1
|
Chen C, Zhang Y, Liu J, Wang M, Lu M, Xu L, Yan R, Li X, Song X. An Eimeria maxima Antigen: Its Functions on Stimulating Th1 Cytokines and Protective Efficacy Against Coccidiosis. Front Immunol 2022; 13:872015. [PMID: 35669766 PMCID: PMC9163350 DOI: 10.3389/fimmu.2022.872015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
A consensus is that the Th1 immune response plays a predominant role against avian coccidiosis. Therefore, an antigen with the ability to induce Th1 cytokine responses is an ideal candidate for the development of coccidiosis vaccines. In our previous study, EmARM-β, a Th1 cytokines-stimulating antigen, was screened from the cDNA expression library of Eimeria maxima (E. maxima). Herein, we verified its stimulative effects on Th1 cytokine productions and evaluated its protective efficacy against E. maxima infection. Recombinant EmARM-β protein was expressed, and eukaryotic expression plasmid pVAX1-EmARM-β was also constructed for the immunization of birds. An immunofluorescence assay was performed to detect the native form of EmARM-β protein in the stage of sporozoites. Expressions of specific transcription factors and cytokines in immunized chickens were measured using qPCR and ELISA to verify its stimulating function on Th1 cytokines. Specific IgG antibody levels and T lymphocyte subpopulation in the immunized chickens were detected using ELISA and indirect flow cytometry to determine induced immune responses. The results showed that EmARM-β native protein is massively expressed in the sporozoites stage of E. maxima. Effective stimulation from the EmARM-β antigen to T-bet and Th1 cytokines (IL-2 and IFN-γ) was observed in vivo. After being immunized with rEmARM-β or pVAX1-EmARM-β, significant promotion to the proportion of CD4+ and CD8+ T cells and the level of antigen-specific IgG antibodies in immunized chickens was also observed. Furthermore, vaccination with rEmARM-β antigen or pVAX1-EmARM-β resulted in alleviated weight loss and enteric lesion, reduced oocyst output, and higher anticoccidial index (ACI) in challenged birds. These results indicate that EmARM-β antigen can effectively stimulate the expression of Th1 cytokines and initiate host immune responses, providing moderate protective efficacy against E. maxima. Notably, EmARM-β protein is a promising candidate for developing a novel anticoccidial vaccine.
Collapse
|
2
|
Accensi F, Bosch-Camós L, Monteagudo PL, Rodríguez F. DNA Vaccines in Pigs: From Immunization to Antigen Identification. Methods Mol Biol 2022; 2465:109-124. [PMID: 35118618 DOI: 10.1007/978-1-0716-2168-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA vaccination is one of the most fascinating vaccine strategies currently in development. Two of the main advantages of DNA immunization rely on its simplicity and flexibility, being ideal to dissect both the immune mechanisms and the antigens involved in protection against a given pathogen. Here we describe several strategies used to enhance the immune responses induced and the protection afforded by experimental DNA vaccines tested in swine and provide very basic protocols describing the generation and in vivo application of a prototypic DNA vaccine. The future will say the last word regarding the definitive implementation of DNA vaccination in the field.
Collapse
Affiliation(s)
- Francesc Accensi
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Bellaterra, Barcelona, Spain.
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| | - Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Bellaterra, Barcelona, Spain
| | - Paula L Monteagudo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Bellaterra, Barcelona, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Bellaterra, Barcelona, Spain
| |
Collapse
|
3
|
Luberto L, Neroni B, Gandini O, Fiscarelli EV, Salvatori G, Roscilli G, Marra E. Genetic Vaccination as a Flexible Tool to Overcome the Immunological Complexity of Invasive Fungal Infections. Front Microbiol 2021; 12:789774. [PMID: 34975811 PMCID: PMC8715041 DOI: 10.3389/fmicb.2021.789774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic has highlighted genetic vaccination as a powerful and cost-effective tool to counteract infectious diseases. Invasive fungal infections (IFI) remain a major challenge among immune compromised patients, particularly those undergoing allogeneic hematopoietic bone marrow transplantation (HSCT) or solid organ transplant (SOT) both presenting high morbidity and mortality rates. Candidiasis and Aspergillosis are the major fungal infections among these patients and the failure of current antifungal therapies call for new therapeutic aids. Vaccination represents a valid alternative, and proof of concept of the efficacy of this approach has been provided at clinical level. This review will analyze current understanding of antifungal immunology, with a particular focus on genetic vaccination as a suitable strategy to counteract these diseases.
Collapse
Affiliation(s)
- Laura Luberto
- Takis s.r.l., Rome, Italy
- *Correspondence: Laura Luberto,
| | - Bruna Neroni
- Cystic Fibrosis Diagnostic Section, U.O. Microbiology and Immunology Diagnostic, Department of Immunology and Laboratory Medicine, Children’s Hospital Bambino Gesù Organization IRCCS, Rome, Italy
| | - Orietta Gandini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Ersilia Vita Fiscarelli
- Cystic Fibrosis Diagnostic Section, U.O. Microbiology and Immunology Diagnostic, Department of Immunology and Laboratory Medicine, Children’s Hospital Bambino Gesù Organization IRCCS, Rome, Italy
| | | | | | | |
Collapse
|
4
|
Sharma A, Sanduja P, Anand A, Mahajan P, Guzman CA, Yadav P, Awasthi A, Hanski E, Dua M, Johri AK. Advanced strategies for development of vaccines against human bacterial pathogens. World J Microbiol Biotechnol 2021; 37:67. [PMID: 33748926 PMCID: PMC7982316 DOI: 10.1007/s11274-021-03021-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Infectious diseases are one of the main grounds of death and disabilities in human beings globally. Lack of effective treatment and immunization for many deadly infectious diseases and emerging drug resistance in pathogens underlines the need to either develop new vaccines or sufficiently improve the effectiveness of currently available drugs and vaccines. In this review, we discuss the application of advanced tools like bioinformatics, genomics, proteomics and associated techniques for a rational vaccine design.
Collapse
Affiliation(s)
- Abhinay Sharma
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Sanduja
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Carlos A Guzman
- Department of Vaccinology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendragarh, Harayana, India
| | - Amit Awasthi
- Translational Health Science and Technology Institute, Faridabad-Gurgaon Expressway, PO box #04, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121001, India
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, 9112102, Jerusalem, Israel
| | - Meenakshi Dua
- School of Environmental Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
5
|
Mtshali SA, Adeleke MA. A review of adaptive immune responses to Eimeria tenella and Eimeria maxima challenge in chickens. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1833693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- S. A. Mtshali
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| | - M. A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of Kwa-Zulu Natal, Durban, South Africa
| |
Collapse
|
6
|
Schreeg ME, Marr HS, Tarigo JL, Sherrill MK, Outi HK, Scholl EH, Bird DM, Vigil A, Hung C, Nakajima R, Liang L, Trieu A, Doolan DL, Thomas JE, Levy MG, Reichard MV, Felgner PL, Cohn LA, Birkenheuer AJ. Identification of Cytauxzoon felis antigens via protein microarray and assessment of expression library immunization against cytauxzoonosis. Clin Proteomics 2018; 15:44. [PMID: 30618510 PMCID: PMC6310948 DOI: 10.1186/s12014-018-9218-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/14/2018] [Indexed: 01/17/2023] Open
Abstract
Background Cytauxzoonosis is a disease of felids in North America caused by the tick-transmitted apicomplexan parasite Cytauxzoon felis. Cytauxzoonosis is particularly virulent for domestic cats, but no vaccine currently exists. The parasite cannot be cultivated in vitro, presenting a significant limitation for vaccine development. Methods Recent sequencing of the C. felis genome has identified over 4300 putative protein-encoding genes. From this pool we constructed a protein microarray containing 673 putative C. felis proteins. This microarray was probed with sera from C. felis-infected and naïve cats to identify differentially reactive antigens which were incorporated into two expression library vaccines, one polyvalent and one monovalent. We assessed the efficacy of these vaccines to prevent of infection and/or disease in a tick-challenge model. Results Probing of the protein microarray resulted in identification of 30 differentially reactive C. felis antigens that were incorporated into the two expression library vaccines. However, expression library immunization failed to prevent infection or disease in cats challenged with C. felis. Conclusions Protein microarray facilitated high-throughput identification of novel antigens, substantially increasing the pool of characterized C. felis antigens. These antigens should be considered for development of C. felis vaccines, diagnostics, and therapeutics. Electronic supplementary material The online version of this article (10.1186/s12014-018-9218-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Megan E Schreeg
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - Henry S Marr
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - Jaime L Tarigo
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA.,2College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602 USA
| | - Meredith K Sherrill
- 3College of Veterinary Medicine, University of Missouri, 1600 East Rollins, Columbia, MO 65211 USA
| | - Hilton K Outi
- 3College of Veterinary Medicine, University of Missouri, 1600 East Rollins, Columbia, MO 65211 USA
| | - Elizabeth H Scholl
- 4College of Agriculture and Life Sciences, North Carolina State University, 2501 Founders Dr, Raleigh, NC 27607 USA
| | - David M Bird
- 4College of Agriculture and Life Sciences, North Carolina State University, 2501 Founders Dr, Raleigh, NC 27607 USA
| | - Adam Vigil
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Chris Hung
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Rie Nakajima
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Li Liang
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Angela Trieu
- 6QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane City, QLD 4006 Australia
| | - Denise L Doolan
- 6QIMR Berghofer Medical Research Institute, 300 Herston Rd, Brisbane City, QLD 4006 Australia.,7Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Dr, Douglas, QLD 4814 Australia
| | - Jennifer E Thomas
- 8Center for Veterinary Health Sciences, Oklahoma State University, 208 S McFarland St, Stillwater, OK 74078 USA
| | - Michael G Levy
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA
| | - Mason V Reichard
- 8Center for Veterinary Health Sciences, Oklahoma State University, 208 S McFarland St, Stillwater, OK 74078 USA
| | - Philip L Felgner
- 5School of Medicine, University of California Irvine, 1001 Health Sciences Rd, Irvine, CA 92617 USA
| | - Leah A Cohn
- 3College of Veterinary Medicine, University of Missouri, 1600 East Rollins, Columbia, MO 65211 USA
| | - Adam J Birkenheuer
- 1College of Veterinary Medicine, North Carolina State University, Research Building Room 464, 1060 William Moore Drive, Raleigh, NC 27607 USA
| |
Collapse
|
7
|
Kuleš J, Horvatić A, Guillemin N, Galan A, Mrljak V, Bhide M. New approaches and omics tools for mining of vaccine candidates against vector-borne diseases. MOLECULAR BIOSYSTEMS 2017; 12:2680-94. [PMID: 27384976 DOI: 10.1039/c6mb00268d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vector-borne diseases (VBDs) present a major threat to human and animal health, as well as place a substantial burden on livestock production. As a way of sustainable VBD control, focus is set on vaccine development. Advances in genomics and other "omics" over the past two decades have given rise to a "third generation" of vaccines based on technologies such as reverse vaccinology, functional genomics, immunomics, structural vaccinology and the systems biology approach. The application of omics approaches is shortening the time required to develop the vaccines and increasing the probability of discovery of potential vaccine candidates. Herein, we review the development of new generation vaccines for VBDs, and discuss technological advancement and overall challenges in the vaccine development pipeline. Special emphasis is placed on the development of anti-tick vaccines that can quell both vectors and pathogens.
Collapse
Affiliation(s)
- Josipa Kuleš
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Anita Horvatić
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Nicolas Guillemin
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Asier Galan
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Vladimir Mrljak
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Mangesh Bhide
- ERA Chair VetMedZg project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia. and Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia and Institute of Neuroimmunology, Slovakia Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
8
|
Yang X, Li M, Liu J, Ji Y, Li X, Xu L, Yan R, Song X. Identification of immune protective genes of Eimeria maxima through cDNA expression library screening. Parasit Vectors 2017; 10:85. [PMID: 28209186 PMCID: PMC5322808 DOI: 10.1186/s13071-017-2029-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/10/2017] [Indexed: 11/17/2022] Open
Abstract
Background Eimeria maxima is one of the most prevalent Eimeria species causing avian coccidiosis, and results in huge economic loss to the global poultry industry. Current control strategies, such as anti-coccidial medication and live vaccines have been limited because of their drawbacks. The third generation anticoccidial vaccines including the recombinant vaccines as well as DNA vaccines have been suggested as a promising alternative strategy. To date, only a few protective antigens of E. maxima have been reported. Hence, there is an urgent need to identify novel protective antigens of E. maxima for the development of neotype anticoccidial vaccines. Methods With the aim of identifying novel protective genes of E. maxima, a cDNA expression library of E. maxima sporozoites was constructed using Gateway technology. Subsequently, the cDNA expression library was divided into 15 sub-libraries for cDNA expression library immunization (cDELI) using parasite challenged model in chickens. Protective sub-libraries were selected for the next round of screening until individual protective clones were obtained, which were further sequenced and analyzed. Results Adopting the Gateway technology, a high-quality entry library was constructed, containing 9.2 × 106 clones with an average inserted fragments length of 1.63 kb. The expression library capacity was 2.32 × 107 colony-forming units (cfu) with an average inserted fragments length of 1.64 Kb. The expression library was screened using parasite challenged model in chickens. The screening yielded 6 immune protective genes including four novel protective genes of EmJS-1, EmRP, EmHP-1 and EmHP-2, and two known protective genes of EmSAG and EmCKRS. EmJS-1 is the selR domain-containing protein of E. maxima whose function is unknown. EmHP-1 and EmHP-2 are the hypothetical proteins of E. maxima. EmRP and EmSAG are rhomboid-like protein and surface antigen glycoproteins of E. maxima respectively, and involved in invasion of the parasite. Conclusions Our results provide a cDNA expression library for further screening of T cell stimulating or inhibiting antigens of E. maxima. Moreover, our results provide six candidate protective antigens for developing new vaccines against E. maxima. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2029-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- XinChao Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - MengHui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - JianHua Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - YiHong Ji
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
9
|
Rathore JS, Wang Y. Protective role of Th17 cells in pulmonary infection. Vaccine 2016; 34:1504-1514. [PMID: 26878294 DOI: 10.1016/j.vaccine.2016.02.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 01/14/2023]
Abstract
Th17 cells are characterized as preferential producer of interleukins including IL-17A, IL-17F, IL-21 and IL-22. Corresponding receptors of these cytokines are expressed on number of cell types found in the mucosa, including epithelial cells and fibroblasts which constitute the prime targets of the Th17-associated cytokines. Binding of IL-17 family members to their corresponding receptors lead to modulation of antimicrobial functions of target cells including alveolar epithelial cells. Stimulated alveolar epithelial cells produce antimicrobial peptides and are involved in granulepoesis, neutrophil recruitment and tissue repair. Mucosal immunity mediated by Th17 cells is protective against numerous pulmonary pathogens including extracellular bacterial and fungal pathogens. This review focuses on the protective role of Th17 cells during pulmonary infection, highlighting subset differentiation, effector cytokines production, followed by study of the binding of these cytokines to their corresponding receptors, the subsequent signaling pathway they engender and their effector role in host defense.
Collapse
Affiliation(s)
- Jitendra Singh Rathore
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA; Gautam Buddha University, School of Biotechnology, Greater Noida, Yamuna Expressway, Uttar Pradesh, India.
| | - Yan Wang
- University of Pennsylvania, Perelman School of Medicine, Department of Microbiology, Philadelphia, PA, USA
| |
Collapse
|
10
|
Accensi F, Rodríguez F, Monteagudo PL. DNA Vaccines: Experiences in the Swine Model. Methods Mol Biol 2016; 1349:49-62. [PMID: 26458829 DOI: 10.1007/978-1-4939-3008-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
DNA vaccination is one of the most fascinating vaccine-strategies currently in development. Two of the main advantages of DNA immunization rely on its simplicity and flexibility, being ideal to dissect both the immune mechanisms and the antigens involved in protection against a given pathogen. Here, we describe several strategies used to enhance the immune responses induced and the protection afforded by experimental DNA vaccines tested in swine and provide with very basic protocol describing the generation and in vivo application of a prototypic DNA vaccine. Only time will tell the last word regarding the definitive implementation of DNA vaccination in the field.
Collapse
Affiliation(s)
- Francesc Accensi
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra, Barcelona, 08193, Spain.
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Paula L Monteagudo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
11
|
Abstract
Vaccination has a proven record as one of the most effective medical approaches to prevent the spread of infectious diseases. Traditional vaccine approaches involve the administration of whole killed or weakened microorganisms to stimulate protective immune responses. Such approaches deliver many microbial components, some of which contribute to protective immunity, and assist in guiding the type of immune response that is elicited. Despite their impeccable record, these approaches have failed to yield vaccines for many important infectious organisms. This has prompted a move towards more defined vaccines ('subunit vaccines'), where individual protective components are administered. This unit provides an overview of the components that are used for the development of modern vaccines including: an introduction to different vaccine types (whole organism, protein/peptide, polysaccharide, conjugate, and DNA vaccines); techniques for identifying subunit antigens; vaccine delivery systems; and immunostimulatory agents ('adjuvants'), which are fundamental for the development of effective subunit vaccines.
Collapse
|
12
|
Expression library immunization can confer protection against lethal challenge with African swine fever virus. J Virol 2014; 88:13322-32. [PMID: 25210179 DOI: 10.1128/jvi.01893-14] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED African swine fever is one of the most devastating pig diseases, against which there is no vaccine available. Recent work from our laboratory has demonstrated the protective potential of DNA vaccines encoding three African swine fever viral antigens (p54, p30, and the hemagglutinin extracellular domain) fused to ubiquitin. Partial protection was afforded in the absence of detectable antibodies prior to virus challenge, and survival correlated with the presence of a large number of hemagglutinin-specific CD8(+) T cells in blood. Aiming to demonstrate the presence of additional CD8(+) T-cell determinants with protective potential, an expression library containing more than 4,000 individual plasmid clones was constructed, each one randomly containing a Sau3AI restriction fragment of the viral genome (p54, p30, and hemagglutinin open reading frames [ORFs] excluded) fused to ubiquitin. Immunization of farm pigs with the expression library yielded 60% protection against lethal challenge with the virulent E75 strain. These results were further confirmed by using specific-pathogen-free pigs after challenging them with 10(4) hemadsorbing units (HAU) of the cell culture-adapted strain E75CV1. On this occasion, 50% of the vaccinated pigs survived the lethal challenge, and 2 out of the 8 immunized pigs showed no viremia or viral excretion at any time postinfection. In all cases, protection was afforded in the absence of detectable specific antibodies prior to challenge and correlated with the detection of specific T-cell responses at the time of sacrifice. In summary, our results clearly demonstrate the presence of additional protective determinants within the African swine fever virus (ASFV) genome and open up the possibility for their future identification. IMPORTANCE African swine fever is a highly contagious disease of domestic and wild pigs that is endemic in many sub-Saharan countries, where it causes important economic losses and is currently in continuous expansion across Europe. Unfortunately, there is no treatment nor an available vaccine. Early attempts using attenuated vaccines demonstrated their potential to protect pigs against experimental infection. However, their use in the field remains controversial due to safety issues. Although inactive and subunit vaccines did not confer solid protection against experimental ASFV infection, our DNA vaccination results have generated new expectations, confirming the key role of T-cell responses in protection and the existence of multiple ASFV antigens with protective potential, more of which are currently being identified. Thus, the future might bring complex and safe formulations containing more than a single viral determinant to obtain broadly protective vaccines. We believe that obtaining the optimal vaccine formulation it is just a matter of time, investment, and willingness.
Collapse
|
13
|
Grubaugh D, Flechtner JB, Higgins DE. Proteins as T cell antigens: Methods for high-throughput identification. Vaccine 2013; 31:3805-10. [DOI: 10.1016/j.vaccine.2013.06.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/03/2013] [Accepted: 06/13/2013] [Indexed: 12/22/2022]
|
14
|
Argilaguet JM, Pérez-Martín E, Nofrarías M, Gallardo C, Accensi F, Lacasta A, Mora M, Ballester M, Galindo-Cardiel I, López-Soria S, Escribano JM, Reche PA, Rodríguez F. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS One 2012; 7:e40942. [PMID: 23049728 PMCID: PMC3458849 DOI: 10.1371/journal.pone.0040942] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/15/2012] [Indexed: 12/14/2022] Open
Abstract
The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8+ T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8+ T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease.
Collapse
MESH Headings
- African Swine Fever/immunology
- African Swine Fever/mortality
- African Swine Fever/prevention & control
- African Swine Fever/virology
- African Swine Fever Virus/immunology
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Cells, Cultured
- DNA, Viral/genetics
- DNA, Viral/immunology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Plasmids/genetics
- Plasmids/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Survival Rate
- Swine
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Ubiquitin/genetics
- Ubiquitin/immunology
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Jordi M. Argilaguet
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | - Eva Pérez-Martín
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | - Miquel Nofrarías
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | | | - Francesc Accensi
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
- Departament de Sanitat I Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Anna Lacasta
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | - Mercedes Mora
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | - Maria Ballester
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | - Ivan Galindo-Cardiel
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | - Sergio López-Soria
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
| | | | - Pedro A. Reche
- Departamento de Microbiología I, Universidad Computense de Madrid (UCM), Madrid, Spain
| | - Fernando Rodríguez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Bellaterra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
15
|
Borovkov A, Magee DM, Loskutov A, Cano JA, Selinsky C, Zsemlye J, Lyons CR, Sykes K. New classes of orthopoxvirus vaccine candidates by functionally screening a synthetic library for protective antigens. Virology 2009; 395:97-113. [PMID: 19800089 DOI: 10.1016/j.virol.2009.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 07/22/2009] [Accepted: 09/05/2009] [Indexed: 10/20/2022]
Abstract
The licensed smallpox vaccine, comprised of infectious vaccinia, is no longer popular as it is associated with a variety of adverse events. Safer vaccines have been explored such as further attenuated viruses and component designs. However, these alternatives typically provide compromised breadth and strength of protection. We conducted a genome-level screening of cowpox, the ancestral poxvirus, in the broadly immune-presenting C57BL/6 mouse as an approach to discovering novel components with protective capacities. Cowpox coding sequences were synthetically built and directly assayed by genetic immunization for open-reading frames that protect against lethal pulmonary infection. Membrane and non-membrane antigens were identified that partially protect C57BL/6 mice against cowpox and vaccinia challenges without adjuvant or regimen optimization, whereas the 4-pox vaccine did not. New vaccines might be developed from productive combinations of these new and existing antigens to confer potent, broadly efficacious protection and be contraindicated for none.
Collapse
Affiliation(s)
- Alexandre Borovkov
- Center for Innovations in Medicine at The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Herrera-Najera C, Piña-Aguilar R, Xacur-Garcia F, Ramirez-Sierra MJ, Dumonteil E. Mining the Leishmania genome for novel antigens and vaccine candidates. Proteomics 2009; 9:1293-301. [PMID: 19206109 DOI: 10.1002/pmic.200800533] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leishmaniasis is a neglected disease with an estimated 12 million infected people. The recent completion of the sequencing of the Leishmania major genome has opened opportunities for the identification of targets for vaccine development. We present here the first attempt at identifying novel vaccine candidates by whole genome analysis. We predicted CD8(+) T cell epitopes from the L. major proteome and validated in vivo in mice the immunogenicity of some of the best predicted epitopes. Consensus epitope predictions from 8272 annotated protein sequences with 5-8 different algorithms allowed the identification of 78 class I CD8(+) epitopes. BALB/c mice were immunized with 26 synthetic peptides corresponding to the most likely epitopes. Fourteen (54%) resulted immunogenic, with eight being strong inducers of T cell IFNgamma production. None of the proteins from which the epitopes are derived are differentially expressed, only two may be surface proteins, eight have putative enzymatic, and metabolic activities. These epitopes and proteins represent new antigen candidates for further studies. While pathogen genomes have not yet delivered their full promise in terms of human health applications, our study opens the way for extensive genome mining for antigen identification and vaccine development against Leishmania and other pathogens.
Collapse
Affiliation(s)
- Carla Herrera-Najera
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Hideyo Noguchi, Universidad Autónoma de Yucatan, Mérida, Yucatan, Mexico
| | | | | | | | | |
Collapse
|
17
|
Antigen mRNA-transfected, allogeneic fibroblasts loaded with NKT-cell ligand confer antitumor immunity. Blood 2009; 113:4262-72. [DOI: 10.1182/blood-2008-08-176446] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
The maturation of dendritic cells (DCs) in situ by danger signals plays a central role in linking innate and adaptive immunity. We previously demonstrated that the activation of invariant natural killer T (iNKT) cells by administration of α-galactosylceramide (α-GalCer)–loaded tumor cells can act as a cellular adjuvant through the DC maturation. In the current study, we used allogeneic fibroblasts loaded with α-GalCer and transfected with antigen-encoding mRNA, thus combining the adjuvant effects of iNKT-cell activation with delivery of antigen to DCs in vivo. We found that these cells produce antigen protein and activate NK and iNKT cells. When injected into major histocompatibility complex (MHC)–mismatched mice, they elicited antigen-specific T-cell responses and provided tumor protection, suggesting that these immune responses depend on host DCs. In addition, antigen-expressing fibroblasts loaded with α-GalCer lead to a more potent T-cell response than those expressing NK cell ligands. Thus, glycolipid-loaded, mRNA-transfected allogeneic fibroblasts act as cellular vectors to provide iNKT-cell activation, leading to DC maturation and T-cell immunity. By harnessing the innate immune system and generating an adaptive immune response to a variety of antigens, this unique tool could prove clinically beneficial in the development of immunotherapies against malignant and infectious diseases.
Collapse
|
18
|
Tekiel V, Alba-Soto CD, González Cappa SM, Postan M, Sánchez DO. Identification of novel vaccine candidates for Chagas' disease by immunization with sequential fractions of a trypomastigote cDNA expression library. Vaccine 2009; 27:1323-32. [PMID: 19162108 DOI: 10.1016/j.vaccine.2008.12.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/23/2008] [Accepted: 12/28/2008] [Indexed: 12/20/2022]
Abstract
The protozoan Trypanosoma cruzi is the etiological agent of Chagas' disease, a major chronic infection in Latin America. Currently, there are neither effective drugs nor vaccines for the treatment or prevention of the disease. Several T. cruzi surface antigens are being tested as vaccines but none of them proved to be completely protective, probably because they represent only a limited repertoire of all the possible T. cruzi target molecules. Taking into account that the trypomastigote stage of the parasite must express genes that allow the parasite to disseminate into the tissues and invade cells, we reasoned that genes preferentially expressed in trypomastigotes represent potential targets for immunization. Here we screened an epimastigote-subtracted trypomastigote cDNA expression library by genetic immunization, in order to find new vaccine candidates for Chagas' disease. After two rounds of immunization and challenge with trypomastigotes, this approach led to the identification of a pool of 28 gene fragments that improved in vivo protection. Sequence analysis of these putative candidates revealed that 19 out of 28 (67.85%) of the genes were hypothetical proteins or unannotated T. cruzi open reading frames, which certainly would not have been identified by other methods of vaccine discovery.
Collapse
Affiliation(s)
- Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CONICET, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
19
|
Movahedi AR, Hampson DJ. New ways to identify novel bacterial antigens for vaccine development. Vet Microbiol 2008; 131:1-13. [PMID: 18372122 DOI: 10.1016/j.vetmic.2008.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 02/07/2008] [Accepted: 02/08/2008] [Indexed: 11/27/2022]
Abstract
This article provides an overview of developments in approaches to identify novel bacterial components for use in recombinant subunit vaccines. In particular it describes the processes involved in "reverse vaccinology", and some associated complementary technologies such as proteomics that can be used in the identification of new and potentially useful vaccine antigens. Results obtained from the application of these new methods are forming a basis for a new generation of vaccines for use in the control of bacterial infections of humans and animals.
Collapse
Affiliation(s)
- Abdolreza Reza Movahedi
- School of Veterinary and Biomedical Science, Murdoch University, South Street, Murdoch, Western Australia 6150, Australia
| | | |
Collapse
|
20
|
Yero D, Pajón R, Caballero E, González S, Cobas K, Fariñas M, Lopez Y, Acosta A. A novel method to screen genomic libraries that combines genomic immunization with the prime-boost strategy. ACTA ACUST UNITED AC 2007; 50:430-3. [PMID: 17537176 DOI: 10.1111/j.1574-695x.2007.00265.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We employed a prime-boost regimen in combination with the expression library immunization protocol to improve the protective effectiveness of a genomic library used as immunogen. To demonstrate the feasibility of this novel strategy, we used as a prime a serogroup B Neisseria meningitidis random genomic library constructed in a eukaryotic expression vector. Mice immunized with different fractions of this library and boosted with a single dose of meningococcal outer membrane vesicles elicited higher bactericidal antibody titers compared with mice primed with the empty vector. After the boost, passive administration of sera from mice primed with two of these fractions significantly reduced the number of viable bacteria in the blood of infant rats challenged with live N. meningitidis. The method proposed could be applied to the identification of subimmunogenic antigens during vaccine candidate screening by employing expression library immunization.
Collapse
Affiliation(s)
- Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Havana, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yero D, Pajón R, Pérez Y, Fariñas M, Cobas K, Diaz D, Solis RL, Acosta A, Brookes C, Taylor S, Gorringe A. Identification by genomic immunization of a pool of DNA vaccine candidates that confer protective immunity in mice against Neisseria meningitidis serogroup B. Vaccine 2007; 25:5175-88. [PMID: 17544180 DOI: 10.1016/j.vaccine.2007.04.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 04/26/2007] [Accepted: 04/28/2007] [Indexed: 11/19/2022]
Abstract
We have shown previously that expression library immunization is viable alternative approach to induce protective immunity against Neisseria meningitidis serogroup B. In this study we report that few rounds of library screening allow identification of protective pools of defined antigens. A previously reported protective meningococcal library (L8, with 600 clones) was screened and two sub-libraries of 95 clones each were selected based on the induction of bactericidal and protective antibodies in BALB/c mice. After sequence analysis of each clone within these sub-libraries, we identified a pool of 20 individual antigens that induced protective immune responses in mice against N. meningitidis infection, and the observed protection was associated with the induction of bactericidal antibodies. Our studies demonstrate for the first time that ELI combined with sequence analysis is a powerful and efficient tool for identification of candidate antigens for use in a meningococcal vaccine.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Bacteremia/immunology
- Bacteremia/prevention & control
- Blotting, Western
- DNA, Bacterial/genetics
- DNA, Bacterial/immunology
- Enzyme-Linked Immunosorbent Assay
- Genomic Library
- Immune Sera/administration & dosage
- Immune Sera/immunology
- Male
- Meningococcal Infections/immunology
- Meningococcal Infections/prevention & control
- Meningococcal Vaccines/administration & dosage
- Meningococcal Vaccines/immunology
- Mice
- Mice, Inbred BALB C
- Microbial Viability/drug effects
- Neisseria meningitidis, Serogroup B/drug effects
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Plasmids/genetics
- Rats
- Survival Analysis
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Ave 27, La Lisa, Habana 11600, Cuba
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Because of the large preexisting antigenic load and immunosuppressive environment within a tumor, inducing therapeutically useful antitumor immunity in cancer patients requires the development of powerful vaccination protocols. An approach gaining increasing popularity in the tumor vaccine field is to immunize cancer patients with their own DCs loaded ex vivo with tumor antigens. The underlying premise of this approach is that the efficiency and control over the vaccination process provided by ex vivo manipulation of the DCs generates an optimally potent APC and a superior method for stimulating antitumor immunity in vivo compared with the more conventional direct vaccination methods, offsetting the added cost and complexity associated with this form of customized cell therapy.
Collapse
Affiliation(s)
- Eli Gilboa
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1550 NW 10th Avenue Medical Campus, Miami, FL 33136, USA.
| |
Collapse
|
23
|
Hernández YL, Corona DY, Rodríguez SS, Infante Bourzac JF, Sarmiento ME, Arzuaga NO, Maceo EC, Díaz D, Díaz R, Domínguez AA. Immunization of mice with a Mycobacterium tuberculosis genomic expression library results in lower bacterial load in lungs after challenge with BCG. Tuberculosis (Edinb) 2006; 86:247-54. [PMID: 16647298 DOI: 10.1016/j.tube.2006.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
Tuberculosis is a serious infectious disease in many developing countries. The lack of an effective vaccine for preventing this disease has stimulated the search for new vaccine candidates against Mycobacterium tuberculosis. In the present work, the construction of a genomic expression library of M. tuberculosis in a eukaryotic expression vector was carried out. Immunization of Balb/c mice with a plasmid DNA pool from this library (containing 8360 clones) induced a significant IgG antibody response. Immunized mice were challenged by intratracheal route with 10(5) cfu of non-pathogenic Mycobacterium bovis BCG and were sacrificed 21 days post-challenge. Mice immunized with the genomic expression library showed a significant reduction of viable bacteria in lungs and less pulmonary tissue damage. Granulomas were not observed and the lungs had a more discrete perivascular inflammatory cell infiltrate compared to control mice. Results suggest that the genomic expression library contains genes encoding proteins that are protective against M. tuberculosis infection.
Collapse
|
24
|
Nuttall PA, Trimnell AR, Kazimirova M, Labuda M. Exposed and concealed antigens as vaccine targets for controlling ticks and tick-borne diseases. Parasite Immunol 2006; 28:155-63. [PMID: 16542317 DOI: 10.1111/j.1365-3024.2006.00806.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tick vaccines derived from Bm86, a midgut membrane-bound protein of the cattle tick, Boophilus microplus, are currently the only commercially available ectoparasite vaccines. Despite its introduction to the market in 1994, and the recognized need for alternatives to chemical pesticides, progress in developing effective antitick vaccines (and ectoparasite vaccines in general) is slow. The primary rate-limiting step is the identification of suitable antigenic targets for vaccine development. Two sources of candidate vaccine antigens have been identified: 'exposed' antigens that are secreted in tick saliva during attachment and feeding on a host and 'concealed' antigens that are normally hidden from the host. Recently, a third group of antigens has been distinguished that combines the properties of both exposed and concealed antigens. This latter group offers the prospect of a broad-spectrum vaccine effective against both adults and immature stages of a wide variety of tick species. It also shows transmission-blocking and protective activity against a tick-borne pathogen. With the proliferation of molecular techniques and their application to vaccine development, there are high hopes for new and effective antitick vaccines that also control tick-borne diseases.
Collapse
|
25
|
Talaat AM, Stemke-Hale K. Expression library immunization: a road map for discovery of vaccines against infectious diseases. Infect Immun 2005; 73:7089-98. [PMID: 16239502 PMCID: PMC1273844 DOI: 10.1128/iai.73.11.7089-7098.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Adel M Talaat
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706-1581, USA.
| | | |
Collapse
|
26
|
Yero CD, Pajón FR, Caballero ME, Cobas AK, López HY, Fariñas MM, Gonzáles BS, Acosta DA. Immunization of mice with Neisseria meningitidis serogroup B genomic expression libraries elicits functional antibodies and reduces the level of bacteremia in an infant rat infection model. Vaccine 2005; 23:932-9. [PMID: 15603895 DOI: 10.1016/j.vaccine.2004.07.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 07/21/2004] [Accepted: 07/22/2004] [Indexed: 11/28/2022]
Abstract
The feasibility of expression library immunization against the pathogenic bacterium Neisseria meningitidis was studied. A genomic library of N. meningitidis serogroup B strain CU385, containing 6000 individual clones, was constructed and divided into 10 sublibraries. Immunization of BALB/c mice with plasmid DNA from six sublibraries induced a humoral response, with recognition of several meningococcal proteins by Western blot. Three of these sublibraries elicited bactericidal antibodies against the homologous strain, and sera from mice immunized with one of these sublibraries reduced significantly the number of viable bacteria in blood of infant rats challenged with N. meningitidis. In addition, after DNA immunization, mice were boosted intraperitoneally with 5 x 10(2) colony forming units of strain CU385. Mice immunized with nine of the 10 libraries developed bactericidal antibodies 1 week after the boost and controls did not, demonstrating the priming capacity and specificity of our immunization strategy. Our study demonstrates, for the first time, that genomic immunization offers a novel approach for screening possible vaccine candidates against N. meningitidis.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/biosynthesis
- Bacteremia/genetics
- Bacteremia/immunology
- Bacteremia/prevention & control
- Bacterial Vaccines/immunology
- Bacterial Vaccines/therapeutic use
- Base Sequence
- Disease Models, Animal
- Gene Expression Profiling
- Genomic Library
- Male
- Meningitis, Meningococcal/genetics
- Meningitis, Meningococcal/immunology
- Meningitis, Meningococcal/prevention & control
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Rats
- Rats, Wistar
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- C Daniel Yero
- Division of Biotechnology, Department of Molecular Biology, Finlay Institute, Ave 27, La Lisa, Habana 11600, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|