- Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rehman Khawaja
- Department of Community Health Science, Aga Khan University Hospital, Karachi, Pakistan
| | - Romaina Iqbal
- Department of Community Health Science, Aga Khan University Hospital, Karachi, Pakistan
| | - Khawar Kazmi
- Department of Community Health Science, Aga Khan University Hospital, Karachi, Pakistan
| | - Salim Yusuf
- Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
13
|
Zhang Y, Meliefste K, Hu W, Li J, Xu J, Ning B, Yang K, Chen Y, Liu D, Wong J, Rahman M, Rothman N, Huang Y, Cassee F, Vermeulen R, Lan Q, Downward GS. Household air pollution from, and fuel efficiency of, different coal types following local cooking practices in Xuanwei, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117949. [PMID: 34438166 DOI: 10.1016/j.envpol.2021.117949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The domestic combustion of smoky (bituminous) coal in the Chinese counties of Xuanwei and Fuyuan, are responsible for some of the highest rates of lung cancer in the world. Cancer rates vary between coal producing regions (deposits) in the area, with coals from Laibin exhibiting particularly high risks and smokeless (anthracite) coal exhibiting lower risks. However, little information is available on the specific burning characteristics of coals from throughout the area. We conducted an extensive controlled burning experiment using coal from multiple deposits in either a traditional firepit or ventilated stove, accompanied by a detailed examination of time-weighted and real-time size-aggregated particle concentrations. Smoky coal caused higher particle concentrations of all sizes than smokeless coal, with variations observed by geological source. Virtually all particle emissions were in the PM2.5 fraction (98% - mass based), and 75% and 46% were in the PM1 and PM0.3 fraction respectively. Real-time concentrations of PM1 and PM0.1 peaked after coal was added and declined afterwards. Ventilation reduced particle concentrations by up to 15-fold and increased the coal burning rate by 1.9-fold. These findings may provide valuable insight for reducing exposure and adverse health effects associated with domestic coal combustion.
Collapse
Affiliation(s)
- Yongliang Zhang
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands.
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jihua Li
- Xuanwei Center of Disease Control, No.6, Longbao Rd, Xuanwei, Qujing, Yunnan, 655400, PR China
| | - Jun Xu
- Department of Community Medicine, School of Public Health, The University of Hongkong, Hong Kong
| | - Baofu Ning
- Xuanwei Center of Disease Control, No.6, Longbao Rd, Xuanwei, Qujing, Yunnan, 655400, PR China
| | - Kaiyun Yang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, PR China
| | - Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, PR China
| | - Dingyu Liu
- National Institute for Public Health and the Environment (RIVM), the Netherlands
| | - Jason Wong
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mohammad Rahman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yunchao Huang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, PR China
| | - Flemming Cassee
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands; National Institute for Public Health and the Environment (RIVM), the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - George S Downward
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
14
|
Saenz JL. Solid cooking fuel use and cognitive decline among older Mexican adults. INDOOR AIR 2021; 31:1522-1532. [PMID: 33896051 PMCID: PMC8380681 DOI: 10.1111/ina.12844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 05/02/2023]
Abstract
Studies of air pollution and cognition often rely on measures from outdoor environments. Many individuals in low- and middle-income countries are exposed to indoor air pollution from combustion of solid cooking fuels. Little is known about how solid cooking fuel use affects cognitive decline over time. This study uses data from the 2012, 2015, and 2018 Mexican Health and Aging Study (n = 14 245, age 50+) to assess how use of wood or coal for cooking fuel affects cognition of older adults relative to use of gas. It uses latent change score modeling to determine how using solid cooking fuel affected performance in Verbal Learning, Verbal Recall, Visual Scanning, and Verbal Fluency. Solid cooking fuel was used by 17% of the full sample but was more common in rural areas. Solid fuel users also had lower socioeconomic status. Compared to those using gas, solid fuel users had lower baseline scores and faster decline in Verbal Learning (β = -0.18, p < 0.05), Visual Scanning (β = -1.00, p < 0.001), and Verbal Fluency (β = -0.33, p < 0.001). Indoor air pollution from solid cooking fuels may represent a modifiable risk factor for cognitive decline. Policy should focus on facilitating access to clean cooking fuels.
Collapse
Affiliation(s)
- Joseph L. Saenz
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA
| |
Collapse
|
15
|
Lim S, Barratt B, Holliday L, Griffiths CJ, Mudway IS. Characterising professional drivers' exposure to traffic-related air pollution: Evidence for reduction strategies from in-vehicle personal exposure monitoring. ENVIRONMENT INTERNATIONAL 2021; 153:106532. [PMID: 33812042 DOI: 10.1016/j.envint.2021.106532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Professional drivers working in congested urban areas are required to work near harmful traffic related pollutants for extended periods, representing a significant, but understudied occupational risk. This study collected personal black carbon (BC) exposures for 141 drivers across seven sectors in London. The aim of the study was to assess the magnitude and the primary determinants of their exposure, leading to the formulation of targeted exposure reduction strategies for the occupation. Each participant's personal BC exposures were continuously measured using real-time monitors for 96 h, incorporating four shifts per participant. 'At work' BC exposures (3.1 ± 3.5 µg/m3) were 2.6 times higher compared to when 'not at work' (1.2 ± 0.7 µg/m3). Workers spent 19% of their time 'at work driving', however this activity contributed 36% of total BC exposure, highlighting the disproportionate effect driving had on their daily exposure. Taxi drivers experienced the highest BC exposures due to the time they spent working in congested central London, while emergency services had the lowest. Spikes in exposure were observed while driving and were at times greater than 100 µg/m3. The most significant determinants of drivers' exposures were driving in tunnels, congestion, location, day of week and time of shift. Driving with closed windows significantly reduced exposures and is a simple behaviour change drivers could implement. Our results highlight strategies by which employers and local policy makers can reduce professional drivers' exposure to traffic-related air pollution.
Collapse
Affiliation(s)
- Shanon Lim
- MRC Centre for Environment and Health, Imperial College London, SW7 2AZ London, UK.
| | - Benjamin Barratt
- MRC Centre for Environment and Health, Imperial College London, SW7 2AZ London, UK; NIHR Environmental Exposure and Health HPRU, Imperial College London, UK
| | - Lois Holliday
- Institute of Population Health Sciences, Asthma UK Centre for Applied Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Chris J Griffiths
- Institute of Population Health Sciences, Asthma UK Centre for Applied Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Ian S Mudway
- MRC Centre for Environment and Health, Imperial College London, SW7 2AZ London, UK; MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK; NIHR Environmental Exposure and Health HPRU, Imperial College London, UK
| |
Collapse
|
16
|
Characterization of outdoor air pollution from solid fuel combustion in Xuanwei and Fuyuan, a rural region of China. Sci Rep 2020; 10:11335. [PMID: 32647370 PMCID: PMC7347641 DOI: 10.1038/s41598-020-68229-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/16/2020] [Indexed: 11/23/2022] Open
Abstract
Outdoor air pollution is a growing public health concern, particularly in urban settings. However, there are limited epidemiological data on outdoor air pollution in rural areas with substantial levels of air pollution attributed to solid fuel burning for household cooking and heating. Xuanwei and Fuyuan are rural counties in China where the domestic combustion of locally sourced bituminous (“smoky”) coal has been associated with the highest lung cancer rates in China. We previously assessed indoor and personal air pollution exposures in this area; however, the influence of indoor coal combustion and household ventilation on outdoor air pollution has not been assessed. Therefore, we measured outdoor fine particulate matter (PM2.5), species of polycyclic aromatic hydrocarbons (PAHs) including naphthalene (NAP) and the known carcinogen benzo(a)pyrene (BaP), sulfur dioxide (SO2), and nitrogen dioxide (NO2) over two consecutive 24-h sampling periods in 29 villages. Just over half of the villages were revisited two to nine months after the initial sampling period to repeat all measurements. The overall geometric mean (GM) of outdoor PM2.5, BaP, NAP, and NO2 were 45.3 µg/m3, 9.7 ng/m3, 707.7 ng/m3, and 91.5 µg/m3, respectively. Using linear mixed effects models, we found that burning smoky coal was associated with higher outdoor BaP concentrations [GM ratio (GMR) = 2.79] and lower outdoor SO2 detection rates (GMR = 0.43), compared to areas burning smokeless coal. Areas with predominantly ventilated stoves (> 50% of stoves) had higher outdoor BaP (GMR = 1.49) compared to areas with fewer ventilated stoves. These results show that outdoor air pollution in a rural region of China was associated with the type of coal used for cooking and heating indoors and the presence of stove ventilation. Our findings suggest that efforts of household stove improvement to reduce indoor air pollution have resulted in higher outdoor air pollution levels. Further reducing adverse health effects in rural villages from household coal combustion will require the use of cleaner fuel types.
Collapse
|
17
|
Pratiti R, Vadala D, Kalynych Z, Sud P. Health effects of household air pollution related to biomass cook stoves in resource limited countries and its mitigation by improved cookstoves. ENVIRONMENTAL RESEARCH 2020; 186:109574. [PMID: 32668541 DOI: 10.1016/j.envres.2020.109574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Household air pollution (HAP) related to cooking is associated with significant global morbidity and mortality. An estimated three billion people worldwide are exposed to cooking related HAP caused by solid fuel combustion. This exposure is highest for the vulnerable population of women and children resulting in significant cumulative health effects. METHODS A literature review was conducted for health effects of household air pollution related to biomass cookstoves in resource limited countries and to evaluate the effect of improved cookstoves on these health effects. We searched PubMed, Embase and Cochrane Library. We conducted searches in January 2018 with a repeat in February 2020. We included only studies conducted in resource limited countries, published in English, irrespective of publication year and studies that examined the health effects of HAP and/or studied the effects of improved cookstove (IC). Two authors independently screened journal article titles, abstracts and full-text articles to identify those that included the following search term: biomass cookstoves and health risks. We also assessed the limitations of IC with barriers to their uptake. RESULTS Health effects associated with HAP mostly include increased blood pressure (BP), dyspnea, childhood pneumonia, lung cancer, low birthweight and cardiovascular diseases. Being a global problem with divergent environmental factors including wide variety of fuel used, housing condition, foods prepared, climatic condition and social factors; most solutions though efficient seems inadequate. Improved cookstove (IC) mitigates emissions and improves short term health, though few randomized long-term studies could substantiate its long-standing continuance and health benefits. CONCLUSION There is ample data about the health effects of HAP, with some benefit with IC intervention for elevated blood pressure, dyspnea symptoms, mutagenicity and cardiovascular diseases. IC does not have any benefit in pregnancy outcomes or children health.
Collapse
Affiliation(s)
- Rebecca Pratiti
- McLaren HealthCare, G-3245 Beecher Rd, Flint, MI, 48532, USA.
| | - David Vadala
- McLaren HealthCare, G-3245 Beecher Rd, Flint, MI, 48532, USA
| | - Zirka Kalynych
- McLaren HealthCare, G-3245 Beecher Rd, Flint, MI, 48532, USA
| | - Parul Sud
- McLaren HealthCare, G-3245 Beecher Rd, Flint, MI, 48532, USA
| |
Collapse
|
18
|
Zhou H, Lin J, Shen Y, Deng F, Gao Y, Liu Y, Dong H, Zhang Y, Sun Q, Fang J, Tang S, Wang Y, Du Y, Cui L, Ruan S, Kong F, Liu Z, Li T. Personal black carbon exposure and its determinants among elderly adults in urban China. ENVIRONMENT INTERNATIONAL 2020; 138:105607. [PMID: 32142915 DOI: 10.1016/j.envint.2020.105607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 05/10/2023]
Abstract
Personal exposure to air pollution is affected by its concentration in the microenvironment and individual time-activity patterns. To investigate personal black carbon (BC) exposure levels and identify their potential determinants, we conducted a panel study among 67 elderly residents aged 60-69 years in Jinan, China. Personal BC exposure was measured using portable real-time monitors, while corresponding ambient BC concentrations and meteorological conditions were also collected from the local central site. Time-activity and household characteristics were recorded. A linear mixed-effects model was used to identify potential determinants of personal BC exposure. The daily average personal BC exposure concentration was 4.1 ± 2.0 μg/m3 (±standard deviation, SD), which was significantly lower than the ambient concentration (4.6 ± 2.5 μg/m3) (p < 0.001). Strong correlation (Spearman's r = 0.63, p < 0.001) was found between personal and ambient BC concentrations. The fixed-site monitoring ambient concentration cannot fully reflect the actual personal exposure concentration. Ambient BC concentration, ambient temperature, relative humidity, education level and air purifier use were significant determinants of personal BC exposure. Our findings highlight the need for detailed assessment of personal exposure on health risk assessment of BC and also help develop strategies for targeted risk reduction.
Collapse
Affiliation(s)
- Huichan Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jingjing Lin
- Shandong Provincial Eco-environmental Monitoring Center, Jinan, China
| | - Yu Shen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Fuchang Deng
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; College of Biotechnology, Southwest University, Chongqing, China
| | - Ying Gao
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Liu
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haoran Dong
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingjian Zhang
- Jinan Center for Disease Control and Prevention, Jinan, China
| | - Qinghua Sun
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianlong Fang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwen Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanjun Du
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liangliang Cui
- Jinan Center for Disease Control and Prevention, Jinan, China
| | - Shiman Ruan
- Jinan Center for Disease Control and Prevention, Jinan, China
| | - Fanling Kong
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Zhaorong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Tiantian Li
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
19
|
Sharma D, Jain S. Reduction in black carbon concentration and its exposure in rural settings of Northern India: An intervention analysis. CHEMOSPHERE 2020; 247:125838. [PMID: 31945721 DOI: 10.1016/j.chemosphere.2020.125838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
The present study estimated the concentration of black carbon (BC10 and BC2.5) during cooking hours in three types of kitchen in ten households and two improved cookstoves (ICS) tested against traditional mud cookstoves (TCS) in the real field conditions. The study also used a community-engaged approach to involve the local public regarding the benefits of intervention. The results clearly revealed that personal BC concentration was highest in an enclosed kitchen (83 μg/m3) while using TCS compared to a semi-enclosed (25 μg/m3) and open kitchens (16 μg/m3), respectively. The results showed that deployment of ICS would help in reduction in personal BC concentration in all the households ranged from 36 to 84% and 33-89% in BC10 and BC2.5, respectively. The study measured the personal dose of BC concentration for women of all the selected households. The reduction in the exposure dose for personal BC10 and BC2.5 was 69% and 59%, respectively. The results showed that BC concentration during cooking greatly varies with time-activity pattern of users and which in turn affects the exposure levels of the participants. Thus, it is imperative to measure the exact time users spend near to the emission source to get actual exposure inhalation concentration. The results of the study also shared with the local communities to build their capacity for better understanding about the benefits of advanced cooking technologies, household design to improve the ventilation conditions in the kitchen areas and health benefits in terms of reduction in exposure levels especially for vulnerable group like women and children.
Collapse
Affiliation(s)
- Deepti Sharma
- Department of Energy and Environment, TERI School of Advanced Studies (earlier TERI University), Delhi, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Suresh Jain
- Department of Civil & Environmental Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh, 517 506, India.
| |
Collapse
|
20
|
Seltenrich N. Expanded View of PAHs: Identifying Especially Harmful Constituents of Bituminous Coal Smoke. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:44001. [PMID: 32298151 PMCID: PMC7228098 DOI: 10.1289/ehp6343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 06/11/2023]
|
21
|
Barn P, Gombojav E, Ochir C, Boldbaatar B, Beejin B, Naidan G, Galsuren J, Legtseg B, Byambaa T, Hutcheon JA, Janes C, Janssen PA, Lanphear BP, McCandless LC, Takaro TK, Venners SA, Webster GM, Palmer CD, Parsons PJ, Allen RW. Coal smoke, gestational cadmium exposure, and fetal growth. ENVIRONMENTAL RESEARCH 2019; 179:108830. [PMID: 31678728 DOI: 10.1016/j.envres.2019.108830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gestational cadmium exposure may impair fetal growth. Coal smoke has largely been unexplored as a source of cadmium exposure. We investigated the relationship between gestational cadmium exposure and fetal growth, and assessed coal smoke as a potential source of airborne cadmium, among non-smoking pregnant women in Ulaanbaatar, Mongolia, where coal combustion in home heating stoves is a major source of outdoor and indoor air pollution. METHODS This observational study was nested within the Ulaanbaatar Gestation and Air Pollution Research (UGAAR) study, a randomized controlled trial of portable high efficiency particulate air (HEPA) filter air cleaner use during pregnancy, fetal growth, and early childhood development. We measured third trimester blood cadmium concentrations in 374 out of 465 participants who had a live birth. We used multiple linear and logistic regression to assess the relationships between log2-transformed maternal blood cadmium concentrations and birth weight, length, head circumference, ponderal index, low birth weight, small for gestational age, and preterm birth in crude and adjusted models. We also evaluated the relationships between log2-transformed blood cadmium concentrations and the density of coal-burning stoves within 5000 m of each participant's apartment as a proxy of coal smoke emissions from home heating stoves. RESULTS The median (25th,75th percentile) blood cadmium concentration was 0.20 (0.15, 0.29) μg/L. A doubling of blood cadmium was associated with a 95 g (95% CI: 34, 155 g) reduction in birth weight in adjusted models. An interquartile range increase in coal stove density (from 3.4 to 4.9 gers/hectare) surrounding participants' apartments was associated with a 12.2% (95% CI: 0.3, 25.6%) increase in blood cadmium concentrations. CONCLUSIONS Gestational cadmium exposure was associated with reduced birth weight. In settings where coal is a widely used fuel, cadmium may play a role in the putative association between air pollution and impaired fetal growth.
Collapse
Affiliation(s)
- Prabjit Barn
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Enkhjargal Gombojav
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Chimedsuren Ochir
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Buyantushig Boldbaatar
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Bolor Beejin
- Ministry of Health of Mongolia, Olympic Street-2, Government Building VIII, Sukhbaatar District, Ulaanbaatar, Mongolia
| | - Gerel Naidan
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Jargalsaikhan Galsuren
- School of Public Health, Mongolian National University of Medical Sciences, Zorig Street, Ulaanbaatar, 14210, Mongolia
| | - Bayarkhuu Legtseg
- Sukhbaatar District Health Center, 11 Horoo, Tsagdaagiin Gudamj, Sukhbaatar District, Ulaanbaatar, Mongolia
| | - Tsogtbaatar Byambaa
- Ministry of Health of Mongolia, Olympic Street-2, Government Building VIII, Sukhbaatar District, Ulaanbaatar, Mongolia
| | - Jennifer A Hutcheon
- Faculty of Medicine, Department of Obstetrics & Gynaecology, University of British Columbia, 4500 Oak Street, Vancouver, V6H 2N1, Canada
| | - Craig Janes
- School of Public Health and Health Systems, University of Waterloo, 200 University Avenue West, Waterloo, N2L 3G1, Canada
| | - Patricia A Janssen
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, V6T 1Z3, Canada
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Lawrence C McCandless
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Glenys M Webster
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada
| | - Christopher D Palmer
- New York State Department of Health, Wadsworth Center, Albany, NY, PO Box 509, 12201, USA; School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY, 12144, USA
| | - Patrick J Parsons
- New York State Department of Health, Wadsworth Center, Albany, NY, PO Box 509, 12201, USA; School of Public Health, University at Albany, State University of New York, One University Place, Rensselaer, NY, 12144, USA
| | - Ryan W Allen
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, V5A 1S6, Canada.
| |
Collapse
|
22
|
Curto A, Donaire-Gonzalez D, Manaca MN, González R, Sacoor C, Rivas I, Gascon M, Wellenius GA, Querol X, Sunyer J, Macete E, Menéndez C, Tonne C. Predictors of personal exposure to black carbon among women in southern semi-rural Mozambique. ENVIRONMENT INTERNATIONAL 2019; 131:104962. [PMID: 31301586 DOI: 10.1016/j.envint.2019.104962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/06/2019] [Accepted: 06/23/2019] [Indexed: 05/22/2023]
Abstract
Sub-Saharan Africa (SSA) has the highest proportion of people using unclean fuels for household energy, which can result in products of incomplete combustion that are damaging for health. Black carbon (BC) is a useful marker of inefficient combustion-related particles; however, ambient air quality data and temporal patterns of personal exposure to BC in SSA are scarce. We measured ambient elemental carbon (EC), comparable to BC, and personal exposure to BC in women of childbearing age from a semi-rural area of southern Mozambique. We measured ambient EC over one year (2014-2015) using a high-volume sampler and an off-line thermo-optical-transmission method. We simultaneously measured 5-min resolved 24-h personal BC using a portable MicroAeth (AE51) in 202 women. We used backwards stepwise linear regression to identify predictors of log-transformed 24-h mean and peak (90th percentile) personal BC exposure. We analyzed data from 187 non-smoking women aged 16-46 years. While daily mean ambient EC reached moderate levels (0.9 μg/m3, Standard Deviation, SD: 0.6 μg/m3), daily mean personal BC reached high levels (15 μg/m3, SD: 19 μg/m3). Daily patterns of personal exposure revealed a peak between 6 and 7 pm (>35 μg/m3), attributable to kerosene-based lighting. Key determinants of mean and peak personal exposure to BC were lighting source, kitchen type, ambient EC levels, and temperature. This study highlights the important contribution of lighting sources to personal exposure to combustion particles in populations that lack access to clean household energy.
Collapse
Affiliation(s)
- Ariadna Curto
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - David Donaire-Gonzalez
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology (EEPI), Utrecht University, Utrecht, the Netherlands; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Maria N Manaca
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Raquel González
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique; ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Charfudin Sacoor
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Ioar Rivas
- Institute for Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain; MRC-PHE Centre for Environment & Health, Environmental Research Group, King's College London, London, UK
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Gregory A Wellenius
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Xavier Querol
- Institute for Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Eusébio Macete
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Clara Menéndez
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain; Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique; ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Cathryn Tonne
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
23
|
Vermeulen R, Downward GS, Zhang J, Hu W, Portengen L, Bassig BA, Hammond SK, Wong JYY, Li J, Reiss B, He J, Tian L, Yang K, Seow WJ, Xu J, Anderson K, Ji BT, Silverman D, Chanock S, Huang Y, Rothman N, Lan Q. Constituents of Household Air Pollution and Risk of Lung Cancer among Never-Smoking Women in Xuanwei and Fuyuan, China. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:97001. [PMID: 31487206 PMCID: PMC6792381 DOI: 10.1289/ehp4913] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Lung cancer rates among never-smoking women in Xuanwei and Fuyuan in China are among the highest in the world and have been attributed to the domestic use of smoky (bituminous) coal for heating and cooking. However, the key components of coal that drive lung cancer risk have not been identified. OBJECTIVES We aimed to investigate the relationship between lifelong exposure to the constituents of smoky coal (and other fuel types) and lung cancer. METHODS Using a population-based case-control study of lung cancer among 1,015 never-smoking female cases and 485 controls, we examined the association between exposure to 43 household air pollutants and lung cancer. Pollutant predictions were derived from a comprehensive exposure assessment study, which included methylated polycyclic aromatic hydrocarbons (PAHs), which have never been directly evaluated in an epidemiological study of any cancer. Hierarchical clustering and penalized regression were applied in order to address high colinearity in exposure variables. RESULTS The strongest association with lung cancer was for a cluster of 25 PAHs [odds ratio (OR): 2.21; 95% confidence interval (CI): 1.67, 2.87 per 1 standard deviation (SD) change], within which 5-methylchrysene (5-MC), a mutagenic and carcinogenic PAH, had the highest individual observed OR (5.42; 95% CI: 0.94, 27.5). A positive association with nitrogen dioxide ([Formula: see text]) was also observed (OR: 2.06; 95% CI: 1.19, 3.49). By contrast, neither benzo(a)pyrene (BaP) nor fine particulate matter with aerodynamic diameter [Formula: see text] ([Formula: see text]) were associated with lung cancer in the multipollutant models. CONCLUSIONS To our knowledge, this is the first study to comprehensively evaluate the association between lung cancer and household air pollution (HAP) constituents estimated over the entire life course. Given the global ubiquity of coal use domestically for indoor cooking and heating and commercially for electric power generation, our study suggests that more extensive monitoring of coal combustion products, including methylated PAHs, may be warranted to more accurately assess health risks and develop prevention strategies from this exposure. https://doi.org/10.1289/EHP4913.
Collapse
Affiliation(s)
- Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - George S Downward
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Jinming Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, Netherlands
| | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - S Katharine Hammond
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, California, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Jihua Li
- Qujing Center for Diseases Control and Prevention, Qujing, Yunnan, China
| | - Boris Reiss
- Department of Community, Environment & Policy, Mel & Enid Zuckerman College of Public Health, University of Arizona, Arizona, USA
| | - Jun He
- Qujing Center for Diseases Control and Prevention, Qujing, Yunnan, China
| | - Linwei Tian
- Division of Epidemiology and Biostatistics, School of Public Health, University of Hong Kong, Hong Kong, China
| | - Kaiyun Yang
- Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, China
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Jun Xu
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kim Anderson
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Debra Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Yunchao Huang
- Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
24
|
Li J, Ran J, Chen LC, Costa M, Huang Y, Chen X, Tian L. Bituminous coal combustion and Xuan Wei Lung cancer: a review of the epidemiology, intervention, carcinogens, and carcinogenesis. Arch Toxicol 2019; 93:573-583. [PMID: 30649585 DOI: 10.1007/s00204-019-02392-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
Indoor air pollution from bituminous coal combustion has been linked to the extremely high lung cancer rates of nonsmoking women in Xuan Wei County, Yunnan Province, China. Venting the smoke outdoors by installing chimneys was found to be effective at reducing the lung cancer risk in a cohort study of 21,232 farmers in central Xuan Wei. However, the lung cancer mortality rates in all 1.2 million residents of Xuan Wei have been increasing dramatically over the last four decades. It was higher than that in Yunnan Province and China overall, with significant heterogeneities in the geographic patterns of Xuan Wei. Intervention measures targeting certain types of coal or certain carcinogenic components in coal smoke need to be explored. To inform targeted intervention policies, it is essential to pinpoint the specific substance (particulate matter, organic extract, PAHs, free radicals, crystalline silica, and inorganic matter) that might account for the carcinogenicity of bituminous coal smoke. Exploring the underlying carcinogenesis mechanisms would also contribute to the intervention and control of the lung cancer epidemic in Xuan Wei, China. Here we review the suspected carcinogens and carcinogenesis mechanisms and discuss future research directions towards a better understanding of the etiology of lung cancer in Xuan Wei, China.
Collapse
Affiliation(s)
- Jinhui Li
- Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong SAR, China.,Department of Environmental Medicine, New York University, New York, USA
| | - Jinjun Ran
- Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University, New York, USA
| | - Max Costa
- Department of Environmental Medicine, New York University, New York, USA
| | - Yunchao Huang
- Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, People's Republic of China
| | - Xiao Chen
- Cancer Research Institute of Yunnan Province, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, People's Republic of China
| | - Linwei Tian
- Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, 7 Sassoon Road, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
25
|
Lai AM, Carter E, Shan M, Ni K, Clark S, Ezzati M, Wiedinmyer C, Yang X, Baumgartner J, Schauer JJ. Chemical composition and source apportionment of ambient, household, and personal exposures to PM 2.5 in communities using biomass stoves in rural China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:309-319. [PMID: 30055493 DOI: 10.1016/j.scitotenv.2018.07.322] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 05/03/2023]
Abstract
Fine particulate matter (PM2.5) has health effects that may depend on its sources and chemical composition. Few studies have quantified the composition of personal and area PM2.5 in rural settings over the same time period. Yet, this information would shed important light on the sources influencing personal PM2.5 exposures. This study investigated the sources and chemical composition of 40 personal exposure, 40 household, and 36 ambient PM2.5 samples collected in the non-heating and heating seasons in rural southwestern China. Chemical analysis included black carbon (BC), water-soluble components (ions, organic carbon), elements, and organic tracers. Source apportionment was conducted using organic tracer concentrations in a Chemical Mass Balance model. Biomass burning was the largest identified PM2.5 source contributor to household (average, SD: 48 ± 11%) and exposures (31 ± 6%) in both seasons, and ambient PM2.5 in winter (20 ± 4%). Food cooking also contributed to household and personal PM, reaching approximately half of the biomass contributions. Secondary inorganic aerosol was the major identified source in summertime ambient PM2.5 (32 ± 14%), but was present in all samples (summer: 10 ± 3% [household], 13 ± 6% [exposures]; winter: 18 ± 2% [ambient], 7 ± 2% [household], 8 ± 2% [exposures]). Dust concentrations and fractional contribution to total PM2.5 were higher in summer exposure samples (7 ± 4%) than in ambient or household samples (6 ± 1% and 2 ± 1%, respectively). Indoor sources comprised up to one-fifth of ambient PM2.5, and outdoor sources (vehicles, secondary aerosols) contributed up to 15% of household PM2.5. While household sources were the main contributors to PM2.5 exposures in terms of mass, inorganic components of personal exposures differed from household samples. Based on these findings, health-focused initiatives to reduce harmful PM2.5 exposures may consider a coordinated approach to address both indoor and outdoor PM2.5 source contributors.
Collapse
Affiliation(s)
- Alexandra M Lai
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Ellison Carter
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA
| | - Ming Shan
- Department of Building Science, Tsinghua University, Beijing, China
| | - Kun Ni
- Department of Building Science, Tsinghua University, Beijing, China
| | - Sierra Clark
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada; Institute for Health and Social Policy, McGill University, Montreal, Canada
| | - Majid Ezzati
- School of Public Health, Imperial College London, London, United Kingdom; MRC-PHE Centre for Environment and Health, Imperial College London, London, United Kingdom
| | | | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China
| | - Jill Baumgartner
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada; Institute for Health and Social Policy, McGill University, Montreal, Canada
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
26
|
Tran LK, Quang TN, Hue NT, Van Dat M, Morawska L, Nieuwenhuijsen M, Thai PK. Exploratory assessment of outdoor and indoor airborne black carbon in different locations of Hanoi, Vietnam. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:1233-1241. [PMID: 30045504 DOI: 10.1016/j.scitotenv.2018.06.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Black carbon (BC) is a significant component of atmospheric particulate matter, especially in areas affected by combustion emissions. Despite the fact that air pollution is a great concern in Vietnam, there are no studies on the level of BC in the outdoor and indoor environment. In this exploratory study, an assessment of urban BC concentrations was conducted through monitoring of both outdoor and indoor BC concentrations in three households and one working office at different locations across Hanoi. PM2.5 and meteorology data were also obtained for this monitoring period to evaluate the association between them and the outdoor BC concentration. Overall, the mean indoor and mean outdoor BC concentrations by 30 second-logs for the monitoring period were 4.42 μg/m3 and 4.89 μg/m3, respectively. Time-series analysis of paired indoor and outdoor BC concentrations suggested that indoor BC level was usually influenced by outdoor BC level (r = 0.78, p < 0.001). In this study, we observed a significant positive association between outdoor BC and PM2.5 (r = 0.39, p < 0.001) while outdoor BC negatively correlated with wind speed (r = -0.34, p < 0.001). The level of outdoor BC in Hanoi measured in this study is relatively high and should be confirmed by further studies.
Collapse
Affiliation(s)
- Long K Tran
- International Laboratory for Air Quality and Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Tran Ngoc Quang
- Faculty of Environmental Engineering, National University of Civil Engineering, Hanoi, Viet Nam.
| | - Nguyen Thi Hue
- Faculty of Environmental Engineering, National University of Civil Engineering, Hanoi, Viet Nam
| | - Mac Van Dat
- Faculty of Environmental Engineering, National University of Civil Engineering, Hanoi, Viet Nam
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | | | - Phong K Thai
- International Laboratory for Air Quality and Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
27
|
Downward GS, Hu W, Rothman N, Reiss B, Tromp P, Wu G, Wei F, Xu J, Seow WJ, Chapman RS, Lan Q, Vermeulen R. Quartz in ash, and air in a high lung cancer incidence area in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:318-325. [PMID: 27939206 PMCID: PMC5219947 DOI: 10.1016/j.envpol.2016.11.081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 05/03/2023]
Abstract
Exposure to crystalline silica (quartz) has been implicated as a potential cause of the high lung cancer rates in the neighbouring counties of Xuanwei and Fuyuan, China, where the domestic combustion of locally sourced "smoky" coal (a bituminous coal) is responsible for some of the highest lung cancer rates in the nation, irrespective of gender or smoking status. Previous studies have shown that smoky coal contains approximately twice as much quartz when compared to alternative fuels in the area, although it is unclear how the quartz in coal relates to household air pollution. Samples of ash and fine particulate matter (PM2.5) were collected from 163 households and analysed for quartz content by Fourier transformed infrared spectroscopy (FT-IR). Additionally, air samples from 12 further households, were analysed by scanning electron microscopy (SEM) to evaluate particle structure and silica content. The majority (89%) of household air samples had undetectable quartz levels (<0.2 μg/m3) with no clear differences by fuel-type. SEM analyses indicated that there were higher amounts of silica in the smoke of smoky coal than smokeless coal (0.27 μg/m3 vs. 0.03 μg/m3). We also identified fibre-like particles in a higher concentration within the smoke of smoky coal than smokeless coal (5800 fibres/m3 vs. 550 fibres/m3). Ash analysis suggested that the bulk of the quartz in smoky coal went on to form part of the ash. These findings indicate that the quartz within smoky coal does not become adequately airborne during the combustion process to cause significant lung cancer risk, instead going on to form part of the ash. The identification of fibre-like particles in air samples is an interesting finding, although the clinical relevance of this finding remains unclear.
Collapse
Affiliation(s)
- George S Downward
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands.
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Nat Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Boris Reiss
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands
| | - Peter Tromp
- Netherlands Organization for Applied Research, TNO, Utrecht, The Netherlands
| | - Guoping Wu
- China National Environmental Monitoring Center, Beijing, China
| | - Fusheng Wei
- China National Environmental Monitoring Center, Beijing, China
| | - Jun Xu
- Hong Kong University, Hong Kong, China
| | - Wei Jie Seow
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Robert S Chapman
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|