1
|
Takashita E, Morita H, Nagata S, Fujisaki S, Miura H, Ikeda T, Komabayashi K, Sasaki M, Matoba Y, Takahashi T, Ogawa N, Mizuta K, Ito S, Kishida N, Nakamura K, Shirakura M, Watanabe S, Hasegawa H. Influenza A(H1N1)pdm09 Virus with Reduced Susceptibility to Baloxavir, Japan, 2024. Emerg Infect Dis 2025; 31:1019-1023. [PMID: 40180581 PMCID: PMC12044245 DOI: 10.3201/eid3105.241123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Influenza A(H1N1)pdm09 virus carrying an I38N substitution was detected in an untreated teenager in Japan. The I38N mutant virus exhibited reduced susceptibility to baloxavir but remained susceptible to neuraminidase inhibitors and showed reduced growth capability. Monitoring antiviral drug susceptibility of influenza viruses is necessary to aid public health planning and clinical recommendations.
Collapse
|
2
|
Palmu S, Pillay-Ramaya L, Baker J, Kocsis K, Kanwar M, Berisha E, Wildum S, Burleigh Macutkiewicz L, Macías Parra M. A Phase 3 Safety and Efficacy Study of Baloxavir Marboxil in Children Less Than 1 Year Old With Suspected or Confirmed Influenza. Pediatr Infect Dis J 2025:00006454-990000000-01301. [PMID: 40279637 DOI: 10.1097/inf.0000000000004826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
BACKGROUND Baloxavir marboxil (baloxavir) inhibits influenza virus cap-dependent endonuclease and has demonstrated safety and efficacy in children 1-<12 years of age. This study assessed the safety and efficacy of baloxavir in children <1 year old. METHODS miniSTONE-1 (NCT03653364) was a Phase III, global, multicenter, single-arm study to evaluate patients <1 year of age who received a single dose of baloxavir (age ≥3 months: 2 mg/kg; <3 months 1 mg/kg). The primary endpoint was safety; secondary endpoints included pharmacokinetics and efficacy (time to alleviation of signs and symptoms, duration of fever and symptoms, antibiotic use and cessation of viral shedding). RESULTS Overall, 48/49 enrolled patients received baloxavir, of whom 15 had positive centralized influenza reverse transcription polymerase chain reaction tests and comprised the intent-to-treat influenza-infected population. The median age was 6 months and 79.2% of patients were not influenza-vaccinated. Overall, 51 adverse events (AEs) were reported in 23 patients; most were grade 1-2. The most common AEs were diarrhea (16.7%) and vomiting (12.5%). Two patients experienced serious AEs unrelated to treatment. In the intent-to-treat influenza-infected population, median time to alleviation of signs and symptoms was 163.7 hours [95% confidence interval (CI): 122.5-not estimable], median duration of fever was 23.1 hours (95% CI: 22.3-44.6) and median time to cessation of viral shedding was 24.5 hours (95% CI: 24.2-68.6). CONCLUSIONS Baloxavir was well tolerated in children <1 year of age, with no new safety signals identified. Clinical, virological and safety outcomes were consistent with established profiles in adults, adolescents and children 1-<12 years old.
Collapse
Affiliation(s)
- Sauli Palmu
- From the Tampere University Hospital, Department of Pediatrics, and Tampere University, Faculty of Medicine and Health Technology, Center for Child, Adolescent and Maternal Health Research, Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Arvia R, Rocca A, Casciato B, Stincarelli MA, Giannecchini S. High-resolution melting analysis for detection of nucleotide mutation markers in the polymerase-acidic (PA) gene of influenza virus that are associated with baloxavir marboxil resistance. Arch Virol 2025; 170:29. [PMID: 39762649 DOI: 10.1007/s00705-024-06214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/03/2024] [Indexed: 02/08/2025]
Abstract
The I38T substitution in the influenza virus polymerase-acidic (PA) subunit is a resistance marker of concern for treatment with the antiviral baloxavir marboxil (BXM). Thus, monitoring PA/I38T mutations is of clinical importance. Here, we developed three rapid and sensitive assays for the detection and monitoring of the PA/I38T mutation. In addition, we updated our previously developed methods to monitor the D197N mutation in the neuraminidase (NA) of influenza B virus, which is associated with resistance to oseltamivir. Real-time PCR high-resolution melting analysis (HRMA) was developed for the rapid detection of the PA/I38T and NA/D197N mutations using oligonucleotides with substitutions of interest and influenza viruses isolated in our laboratory. HRMA was subsequently performed on 94 clinical samples that were positive for A/H1N1pdm09, A/H3N2, and type-B influenza viruses and on viruses that were selected in vitro to grow in the presence of BXA (baloxavir acid, BXM active compound). The HRMAs were able to discriminate PA/I38 from the PA/I38T mutation and NA substitutions in synthetic oligonucleotides. However, the I38T mutation and NA mutations were not detected in any of our clinical samples, indicating the absence of these resistance markers in the circulating viruses examined. Only one out of 43 A/H3N2 clinical samples analyzed contained a virus with mutations associated with resistance to oseltamivir. All the HRMA results were confirmed by sequencing. Finally, HRMA was performed on A/H1N1pdm09 and A/H3N2 influenza viruses following BXA selection in vitro. The presence of the I38T mutation in the BXA-selected A/H3N2 variant, but not in the A/H1N1pdm09 variant, was identified by HRMA after 12 passages. Overall, these findings indicate that HRMA could be a powerful tool for rapidly monitoring BXM resistance in influenza viruses during seasonal circulation.
Collapse
Affiliation(s)
- Rosaria Arvia
- Department Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Arianna Rocca
- Department Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Benedetta Casciato
- Department Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Simone Giannecchini
- Department Experimental and Clinical Medicine, University of Florence, Florence, Italy.
- Dipartimento di Medicina Sperimentale e Clinica, Università di Firenze, Viale Morgagni 48, I-50134, Firenze, Italy.
| |
Collapse
|
4
|
Chen D, Su W, Choy KT, Chu YS, Lin CH, Yen HL. High throughput profiling identified PA-L106R amino acid substitution in A(H1N1)pdm09 influenza virus that confers reduced susceptibility to baloxavir in vitro. Antiviral Res 2024; 229:105961. [PMID: 39002800 DOI: 10.1016/j.antiviral.2024.105961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Baloxavir acid (BXA) is a pan-influenza antiviral that targets the cap-dependent endonuclease of the polymerase acidic (PA) protein required for viral mRNA synthesis. To gain a comprehensive understanding on the molecular changes associated with reduced susceptibility to BXA and their fitness profile, we performed a deep mutational scanning at the PA endonuclease domain of an A (H1N1)pdm09 virus. The recombinant virus libraries were serially passaged in vitro under increasing concentrations of BXA followed by next-generation sequencing to monitor PA amino acid substitutions with increased detection frequencies. Enriched PA amino acid changes were each introduced into a recombinant A (H1N1)pdm09 virus to validate their effect on BXA susceptibility and viral replication fitness in vitro. The I38 T/M substitutions known to confer reduced susceptibility to BXA were invariably detected from recombinant virus libraries within 5 serial passages. In addition, we identified a novel L106R substitution that emerged in the third passage and conferred greater than 10-fold reduced susceptibility to BXA. PA-L106 is highly conserved among seasonal influenza A and B viruses. Compared to the wild-type virus, the L106R substitution resulted in reduced polymerase activity and a minor reduction of the peak viral load, suggesting the amino acid change may result in moderate fitness loss. Our results support the use of deep mutational scanning as a practical tool to elucidate genotype-phenotype relationships, including mapping amino acid substitutions with reduced susceptibility to antivirals.
Collapse
Affiliation(s)
- Dongdong Chen
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Su
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ka-Tim Choy
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yan Sing Chu
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chi Ho Lin
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hui-Ling Yen
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Qiu C, Cheng F, Ye X, Wu Z, Ning H, Liu S, Wu L, Zhang Y, Shi J, Jiang X. Study on the clinical efficacy and safety of baloxavir marboxil tablets in the treatment of influenza A. Front Med (Lausanne) 2024; 11:1339368. [PMID: 38646560 PMCID: PMC11026552 DOI: 10.3389/fmed.2024.1339368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024] Open
Abstract
Objective To evaluate the clinical efficacy and safety of baloxavir marboxil tablets in the treatment of influenza A. Methods According to a random sequence generated by computer software, 200 patients with confirmed influenza A were divided into a study group and a control group with 100 cases in each group. Group allocation was concealed using sealed envelopes. The study group was treated with oral administration of baloxavir marboxil tablets, 40 mg once. The control group was given oral oseltamivir capsules, 75 mg twice a day, for five consecutive days. The therapeutic effects, symptom disappearance time and adverse drug reactions of the two groups after 5 days of treatment were compared. Results There was no significant difference in the total effective rate between the two groups (99% vs. 98%, p > 0.05). There was no significant difference in fever subsidence time (1.54 ± 0.66 d vs. 1.67 ± 0.71 d, p > 0.05), cough improvement time (2.26 ± 0.91 d vs. 2.30 ± 0.90 d, p > 0.05) and sore throat improvement time (2.06 ± 0.86 d vs. 2.09 ± 0.83 d, p > 0.05) between the two groups. There was no significant difference in the incidence of adverse drug reactions between the two groups (8% vs. 13%, p > 0.05). Conclusion Baloxavir marboxil tablets can be effectively used in the treatment of patients with influenza A and have a similar efficacy and safety profile as oseltamivir capsules.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jichan Shi
- Department of Infection, Wenzhou Central Hospital, Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangao Jiang
- Department of Infection, Wenzhou Central Hospital, Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Taniguchi K, Noshi T, Omoto S, Sato A, Shishido T, Matsuno K, Okamatsu M, Krauss S, Webby RJ, Sakoda Y, Kida H. The impact of PA/I38 substitutions and PA polymorphisms on the susceptibility of zoonotic influenza A viruses to baloxavir. Arch Virol 2024; 169:29. [PMID: 38216710 PMCID: PMC10786730 DOI: 10.1007/s00705-023-05958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/28/2023] [Indexed: 01/14/2024]
Abstract
Genetic reassortment of avian, swine, and human influenza A viruses (IAVs) poses potential pandemic risks. Surveillance is important for influenza pandemic preparedness, but the susceptibility of zoonotic IAVs to the cap-dependent endonuclease inhibitor baloxavir acid (BXA) has not been thoroughly researched. Although an amino acid substitution at position 38 in the polymerase acidic protein (PA/I38) in seasonal IAVs reduces BXA susceptibility, PA polymorphisms at position 38 are rarely seen in zoonotic IAVs. Here, we examined the impact of PA/I38 substitutions on the BXA susceptibility of recombinant A(H5N1) viruses. PA mutants that harbored I38T, F, and M were 48.2-, 24.0-, and 15.5-fold less susceptible, respectively, to BXA than wild-type A(H5N1) but were susceptible to the neuraminidase inhibitor oseltamivir acid and the RNA polymerase inhibitor favipiravir. PA mutants exhibited significantly impaired replicative fitness in Madin-Darby canine kidney cells at 24 h postinfection. In addition, in order to investigate new genetic markers for BXA susceptibility, we screened geographically and temporally distinct IAVs isolated worldwide from birds and pigs. The results showed that BXA exhibited antiviral activity against avian and swine viruses with similar levels to seasonal isolates. All viruses tested in the study lacked the PA/I38 substitution and were susceptible to BXA. Isolates harboring amino acid polymorphisms at positions 20, 24, and 37, which have been implicated in the binding of BXA to the PA endonuclease domain, were also susceptible to BXA. These results suggest that monitoring of the PA/I38 substitution in animal-derived influenza viruses is important for preparedness against zoonotic influenza virus outbreaks.
Collapse
Affiliation(s)
- Keiichi Taniguchi
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Noshi
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
| | - Shinya Omoto
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
| | - Akihiko Sato
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takao Shishido
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Toyonaka, Osaka, Japan.
| | - Keita Matsuno
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masatoshi Okamatsu
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Scott Krauss
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Richard J Webby
- St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yoshihiro Sakoda
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
7
|
Guan W, Qu R, Shen L, Mai K, Pan W, Lin Z, Chen L, Dong J, Zhang J, Feng P, Weng Y, Yu M, Guan P, Zhou J, Tu C, Wu X, Wang Y, Yang C, Ling Y, Le S, Zhan Y, Li Y, Liu X, Zou H, Huang Z, Zhou H, Wu Q, Zhang W, He J, Xu T, Zhong N, Yang Z. Baloxavir marboxil use for critical human infection of avian influenza A H5N6 virus. MED 2024; 5:32-41.e5. [PMID: 38070511 DOI: 10.1016/j.medj.2023.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/20/2023] [Accepted: 11/06/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Recent outbreaks of avian influenza and ongoing virus reassortment have drawn focus on spill-over infections. The increase in human infections with highly pathogenic avian influenza H5N6 virus and its high fatality rate posed a potential threat, necessitating the search for a more effective treatment. METHODS Longitudinal clinical data and specimens were collected from five H5N6 patients after admission. All patients received antiviral treatment of either sequential monotherapy of oseltamivir and baloxavir or the two drugs in combination. Severity of illness; viral load in sputum, urine, and blood; and cytokine levels in serum and sputum were serially analyzed. FINDINGS All patients developed acute respiratory distress syndrome (ARDS) and viral sepsis within 1 week after disease onset. When delayed oseltamivir showed poor effects, baloxavir was administered and rapidly decreased viral load. In addition, levels of IL-18, M-CSF, IL-6, and HGF in sputum and Mig and IL-18 in serum that reflected ARDS and sepsis deterioration, respectively, were also reduced with baloxavir usage. However, three patients eventually died from exacerbation of underlying disease and secondary bacterial infection. Nonsurvivors had more severe extrapulmonary organ dysfunction and insufficient H5N6 virus-specific antibody response. CONCLUSIONS For critical human cases of H5N6 infection, baloxavir demonstrated effects on viral load and pulmonary/extrapulmonary cytokines, even though treatment was delayed. Baloxavir could be regarded as a first-line treatment to limit continued viral propagation, with potential future application in avian influenza human infections and poultry workers exhibiting influenza-like illness. FUNDING This work was funded by the National Natural Science Foundation of China (81761128014).
Collapse
Affiliation(s)
- Wenda Guan
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Rong Qu
- Huizhou Central People's Hospital, Huizhou 516001, China
| | - Lihan Shen
- Department of Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care Medicine, Dongguan People's Hospital, Dongguan 523059, China
| | - Kailin Mai
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Weiqi Pan
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhengshi Lin
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Liping Chen
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Ji Dong
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jiawei Zhang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Pei Feng
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| | - Yunceng Weng
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Minfei Yu
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Peikun Guan
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jinchao Zhou
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Chuanmeizi Tu
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xiao Wu
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yang Wang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Guangzhou Laboratory, Guangzhou 510005, China
| | - Chunguang Yang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yun Ling
- Huizhou Central People's Hospital, Huizhou 516001, China
| | - Sheng Le
- Huizhou Central People's Hospital, Huizhou 516001, China
| | - Yangqing Zhan
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yimin Li
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xiaoqing Liu
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Heyan Zou
- Department of Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care Medicine, Dongguan People's Hospital, Dongguan 523059, China
| | - Ziqi Huang
- Department of Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care Medicine, Dongguan People's Hospital, Dongguan 523059, China
| | - Hongxia Zhou
- Department of Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care Medicine, Dongguan People's Hospital, Dongguan 523059, China
| | - Qiubao Wu
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Wenjie Zhang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jiayang He
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Teng Xu
- Vision Medicals Laboratory, Guangzhou 510705, China
| | - Nanshan Zhong
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Guangzhou Laboratory, Guangzhou 510005, China.
| | - Zifeng Yang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; Guangzhou Laboratory, Guangzhou 510005, China; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau SAR, China.
| |
Collapse
|
8
|
Fukao K, Noshi T, Shano S, Baba K, Sato K, Sakuramoto M, Kitade N, Tanioka H, Kusakabe S, Shishido T. Prophylactic Treatment with Baloxavir Protects Mice from Lethal Infection with Influenza A and B Viruses. Viruses 2023; 15:2264. [PMID: 38005940 PMCID: PMC10675732 DOI: 10.3390/v15112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Influenza remains a worldwide health concern. Antiviral drugs are considered as one of the useful options for its prevention as a complementary measure to vaccination. Baloxavir acid selectively inhibits the cap-dependent endonuclease of influenza viruses and exhibits marked viral titre reduction in patients. Here, we describe the prophylactic potency of baloxavir acid against lethal infection with influenza A and B viruses in mice. BALB/c mice were subcutaneously administered once with baloxavir acid suspension, or orally administered once daily for 10 days with oseltamivir phosphate solution at human relevant doses. Next, the mice were intranasally inoculated with A/PR/8/34 (H1N1) or B/Hong Kong/5/72 strain at 24 to 96 h after the initial dosing. Prophylactic treatment with the antiviral drugs significantly reduced the lung viral titres and prolonged survival time. In particular, baloxavir acid showed a greater suppressive effect on lung viral titres compared to oseltamivir phosphate. In this model, baloxavir acid maintained significant prophylactic effects against influenza A and B virus infections when the plasma concentration at the time of infection was at least 0.88 and 3.58 ng/mL, respectively. The significant prophylactic efficacy observed in our mouse model suggests the potential utility of baloxavir marboxil for prophylaxis against influenza in humans.
Collapse
Affiliation(s)
- Keita Fukao
- Shionogi & Co., Ltd., Osaka 561-0825, Japan (S.K.)
| | | | - Shinya Shano
- Shionogi TechnoAdvance Research, Co., Ltd., Osaka 561-0825, Japan
| | - Kaoru Baba
- Shionogi TechnoAdvance Research, Co., Ltd., Osaka 561-0825, Japan
| | - Kenji Sato
- Shionogi & Co., Ltd., Osaka 561-0825, Japan (S.K.)
| | | | | | | | | | | |
Collapse
|
9
|
Hickerson BT, Petrovskaya SN, Dickensheets H, Donnelly RP, Ince WL, Ilyushina NA. Impact of Baloxavir Resistance-Associated Substitutions on Influenza Virus Growth and Drug Susceptibility. J Virol 2023; 97:e0015423. [PMID: 37404185 PMCID: PMC10373543 DOI: 10.1128/jvi.00154-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
Baloxavir marboxil (baloxavir) is a recently FDA-approved influenza virus polymerase acidic (PA) endonuclease inhibitor. Several PA substitutions have been demonstrated to confer reduced susceptibility to baloxavir; however, their impacts on measurements of antiviral drug susceptibility and replication capacity when present as a fraction of the viral population have not been established. We generated recombinant A/California/04/09 (H1N1)-like viruses (IAV) with PA I38L, I38T, or E199D substitutions and B/Victoria/504/2000-like virus (IBV) with PA I38T. These substitutions reduced baloxavir susceptibility by 15.3-, 72.3-, 5.4-, and 54.5-fold, respectively, when tested in normal human bronchial epithelial (NHBE) cells. We then assessed the replication kinetics, polymerase activity, and baloxavir susceptibility of the wild-type:mutant (WT:MUT) virus mixtures in NHBE cells. The percentage of MUT relative to WT virus necessary to detect reduced baloxavir susceptibility in phenotypic assays ranged from 10% (IBV I38T) to 92% (IAV E199D). While I38T did not alter IAV replication kinetics or polymerase activity, IAV PA I38L and E199D MUTs and the IBV PA I38T MUT exhibited reduced replication levels and significantly altered polymerase activity. Differences in replication were detectable when the MUTs comprised ≥90%, ≥90%, or ≥75% of the population, respectively. Droplet digital PCR (ddPCR) and next-generation sequencing (NGS) analyses showed that WT viruses generally outcompeted the respective MUTs after multiple replication cycles and serial passaging in NHBE cells when initial mixtures contained ≥50% of the WT viruses; however, we also identified potential compensatory substitutions (IAV PA D394N and IBV PA E329G) that emerged and appeared to improve the replication capacity of baloxavir-resistant virus in cell culture. IMPORTANCE Baloxavir marboxil, an influenza virus polymerase acidic endonuclease inhibitor, represents a recently approved new class of influenza antivirals. Treatment-emergent resistance to baloxavir has been observed in clinical trials, and the potential spread of resistant variants could diminish baloxavir effectiveness. Here, we report the impact of the proportion of drug-resistant subpopulations on the ability to detect resistance in clinical isolates and the impact of substitutions on viral replication of mixtures containing both drug-sensitive and drug-resistant variants. We also show that ddPCR and NGS methods can be successfully used for detection of resistant subpopulations in clinical isolates and to quantify their relative abundance. Taken together, our data shed light on the potential impact of baloxavir-resistant I38T/L and E199D substitutions on baloxavir susceptibility and other biological properties of influenza virus and the ability to detect resistance in phenotypic and genotypic assays.
Collapse
Affiliation(s)
- Brady T. Hickerson
- Division of Biotechnology Review and Research II, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Svetlana N. Petrovskaya
- Division of Biotechnology Review and Research III, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Harold Dickensheets
- Division of Biotechnology Review and Research II, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Raymond P. Donnelly
- Division of Biotechnology Review and Research II, Food and Drug Administration, Silver Spring, Maryland, USA
| | - William L. Ince
- Division of Antivirals, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Natalia A. Ilyushina
- Division of Biotechnology Review and Research II, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
10
|
Kuroda T, Fukao K, Yoshida S, Oka R, Baba K, Ando Y, Taniguchi K, Noshi T, Shishido T. In Vivo Antiviral Activity of Baloxavir against PA/I38T-Substituted Influenza A Viruses at Clinically Relevant Doses. Viruses 2023; 15:v15051154. [PMID: 37243240 DOI: 10.3390/v15051154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Although the prevalence of polymerase acidic (PA)/I38T strains of influenza virus with reduced susceptibility to baloxavir acid is low, there is a possibility of emergence under selective pressure. Furthermore, the virus may be transmitted between humans. We investigated the in vivo efficacy of baloxavir acid and oseltamivir phosphate against influenza A subtypes H1N1, H1N1pdm09, and H3N2, with PA/I38T substitution, at doses simulating human plasma concentrations. A pharmacokinetic/pharmacodynamic analysis was performed to strengthen the validity of the findings and the applicability in a clinical setting. Although the antiviral effect of baloxavir acid was attenuated in mice infected with PA/I38T-substituted viral strains compared with the wild type (WT), baloxavir acid significantly reduced virus titers at higher-but clinically relevant-doses. The virus titer reduction with baloxavir acid (30 mg/kg subcutaneous single dose) was comparable to that of oseltamivir phosphate (5 mg/kg orally twice daily) against H1N1 and H1N1pdm09 PA/I38T strains in mice, as well as the H3N2 PA/I38T strain in hamsters. Baloxavir acid demonstrated an antiviral effect against PA/I38T-substituted strains, at day 6, with no further viral rebound. In conclusion, baloxavir acid demonstrated dose-dependent antiviral effects comparable to that of oseltamivir phosphate, even though the degree of lung virus titer reduction was diminished in animal models infected with PA/I38T-substituted strains.
Collapse
Affiliation(s)
| | | | | | - Ryoko Oka
- Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Kaoru Baba
- Shionogi TechnoAdvance Research, Co., Ltd., Osaka 561-0825, Japan
| | | | | | | | | |
Collapse
|
11
|
Kumari R, Sharma SD, Kumar A, Ende Z, Mishina M, Wang Y, Falls Z, Samudrala R, Pohl J, Knight PR, Sambhara S. Antiviral Approaches against Influenza Virus. Clin Microbiol Rev 2023; 36:e0004022. [PMID: 36645300 PMCID: PMC10035319 DOI: 10.1128/cmr.00040-22] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preventing and controlling influenza virus infection remains a global public health challenge, as it causes seasonal epidemics to unexpected pandemics. These infections are responsible for high morbidity, mortality, and substantial economic impact. Vaccines are the prophylaxis mainstay in the fight against influenza. However, vaccination fails to confer complete protection due to inadequate vaccination coverages, vaccine shortages, and mismatches with circulating strains. Antivirals represent an important prophylactic and therapeutic measure to reduce influenza-associated morbidity and mortality, particularly in high-risk populations. Here, we review current FDA-approved influenza antivirals with their mechanisms of action, and different viral- and host-directed influenza antiviral approaches, including immunomodulatory interventions in clinical development. Furthermore, we also illustrate the potential utility of machine learning in developing next-generation antivirals against influenza.
Collapse
Affiliation(s)
- Rashmi Kumari
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suresh D. Sharma
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zachary Ende
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, Tennessee, USA
| | - Margarita Mishina
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuanyuan Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Association of Public Health Laboratories, Silver Spring, Maryland, USA
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul R. Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Genetic Evolution of Avian Influenza A (H9N2) Viruses Isolated from Domestic Poultry in Uganda Reveals Evidence of Mammalian Host Adaptation, Increased Virulence and Reduced Sensitivity to Baloxavir. Viruses 2022; 14:v14092074. [PMID: 36146881 PMCID: PMC9505320 DOI: 10.3390/v14092074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
A (H9N2) avian influenza A viruses were first detected in Uganda in 2017 and have since established themselves in live bird markets. The aim of this study was to establish the subsequent genetic evolution of H9N2 viruses in Uganda. Cloacal samples collected from live bird market stalls in Kampala from 2017 to 2019 were screened by RT-PCR for influenza A virus and H9N2 viruses were isolated in embryonated eggs. One hundred and fifty H9N2 isolates were subjected to whole genome sequencing on the Illumina MiSeq platform. The sequence data analysis and comparison with contemporary isolates revealed that the virus was first introduced into Uganda in 2014 from ancestors in the Middle East. There has since been an increase in nucleotide substitutions and reassortments among the viruses within and between live bird markets, leading to variations in phylogeny of the different segments, although overall diversity remained low. The isolates had several mutations such as HA-Q226L and NS-I106M that enable mammalian host adaptation, NP-M105V, PB1-D3V, and M1-T215A known for increased virulence/pathogenicity and replication, and PA-E199D, NS-P42S, and M2-S31N that promote drug resistance. The PA-E199D substitution in particular confers resistance to the endonuclease inhibitor Baloxavir acid, which is one of the new anti-influenza drugs. Higher EC50 was observed in isolates with a double F105L+E199D substitution that may suggest a possible synergistic effect. These H9N2 viruses have established an endemic situation in live bird markets in Uganda because of poor biosecurity practices and therefore pose a zoonotic threat. Regular surveillance is necessary to further generate the needed evidence for effective control strategies and to minimize the threats.
Collapse
|
13
|
Jones JC, Zagribelnyy B, Pascua PNQ, Bezrukov DS, Barman S, Okda F, Webby RJ, Ivanenkov YA, Govorkova EA. Influenza A virus polymerase acidic protein E23G/K substitutions weaken key baloxavir drug-binding contacts with minimal impact on replication and transmission. PLoS Pathog 2022; 18:e1010698. [PMID: 35830486 PMCID: PMC9312377 DOI: 10.1371/journal.ppat.1010698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/25/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Baloxavir marboxil (BXM) is approved for treating uncomplicated influenza. The active metabolite baloxavir acid (BXA) inhibits cap-dependent endonuclease activity of the influenza virus polymerase acidic protein (PA), which is necessary for viral transcription. Treatment-emergent E23G or E23K (E23G/K) PA substitutions have been implicated in reduced BXA susceptibility, but their effect on virus fitness and transmissibility, their synergism with other BXA resistance markers, and the mechanisms of resistance have been insufficiently studied. Accordingly, we generated point mutants of circulating seasonal influenza A(H1N1)pdm09 and A(H3N2) viruses carrying E23G/K substitutions. Both substitutions caused 2- to 13-fold increases in the BXA EC50. EC50s were higher with E23K than with E23G and increased dramatically (138- to 446-fold) when these substitutions were combined with PA I38T, the dominant BXA resistance marker. E23G/K-substituted viruses exhibited slightly impaired replication in MDCK and Calu-3 cells, which was more pronounced with E23K. In ferret transmission experiments, all viruses transmitted to direct-contact and airborne-transmission animals, with only E23K+I38T viruses failing to infect 100% of animals by airborne transmission. E23G/K genotypes were predominantly stable during transmission events and through five passages in vitro. Thermostable PA–BXA interactions were weakened by E23G/K substitutions and further weakened when combined with I38T. In silico modeling indicated this was caused by E23G/K altering the placement of functionally important Tyr24 in the endonuclease domain, potentially decreasing BXA binding but at some cost to the virus. These data implicate E23G/K, alone or combined with I38T, as important markers of reduced BXM susceptibility, and such mutants could emerge and/or transmit among humans. Baloxavir is a new and potent anti-influenza drug targeting essential functions of viral replication. Currently, the I38T polymerase acidic protein (PA) substitution is the major marker of reduced susceptibility and potential resistance to baloxavir, but the full baloxavir resistance profile remains unclear. Here, we demonstrated that PA E23G/K substitutions alone weaken baloxavir efficacy, but they also synergize with I38T to impair drug activity further. E23G/K substitutions are located close to the binding site of baloxavir and indirectly weaken key drug-binding interactions. This effect has some negative consequences for virus replication, but E23G/K viruses possess the capacity for airborne spread between naïve ferrets, the gold-standard model of human influenza transmission. Therefore, E23G/K viruses have the potential for community spread, which would adversely affect baloxavir clinical implementation. Our study supports ongoing surveillance for circulating human E23G/K viruses, and it may inform design of enhanced baloxavir-like drugs less susceptible to emergence of viral resistance.
Collapse
Affiliation(s)
- Jeremy C. Jones
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| | - Bogdan Zagribelnyy
- Department of Chemistry, Lomonosov State University, Moscow, Russian Federation
| | - Philippe Noriel Q. Pascua
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Dmitry S. Bezrukov
- Department of Chemistry, Lomonosov State University, Moscow, Russian Federation
| | - Subrata Barman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Faten Okda
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yan A. Ivanenkov
- Department of Chemistry, Lomonosov State University, Moscow, Russian Federation
| | - Elena A. Govorkova
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
14
|
Caceres CJ, Seibert B, Cargnin Faccin F, Cardenas‐Garcia S, Rajao DS, Perez DR. Influenza antivirals and animal models. FEBS Open Bio 2022; 12:1142-1165. [PMID: 35451200 PMCID: PMC9157400 DOI: 10.1002/2211-5463.13416] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A and B viruses are among the most prominent human respiratory pathogens. About 3-5 million severe cases of influenza are associated with 300 000-650 000 deaths per year globally. Antivirals effective at reducing morbidity and mortality are part of the first line of defense against influenza. FDA-approved antiviral drugs currently include adamantanes (rimantadine and amantadine), neuraminidase inhibitors (NAI; peramivir, zanamivir, and oseltamivir), and the PA endonuclease inhibitor (baloxavir). Mutations associated with antiviral resistance are common and highlight the need for further improvement and development of novel anti-influenza drugs. A summary is provided for the current knowledge of the approved influenza antivirals and antivirals strategies under evaluation in clinical trials. Preclinical evaluations of novel compounds effective against influenza in different animal models are also discussed.
Collapse
Affiliation(s)
- C. Joaquin Caceres
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Brittany Seibert
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Flavio Cargnin Faccin
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | | | - Daniela S. Rajao
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Daniel R. Perez
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
15
|
Hickerson BT, Adams SE, Barman S, Miller L, Lugovtsev VY, Webby RJ, Ince WL, Donnelly RP, Ilyushina NA. Pleiotropic Effects of Influenza H1, H3, and B Baloxavir-Resistant Substitutions on Replication, Sensitivity to Baloxavir, and Interferon Expression. Antimicrob Agents Chemother 2022; 66:e0000922. [PMID: 35262375 PMCID: PMC9017380 DOI: 10.1128/aac.00009-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Baloxavir is an anti-influenza endonuclease inhibitor that targets the polymerase acidic (PA) protein of influenza A and B viruses. Our knowledge regarding the pleiotropic effects of baloxavir resistance-associated substitutions is limited. We generated recombinant A/California/04/09 (H1N1)-, A/Hong Kong/218849/2006 (H3N2)-, and B/Victoria/504/2000-like viruses that contained PA substitutions identified in baloxavir clinical trials and surveillance that could potentially be associated with baloxavir resistance. We characterized their susceptibility to baloxavir, impact on polymerase activity, viral growth, and ability to induce interferon (IFN) and IFN-stimulated genes expression in vitro. Four PA substitutions, H1N1 I38L/T, E199D, and B G199R, significantly reduced the sensitivity of the recombinant viruses to baloxavir (14.1-fold). We confirmed our findings by using the luciferase-based ribonucleoprotein minigenome assay and by using virus yield reduction assay in Calu-3 and normal human bronchial epithelial (NHBE) cells. We observed that I38L and E199D resulted in decreased viral replication of the H1N1 wild-type virus (1.4-fold) but the H1N1 I38T and B G199R substitutions did not significantly alter replication capacity in Calu-3 cells. In addition, H1N1 variants with PA I38L/T and E199D induced significantly higher levels of IFNB1 gene expression compared to the wild-type virus (4.2-fold). In contrast, the B variant, G199R, triggered the lowest levels of IFN genes in Calu-3 cells (1.6-fold). Because baloxavir is a novel anti-influenza therapeutic agent, identifying and characterizing substitutions associated with reduced sensitivity to baloxavir, as well as the impact of these substitutions on viral fitness, is paramount to the strategic implementation of this novel countermeasure.
Collapse
Affiliation(s)
- Brady T. Hickerson
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Simone E. Adams
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Subrata Barman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Lance Miller
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Vladimir Y. Lugovtsev
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - William L. Ince
- Division of Antiviral Products, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Raymond P. Donnelly
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Natalia A. Ilyushina
- Division of Biotechnology Review and Research II, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
16
|
Govorkova EA, Takashita E, Daniels RS, Fujisaki S, Presser LD, Patel MC, Huang W, Lackenby A, Nguyen HT, Pereyaslov D, Rattigan A, Brown SK, Samaan M, Subbarao K, Wong S, Wang D, Webby RJ, Yen HL, Zhang W, Meijer A, Gubareva LV. Global update on the susceptibilities of human influenza viruses to neuraminidase inhibitors and the cap-dependent endonuclease inhibitor baloxavir, 2018–2020. Antiviral Res 2022; 200:105281. [PMID: 35292289 PMCID: PMC9254721 DOI: 10.1016/j.antiviral.2022.105281] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
Abstract
Global analysis of the susceptibility of influenza viruses to neuraminidase (NA) inhibitors (NAIs) and the polymerase acidic (PA) inhibitor (PAI) baloxavir was conducted by five World Health Organization Collaborating Centres for Reference and Research on Influenza during two periods (May 2018–May 2019 and May 2019–May 2020). Combined phenotypic and NA sequence-based analysis revealed that the global frequency of viruses displaying reduced or highly reduced inhibition (RI or HRI) or potential to show RI/HRI by NAIs remained low, 0.5% (165/35045) and 0.6% (159/26010) for the 2018–2019 and 2019–2020 periods, respectively. The most common amino acid substitution was NA-H275Y (N1 numbering) conferring HRI by oseltamivir and peramivir in A(H1N1)pdm09 viruses. Combined phenotypic and PA sequence-based analysis showed that the global frequency of viruses showing reduced susceptibility to baloxavir or carrying substitutions associated with reduced susceptibility was low, 0.5% (72/15906) and 0.1% (18/15692) for the 2018–2019 and 2019–2020 periods, respectively. Most (n = 61) of these viruses had I38→T/F/M/S/L/V PA amino acid substitutions. In Japan, where baloxavir use was highest, the rate was 4.5% (41/919) in the 2018–2019 period and most of the viruses (n = 32) had PA-I38T. Zoonotic viruses isolated from humans (n = 32) in different countries did not contain substitutions in NA associated with NAI RI/HRI phenotypes. One A(H5N6) virus had a dual substitution PA-I38V + PA-E199G, which may reduce susceptibility to baloxavir. Therefore, NAIs and baloxavir remain appropriate choices for the treatment of influenza virus infections, but close monitoring of antiviral susceptibility is warranted.
Collapse
Affiliation(s)
- Elena A Govorkova
- WHO Collaborating Centre for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA.
| | - Emi Takashita
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Rod S Daniels
- WHO Collaborating Centre for Reference and Research on Influenza, The Francis Crick Institute, Worldwide Influenza Centre, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Seiichiro Fujisaki
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo, 208-0011, Japan
| | - Lance D Presser
- National Institute for Public Health and the Environment, PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Mira C Patel
- WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza, Centres for Disease Control and Prevention, 1600 Clifton RD NE, MS H17-5, Atlanta, GA, 30329, USA
| | - Weijuan Huang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Angie Lackenby
- National Infection Service, Public Health England, London, NW9 5HT, United Kingdom
| | - Ha T Nguyen
- WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza, Centres for Disease Control and Prevention, 1600 Clifton RD NE, MS H17-5, Atlanta, GA, 30329, USA
| | - Dmitriy Pereyaslov
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, 27, Switzerland
| | - Aine Rattigan
- WHO Collaborating Centre for Reference and Research on Influenza, The Francis Crick Institute, Worldwide Influenza Centre, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - Sook Kwan Brown
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Magdi Samaan
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, 27, Switzerland
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Sun Wong
- Public Health Laboratory Centre, 382 Nam Cheong Street, Hong Kong, China
| | - Dayan Wang
- WHO Collaborating Centre for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Richard J Webby
- WHO Collaborating Centre for Studies on the Ecology of Influenza in Animals and Birds, St. Jude Children's Research Hospital, Memphis, TN, 38105-3678, USA
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wenqing Zhang
- Global Influenza Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, 27, Switzerland
| | - Adam Meijer
- National Institute for Public Health and the Environment, PO Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Larisa V Gubareva
- WHO Collaborating Centre for Surveillance, Epidemiology and Control of Influenza, Centres for Disease Control and Prevention, 1600 Clifton RD NE, MS H17-5, Atlanta, GA, 30329, USA
| |
Collapse
|
17
|
Rogolino D, Naesens L, Bartoli J, Carcelli M, De Luca L, Pelosi G, Stokes RW, Van Berwaer R, Vittorio S, Stevaert A, Cohen SM. Exploration of the 2,3-dihydroisoindole pharmacophore for inhibition of the influenza virus PA endonuclease. Bioorg Chem 2021; 116:105388. [PMID: 34670331 DOI: 10.1016/j.bioorg.2021.105388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 09/25/2021] [Indexed: 11/19/2022]
Abstract
Seasonal influenza A and B viruses represent a global concern. Antiviral drugs are crucial to treat severe influenza in high-risk patients and prevent virus spread in case of a pandemic. The emergence of viruses showing drug resistance, in particular for the recently licensed polymerase inhibitor baloxavir marboxil, drives the need for developing alternative antivirals. The endonuclease activity residing in the N-terminal domain of the polymerase acidic protein (PAN) is crucial for viral RNA synthesis and a validated target for drug design. Its function can be impaired by molecules bearing a metal-binding pharmacophore (MBP) able to coordinate the two divalent metal ions in the active site. In the present work, the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold is explored for the inhibition of influenza virus PA endonuclease. The structure-activity relationship was analysed by modifying the substituents on the lipophilic moiety linked to the MBP. The new compounds exhibited nanomolar inhibitory activity in a FRET-based enzymatic assay, and a few compounds (15-17, 21) offered inhibition in the micromolar range, in a cell-based influenza virus polymerase assay. When investigated against a panel of PA-mutant forms, compound 17 was shown to retain full activity against the baloxavir-resistant I38T mutant. This was corroborated by docking studies providing insight into the binding mode of this novel class of PA inhibitors.
Collapse
Affiliation(s)
- Dominga Rogolino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici) Parma Unit, 43124 Parma, Italy.
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium.
| | - Jennifer Bartoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici) Parma Unit, 43124 Parma, Italy
| | - Mauro Carcelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici) Parma Unit, 43124 Parma, Italy
| | - Laura De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Polo Universitario SS. Annunziata, Università di Messina, Viale Palatucci 13, Messina I-98168, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici) Parma Unit, 43124 Parma, Italy
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
| | - Ria Van Berwaer
- Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Serena Vittorio
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Polo Universitario SS. Annunziata, Università di Messina, Viale Palatucci 13, Messina I-98168, Italy
| | - Annelies Stevaert
- Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
18
|
Ison MG, Hayden FG, Hay AJ, Gubareva LV, Govorkova EA, Takashita E, McKimm-Breschkin JL. Influenza polymerase inhibitor resistance: Assessment of the current state of the art - A report of the isirv Antiviral group. Antiviral Res 2021; 194:105158. [PMID: 34363859 PMCID: PMC9012257 DOI: 10.1016/j.antiviral.2021.105158] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.
Collapse
Affiliation(s)
- Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Alan J Hay
- The Francis Crick Institute, London, UK.
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Elena A Govorkova
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Emi Takashita
- National Institute of Infectious Diseases, Tokyo, Japan.
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.
| |
Collapse
|
19
|
Jones JC, Pascua PNQ, Harrington WN, Webby RJ, Govorkova EA. Multiple polymerase acidic (PA) I38X substitutions in influenza A(H1N1)pdm09 virus permit polymerase activity and cause reduced baloxavir inhibition. J Antimicrob Chemother 2021; 76:957-960. [PMID: 33351916 DOI: 10.1093/jac/dkaa527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/18/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Baloxavir marboxil is an antiviral drug that targets the endonuclease activity of the influenza virus polymerase acidic (PA) protein. PA I38T/M/F substitutions reduce its antiviral efficacy. OBJECTIVES To understand the effects of the 19 possible amino acid (AA) substitutions at PA 38 on influenza A(H1N1)pdm09 polymerase activity and inhibition by baloxavir acid, the active metabolite of baloxavir marboxil. METHODS Influenza A(H1N1)pdm09 viral polymerase complexes containing all 19 I38X AA substitutions were reconstituted in HEK293T cells in a mini-replicon assay. Polymerase complex activity and baloxavir inhibitory activity were measured in the presence or absence of 50 nM baloxavir acid. RESULTS Only three substitutions (R, K, P) reduced polymerase activity to <79% of I38-WT. When compared with the prototypical baloxavir marboxil resistance marker T38, 5 substitutions conferred 10%-35% reductions in baloxavir acid inhibitory activity (M, L, F, Y, C) and 11 substitutions conferred >50% reductions (R, K, S, N, G, W, A, Q, E, D, H), while two substitutions (V, P) maintained baloxavir acid inhibitory activity. CONCLUSIONS Most PA 38 substitutions permit a functional replication complex retaining some drug resistance in the mini-replicon assay. This study provides a targeted approach for virus rescue and analysis of novel baloxavir marboxil reduced-susceptibility markers, supports the consideration of a broader range of these markers during antiviral surveillance and adds to the growing knowledge of baloxavir marboxil resistance profiles.
Collapse
Affiliation(s)
- Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Philippe N Q Pascua
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Walter N Harrington
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
20
|
Park JH, Kim B, Antigua KJC, Jeong JH, Kim CI, Choi WS, Oh S, Kim CH, Kim EG, Choi YK, Baek YH, Song MS. Baloxavir-oseltamivir combination therapy inhibits the emergence of resistant substitutions in influenza A virus PA gene in a mouse model. Antiviral Res 2021; 193:105126. [PMID: 34217753 DOI: 10.1016/j.antiviral.2021.105126] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Baloxavir marboxil (BXM) treatment-emergent polymerase acid (PA) I38X amino acid substitution (AAS) in the resistant variants of influenza viruses raise concerns regarding their emergence and spread. This study investigated the impact of 1 or 5 mg/kg BXM and 25 mg/kg oseltamivir phosphate (OS) (single or combination therapy) on the occurrence of resistance-related substitutions during the sequential lung-to-lung passages of AH1N1)pdm09 virus in mice. Deep sequencing analysis revealed that 67% (n = 4/6) of the population treated with BXM single therapy (1 or 5 mg/kg) possessed the treatment-emergent PA-I38X AAS variants (I38T, I38S, and I38V). Notably, BXM-OS combination therapy impeded PA-I38X AAS emergence. Although the doses utilized in the mouse model may not be directly translated into the clinically equivalent doses of each drugs, these findings offer insights toward alternative therapies to mitigate the emergence of influenza antiviral resistance.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Beomkyu Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Khristine Joy C Antigua
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Chang Il Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Won-Suk Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Sol Oh
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Chan Hyung Kim
- Department of Pharmacology, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea.
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea.
| |
Collapse
|
21
|
Whole-Genome Analysis Surveillance of Influenza A Virus Resistance to Polymerase Complex Inhibitors in Eastern Spain from 2016 to 2019. Antimicrob Agents Chemother 2021; 65:AAC.02718-20. [PMID: 33782005 DOI: 10.1128/aac.02718-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Molecular surveillance by whole-genome sequencing was used to monitor the susceptibility of circulating influenza A viruses to three polymerase complex inhibitors. A total of 12 resistance substitutions were found among 285 genomes analyzed, but none were associated with high levels of resistance. Natural resistance to these influenza A antivirals is currently uncommon.
Collapse
|
22
|
Yin H, Jiang N, Shi W, Chi X, Liu S, Chen JL, Wang S. Development and Effects of Influenza Antiviral Drugs. Molecules 2021; 26:molecules26040810. [PMID: 33557246 PMCID: PMC7913928 DOI: 10.3390/molecules26040810] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal outbreaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treatment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some references for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development.
Collapse
|
23
|
Groaz E, De Clercq E, Herdewijn P. Anno 2021: Which antivirals for the coming decade? ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2021; 57:49-107. [PMID: 34744210 PMCID: PMC8563371 DOI: 10.1016/bs.armc.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite considerable progress in the development of antiviral drugs, among which anti-immunodeficiency virus (HIV) and anti-hepatitis C virus (HCV) medications can be considered real success stories, many viral infections remain without an effective treatment. This not only applies to infectious outbreaks caused by zoonotic viruses that have recently spilled over into humans such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), but also ancient viral diseases that have been brought under control by vaccination such as variola (smallpox), poliomyelitis, measles, and rabies. A largely unsolved problem are endemic respiratory infections due to influenza, respiratory syncytial virus (RSV), and rhinoviruses, whose associated morbidity will likely worsen with increasing air pollution. Furthermore, climate changes will expose industrialized countries to a dangerous resurgence of viral hemorrhagic fevers, which might also become global infections. Herein, we summarize the recent progress that has been made in the search for new antivirals against these different threats that the world population will need to confront with increasing frequency in the next decade.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,Corresponding author:
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Hashimoto T, Baba K, Inoue K, Okane M, Hata S, Shishido T, Naito A, Wildum S, Omoto S. Comprehensive assessment of amino acid substitutions in the trimeric RNA polymerase complex of influenza A virus detected in clinical trials of baloxavir marboxil. Influenza Other Respir Viruses 2020; 15:389-395. [PMID: 33099886 PMCID: PMC8051730 DOI: 10.1111/irv.12821] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 01/18/2023] Open
Abstract
Background Baloxavir marboxil (BXM) is an approved drug that selectively targets cap‐dependent endonuclease on PA subunit in the RNA polymerase complex of influenza A and B viruses. Amino acid substitutions at position 38 in the PA subunit were identified as a major pathway for reduced susceptibility to baloxavir acid (BXA), the active form of BXM. Additionally, substitutions found at positions E23, A37, and E199 in the PA subunit impact BXA susceptibility by less than 10‐fold. Methods We comprehensively evaluated the impact of novel amino acid substitutions identified in PA, PB1, and PB2 subunits in BXM clinical trials and influenza sequence databases by means of drug susceptibility and replicative capacity. Results PA/I38N in A(H1N1)pdm09 and PA/I38R in A(H3N2) were newly identified as treatment‐emergent substitutions in the CAPSTONE‐2 study. The I38N substitution conferred reduced susceptibility by 24‐fold, whereas replicative capacity of the I38N‐substituted virus was impaired compared with the wild‐type. The I38R‐substituted virus was not viable in cell culture. All other mutations assessed in this extensive study did not significantly affect BXA susceptibility (< 2.4‐fold change). Conclusion These results provide additional information on the impact of amino acid substitutions in the trimeric viral polymerase complex to BXA susceptibility and will further support influenza surveillance.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Shionogi & Co., Ltd., Osaka, Japan.,Shionogi Techno Advance Research, Co., Ltd., Osaka, Japan
| | | | - Kae Inoue
- Shionogi Techno Advance Research, Co., Ltd., Osaka, Japan
| | - Miyako Okane
- Shionogi Techno Advance Research, Co., Ltd., Osaka, Japan
| | - Satoshi Hata
- Shionogi Techno Advance Research, Co., Ltd., Osaka, Japan
| | | | | | | | | |
Collapse
|