1
|
Tahlan S, Singh S, Kaira M, Dey H, Pandey KC. A progress report in advancements of heterocyclic compounds as novel antimalarial agents over the last 5 years. Eur J Med Chem 2025; 289:117393. [PMID: 40048801 DOI: 10.1016/j.ejmech.2025.117393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
Malaria, caused by Plasmodium parasites and transmitted by Anopheles mosquitoes, remains a significant global health challenge, especially in tropical and subtropical regions where the disease is endemic. The complex Plasmodium lifecycle, involving stages in both the liver and bloodstream, leads to symptoms such as high fever, anemia, and, in severe cases, life-threatening complications, particularly P. falciparum infections. While historical treatments such as quinine and modern therapies such as artemisinin-based combination therapies (ACTs) have been effective, the growing issue of drug and insecticide resistance undermines these efforts. This resistance has spurred the need for new antimalarial drugs and strategies. Among the promising areas of research are heterocyclic compounds, which, due to their diverse and versatile chemical structures, are being investigated for their ability to disrupt the Plasmodium lifecycle. These compounds have potential as novel therapeutic agents that could enhance current treatment options. Understanding the mechanisms underlying drug resistance and advancing these therapeutic innovations are crucial for maintaining effective malaria control and treatment, highlighting the importance of on-going research in this field.
Collapse
Affiliation(s)
- Sumit Tahlan
- ICMR-National Institute of Malaria Research, New Delhi, 11007, India.
| | - Sucheta Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India.
| | - Meenakshi Kaira
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India.
| | - Hrithik Dey
- Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, 201306, India.
| | - Kailash C Pandey
- ICMR-National Institute of Malaria Research, New Delhi, 11007, India.
| |
Collapse
|
2
|
Pan Y, Sun Y, Wang Y, Zhang Z. Barcode sequence could be a good target for developing a species-specific anti-parasite agent based on CRISPR-Cas9. FASEB J 2020; 34:9393-9404. [PMID: 32474999 DOI: 10.1096/fj.202000118rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Parasitic infections are a severe issue in many regions of the world. We assume that if a chemical can destroy a DNA barcode sequence, then this chemical could be developed as a species-specific parasiticidal agent. To test this hypothesis, we designed sgRNAs that target the sequences of both a DNA barcode (ITS-2) and a control (5.8S rDNA) in Cryptocaryon irritans. In in vivo tests, we found that exposure to Cas9 mRNA mixed with sgRNAs was able to significantly reduce the hatching rate of tomont and the survival rate of theront. Quantitative Real-time PCR demonstrated that the DNAs of tomont and theront exposed to sgRNAs and Cas9 mRNA were significantly disrupted, no matter whether they were exposed to a single sgRNA or a mixture of two sgRNAs. DNA sequencing also suggested the test group that was exposed to a single sgRNA mixed with Cas9-induced mutation at sgRNA targeted fragments and the test group exposed to two sgRNAs combined with Cas9-induced deletion of large pieces. The findings and principles provided by this study contribute to the development of novel nucleic acid therapeutic drugs for cryptocaryoniasis and other parasitic diseases and provide insight into the development of species-specific parasiticidal agents.
Collapse
Affiliation(s)
- Yinlai Pan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yulong Sun
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yilei Wang
- College of Fisheries, Jimei University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
3
|
Mitran CJ, Yanow SK. The Case for Exploiting Cross-Species Epitopes in Malaria Vaccine Design. Front Immunol 2020; 11:335. [PMID: 32174924 PMCID: PMC7056716 DOI: 10.3389/fimmu.2020.00335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
The infection dynamics between different species of Plasmodium that infect the same human host can both suppress and exacerbate disease. This could arise from inter-parasite interactions, such as competition, from immune regulation, or both. The occurrence of protective, cross-species (heterologous) immunity is an unlikely event, especially considering that strain-transcending immunity within a species is only partial despite lifelong exposure to that species. Here we review the literature in humans and animal models to identify the contexts where heterologous immunity can arise, and which antigens may be involved. From the perspective of vaccine design, understanding the mechanisms by which exposure to an antigen from one species can elicit a protective response to another species offers an alternative strategy to conventional approaches that focus on immunodominant antigens within a single species. The underlying hypothesis is that certain epitopes are conserved across evolution, in sequence or in structure, and shared in antigens from different species. Vaccines that focus on conserved epitopes may overcome the challenges posed by polymorphic immunodominant antigens; but to uncover these epitopes requires approaches that consider the evolutionary history of protein families across species. The key question for vaccinologists will be whether vaccines that express these epitopes can elicit immune responses that are functional and contribute to protection against Plasmodium parasites.
Collapse
Affiliation(s)
| | - Stephanie K. Yanow
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Bizelli CC, Silva ASR, da Costa JD, Vanstreels RET, Atzingen MV, Santoro ML, Fernandes I, Catão-Dias JL, Faquim-Mauro EL. Isolation and Characterization of IgM and IgY Antibodies from Plasma of Magellanic Penguins (Spheniscus magellanicus). Avian Dis 2015; 59:79-86. [PMID: 26292539 DOI: 10.1637/10738-112913-reg] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Infectious diseases such as aspergillosis, avian malaria, and viral infections are significant threats to the conservation of penguins, leading to morbidity and mortality of these birds both in captivity and in the wild. The immune response to such infectious diseases is dependent on different mechanisms mediated by cells and soluble components such as antibodies. Antibodies or immunoglobulins are glycoproteins that have many structural and functional features that mediate distinct effector immune functions. Three distinct classes of antibodies have been identified in birds: immunoglobulin A (IgA), immunoglobulin M (IgM), and immunoglobulin Y (IgY). In this study we aim to establish an efficient laboratory method to obtain IgM and IgY antibodies from plasma samples of healthy adult Magellanic penguins (Spheniscus magellanicus). The protocol was developed combining plasma delipidation, sequential precipitation with caprylic acid and ammonium sulfate, and size-exclusion chromatography. The efficiency of the protocol and the identity of the purified IgM and IgY antibodies were confirmed through enzyme-linked immunosorbent assay, Western blotting, one-dimensional and two-dimensional polyacrylamide gel electrophoresis, and lectin binding assay. Structural and physicochemical properties of IgM and IgY from Magellanic penguins were consistent with those of other avian species. This purification protocol will allow for more detailed studies on the humoral immunity of penguins and for the development of high specificity serologic assays to test Magellanic penguins for infectious pathogens.
Collapse
|
5
|
Pemberton-Ross P, Smith TA, Hodel EM, Kay K, Penny MA. Age-shifting in malaria incidence as a result of induced immunological deficit: a simulation study. Malar J 2015; 14:287. [PMID: 26206255 PMCID: PMC4513612 DOI: 10.1186/s12936-015-0805-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/10/2015] [Indexed: 11/10/2022] Open
Abstract
Effective population-level interventions against Plasmodium falciparum malaria lead to age-shifts, delayed morbidity or rebounds in morbidity and mortality whenever they are deployed in ways that do not permanently interrupt transmission. When long-term intervention programmes target specific age-groups of human hosts, the age-specific morbidity rates ultimately adjust to new steady-states, but it is very difficult to study these rates and the temporal dynamics leading up to them empirically because the changes occur over very long time periods. This study investigates the age and magnitude of age- and time- shifting of incidence induced by either pre-erythrocytic vaccination (PEV) programmes or seasonal malaria chemo-prevention (SMC), using an ensemble of individual-based stochastic simulation models of P. falciparum dynamics. The models made various assumptions about immunity decay, transmission heterogeneity and were parameterized with data on both age-specific infection and disease incidence at different levels of exposure, on the durations of different stages of the parasite life-cycle and on human demography. Effects of transmission intensity, and of levels of access to malaria treatment were considered. While both PEV and SMC programmes are predicted to have overall strongly positive health effects, a shift of morbidity into older children is predicted to be induced by either programme if transmission levels remain static and not reduced by other interventions. Predicted shifting of burden continue into the second decade of the programme. Even if long-term surveillance is maintained it will be difficult to avoid mis-attribution of such long-term changes in age-specific morbidity patterns to other factors. Conversely, short-lived transient changes in incidence measured soon after introduction of a new intervention may give over-positive views of future impacts. Complementary intervention strategies could be designed to specifically protect those age-groups at risk from burden shift.
Collapse
Affiliation(s)
- Peter Pemberton-Ross
- Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland.
- Universität Basel, 4003, Basel, Switzerland.
| | - Thomas A Smith
- Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland.
- Universität Basel, 4003, Basel, Switzerland.
| | - Eva Maria Hodel
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Katherine Kay
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Melissa A Penny
- Swiss Tropical and Public Health Institute, 4002, Basel, Switzerland.
- Universität Basel, 4003, Basel, Switzerland.
| |
Collapse
|
6
|
Peng X, Keitany GJ, Vignali M, Chen L, Gibson C, Choi K, Huang F, Wang R. Artesunate versus chloroquine infection-treatment-vaccination defines stage-specific immune responses associated with prolonged sterile protection against both pre-erythrocytic and erythrocytic Plasmodium yoelii infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:1268-77. [PMID: 24958899 DOI: 10.4049/jimmunol.1400296] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sterile protection against malaria infection can be achieved through vaccination of mice and humans with whole Plasmodium spp. parasites. One such method, known as infection-treatment-vaccination (ITV), involves immunization with wild type sporozoites (spz) under drug coverage. In this work, we used the different effects of antimalarial drugs chloroquine (CQ) and artesunate (AS) on blood stage (BS) parasites to dissect the stage-specific immune responses in mice immunized with Plasmodium yoelii spz under either drug, as well as their ability to protect mice against challenge with spz or infected RBCs (iRBCs). Whereas CQ-ITV induced sterile protection against challenge with both spz and iRBCs, AS-ITV only induced sterile protection against spz challenge. Importantly, AS-ITV delayed the onset of BS infection, indicating that both regimens induced cross-stage immunity. Moreover, both CQ- and AS-ITV induced CD8(+) T cells in the liver that eliminated malaria-infected hepatocytes in vitro, as well as Abs that recognized pre-erythrocytic parasites. Sera from both groups of mice inhibited spz invasion of hepatocytes in vitro, but only CQ-ITV induced high levels of anti-BS Abs. Finally, passive transfer of sera from CQ-ITV-treated mice delayed the onset of erythrocytic infection in the majority of mice challenged with P. yoelii iRBCs. Besides constituting the first characterization, to our knowledge, of AS-ITV as a vaccination strategy, our data show that ITV strategies that lead to subtle differences in the persistence of parasites in the blood enable the characterization of the resulting immune responses, which will contribute to future research in vaccine design and malaria interventions.
Collapse
Affiliation(s)
- Xiaohong Peng
- Department of Pathogenic Biology, Third Military Medical University, Chongqing 400038, China; Seattle Biomedical Research Institute, Seattle, WA 98109; and
| | | | - Marissa Vignali
- Seattle Biomedical Research Institute, Seattle, WA 98109; and
| | - Lin Chen
- Department of Pathogenic Biology, Third Military Medical University, Chongqing 400038, China; Seattle Biomedical Research Institute, Seattle, WA 98109; and
| | - Claire Gibson
- Seattle Biomedical Research Institute, Seattle, WA 98109; and
| | - Kimberly Choi
- Seattle Biomedical Research Institute, Seattle, WA 98109; and
| | - Fusheng Huang
- Department of Pathogenic Biology, Third Military Medical University, Chongqing 400038, China
| | - Ruobing Wang
- Seattle Biomedical Research Institute, Seattle, WA 98109; and Department of Global Health, University of Washington, Seattle, WA 98125
| |
Collapse
|
7
|
Chan JA, Fowkes FJI, Beeson JG. Surface antigens of Plasmodium falciparum-infected erythrocytes as immune targets and malaria vaccine candidates. Cell Mol Life Sci 2014; 71:3633-57. [PMID: 24691798 PMCID: PMC4160571 DOI: 10.1007/s00018-014-1614-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
Abstract
Understanding the targets and mechanisms of human immunity to malaria caused by Plasmodium falciparum is crucial for advancing effective vaccines and developing tools for measuring immunity and exposure in populations. Acquired immunity to malaria predominantly targets the blood stage of infection when merozoites of Plasmodium spp. infect erythrocytes and replicate within them. During the intra-erythrocytic development of P. falciparum, numerous parasite-derived antigens are expressed on the surface of infected erythrocytes (IEs). These antigens enable P. falciparum-IEs to adhere in the vasculature and accumulate in multiple organs, which is a key process in the pathogenesis of disease. IE surface antigens, often referred to as variant surface antigens, are important targets of acquired protective immunity and include PfEMP1, RIFIN, STEVOR and SURFIN. These antigens are highly polymorphic and encoded by multigene families, which generate substantial antigenic diversity to mediate immune evasion. The most important immune target appears to be PfEMP1, which is a major ligand for vascular adhesion and sequestration of IEs. Studies are beginning to identify specific variants of PfEMP1 linked to disease pathogenesis that may be suitable for vaccine development, but overcoming antigenic diversity in PfEMP1 remains a major challenge. Much less is known about other surface antigens, or antigens on the surface of gametocyte-IEs, the effector mechanisms that mediate immunity, and how immunity is acquired and maintained over time; these are important topics for future research.
Collapse
|
8
|
Diversity and population structure of Plasmodium falciparum in Thailand based on the spatial and temporal haplotype patterns of the C-terminal 19-kDa domain of merozoite surface protein-1. Malar J 2014; 13:54. [PMID: 24521474 PMCID: PMC3931489 DOI: 10.1186/1475-2875-13-54] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/27/2014] [Indexed: 11/21/2022] Open
Abstract
Background The 19-kDa C-terminal region of the merozoite surface protein-1 of the human malaria parasite Plasmodium falciparum (PfMSP-119) constitutes the major component on the surface of merozoites and is considered as one of the leading candidates for asexual blood stage vaccines. Because the protein exhibits a level of sequence variation that may compromise the effectiveness of a vaccine, the global sequence diversity of PfMSP-119 has been subjected to extensive research, especially in malaria endemic areas. In Thailand, PfMSP-119 sequences have been derived from a single parasite population in Tak province, located along the Thailand-Myanmar border, since 1995. However, the extent of sequence variation and the spatiotemporal patterns of the MSP-119 haplotypes along the Thai borders with Laos and Cambodia are unknown. Methods Sixty-three isolates of P. falciparum from five geographically isolated populations along the Thai borders with Myanmar, Laos and Cambodia in three transmission seasons between 2002 and 2008 were collected and culture-adapted. The msp-1 gene block 17 was sequenced and analysed for the allelic diversity, frequency and distribution patterns of PfMSP-119 haplotypes in individual populations. The PfMSP-119 haplotype patterns were then compared between parasite populations to infer the population structure and genetic differentiation of the malaria parasite. Results Five conserved polymorphic positions, which accounted for five distinct haplotypes, of PfMSP-119 were identified. Differences in the prevalence of PfMSP-119 haplotypes were detected in different geographical regions, with the highest levels of genetic diversity being found in the Kanchanaburi and Ranong provinces along the Thailand-Myanmar border and Trat province located at the Thailand-Cambodia border. Despite this variability, the distribution patterns of individual PfMSP-119 haplotypes seemed to be very similar across the country and over the three malarial transmission seasons, suggesting that gene flow may operate between parasite populations circulating in Thailand and the three neighboring countries. Conclusion The major MSP-119 haplotypes of P. falciparum populations in all endemic populations during three transmission seasons in Thailand were identified, providing basic information on the common haplotypes of MSP-119 that is of use for malaria vaccine development and inferring the population structure of P. falciparum populations in Thailand.
Collapse
|
9
|
Stanisic DI, Good MF. Induction of anti-Plasmodium immunity following subpatent infection with live erythrocytic stages and drug cure. Methods Mol Biol 2013; 923:535-47. [PMID: 22990803 DOI: 10.1007/978-1-62703-026-7_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
An effective malaria vaccine remains an important priority for the millions of people living in malaria endemic regions. Subambitious goals for the development of a vaccine have been set, which aim to achieve a licensed first-generation P. falciparum malaria vaccine with more than 50% protective efficacy against severe disease and death, lasting for at least 1 year by 2015. These goals were set in the context of a subunit vaccine. However, a whole-parasite vaccine might be expected to induce substantially superior protection. Our group has been focusing on low dose blood-stage parasites as a valid vaccine approach, and we present here the relevant methodology for this.
Collapse
|
10
|
Matuschewski K. Murine infection models for vaccine development: the malaria example. Hum Vaccin Immunother 2012; 9:450-6. [PMID: 23249712 DOI: 10.4161/hv.23218] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vaccines are developed and eventually licensed following consecutive human clinical trials. Malaria is a potential fatal vector-borne infectious disease caused by blood infection of the single-cell eukaryote Plasmodium. Pathogen stage conversion is a hallmark of parasites in general and permits unprecedented vaccine strategies. In the case of malaria, experimental human challenge infections with Plasmodium falciparum sporozoites can be performed under rigorous clinical supervision. This rare opportunity in vaccinology has permitted many small-scale phase II anti-malaria vaccine studies using experimental homologous challenge infections. Demonstration of safety and lasting sterile protection are central endpoints to advance a candidate malaria vaccine approach to phase II field trials. A growing list of antigens as targets for subunit development makes pre-selection and prioritization of vaccine candidates in murine infection models increasingly important. Preclinical assessment in challenge studies with murine Plasmodium species also led to the development of whole organism vaccine approaches. They include live attenuated, metabolically active parasites that educate effector memory T cells to recognize and inactivate developing parasites inside host cells. Here, opportunities from integrating challenge experiments with murine Plasmodium parasites into malaria vaccine development will be discussed.
Collapse
Affiliation(s)
- Kai Matuschewski
- Parasitology Unit; Max Planck Institute for Infection Biology; Berlin, Germany; Institute of Biology; Humboldt University; Berlin, Germany
| |
Collapse
|
11
|
Zhou J, Ludlow LE, Hasang W, Rogerson SJ, Jaworowski A. Opsonization of malaria-infected erythrocytes activates the inflammasome and enhances inflammatory cytokine secretion by human macrophages. Malar J 2012; 11:343. [PMID: 23046548 PMCID: PMC3528456 DOI: 10.1186/1475-2875-11-343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/05/2012] [Indexed: 12/19/2022] Open
Abstract
Background Antibody opsonization of Plasmodium falciparum-infected erythrocytes (IE) plays a crucial role in anti-malarial immunity by promoting clearance of blood-stage infection by monocytes and macrophages. The effects of phagocytosis of opsonized IE on macrophage pro-inflammatory cytokine responses are poorly understood. Methods Phagocytic clearance, cytokine response and intracellular signalling were measured using IFN-γ-primed human monocyte-derived macrophages (MDM) incubated with opsonized and unopsonized trophozoite-stage CS2 IE, a chondroitin sulphate-binding malaria strain. Cytokine secretion was measured by bead array or ELISA, mRNA using quantitative PCR, and activation of NF-κB by Western blot and electrophoretic mobility shift assay. Data were analysed using the Mann–Whitney U test or the Wilcoxon signed rank test as appropriate. Results Unopsonized CS2 IE were not phagocytosed whereas IE opsonized with pooled patient immune serum (PPS) were (Phagocytic index (PI)=18.4, [SE 0.38] n=3). Unopsonized and opsonized IE induced expression of TNF, IL-1β and IL-6 mRNA by MDM and activated NF-κB to a similar extent. Unopsonized IE induced secretion of IL-6 (median= 622 pg/ml [IQR=1,250-240], n=9) but no IL-1β or TNF, whereas PPS-opsonized IE induced secretion of IL-1β (18.6 pg/mL [34.2-14.4]) and TNF (113 pg/ml [421–17.0]) and increased IL-6 secretion (2,195 pg/ml [4,658-1,095]). Opsonized, but not unopsonized, CS2 IE activated caspase-1 cleavage and enzymatic activity in MDM showing that Fc receptor-mediated phagocytosis activates the inflammasome. MDM attached to IgG-coated surfaces however secreted IL-1β in response to unopsonized IE, suggesting that internalization of IE is not absolutely required to activate the inflammasome and stimulate IL-1β secretion. Conclusions It is concluded that IL-6 secretion from MDM in response to CS2 IE does not require phagocytosis, whereas secretion of TNF and IL-1β is dependent on Fcγ receptor-mediated phagocytosis; for IL-1β, this occurs by activation of the inflammasome. The data presented in this paper show that generating antibody responses to blood-stage malaria parasites is potentially beneficial both in reducing parasitaemia via Fcγ receptor-dependent macrophage phagocytosis and in generating a robust pro-inflammatory response.
Collapse
Affiliation(s)
- Jingling Zhou
- Centre for Virology, Burnet Institute, PO Box 2284, Melbourne, Victoria, 3001, Australia
| | | | | | | | | |
Collapse
|
12
|
Solomons HD, Joubert CG, Beichter B, Haefele Z. The winding road to developing a malaria vaccine. Study hypothesis. Germs 2012; 2:91-4. [PMID: 24432268 DOI: 10.11599/germs.2012.1018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/19/2012] [Indexed: 11/23/2022]
Abstract
In Africa, a child dies every 30 seconds from malaria, a vector-borne parasitic disease caused by Plasmodium spp, with higher mortality and severe forms of disease more frequently associated with Plasmodium falciparum infection. By looking at the natural resistance to malaria conferred by sickle cell trait, we hypothesize that a malaria therapeutical vaccine targeting the erythrocyte stage of the parasite through erythrocyte sickling could reduce parasite density and control the progression and severity of disease, thus decreasing the morbidity and mortality associated with severe forms of malaria.
Collapse
|
13
|
A Plasmodium-encoded cytokine suppresses T-cell immunity during malaria. Proc Natl Acad Sci U S A 2012; 109:E2117-26. [PMID: 22778413 DOI: 10.1073/pnas.1206573109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The inability to acquire protective immunity against Plasmodia is the chief obstacle to malaria control, and inadequate T-cell responses may facilitate persistent blood-stage infection. Malaria is characterized by a highly inflammatory cytokine milieu, and the lack of effective protection against infection suggests that memory T cells are not adequately formed or maintained. Using a genetically targeted strain of Plasmodium berghei, we observed that the Plasmodium ortholog of macrophage migration inhibitory factor enhanced inflammatory cytokine production and also induced antigen-experienced CD4 T cells to develop into short-lived effector cells rather than memory precursor cells. The short-lived effector CD4 T cells were more susceptible to Bcl-2-associated apoptosis, resulting in decreased CD4 T-cell recall responses against challenge infections. These findings indicate that Plasmodia actively interfere with the development of immunological memory and may account for the evolutionary conservation of parasite macrophage migration inhibitory factor orthologs.
Collapse
|
14
|
Pratt-Riccio LR, Bianco-Junior C, Totino PRR, Perce-Da-Silva DDS, Silva LA, Riccio EKP, Ennes-Vidal V, Neves-Ferreira AGC, Perales J, Rocha SLGD, Dias-Da-Silva F, Ferreira-da-Cruz MDF, Daniel-Ribeiro CT, Oliveira-Ferreira JD, Theisen M, Carvalho LJDM, Banic DM. Antibodies against the Plasmodium falciparum glutamate-rich protein from naturally exposed individuals living in a Brazilian malaria-endemic area can inhibit in vitro parasite growth. Mem Inst Oswaldo Cruz 2011; 106 Suppl 1:34-43. [DOI: 10.1590/s0074-02762011000900005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/01/2011] [Indexed: 11/22/2022] Open
|
15
|
Taylor-Robinson AW. Regulation of immunity to Plasmodium: Implications from mouse models for blood stage malaria vaccine design. Exp Parasitol 2010; 126:406-14. [DOI: 10.1016/j.exppara.2010.01.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/15/2010] [Accepted: 01/27/2010] [Indexed: 11/25/2022]
|
16
|
Chamekh M. Immunomodulation using genetically engineered bacteria for type III-mediated delivery of heterologous antigens and cytokines: Potential application in vaccine and therapeutical developments. Immunopharmacol Immunotoxicol 2010. [DOI: 10.3109/08923970902817890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Colpitts S, Scott P. Memory T-cell subsets in parasitic infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 684:145-54. [PMID: 20795546 DOI: 10.1007/978-1-4419-6451-9_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Parasitic infections remain a major health problem throughout the world and unlike many viral or bacterial diseases, there are no vaccines to help control parasitic diseases. While several important advances have been made that will contribute to the development of parasite vaccines, such as cloning of dominant parasite antigens and a better understanding of the effector T-cell subsets needed for immunity, fundamental questions remain about how to induce long-term immunologic memory in vaccines. Here we examine a few of the experimental models that have been used to elucidate the nature of the memory T cells that are generated during parasitic infections. Although significant hurdles remain in the development of parasite vaccines, studies with both protozoa and gastrointestinal nematodes suggest that long-term immunity induced by vaccination is a realistic goal for control of parasitic infections.
Collapse
Affiliation(s)
- Sara Colpitts
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Room 310 Hill Pavilion, 380 South University Avenue, Philadelphia, Pennslyvania 19104-4539, USA
| | | |
Collapse
|
18
|
Beeson JG, Osier FH, Engwerda CR. Recent insights into humoral and cellular immune responses against malaria. Trends Parasitol 2008; 24:578-84. [DOI: 10.1016/j.pt.2008.08.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/12/2008] [Accepted: 08/12/2008] [Indexed: 11/25/2022]
|
19
|
Abstract
As dendritic cells (DCs) initiate all adaptive and some innate immune responses, it is not surprising that DC function during malaria is the subject of intensive investigations. However, the results of these investigations have so far been controversial. Here, we discuss various aspects of these studies, including the influence of the species and strain of Plasmodium on DC function, the effects of Plasmodium infection on the activation of CD8(+) T cells by DCs, the effects of haemozoin and the effects of Plasmodium infections on DC Toll-like-receptor signalling.
Collapse
Affiliation(s)
- Michelle N Wykes
- The Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, Brisbane, Queensland 4006, Australia.
| | | |
Collapse
|
20
|
McCallum FJ, Persson KEM, Mugyenyi CK, Fowkes FJI, Simpson JA, Richards JS, Williams TN, Marsh K, Beeson JG. Acquisition of growth-inhibitory antibodies against blood-stage Plasmodium falciparum. PLoS One 2008; 3:e3571. [PMID: 18958278 PMCID: PMC2570221 DOI: 10.1371/journal.pone.0003571] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 10/07/2008] [Indexed: 11/18/2022] Open
Abstract
Background Antibodies that inhibit the growth of blood-stage Plasmodium falciparum may play an important role in acquired and vaccine-induced immunity in humans. However, the acquisition and activity of these antibodies is not well understood. Methods We tested dialysed serum and purified immunoglobulins from Kenyan children and adults for inhibition of P. falciparum blood-stage growth in vitro using different parasite lines. Serum antibodies were measured by ELISA to blood-stage parasite antigens, extracted from P. falciparum schizonts, and to recombinant merozoite surface protein 1 (42 kDa C-terminal fragment, MSP1-42). Results Antibodies to blood-stage antigens present in schizont protein extract and to recombinant MSP1-42 significantly increased with age and were highly correlated. In contrast, growth-inhibitory activity was not strongly associated with age and tended to decline marginally with increasing age and exposure, with young children demonstrating the highest inhibitory activity. Comparison of growth-inhibitory activity among samples collected from the same population at different time points suggested that malaria transmission intensity influenced the level of growth-inhibitory antibodies. Antibodies to recombinant MSP1-42 were not associated with growth inhibition and high immunoglobulin G levels were poorly predictive of inhibitory activity. The level of inhibitory activity against different isolates varied. Conclusions Children can acquire growth-inhibitory antibodies at a young age, but once they are acquired they do not appear to be boosted by on-going exposure. Inhibitory antibodies may play a role in protection from early childhood malaria.
Collapse
Affiliation(s)
- Fiona J. McCallum
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Cleopatra K. Mugyenyi
- Kenya Medical Research Institute, CGMRC/Wellcome Trust Collaborative Program, Kilifi, Kenya
| | - Freya J. I. Fowkes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Julie A. Simpson
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Carlton, Victoria, Australia
| | - Jack S. Richards
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Thomas N. Williams
- Kenya Medical Research Institute, CGMRC/Wellcome Trust Collaborative Program, Kilifi, Kenya
| | - Kevin Marsh
- Kenya Medical Research Institute, CGMRC/Wellcome Trust Collaborative Program, Kilifi, Kenya
| | - James G. Beeson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
21
|
Mukherjee P, Devi YS, Chauhan VS. Blood stage malaria antigens induce different activation-induced cell death programs in splenic CD4+T cells. Parasite Immunol 2008; 30:497-514. [PMID: 18643960 DOI: 10.1111/j.1365-3024.2008.01050.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CD4(+) T cells respond to antigen immunization through a process of activation, clonal expansion to generate activated effector T cells followed by activation-induced clonal deletion of the responding T cells. While loss of responding T cells in post-activation death by apoptosis is a major factor regulating immune homeostasis, the precise pathways involved in downsizing of Plasmodium falciparum antigen-induced T cell expansions are not well characterized. We report in this study that splenic CD4(+) T cells from mice immunized with nonreplicating immunogens like OVA or recombinant blood stage P. falciparum antigens, PfMSP-3 and PfMSP-1(19) or crude parasite antigen (PfAg) undergo sequential T cell activation, proliferation followed by activation-induced cell death (AICD) in a dose- and time-dependent manner after Ag restimulation. While PfMSP-3 and OVA-induced AICD was mediated through a death receptor-dependent apoptotic program, PfMSP-1(19) and PfAg-induced AICD was via a mechanism dependent on the activation of mitochondria apoptosis signalling pathway through Bax activation. These results provide insights into the mechanism through which two blood stage merozoite antigens trigger different apoptotic programs of AICD in splenic CD4(+) T cells.
Collapse
Affiliation(s)
- P Mukherjee
- International Centre of Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi, India.
| | | | | |
Collapse
|
22
|
Characterization of a conserved rhoptry-associated leucine zipper-like protein in the malaria parasite Plasmodium falciparum. Infect Immun 2008; 76:879-87. [PMID: 18174339 DOI: 10.1128/iai.00144-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the key processes in the pathobiology of the malaria parasite is the invasion and subsequent modification of the human erythrocyte. In this complex process, an unknown number of parasite proteins are involved, some of which are leading vaccine candidates. The majority of the proteins that play pivotal roles in invasion are either stored in the apical secretory organelles or located on the surface of the merozoite, the invasive stage of the parasite. Using transcriptional and structural features of these known proteins, we performed a genomewide search that identified 49 hypothetical proteins with a high probability of being located on the surface of the merozoite or in the secretory organelles. Of these candidates, we characterized a novel leucine zipper-like protein in Plasmodium falciparum that is conserved in Plasmodium spp. This protein is expressed in late blood stages and localizes to the rhoptries of the parasite. We demonstrate that this Plasmodium sp.-specific protein has a high degree of conservation within field isolates and that it is refractory to gene knockout attempts and thus might play an important role in invasion.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This review examines the potential of current preerythrocytic stage malaria vaccine approaches to reduce the global burden of malaria. RECENT FINDINGS Radiation-attenuated parasite vaccines induce lasting sterile protection in all models tested. Inherent safety concerns in conjunction with challenges to produce and deliver a radiation-attenuated parasite vaccine have prevented its mass production and application. Recent advances in genetic engineering and initiatives in production process development of live attenuated malaria vaccines, however, will overcome roadblocks that currently prevent their large-scale application. Development of preerythrocytic subunit vaccines has focused on the circumsporozoite protein and the thrombospondin related anonymous protein, yet the most advanced circumsporozoite protein-based vaccine confers limited protection against infection in malaria endemic areas. Work in rodent malaria models demonstrated that circumsporozoite protein-based immunity is not required for to achieve sterile protection. SUMMARY We conclude that preerythrocytic malaria vaccine efforts should focus on two major areas: development of a safe live attenuated sporozoite vaccine with its accelerated testing in malaria endemic areas and identification of as yet unknown antigens that reproduce sterilizing immune responses induced by vaccination with whole parasites. The sporozoite challenge model provides a unique opportunity to rapidly test preerythrocytic vaccine candidates.
Collapse
|
24
|
Crampton A, Vanniasinkam T. Parasite vaccines: The new generation. INFECTION GENETICS AND EVOLUTION 2007; 7:664-73. [PMID: 17702669 DOI: 10.1016/j.meegid.2007.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 12/24/2022]
Abstract
Parasites cause some of the most devastating and prevalent diseases in humans and animals. Moreover, parasitic infections increase mortality rates of other serious non-parasitic infections caused by pathogens such as HIV-1. The impact of parasitic diseases in both industrialised and developing countries is further exacerbated by the resistance of some parasites to anti-parasitic drugs and the absence of efficacious parasite vaccines. Despite years of research, much remains to be done to develop effective vaccines against parasites. This review focuses on the more recent vaccine strategies such as DNA and viral vector-based vaccines that are currently being used to develop vaccines against parasites. Obstacles yet to be overcome and possible advantages and disadvantages of these vaccine modalities are also discussed.
Collapse
Affiliation(s)
- A Crampton
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 678, Wagga Wagga, NSW 2650, Australia
| | | |
Collapse
|
25
|
Donovan MJ, Messmore AS, Scrafford DA, Sacks DL, Kamhawi S, McDowell MA. Uninfected mosquito bites confer protection against infection with malaria parasites. Infect Immun 2007; 75:2523-30. [PMID: 17339356 PMCID: PMC1865743 DOI: 10.1128/iai.01928-06] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite decades of research and multiple initiatives, malaria continues to be one of the world's most debilitating infectious diseases. New insights for malaria control and vaccine development will be essential to thwart the staggering worldwide impact of this disease (A. Bjorkman and A. Bhattarai, Acta Trop. 94:163-169, 2005); ultimately successful vaccine strategies will undoubtedly be multifactorial, incorporating multiple antigens and targeting diverse aspects of the malaria parasites' biology (M. F. Good et al., Immunol. Rev. 201:254-267, 2004). Using a murine model of malaria infection, we show here that exposure to bites from uninfected mosquitoes prior to Plasmodium yoelii infection influences the local and systemic immune responses and limits parasite development within the host. In hosts preexposed to bites from uninfected mosquitoes, reduced parasite burdens in the livers were detected early, and during the blood-stage of the life cycle, these burdens remained lower than those in hosts that received mosquito bites only at the time of infection. Repeated exposure to bites from uninfected mosquitoes skewed the immune response towards a T-helper 1 (Th1) phenotype as indicated by increased levels of interleukin-12, gamma interferon, and inducible nitric oxide synthase. These data suggest that the addition of mosquito salivary components to antimalaria vaccines may be a viable strategy for creating a Th1-biased environment known to be effective against malaria infection. Furthermore, this strategy may be important for the development of vaccines to combat other mosquito-transmitted pathogens.
Collapse
Affiliation(s)
- Michael J Donovan
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46656, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wykes M, Good MF. A case for whole-parasite malaria vaccines. Int J Parasitol 2007; 37:705-12. [PMID: 17408673 DOI: 10.1016/j.ijpara.2007.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 10/23/2022]
Abstract
Malaria causes morbidity in 300-500 million people each year and claims 2-3 millions lives annually, mostly children in sub-Saharan Africa. In 1983, the cloning of malaria antigens offered great promise for developing a viable subunit vaccine. However, an efficacious human vaccine is still not available. Immunological studies on how the host's immune system interacts with the parasite and studies on the pathogenic aspect of Plasmodium have found that several factors can impede protection by current vaccines. These findings suggest a novel approach needs to be considered.
Collapse
Affiliation(s)
- Michelle Wykes
- The Queensland Institute of Medical Research, The Bancroft Centre, Brisbane, Qld, Australia.
| | | |
Collapse
|
27
|
Knox DP, Redmond DL. Parasite vaccines – recent progress and problems associated with their development. Parasitology 2007; 133 Suppl:S1-8. [PMID: 17274842 DOI: 10.1017/s0031182006001776] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The treatment and prevention of parasitism in both humans and livestock continues to rely almost exclusively on the use of antiparasitic drugs – an approach which has limitations, particularly as reinfection, which occurs rapidly in endemic regions, is not prevented. In addition, the widespread appearance of drug-resistant parasites of animals (Kaplan, 2004;) together with emerging evidence of resistance problems in human parasites (Fallonet al. 1995; Ismailet al. 1996; De Clerqet al. 1997; East African Network for Monitoring Antimalarial Treatment, 2003), emphasise the importance of developing alternative methods of control, with anti-parasite vaccines a prime target.
Collapse
Affiliation(s)
- D P Knox
- Moredun Research Institute, International Research Centre, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, Scotland, UK.
| | | |
Collapse
|
28
|
Abstract
Malaria is an infectious disease that causes serious morbidity and mortality worldwide. The disease is associated with a variety of clinical syndromes ranging from asymptomatic to lethal infections involving anaemia, organ failure, pulmonary and cerebral disease. The molecular and cellular factors responsible for the differences in disease severity are poorly understood but parasite-specific immune responses are thought to play a critical role in pathogenesis. Dendritic cells have an essential role in linking innate and adaptive immune responses and here we review their role in the context of malaria.
Collapse
Affiliation(s)
- Michelle Wykes
- The Queensland Institute of Medical Research, The Bancroft Centre, 300 Herston Road, Brisbane, Qld 4006, Australia.
| | | | | | | |
Collapse
|
29
|
Lobo CA, Rodriguez M, Struchiner CJ, Zalis MG, Lustigman S. Associations between defined polymorphic variants in the PfRH ligand family and the invasion pathways used by P. falciparum field isolates from Brazil. Mol Biochem Parasitol 2006; 149:246-51. [PMID: 16857278 DOI: 10.1016/j.molbiopara.2006.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 05/26/2006] [Accepted: 05/30/2006] [Indexed: 11/19/2022]
Affiliation(s)
- Cheryl-Ann Lobo
- Molecular Parasitology, LFKRI, New York Blood Center, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
30
|
Pacheco MA, Poe AC, Collins WE, Lal AA, Tanabe K, Kariuki SK, Udhayakumar V, Escalante. AA. A comparative study of the genetic diversity of the 42kDa fragment of the merozoite surface protein 1 in Plasmodium falciparum and P. vivax. INFECTION GENETICS AND EVOLUTION 2006; 7:180-7. [PMID: 17010678 PMCID: PMC1853303 DOI: 10.1016/j.meegid.2006.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 11/26/2022]
Abstract
We investigated the genetic diversity of the 42kDa fragment of the merozoite surface protein 1 (MSP-1) antigen in Plasmodium falciparum and P. vivax, as well as in non-human primate malarial parasites. This fragment undergoes a proteolytic cleavage generating two fragments of 19kDa (MSP-1(19)) and 33kDa (MSP-1(33)) that are critical in erythrocyte invasion. We found that overall the MSP-1(33) fragment exhibits greater genetic diversity than the MSP-1(19) regardless of the species. We have found evidence for positive natural selection only in the human malaria parasites by comparing the rate of non-synonymous versus synonymous substitutions. In addition, we found clear differences between the two major human malaria parasites. In the case of P. falciparum, positive natural selection is acting on the MSP-1(19) region while the MSP-1(33) is neutral or under purifying selection. The opposite pattern was observed in P. vivax. Our results suggest different roles of this antigen in the host-parasite immune interaction in each of the major human malarial parasites.
Collapse
Affiliation(s)
| | - Amanda C. Poe
- Malaria Branch, Division of Parasitic Diseases, Centers for Disease Control and Prevention, Chamblee, Georgia
| | - William E. Collins
- Malaria Branch, Division of Parasitic Diseases, Centers for Disease Control and Prevention, Chamblee, Georgia
| | - Altaf A. Lal
- Malaria Branch, Division of Parasitic Diseases, Centers for Disease Control and Prevention, Chamblee, Georgia
| | - Kazuyuki Tanabe
- International Research Center of Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Simon K. Kariuki
- Center for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases, Centers for Disease Control and Prevention, Chamblee, Georgia
| | - Ananias A. Escalante.
- School of Life Sciences, Arizona State University, Tempe, Arizona
- *Corresponding Author: Ananias A. Escalante, PhD School of Life Sciences, Arizona State University P. O. Box 874501, Tempe, Arizona 85287-4501 Phone: 1-480-9653739, Fax: 1-480-965-6899 E-mail:
| |
Collapse
|
31
|
Abstract
The complex life cycle of the malaria parasite Plasmodium falciparum provides many options for vaccine design. Several new types of vaccine are now being evaluated in clinical trials. Recently, two vaccine candidates that target the pre-erythrocytic stages of the malaria life cycle - a protein particle vaccine with a powerful adjuvant and a prime-boost viral-vector vaccine - have entered Phase II clinical trials in the field and the first has shown partial efficacy in preventing malarial disease in African children. This Review focuses on the potential immunological basis for the encouraging partial protection induced by these vaccines, and it considers ways for developing more effective malaria vaccines.
Collapse
Affiliation(s)
- Adrian V S Hill
- Centre for Clinical Vaccinology and Tropical Medicine, and the Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
32
|
|
33
|
Jouin H, Garraud O, Longacre S, Baleux F, Mercereau-Puijalon O, Milon G. Human antibodies to the polymorphic block 2 domain of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) exhibit a highly skewed, peptide-specific light chain distribution. Immunol Cell Biol 2005; 83:392-5. [PMID: 16033534 DOI: 10.1111/j.1440-1711.2005.01343.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibodies to polymorphic block 2 of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) present a paradoxical association with acquired protection against clinical malaria, while showing restricted and fixed specificity, reminiscent of antigenic sin. We report here that these antibodies present a highly imbalanced, peptide-specific light chain distribution. This was not observed with several other parasite-derived peptides or antigens. These data point to a skewed immune response to MSP-1 block 2 that is constrained both in specificity and chain usage. This is the first report of a biased response to polymorphic epitopes of a surface antigen in malaria parasites.
Collapse
Affiliation(s)
- Hélène Jouin
- Parasite Molecular Immunology Unit, CNRS URA 2581, Pasteur Institute, Paris, France.
| | | | | | | | | | | |
Collapse
|
34
|
Caro-Aguilar I, Lapp S, Pohl J, Galinski MR, Moreno A. Chimeric epitopes delivered by polymeric synthetic linear peptides induce protective immunity to malaria. Microbes Infect 2005; 7:1324-37. [PMID: 16253535 DOI: 10.1016/j.micinf.2005.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 03/21/2005] [Accepted: 04/26/2005] [Indexed: 11/26/2022]
Abstract
Polymeric linear peptide chimeras (LPCs) that incorporate Plasmodium vivax promiscuous T cell epitopes and the P. falciparum circumsporozoite protein B cell epitope have been shown to induce a high level of immunogenicity and overcome genetic restriction when tested as vaccine immunogens in BALB/c mice. The present study evaluates the biological relevance of several LPCs using a well characterized rodent malaria model. Polymeric peptide constructs based on P. berghei and P. yoelii sequences, and orthologous to the human malaria sequences included in the original LPCs, were designed and tested for immunogenicity in mice of different H-2 haplotypes. We demonstrate that robust immune responses are induced and that peptides containing the orthologous rodent Plasmodium sequences exhibited similar immunogenic capabilities. Unique to this report, we show that LPCs can also prime MHC class I-restricted cytotoxic T lymphocytes (CTLs) and, most relevantly, that a peptide construct prototype incorporating single B, T and CTL epitopes induced protection against an experimental challenge with P. berghei or P. yoelii sporozoites. Collectively, these results suggest that polymeric polypeptide chimeras can be used as a platform to deliver subunit vaccines.
Collapse
Affiliation(s)
- Ivette Caro-Aguilar
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | | | | | | | | |
Collapse
|
35
|
Good MF, Xu H, Wykes M, Engwerda CR. DEVELOPMENT AND REGULATION OF CELL-MEDIATED IMMUNE RESPONSES TO THE BLOOD STAGES OF MALARIA: Implications for Vaccine Research. Annu Rev Immunol 2005; 23:69-99. [PMID: 15771566 DOI: 10.1146/annurev.immunol.23.021704.115638] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The immune response to the malaria parasite is complex and poorly understood. Although antibodies and T cells can control parasite growth in model systems, natural immunity to malaria in regions of high endemicity takes several years to develop. Variation and polymorphism of antibody target antigens are known to impede immune responses, but these factors alone cannot account for the slow acquisition of immunity. In human and animal model systems, cell-mediated responses can control parasite growth effectively, but such responses are regulated by parasite load via direct effects on dendritic cells and possibly on T and B cells as well. Furthermore, high parasite load is associated with pathology, and cell-mediated responses may also harm the host. Inflammatory cytokines have been implicated in the pathogenesis of cerebral malaria, anemia, weight loss, and respiratory distress in malaria. Immunity without pathology requires rapid parasite clearance, effective regulation of the inflammatory anti-parasite effects of cellular responses, and the eventual development of a repertoire of antibodies effective against multiple strains. Data suggest that this may be hastened by exposure to malaria antigens in low dose, leading to augmented cellular immunity and rapid parasite clearance.
Collapse
Affiliation(s)
- Michael F Good
- The Queensland Institute of Medical Research, Brisbane, 4029, Australia.
| | | | | | | |
Collapse
|