1
|
Yang Y, Wang H, Xue Q, Peng W, Zhou Q. New advances of natural products in non-small cell lung cancer: From mechanisms to therapies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119636. [PMID: 40120701 DOI: 10.1016/j.jep.2025.119636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With the rise of immunotherapy, the treatment approach for non-small cell lung cancer (NSCLC) has undergone revolutionary changes. However, the prognosis for NSCLC patients has not been significantly improved due to the development of acquired drug resistance. Therefore, there is an urgent need to develop new and more effective drugs for treating NSCLC or improving tumor treatment resistance. Traditional Chinese medicine (TCM) has been gradually incorporated into the combined treatment of NSCLC. Its active components (also known as natural products) exhibit novel structures, multi-target effects, diverse pathways, minimal toxicity, and varied biological activities, which play a therapeutic role in various diseases. Thus, natural products hold great potential for future clinical applications. AIM OF THE STUDY Screening main traditional plants widely used in NSCLC and their derived natural products, as well as exploring the mechanisms by which these natural products act on NSCLC-particularly focusing on their applications-can provide valuable insights for the development of therapeutic drugs targeting NSCLC. METHODS A comprehensive, computerized literature search was conducted in PubMed, Embase, Web of Science, Cochrane Library, CNKI Scholar, the American Chemical Abstracts, and Wanfang Database up to June 2024, using the following keywords: "traditional Chinese medicine", "herbal medicine", "medicinal plants", and "herbal", paired with terms such as "non-small cell lung cancer", "therapy", "natural products", and "active ingredient". RESULTS Summarizing current research findings, we discovered eleven medicinal plants containing a total of fourteen natural products. Natural products have a significant impact on tumor progression in NSCLC, including apotosis, autophagy, pyrotosis, cell-cycle arrest and metasis. Moreover, natural products can modulate the activities of various immune cells and reshape the immune microenvironment. Combined with conventional cancer treatments, natural products demonstrate promising therapeutic effects and effectively reverse drug resistance. Furthermore,the use of nano-drug delivery systems to address limitations associated with natural products. CONCLUSIONS This review summarizes eleven medicinal plants containing a total of fourteen natural products that can enhance NSCLC treatment and indicates their action mechanisms. Furthermore, we also discuss limitations of natural products and explore the use of nano-drug delivery systems to address limitations associated with natural products.
Collapse
Affiliation(s)
- Yuening Yang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Haolei Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qianqian Xue
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Wenbei Peng
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
2
|
Zhang Y, Zhao M, He J, Chen L, Wang W. In vitro and in vivo immunomodulatory activity of acetylated polysaccharides from Cyclocarya paliurus leaves. Int J Biol Macromol 2024; 259:129174. [PMID: 38181912 DOI: 10.1016/j.ijbiomac.2023.129174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
In this study, we aimed to investigate the immunomodulatory effects of polysaccharides from Cyclocarya paliurus leaves after acetylation modification (Ac-CPP0.1) on dendritic cells (DCs) and immunosuppressed mice. In vitro, Ac-CPP0.1 promoted phenotypic and functional maturation of DCs. Specifically, it increased the expression of costimulatory molecules (CD80, CD86, and MHC II) and the secretion of cytokines (TNF-α, IL-6, IL-1β, IL-10, IL-12p70) of DCs. In vivo, Ac-CPP0.1 significantly improved immunosuppression of mice, which was manifested by increased body weight and immune organ index, up-regulated cytokines (IL-4, IL-17, TGF-β3, and TNF-α), and restored short-chain fatty acid (SCFAs) levels of intestinal. The immunoactivation of Ac-CPP0.1 in DCs and in mice is linked to the activation of the TLR4/NF-κB signaling pathway. Furthermore, Ac-CPP0.1 reversed intestinal flora imbalance caused by cyclophosphamide. At the species level, Ac-CPP0.1 increased the abundance of unclassified_Muribaculaceae, unclassified_Desulfovibrio, Bacteroides_acidifaciens and Faecalibaculum_rodentium, decreased the level of Lactobacillus_johnsonii, unclassified_g_Staphylococcus and Staphylococcus_nepalensis. In summary, Ac-CPP0.1 has considerable immunomodulatory potential, which is beneficial to the future utilization and development of Cyclocarya paliurus.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing He
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingli Chen
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
3
|
Malik JA, Zafar MA, Lamba T, Nanda S, Khan MA, Agrewala JN. The impact of aging-induced gut microbiome dysbiosis on dendritic cells and lung diseases. Gut Microbes 2023; 15:2290643. [PMID: 38087439 PMCID: PMC10718154 DOI: 10.1080/19490976.2023.2290643] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Aging is an inevitable natural process that impacts every individual, and understanding its effect on the gut microbiome and dendritic cell (DC) functionality in elderly subjects is crucial. DCs are vital antigen-presenting cells (APCs) that orchestrate the immune response, maintaining immune tolerance to self-antigens and bridging innate and adaptive immunity. With aging, there is a shift toward nonspecific innate immunity, resulting in a decline in adaptive immune responses. This alteration raises significant concerns about managing the health of an elderly population. However, the precise impact of aging and microbiome changes on DC function and their implications in lung-associated diseases remain relatively understudied. To illuminate this subject, we will discuss recent advancements in understanding the connections between aging, gut dysbiosis, DCs, and lung diseases. Emphasizing the key concepts linking age-related gut microbiome changes and DC functions, we will focus on their relevance to overall health and immune response in elderly individuals. This article aims to improve our understanding of the intricate relationship between aging, gut microbiome, and DCs, potentially benefiting the management of age-associated diseases and promoting healthy aging.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Mohammad Adeel Zafar
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Taruna Lamba
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Sidhanta Nanda
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Mohammad Affan Khan
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| | - Javed Naim Agrewala
- Department of Biomedical Engineering, Indian Institute of Ropar, Rupnagar, Punjab, India
| |
Collapse
|
4
|
Bourque J, Hawiger D. Activation, Amplification, and Ablation as Dynamic Mechanisms of Dendritic Cell Maturation. BIOLOGY 2023; 12:biology12050716. [PMID: 37237529 DOI: 10.3390/biology12050716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
T cell responses to cognate antigens crucially depend on the specific functionality of dendritic cells (DCs) activated in a process referred to as maturation. Maturation was initially described as alterations of the functional status of DCs in direct response to multiple extrinsic innate signals derived from foreign organisms. More recent studies, conducted mainly in mice, revealed an intricate network of intrinsic signals dependent on cytokines and various immunomodulatory pathways facilitating communication between individual DCs and other cells for the orchestration of specific maturation outcomes. These signals selectively amplify the initial activation of DCs mediated by innate factors and dynamically shape DC functionalities by ablating DCs with specific functions. Here, we discuss the effects of the initial activation of DCs that crucially includes the production of cytokine intermediaries to collectively achieve amplification of the maturation process and further precise sculpting of the functional landscapes among DCs. By emphasizing the interconnectedness of the intracellular and intercellular mechanisms, we reveal activation, amplification, and ablation as the mechanistically integrated components of the DC maturation process.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
5
|
Shiri Aghbash P, Shirvaliloo M, Khalo Abass Kasho A, Alinezhad F, Nauwynck H, Bannazadeh Baghi H. Cluster of differentiation frequency on antigen presenting-cells: The next step to cervical cancer prognosis? Int Immunopharmacol 2022; 108:108896. [DOI: 10.1016/j.intimp.2022.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
|
6
|
Bourque J, Hawiger D. Variegated Outcomes of T Cell Activation by Dendritic Cells in the Steady State. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:539-547. [PMID: 35042789 DOI: 10.4049/jimmunol.2100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Conventional dendritic cells (cDC) control adaptive immunity by sensing damage- and pathogen-associated molecular patterns and then inducing defined differentiation programs in T cells. Nevertheless, in the absence of specific proimmunogenic innate signals, generally referred to as the steady state, cDC also activate T cells to induce specific functional fates. Consistent with the maintenance of homeostasis, such specific outcomes of T cell activation in the steady state include T cell clonal anergy, deletion, and conversion of peripheral regulatory T cells (pTregs). However, the robust induction of protolerogenic mechanisms must be reconciled with the initiation of autoimmune responses and cancer immunosurveillance that are also observed under homeostatic conditions. Here we review the diversity of fates and functions of T cells involved in the opposing immunogenic and tolerogenic processes induced in the steady state by the relevant mechanisms of systemic cDC present in murine peripheral lymphoid organs.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
7
|
Bourque J, Hawiger D. Applications of Antibody-Based Antigen Delivery Targeted to Dendritic Cells In Vivo. Antibodies (Basel) 2022; 11:antib11010008. [PMID: 35225867 PMCID: PMC8884005 DOI: 10.3390/antib11010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Recombinant immunoglobulins, derived from monoclonal antibodies recognizing the defined surface epitopes expressed on dendritic cells, have been employed for the past two decades to deliver antigens to dendritic cells in vivo, serving as critical tools for the investigation of the corresponding T cell responses. These approaches originated with the development of the recombinant chimeric antibody against a multilectin receptor, DEC-205, which is present on subsets of murine and human conventional dendritic cells. Following the widespread application of antigen targeting through DEC-205, similar approaches then utilized other epitopes as entry points for antigens delivered by specific antibodies to multiple types of dendritic cells. Overall, these antigen-delivery methodologies helped to reveal the mechanisms underlying tolerogenic and immunogenic T cell responses orchestrated by dendritic cells. Here, we discuss the relevant experimental strategies as well as their future perspectives, including their translational relevance.
Collapse
Affiliation(s)
| | - Daniel Hawiger
- Correspondence: ; Tel.: +1-314-977-8875; Fax: +1-314-977-8717
| |
Collapse
|
8
|
Saichi M, Ladjemi MZ, Korniotis S, Rousseau C, Ait Hamou Z, Massenet-Regad L, Amblard E, Noel F, Marie Y, Bouteiller D, Medvedovic J, Pène F, Soumelis V. Single-cell RNA sequencing of blood antigen-presenting cells in severe COVID-19 reveals multi-process defects in antiviral immunity. Nat Cell Biol 2021; 23:538-551. [PMID: 33972731 DOI: 10.1038/s41556-021-00681-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/06/2021] [Indexed: 02/03/2023]
Abstract
COVID-19 can lead to life-threatening respiratory failure, with increased inflammatory mediators and viral load. Here, we perform single-cell RNA-sequencing to establish a high-resolution map of blood antigen-presenting cells (APCs) in 15 patients with moderate or severe COVID-19 pneumonia, at day 1 and day 4 post admission to intensive care unit or pulmonology department, as well as in 4 healthy donors. We generated a unique dataset of 81,643 APCs, including monocytes and rare dendritic cell (DC) subsets. We uncovered multi-process defects in antiviral immune defence in specific APCs from patients with severe disease: (1) increased pro-apoptotic pathways in plasmacytoid DCs (pDCs, key effectors of antiviral immunity), (2) a decrease of the innate sensors TLR9 and DHX36 in pDCs and CLEC9a+ DCs, respectively, (3) downregulation of antiviral interferon-stimulated genes in monocyte subsets and (4) a decrease of major histocompatibility complex (MHC) class II-related genes and MHC class II transactivator activity in cDC1c+ DCs, suggesting viral inhibition of antigen presentation. These novel mechanisms may explain patient aggravation and suggest strategies to restore the defective immune defence.
Collapse
Affiliation(s)
| | - Maha Zohra Ladjemi
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
- Service de Médecine Intensive & Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris. Centre & Université de Paris, Paris, France
| | | | - Christophe Rousseau
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Zakaria Ait Hamou
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
- Service de Médecine Intensive & Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris. Centre & Université de Paris, Paris, France
| | - Lucile Massenet-Regad
- Université de Paris, INSERM U976, Paris, France
- Université Paris-Saclay, Saint-Aubin, France
| | - Elise Amblard
- Université de Paris, INSERM U976, Paris, France
- Université de Paris, Centre de Recherches Interdisciplinaires, Paris, France
| | | | - Yannick Marie
- Institut du Cerveau (ICM), Plateforme de Génotypage Séquençage, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Paris, France
| | - Delphine Bouteiller
- Institut du Cerveau (ICM), Plateforme de Génotypage Séquençage, Paris, France
| | | | - Frédéric Pène
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
- Service de Médecine Intensive & Réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris. Centre & Université de Paris, Paris, France
| | - Vassili Soumelis
- Université de Paris, INSERM U976, Paris, France.
- AP-HP, Hôpital Saint-Louis, Laboratoire d'Immunologie-Histocompatibilité, Paris, France.
| |
Collapse
|
9
|
Méndez-Sánchez N, Córdova-Gallardo J, Barranco-Fragoso B, Eslam M. Hepatic Dendritic Cells in the Development and Progression of Metabolic Steatohepatitis. Front Immunol 2021; 12:641240. [PMID: 33833761 PMCID: PMC8021782 DOI: 10.3389/fimmu.2021.641240] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic Associated Fatty liver disease (MAFLD) is a global health problem and represents the most common cause of chronic liver disease in the world. MAFLD spectrum goes from simple steatosis to cirrhosis, in between metabolic steatohepatitis with progressive fibrosis, which pathogenesis is not completely understood. Hence, the role of the immune system has become an important fact in the trigger of inflammatory cascades in metabolic steatohepatitis and in the activation of hepatic stellate cells (HSCs). Among, the more studied immune cells in the pathogenesis of MAFLD are macrophages, T cells, natural killer and dendritic cells. In particular, hepatic dendritic cells had recently attracted a special attention, with a dual role in the pathogenesis of MAFLD. These cells have the capacity to switch from a tolerant state to active state inducing an inflammatory cascade. Furthermore, these cells play a role in the lipid storage within the liver, having, thus providing a crucial nexus between inflammation and lipid metabolism. In this review, we will discuss the current knowledge on the dual role of dendritic cells in lipid accumulation, as wells as in the triggering of hepatic inflammation and hepatocytes cell death in metabolic steatohepatitis.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Jacqueline Córdova-Gallardo
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Department of Hepatology, Service of Surgery and Obesity Clinic, General Hospital “Dr. Manuel Gea González”, Mexico City, Mexico
| | | | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Klarquist JS, Janssen EM. Melanoma-infiltrating dendritic cells: Limitations and opportunities of mouse models. Oncoimmunology 2021; 1:1584-1593. [PMID: 23264904 PMCID: PMC3525613 DOI: 10.4161/onci.22660] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The infiltration of melanoma lesions by dendritic cells (DCs) has been suggested to play a tumorigenic role due to the capacity of DCs to induce tumor tolerance and promote angiogenesis as well as metastasis. However, it has also been shown that tumor-infiltrating DCs (TIDCs) induce antitumor responses and hence may be targeted in cost-effective therapeutic approaches to obtain patient-specific DCs that present relevant tumor antigens, without the need for ex vivo DC expansion or tumor antigen identification. Unfortunately, little is known about the composition, nature and function of TIDCs found in human melanoma. The development of mouse melanoma models has greatly contributed to the molecular understanding of melanoma immunology in mice, but many questions on TIDCs remain unanswered. Here, we discuss current knowledge about melanoma TIDCs in various mouse models with regard to their translational potential and clinical relevance.
Collapse
Affiliation(s)
- Jared S Klarquist
- Division of Cellular and Molecular Immunology; Cincinnati Children's Hospital Research Foundation; University of Cincinnati College of Medicine; Cincinnati, OH USA
| | | |
Collapse
|
11
|
Que W, Guo WZ, Li XK. Manipulation of Regulatory Dendritic Cells for Induction Transplantation Tolerance. Front Immunol 2020; 11:582658. [PMID: 33162996 PMCID: PMC7591396 DOI: 10.3389/fimmu.2020.582658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Current organ transplantation therapy is life-saving but accompanied by well-recognized side effects due to post-transplantation systematic immunosuppressive treatment. Dendritic cells (DCs) are central instigators and regulators of transplantation immunity and are responsible for balancing allograft rejection and tolerance. They are derived from monocyte-macrophage DC progenitors originating in the bone marrow and are classified into different subsets based on their developmental, phenotypical, and functional criteria. Functionally, DCs instigate allograft immunity by presenting donor antigens to alloreactive T cells via direct, indirect, and semidirect recognition pathways and provide essential signaling for alloreactive T cell activation via costimulatory molecules and pro-inflammatory cytokines. Regulatory DCs (DCregs) are characterized by a relatively low expression of major histocompatibility complex, costimulatory molecules, and altered cytokine production and exert their regulatory function through T cell anergy, T cell deletion, and regulatory T cell induction. In rodent transplantation studies, DCreg-based therapy, by in situ targeting or infusion of ex vivo generated DCregs, exhibits promising potential as a natural, well-tolerated, organ-specific therapeutic strategy for promoting lasting organ-specific transplantation tolerance. Recent early-phase studies of DCregs have begun to examine the safety and efficacy of DCreg-induced allograft tolerance in living-donor renal or liver transplantations. The present review summarizes the basic characteristics, function, and translation of DCregs in transplantation tolerance induction.
Collapse
Affiliation(s)
- Weitao Que
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
12
|
Yang Y, Wang D, Li Q, He J, Wang B, Li J, Zhang A. Immune-Enhancing Activity of Aqueous Extracts from Artemisia rupestris L. via MAPK and NF-kB Pathways of TLR4/TLR2 Downstream in Dendritic Cells. Vaccines (Basel) 2020; 8:vaccines8030525. [PMID: 32933167 PMCID: PMC7565461 DOI: 10.3390/vaccines8030525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Artemisia rupestris L. has long been used as a traditional herbal medicine owing to its immunomodulatory activity. Aqueous extracts of Artemisia rupestris L. (AEAR) contain the main functional component and can activate the maturation of dendritic cells (DCs) and enhance the adaptive immunity as the adjuvant against infections. To explore the underlying mechanism of immunomodulatory activities of AEAR, DCs were produced from bone-marrow cells of mice and the effects of AEAR on cell viability were assessed by the Cell Counting Kit 8 (CCK8) method and annexin V/propidium iodide staining assays. Then, the effects of AEAR on the morphology, maturation, and function of DCs were detected using a microscope, flow cytometry-based surface receptor characterization, and endocytosis assays. The secretion levels of cytokines were then analyzed with enzyme-linked immunosorbent assay (ELISA). The activation state of DCs was evaluated by the mixed lymphocyte reaction (MLR). The activity of MAPKs and NF-κB pathways, which were involved in the regulation of AEAR on DCs, was further detected by Western blot. AEAR did not have a cytotoxic effect on DCs or mouse splenocytes. AEAR remarkably enhanced the phenotypic maturation of DCs and promoted the expression of costimulatory molecules and the secretion of cytokines in DCs. AEAR also significantly decreased the phagocytic ability of DCs and augmented the abilities of DCs to present antigens and stimulate allogeneic T-cell proliferation. Simultaneously, AEAR potently activated toll-like receptor (TLR)4-/TLR2-related MAPKs and induced the degradation of IκB and the translocation of NF-κB. In short, AEAR can profoundly enhance the immune-modulating activities of DCs via TLR4-/TLR2-mediated activation of MAPKs and NF-κB signaling pathways and is a promising candidate immunopotentiator for vaccines.
Collapse
Affiliation(s)
- Yu Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Y.); (D.W.); (Q.L.); (J.L.)
| | - DanYang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Y.); (D.W.); (Q.L.); (J.L.)
| | - QuanXiao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Y.); (D.W.); (Q.L.); (J.L.)
| | - Jiang He
- Key Laboratory of Uighur Medicine, Xinjiang Institute of Materia Medica, Xinjiang 830004, China;
| | - Bin Wang
- Key Lab of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Y.); (D.W.); (Q.L.); (J.L.)
| | - Ailian Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Y.); (D.W.); (Q.L.); (J.L.)
- Correspondence:
| |
Collapse
|
13
|
Hogenkamp A, Ehlers A, Garssen J, Willemsen LEM. Allergy Modulation by N-3 Long Chain Polyunsaturated Fatty Acids and Fat Soluble Nutrients of the Mediterranean Diet. Front Pharmacol 2020; 11:1244. [PMID: 32973501 PMCID: PMC7472571 DOI: 10.3389/fphar.2020.01244] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The Mediterranean diet, containing valuable nutrients such as n-3 long chain poly-unsaturated fatty acids (LCPUFAs) and other fat-soluble micronutrients, is known for its health promoting and anti-inflammatory effects. Its valuable elements might help in the battle against the rising prevalence of non-communicable diseases (NCD), including the development of allergic diseases and other (chronic) inflammatory diseases. The fat fraction of the Mediterranean diet contains bioactive fatty acids but can also serve as a matrix to dissolve and increase the uptake of fat-soluble vitamins and phytochemicals, such as luteolin, quercetin, resveratrol and lycopene with known immunomodulatory and anti-inflammatory capacities. Especially n-3 LCPUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine oils can target specific receptors or signaling cascades, act as eicosanoid precursors and/or alter membrane fluidity and lipid raft formation, hereby exhibiting anti-inflammatory properties. Beyond n-3 LCPUFAs, fat-soluble vitamins A, D, E, and K1/2 have the potential to affect pro-inflammatory signaling cascades by interacting with receptors or activating/inhibiting signaling proteins or phosphorylation in immune cells (DCs, T-cells, mast cells) involved in allergic sensitization or the elicitation/effector phase of allergic reactions. Moreover, fat-soluble plant-derived phytochemicals can manipulate signaling cascades, mostly by interacting with other receptors or signaling proteins compared to those modified by fat-soluble vitamins, suggesting potential additive or synergistic actions by applying a combination of these nutrients which are all part of the regular Mediterranean diet. Research concerning the effects of phytochemicals such as polyphenols has been hampered due to their poor bio-availability. However, their solubility and uptake are improved by applying them within the dietary fat matrix. Alternatively, they can be prepared for targeted delivery by means of pharmaceutical approaches such as encapsulation within liposomes or even unique nanoparticles. This review illuminates the molecular mechanisms of action and possible immunomodulatory effects of n-3 LCPUFAs and fat-soluble micronutrients from the Mediterranean diet in allergic disease development and allergic inflammation. This will enable us to further appreciate how to make use of the beneficial effects of n-3 LCPUFAs, fat-soluble vitamins and a selection of phytochemicals as active biological components in allergy prevention and/or symptom reduction.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Ehlers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
Go N, Belloc C, Bidot C, Touzeau S. Why, when and how should exposure be considered at the within-host scale? A modelling contribution to PRRSv infection. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2020; 36:179-206. [PMID: 29790952 DOI: 10.1093/imammb/dqy005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
Abstract
Understanding the impact of pathogen exposure on the within-host dynamics and its outcome in terms of infectiousness is a key issue to better understand and control the infection spread. Most experimental and modelling studies tackling this issue looked at the impact of the exposure dose on the infection probability and pathogen load, very few on the within-host immune response. Our aim was to explore the impact on the within-host response not only of the exposure dose, but also of its duration and peak, for contrasted virulence levels. We used an integrative modelling approach of the within-host dynamics at the between-cell level. We focused on the porcine reproductive and respiratory syndrome virus, a major concern for the swine industry. We quantified the impact of exposure and virulence on the viral dynamics and immune response by global sensitivity analyses and descriptive statistics. We found that the area under the viral curve, an indicator of the infection severity, was fully determined by the exposure intensity. The infection duration increased with the strain virulence and, for a given strain, exhibited a positive linear correlation with the exposure intensity logarithm and the exposure duration. Taking into account the exposure intensity is hence necessary. Besides, representing the exposure due to contacts by a single punctual dose would tend to underestimate the infection duration. As the infection severity and duration both contribute to the pig infectiousness, a prolonged exposure of the adequate intensity would be recommended in an immuno-epidemiological context.
Collapse
Affiliation(s)
- Natacha Go
- BIOEPAR, INRA, Oniris, LUNAM Université, Nantes, France.,MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Caroline Bidot
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Suzanne Touzeau
- ISA, INRA, CNRS, Université Côte d'Azur, France.,BIOCORE, Inria, INRA, CNRS, UPMC Université, Université Côte d'Azur, France
| |
Collapse
|
15
|
Zhao B, Hui X, Jiao L, Bi L, Wang L, Huang P, Yang W, Yin Y, Jin S, Wang C, Zhang X, Xu L. A TCM Formula YYWY Inhibits Tumor Growth in Non-Small Cell Lung Cancer and Enhances Immune-Response Through Facilitating the Maturation of Dendritic Cells. Front Pharmacol 2020; 11:798. [PMID: 32595493 PMCID: PMC7301756 DOI: 10.3389/fphar.2020.00798] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/15/2020] [Indexed: 01/01/2023] Open
Abstract
In worldwide, lung cancer has a major socio-economic impact and is one of the most common causes of cancer-related deaths. Current therapies for lung cancer are still quite unsatisfactory, urging for alternative new treatments. Traditional Chinese Medicine (TCM) is currently increasingly popular and exhibits a complicated intervention in cancers therapy. In this study, we evaluated the anti-tumor effect and explored the mechanisms of a TCM formula Yangyinwenyang (YYWY) in non-small cell lung cancer (NSCLC) models. YYWY induced the apoptosis of lung cancer cells in vitro. In Lewis NSCLC-bearing mice model, YYWY significantly inhibited the tumor growth. Further, RNA-seq analysis and immunostaining of the tumor tissue implied the critical role of YYWY in the regulation of immune response, especially the dendritic cells (DCs) in the effect of YYWY. Therefore, we focused on DCs, which were the initiator and modulator of the immune response. YYWY facilitated the maturation of DCs through MAPK and NF-κB signaling pathways and promoted the release of the cytokines IFN-γ, interleukin (IL)-1β, IL-2, IL-12, and tumor necrosis factor (TNF)-α by DCs. Moreover, the YYWY-matured DCs enhanced the proliferation of T cells and promoted the differentiation of T cells into T helper Th1 and cytotoxic T cell (CTL). In addition, YYWY increased the ratio of Th1/Th2 (IFN-γ/IL-4 radio). Collectively, our findings clearly suggested that YYWY exerted an anti-tumor effect on NSCLC, at least partially through facilitating the mature DCs to activate the proliferation and differentiation of T cells.
Collapse
Affiliation(s)
- Bei Zhao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodan Hui
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture & Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- A Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Piao Huang
- A Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinan Yin
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenyi Jin
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyan Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Zhang
- A Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Stojić-Vukanić Z, Pilipović I, Bufan B, Stojanović M, Leposavić G. Age and sex determine CD4+ T cell stimulatory and polarizing capacity of rat splenic dendritic cells. Biogerontology 2019; 21:83-107. [PMID: 31646402 DOI: 10.1007/s10522-019-09845-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
The study investigated influence of sex and age on splenic myeloid dendritic cells (DCs) from Dark Agouti rats. Freshly isolated DCs from young males exhibited less mature phenotype and greater endocytic capacity compared with those from age-matched females. Upon LPS stimulation in vitro they were less potent in stimulating allogeneic CD4+ cells in mixed leukocyte reaction (MLR), due to lower expression of MHC II, and greater NO and IL-10 production. In accordance with higher TGF-β production, young male rat DCs were less potent in stimulating IL-17 production in MLR than those from young females. Irrespective of sex, endocytic capacity and responsiveness of DCs to LPS stimulation in culture, judging by their allostimulatory capacity in MLR decreased with age, reflecting decline in MHC II surface density followed by their greater NO production; the effects more prominent in females. Additionally, compared with LPS-stimulated DCs from young rats, those from sex-matched aged rats were more potent in stimulating IL-10 production in MLR, whereas capacity of DCs from aged female and male rats to stimulate IL-17 production remained unaltered and decreased, respectively. This reflected age-related shift in IL-6/TGF-β production level ratio in LPS-stimulated DC cultures towards TGF-β, and sex-specific age-related remodeling CD4+ cell cytokine pathways. Additionally, compared with LPS-stimulated DCs from young rats, those cells from sex-matched aged rats were less potent in stimulating IFN-γ production in MLR, the effect particularly prominent in MLRs encompassing male rat DCs. The study showed that stimulatory and polarizing capacity of DCs depends on rat sex and age.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Marija Stojanović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia.
| |
Collapse
|
17
|
Eliasse Y, Galliano MF, Redoules D, Espinosa E. Effect of thermal spring water on human dendritic cell inflammatory response. J Inflamm Res 2019; 12:181-194. [PMID: 31413617 PMCID: PMC6660632 DOI: 10.2147/jir.s213594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/28/2019] [Indexed: 01/11/2023] Open
Abstract
Background Hydrotherapy appears as a valuable therapeutic tool in the management of patients suffering from chronic skin inflammatory diseases. Nevertheless, the underlying immune mechanisms of these beneficial effects remain poorly understood. To better understand the biological effects of thermal spring water on the immune system, we investigated the effects of Avène thermal spring water (ASW) on dendritic cells as key cells participating in the control of the immune response. Methods Dendritic cells (DCs) were generated from human monocytes and matured with LPS in ASW-based culture medium or in dexamethasone supplemented culture medium as an anti-inflammatory treatment. The phenotypes and abilities of these DCs to produce cytokines and induce allogeneic T cell response was next assessed. Results We showed that ASW modulated the differentiation of monocytes into DCs and impacted the DC maturation upon LPS priming. We observed a reduction of the CD83, CD86, CD1a and HLA-DR molecule expression and a decrease of IL-12 and IL-23 production whereas IL-10 production was increased. LPS-primed DCs generated in presence of ASW exhibited a reduced capacity to induce naive CD4+ T cell proliferation and IFN-γ and IL-17 production. Conclusion Our study showed that ASW is endowed with an immunomodulatory potential. ASW limits the DC stimulatory capacity of Th1 and Th17 cell responses by impairing their maturation, IL-12 and IL-23 production and accessory cell function.
Collapse
Affiliation(s)
- Yoan Eliasse
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse F-31037, France.,Université De Toulouse, Université Paul Sabatier, Toulouse F-31062, France
| | | | - Daniel Redoules
- Global Medical Direction, Laboratoire Dermatologique Avène, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - Eric Espinosa
- INSERM U1037, Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse F-31037, France.,Université De Toulouse, Université Paul Sabatier, Toulouse F-31062, France
| |
Collapse
|
18
|
Amlexanox attenuates experimental autoimmune encephalomyelitis by inhibiting dendritic cell maturation and reprogramming effector and regulatory T cell responses. J Neuroinflammation 2019; 16:52. [PMID: 30823934 PMCID: PMC6396467 DOI: 10.1186/s12974-019-1438-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background Amlexanox (ALX), a TBK1 inhibitor, can modulate immune responses and has anti-inflammatory properties. To investigate its role in regulating the progression of experimental autoimmune encephalomyelitis (EAE), we studied the effect of ALX on the maturation of dendritic cells (DCs) and the responses of effector and regulatory T cells (Tregs). Methods In vitro, bone marrow-derived DCs (BMDCs) were cultured and treated with ALX. Their proliferation, maturation, and their stimulatory function to induce T cells responses were detected. In vivo, the development of EAE from different groups was recorded. At the peak stage of disease, HE, LFB, and electronic microscope (EM) were used to evaluate inflammation and demyelination. Maturation of splenic DC and Th1/Th17/Treg response in the CNS and peripheral were also detected. To further explore the mechanism underlying the action of ALX in DC maturation, the activation of TBK1, IRF3, and AKT was analyzed. Results Our data indicated that ALX significantly inhibited the proliferation and maturation of BMDCs, characterized by the reduced MHCII, a co-stimulatory molecule, IL12, and IL-23 expression, along with morphological alterations. Co-culture of ALX-treated BMDCs inhibited allogeneic T cell proliferation and MOG-specific T cell response. In EAE mice, ALX significantly attenuated the EAE development by decreasing inflammatory infiltration and demyelination in the spinal cords, accompanied by reduced frequency of splenic pathogenic Th1 and Th17 cells and increased Tregs. Moreover, ALX treatment decreased Th1 and Th17 cytokines, but increased Treg cytokines in the CNS and spleen. Notably, ALX treatment reduced the frequency and expression of CD80 and CD86 on splenic DCs and lowered IL-12 and IL-23 secretion, further supporting an impaired maturation of splenic DCs. In addition, ALX potently reduced the phosphorylation of IRF3 and AKT in BMDC and splenic DCs, both of which are substrates of TBK1 and associated with DC maturation. Conclusions ALX, a TBK1 inhibitor, mitigated EAE development by inhibiting DC maturation and subsequent pathogenic Th1 and Th17 responses while increasing Treg responses through attenuating the TBK1/AKT and TBK1/IRF3 signaling.
Collapse
|
19
|
Rajani KR, Carlstrom LP, Parney IF, Johnson AJ, Warrington AE, Burns TC. Harnessing Radiation Biology to Augment Immunotherapy for Glioblastoma. Front Oncol 2019; 8:656. [PMID: 30854331 PMCID: PMC6395389 DOI: 10.3389/fonc.2018.00656] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common adult primary brain tumor and carries a dismal prognosis. Radiation is a standard first-line therapy, typically deployed following maximal safe surgical debulking, when possible, in combination with cytotoxic chemotherapy. For other systemic cancers, standard of care is being transformed by immunotherapies, including checkpoint-blocking antibodies targeting CTLA-4 and PD-1/PD-L1, with potential for long-term remission. Ongoing studies are evaluating the role of immunotherapies for GBM. Despite dramatic responses in some cases, randomized trials to date have not met primary outcomes. Challenges have been attributed in part to the immunologically "cold" nature of glioblastoma relative to other malignancies successfully treated with immunotherapy. Radiation may serve as a mechanism to improve tumor immunogenicity. In this review, we critically evaluate current evidence regarding radiation as a synergistic facilitator of immunotherapies through modulation of both the innate and adaptive immune milieu. Although current preclinical data encourage efforts to harness synergistic biology between radiation and immunotherapy, several practical and scientific challenges remain. Moreover, insights from radiation biology may unveil additional novel opportunities to help mobilize immunity against GBM.
Collapse
Affiliation(s)
- Karishma R. Rajani
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Lucas P. Carlstrom
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ian F. Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | - Terry C. Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
20
|
Funes SC, Manrique de Lara A, Altamirano-Lagos MJ, Mackern-Oberti JP, Escobar-Vera J, Kalergis AM. Immune checkpoints and the regulation of tolerogenicity in dendritic cells: Implications for autoimmunity and immunotherapy. Autoimmun Rev 2019; 18:359-368. [PMID: 30738957 DOI: 10.1016/j.autrev.2019.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The immune system is responsible for defending the host from a large variety of potential pathogens, while simultaneously avoiding immune reactivity towards self-components. Self-tolerance has to be tightly maintained throughout several central and peripheral processes; immune checkpoints are imperative for regulating the immunity/tolerance balance. Dendritic cells (DCs) are specialized cells that capture antigens, and either activate or inhibit antigen-specific T cells. Therefore, they play a key role at inducing and maintaining immune tolerance. DCs that suppress the immune response have been called tolerogenic dendritic cells (tolDCs). Given their potential as a therapy to prevent transplant rejection and autoimmune damage, several strategies are under development to generate tolDCs, in order to avoid activation and expansion of self-reactive T cells. In this article, we summarize the current knowledge relative to the main features of tolDCs, their mechanisms of action and their therapeutic use for autoimmune diseases. Based on the literature reviewed, autologous antigen-specific tolDCs might constitute a promising strategy to suppress autoreactive T cells and reduce detrimental inflammatory processes.
Collapse
Affiliation(s)
- Samanta C Funes
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Amaranta Manrique de Lara
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Instituto de Biotecnología, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - María J Altamirano-Lagos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan P Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo, IMBECU, CONICET, Mendoza, Argentina; Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Jorge Escobar-Vera
- Laboratorio de Genética, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile.
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
21
|
Bashaw AA, Leggatt GR, Chandra J, Tuong ZK, Frazer IH. Modulation of antigen presenting cell functions during chronic HPV infection. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2017; 4:58-65. [PMID: 29179871 PMCID: PMC5883240 DOI: 10.1016/j.pvr.2017.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Abstract
High-risk human papillomaviruses (HR-HPV) infect basal keratinocytes, where in some individuals they evade host immune responses and persist. Persistent HR-HPV infection of the cervix causes precancerous neoplasia that can eventuate in cervical cancer. Dendritic cells (DCs) are efficient in priming/cross-priming antigen-specific T cells and generating antiviral and antitumor cytotoxic CD8+ T cells. However, HR-HPV have adopted various immunosuppressive strategies, with modulation of DC function crucial to escape from the host adaptive immune response. HPV E6 and E7 oncoproteins alter recruitment and localization of epidermal DCs, while soluble regulatory factors derived from HPV-induced hyperplastic epithelium change DC development and influence initiation of specific cellular immune responses. This review focuses on current evidence for HR-HPV manipulation of antigen presentation in dendritic cells and escape from host immunity.
Collapse
Affiliation(s)
- Abate Assefa Bashaw
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Janin Chandra
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Zewen K Tuong
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, 37 Kent Street, Woolloongabba, Queensland 4102, Australia.
| |
Collapse
|
22
|
Wang H, Yu Q, Nie SP, Xiang QD, Zhao MM, Liu SY, Xie MY, Wang SQ. Polysaccharide purified from Ganoderma atrum induced activation and maturation of murine myeloid-derived dendritic cells. Food Chem Toxicol 2017; 108:478-485. [DOI: 10.1016/j.fct.2017.02.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/12/2017] [Accepted: 02/19/2017] [Indexed: 10/20/2022]
|
23
|
Iberg CA, Jones A, Hawiger D. Dendritic Cells As Inducers of Peripheral Tolerance. Trends Immunol 2017; 38:793-804. [PMID: 28826942 DOI: 10.1016/j.it.2017.07.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
Mechanisms of tolerance initiated in the thymus are indispensable for establishing immune homeostasis, but they may not be sufficient to prevent tissue-specific autoimmune diseases. In the periphery, dendritic cells (DCs) play a crucial tolerogenic role, extending the maintenance of immune homeostasis and blocking autoimmune responses. We review here these essential roles of DCs in orchestrating mechanisms of peripheral T cell tolerance as determined by targeted delivery of defined antigens to DCs in vivo in combination with various genetic modifications of DCs. Further, we discuss how DC functions empowered by specific delivery of T cell antigens could be harnessed for tolerance induction in clinical settings.
Collapse
Affiliation(s)
- Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Equal contributions
| | - Andrew Jones
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA; Equal contributions
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
24
|
Jones A, Bourque J, Kuehm L, Opejin A, Teague RM, Gross C, Hawiger D. Immunomodulatory Functions of BTLA and HVEM Govern Induction of Extrathymic Regulatory T Cells and Tolerance by Dendritic Cells. Immunity 2016; 45:1066-1077. [PMID: 27793593 DOI: 10.1016/j.immuni.2016.10.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 07/12/2016] [Accepted: 08/15/2016] [Indexed: 12/28/2022]
Abstract
Dendritic cells (DCs) initiate immunity and also antigen-specific tolerance mediated by extrathymic regulatory T (Treg) cells, yet it remains unclear how DCs regulate induction of such tolerance. Here, we report that efficient induction of Treg cells was instructed by BTLA+DEC205+CD8+CD11c+ DCs and the immunomodulatory functions of BTLA. In contrast, T cell activation in steady state by total CD11c+ DCs that include a majority of DCs that do not express BTLA did not induce Treg cells and had no lasting impact on subsequent immune responses. Engagement of HVEM, a receptor of BTLA, promoted Foxp3 expression in T cells through upregulation of CD5. In contrast, T cells activated in the absence of BTLA and HVEM-mediated functions remained CD5lo and therefore failed to resist the inhibition of Foxp3 expression in response to effector cell-differentiating cytokines. Thus, DCs require BTLA and CD5-dependent mechanisms to actively adjust tolerizing T cell responses under steady-state conditions.
Collapse
Affiliation(s)
- Andrew Jones
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Lindsey Kuehm
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Adeleye Opejin
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Ryan M Teague
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Cindy Gross
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
25
|
Zaric M, Ibarzo Yus B, Kalcheva PP, Klavinskis LS. Microneedle-mediated delivery of viral vectored vaccines. Expert Opin Drug Deliv 2016; 14:1177-1187. [PMID: 27591122 DOI: 10.1080/17425247.2017.1230096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Microneedle array platforms are a promising technology for vaccine delivery, due to their ease of administration with no sharp waste generated, small size, possibility of targeted delivery to the specified skin depth and efficacious delivery of different vaccine formulations, including viral vectors. Areas covered: Attributes and challenges of the most promising viral vector candidates that have advanced to the clinic and that have been leveraged for skin delivery by microneedles; The importance of understanding the immunobiology of antigen-presenting cells in the skin, in particular dendritic cells, in order to generate further improved skin vaccination strategies; recent studies where viral vectors expressing various antigens have been coupled with microneedle technology to examine their potential for improved vaccination. Expert opinion: Simple, economic and efficacious vaccine delivery methods are needed to improve health outcomes and manage possible outbreaks of new emerging viruses. Understanding what innate/inflammatory signals are required to induce both immediate and long-term responses remains a major hurdle in the development of the effective vaccines. One approach to meet these needs is microneedle-mediated viral vector vaccination. In order for this technology to fulfil this potential the industry must invest significantly to further develop its design, production, biosafety, delivery and large-scale manufacturing.
Collapse
Affiliation(s)
- Marija Zaric
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | - Bárbara Ibarzo Yus
- a Peter Gorer Department of Immunobiology , King's College London , London , UK
| | | | | |
Collapse
|
26
|
Liu WC, Lin YL, Spearman M, Cheng PY, Butler M, Wu SC. Influenza Virus Hemagglutinin Glycoproteins with Different N-Glycan Patterns Activate Dendritic Cells In Vitro. J Virol 2016; 90:6085-6096. [PMID: 27099319 PMCID: PMC4907228 DOI: 10.1128/jvi.00452-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/17/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Influenza virus hemagglutinin (HA) N-glycans play important regulatory roles in the control of virus virulence, antigenicity, receptor-binding specificity, and viral escape from the immune response. Considered essential for controlling innate and adaptive immune responses against influenza virus infections, dendritic cells (DCs) trigger proinflammatory and adaptive immune responses in hosts. In this study, we engineered Chinese hamster ovary (CHO) cell lines expressing recombinant HA from pandemic H1, H5, and H7 influenza viruses. rH1HA, rH5HA, and rH7HA were obtained as wild-type proteins or in the presence of kifunensine (KIF) or further with endo-β-N-acetylglucosaminidase-treated KIF (KIF+E) to generate single-N-acetylglucosamine (GlcNAc) N-glycans consisting of (i) terminally sialylated complex-type N-glycans, (ii) high-mannose-type N-glycans, and (iii) single-GlcNAc-type N-glycans. Our results show that high-mannose-type and single-GlcNAc-type N-glycans, but not complex-type N-glycans, are capable of inducing more active hIL12 p40, hIL12 p70, and hIL-10 production in human DCs. Significantly higher HLA-DR, CD40, CD83, and CD86 expression levels, as well reduced endocytotic capacity in human DCs, were noted in the high-mannose-type rH1HA and single-GlcNAc-type rH1HA groups than in the complex-type N-glycan rH1HA group. Our data indicate that native avian rHA proteins (H5N1 and H7N9) are more immunostimulatory than human rHA protein (pH1N1). The high-mannose-type or single-GlcNAc-type N-glycans of both avian and human HA types are more stimulatory than the complex-type N-glycans. HA-stimulated DC activation was accomplished partially through a mannose receptor(s). These results provide more understanding of the contribution of glycosylation of viral proteins to the immune responses and may have implications for vaccine development. IMPORTANCE Influenza viruses trigger seasonal epidemics or pandemics with mild-to-severe consequences for human and poultry populations. DCs are the most potent professional antigen-presenting cells, which play a crucial role in the link between innate and adaptive immunity. In this study, we obtained stable-expression CHO cells to produce rH1HA, rH5HA, and rH7HA proteins containing distinct N-glycan patterns. These rHA proteins, each with a distinct N-glycan pattern, were used to investigate interactions with mouse and human DCs. Our data indicate that native avian rHA proteins (H5N1 and H7N9) are more immunostimulatory than human rHA protein (pH1N1). High-mannose-type and single-GlcNAc-type N-glycans were more effective than complex-type N-glycans in triggering mouse and human DC activation and maturation. We believe these results provide some useful information for influenza vaccine development regarding how influenza virus HA proteins with different types of N-glycans activate DCs.
Collapse
MESH Headings
- Alkaloids/pharmacology
- Animals
- Antigens, CD/genetics
- B7-2 Antigen/genetics
- Birds
- CD40 Antigens/genetics
- CHO Cells
- Cricetinae
- Cricetulus
- Dendritic Cells/immunology
- Dendritic Cells/physiology
- HLA-DR Antigens/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunoglobulins/genetics
- Influenza A Virus, H1N1 Subtype/chemistry
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/chemistry
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/chemistry
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza in Birds/virology
- Influenza, Human/virology
- Interleukin-10/genetics
- Interleukin-10/immunology
- Interleukin-12/genetics
- Interleukin-12/immunology
- Interleukin-12 Subunit p40/genetics
- Interleukin-12 Subunit p40/immunology
- Membrane Glycoproteins/genetics
- Pandemics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- CD83 Antigen
Collapse
Affiliation(s)
- Wen-Chun Liu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taiwan
| | - Maureen Spearman
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Pei-Yun Cheng
- Department of Medical Research, National Taiwan University Hospital, Taiwan
| | - Michael Butler
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
27
|
Exopolysaccharide from Trichoderma pseudokoningii promotes maturation of murine dendritic cells. Int J Biol Macromol 2016; 92:1155-1161. [PMID: 27341784 DOI: 10.1016/j.ijbiomac.2016.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 11/20/2022]
Abstract
Dendritic cells (DCs) are the key regulators of immune responses. In this study, the effect of an exopolysaccharide (EPS) from the culture broth of Trichoderma pseudokoningii on the phenotypic and functional maturation of murine DCs and its underlying molecular mechanisms were investigated. It showed that EPS induced the morphological changes of DCs and the enhanced expression of DCs featured surface molecules CD11c, CD86, CD80 and major histocompatibility complex II (MHC-II). Flow cytometry analysis showed that the treatment with EPS could reduce FITC-dextran uptake by DCs. Sequentially, the results of ELISA indicated that EPS could increase the production of interleukin-12p70 (IL-12p70) in culture supernatant of DCs. Immunofluorescence staining and western blot analysis further revealed that EPS significantly prompted nuclear factor (NF)-κB subunit p65 translocation, IκB-α protein degradation, and p38 mitogen-activated protein kinase (MAPK) phosphorylation. And the production of IL-12p70 was significantly decreased in condition of the inhibition of p38 or NF-κB signaling pathway. These findings suggested that EPS could induce DCs maturation through both p38 MAPK and NF-κB signaling pathways.
Collapse
|
28
|
Chandra J, Miao Y, Romoff N, Frazer IH. Epithelium Expressing the E7 Oncoprotein of HPV16 Attracts Immune-Modulatory Dendritic Cells to the Skin and Suppresses Their Antigen-Processing Capacity. PLoS One 2016; 11:e0152886. [PMID: 27031095 PMCID: PMC4816461 DOI: 10.1371/journal.pone.0152886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
Antigen presenting cells (APCs) in skin can promote either antigen-specific effector functions or antigen tolerance, and thus determine clearance or persistence of cutaneous viral infections. Human papillomavirus (HPV) infections can persist in squamous epithelium in immunocompetent individuals, and some persisting HPV infections, particularly with HPV16, promote malignant epithelial transformation. Here, we investigate whether local expression of the HPV16 protein most associated with malignant transformation, HPV16-E7, affects the phenotype and function of APC subsets in the skin. We demonstrate an expanded population of Langerhans cells in HPV16-E7 transgenic skin with distinct cell surface markers which express immune-modulatory enzymes and cytokines not expressed by cells from non transgenic skin. Furthermore, HPV16-E7 transgene expression in keratinocytes attracts new APC subsets to the epidermis. In vivo migration and transport of antigen to the draining lymph node by these APCs is markedly enhanced in HPV16-E7 expressing skin, whereas antigen-processing, as measured by proteolytic cleavage of DQ-OVA and activation of T cells in vivo by APCs, is significantly impaired. These data suggest that local expression of HPV16-E7 in keratinocytes can contribute to persisting infection with this oncogenic virus, by altering the phenotype and function of local APCs.
Collapse
Affiliation(s)
- Janin Chandra
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Yan Miao
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Natasha Romoff
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Ian H. Frazer
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
- * E-mail:
| |
Collapse
|
29
|
Elayeb R, Tamagne M, Bierling P, Noizat-Pirenne F, Vingert B. Red blood cell alloimmunization is influenced by the delay between Toll-like receptor agonist injection and transfusion. Haematologica 2016; 101:209-18. [PMID: 26430173 PMCID: PMC4938341 DOI: 10.3324/haematol.2015.134171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/01/2015] [Indexed: 11/09/2022] Open
Abstract
Murine models of red blood cell transfusion show that inflammation associated with viruses or methylated DNA promotes red blood cell alloimmunization. In vaccination studies, the intensity of antigen-specific responses depends on the delay between antigen and adjuvant administration, with a short delay limiting immune responses. In mouse models of alloimmunization, the delay between the injection of Toll-like receptor agonists and transfusion is usually short. In this study, we hypothesized that the timing of Toll-like receptor 3 agonist administration affects red blood cell alloimmunization. Poly(I:C), a Toll-like receptor 3 agonist, was administered to B10BR mice at various time points before the transfusion of HEL-expressing red blood cells. For each time point, we measured the activation of splenic HEL-presenting dendritic cells, HEL-specific CD4(+) T cells and anti-HEL antibodies in serum. The phenotype of activated immune cells depended on the delay between transfusion and Toll-like receptor-dependent inflammation. The production of anti-HEL antibodies was highest when transfusion occurred 7 days after agonist injection. The proportion of HEL-presenting CD8α(+) dendritic cells producing interleukin-12 was highest in mice injected with poly(I:C) 3 days before transfusion. Although the number of early-induced HEL-specific CD4(+) T cells was similar between groups, a high proportion of these cells expressed CD134, CD40 and CD44 in mice injected with poly(I:C) 7 days before transfusion. This study clearly shows that the delay between transfusion and Toll-like receptor-induced inflammation influences the immune response to transfused red blood cells.
Collapse
Affiliation(s)
- Rahma Elayeb
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| | - Marie Tamagne
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| | - Philippe Bierling
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Université Paris Est, Faculté de Médecine, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| | - France Noizat-Pirenne
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Université Paris Est, Faculté de Médecine, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| | - Benoît Vingert
- Établissement Français du Sang, Créteil, France Institut Mondor de Recherche Biomédicale, lnserm U955, Equipe 2, Créteil, France Laboratory of Excellence GR-Ex, Paris, France
| |
Collapse
|
30
|
Sela U, Park CG, Park A, Olds P, Wang S, Steinman RM, Fischetti VA. Dendritic Cells Induce a Subpopulation of IL-12Rβ2-Expressing Treg that Specifically Consumes IL-12 to Control Th1 Responses. PLoS One 2016; 11:e0146412. [PMID: 26745371 PMCID: PMC4706322 DOI: 10.1371/journal.pone.0146412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/16/2015] [Indexed: 12/24/2022] Open
Abstract
Cytokines secreted from dendritic cells (DCs) play an important role in the regulation of T helper (Th) cell differentiation and activation into effector cells. Therefore, controlling cytokine secretion from DCs may potentially regulate Th differentiation/activation. DCs also induce de-novo generation of regulatory T cells (Treg) that modulate the immune response. In the current study we used the mixed leukocyte reaction (MLR) to investigate the effect of allospecific Treg on IL-12, TNFα and IL-6 secretion by DCs. Treg cells were found to markedly down-regulate IL-12 secretion from DCs following stimulation with TLR7/8 agonist. This down-regulation of IL-12 was neither due to a direct suppression of its production by the DCs nor a result of marked DC death. We found that IL-12 was rather actively consumed by Treg cells. IL-12 consumption was mediated by a subpopulation of IL-12Rβ2-expressing Treg cells and was dependent on MHC class-II expressed on dendritic cells. Furthermore, IL-12 consumption by Tregs increased their suppressive effect on T cell proliferation and Th1 activation. These results provide a new pathway of Th1 response regulation where IL-12 secreted by DCs is consumed by a sub-population of IL-12Rβ2-expressing Treg cells. Consumption of IL-12 by Tregs not only reduces the availability of IL-12 to Th effector cells but also enhances the Treg immunosuppressive effect. This DC-induced IL-12Rβ2-expressing Treg subpopulation may have a therapeutic advantage in suppressing Th1 mediated autoimmunity.
Collapse
Affiliation(s)
- Uri Sela
- Laboratory of Cellular Physiology and Immunology, Chris Browne Center for Immunology and Immune Disease, The Rockefeller University, New York, NY, 10065, United States of America
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, 10065, United States of America
- * E-mail:
| | - Chae Gyu Park
- Laboratory of Cellular Physiology and Immunology, Chris Browne Center for Immunology and Immune Disease, The Rockefeller University, New York, NY, 10065, United States of America
- Laboratory of Immunology, Brain Korea 21 PLUS Project for Medical Science, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Andrew Park
- Laboratory of Cellular Physiology and Immunology, Chris Browne Center for Immunology and Immune Disease, The Rockefeller University, New York, NY, 10065, United States of America
| | - Peter Olds
- Laboratory of Cellular Physiology and Immunology, Chris Browne Center for Immunology and Immune Disease, The Rockefeller University, New York, NY, 10065, United States of America
| | - Shu Wang
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, 10065, United States of America
| | - Ralph M. Steinman
- Laboratory of Cellular Physiology and Immunology, Chris Browne Center for Immunology and Immune Disease, The Rockefeller University, New York, NY, 10065, United States of America
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, 10065, United States of America
| |
Collapse
|
31
|
Wojas-Turek J, Szczygieł A, Kicielińska J, Rossowska J, Piasecki E, Pajtasz-Piasecka E. Treatment with cyclophosphamide supported by various dendritic cell-based vaccines induces diversification in CD4⁺ T cell response against MC38 colon carcinoma. Int J Oncol 2015; 48:493-505. [PMID: 26648160 PMCID: PMC4725454 DOI: 10.3892/ijo.2015.3278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/26/2015] [Indexed: 12/18/2022] Open
Abstract
The present study shows that an application of cyclophosphamide (CY) supported by dendritic cell (DC)-based vaccines affected differentiation of the activity of CD4+ T cell subpopulations accompanied by an alteration in CD8+ cell number. Vaccines were composed of bone marrow-derived DCs activated with tumor cell lysate (BM-DC/TAgTNF-α) and/or genetically modified DCs of JAWS II line (JAWS II/ Neo or JAWS II/IL-2 cells). Compared to untreated or CY-treated mice, the combined treatment of MC38 colon carcinoma-bearing mice resulted in significant tumor growth inhibition associated with an increase in influx of CD4+ and CD8+ T cells into tumor tissue. Whereas, the division of these cell population in spleen was not observed. Depending on the nature of DC-based vaccines and number of their applications, both tumor infiltrating cells and spleen cells were able to produce various amount of IFN-γ, IL-4 and IL-10 after mitogenic ex vivo stimulation. The administration of CY followed by BM-DC/TAgTNF-α and genetically modified JAWS II cells, increased the percentage of CD4+T-bet+ and CD4+GATA3+ cells and decreased the percentage of CD4+RORγt+ and CD4+FoxP3+ lymphocytes. However, the most intensive response against tumor was noted after the ternary treatment with CY + BM-DC/TAgTNF-α + JAWS II/IL-2 cells. Thus, the administration of various DC-based vaccines was responsible for generation of the diversified antitumor response. These findings demonstrate that the determination of the size of particular CD4+ T cell subpopulations may become a prognostic factor and be the basis for future development of anticancer therapy.
Collapse
Affiliation(s)
- Justyna Wojas-Turek
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Agnieszka Szczygieł
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Jagoda Kicielińska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Egbert Piasecki
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Elżbieta Pajtasz-Piasecka
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
32
|
Fukui R, Kanno A, Miyake K. Type I IFN Contributes to the Phenotype of Unc93b1D34A/D34A Mice by Regulating TLR7 Expression in B Cells and Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2015; 196:416-27. [PMID: 26621862 DOI: 10.4049/jimmunol.1500071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022]
Abstract
TLR7 recognizes pathogen-derived and self-derived RNA, and thus a regulatory system for control of the TLR7 response is required to avoid excessive activation. Unc93 homolog B1 (Unc93B1) is a regulator of TLR7 that controls the TLR7 response by transporting TLR7 from the endoplasmic reticulum to endolysosomes. We have previously shown that a D34A mutation in Unc93B1 induces hyperactivation of TLR7, and that Unc93b1(D34A/D34A) mice (D34A mice) have systemic inflammation spontaneously. In this study, we examined the roles of inflammatory cytokines such as IFN-γ, IL-17A, and type I IFNs to understand the mechanism underlying the phenotype in D34A mice. mRNAs for IFN-γ and IL-I7A in CD4(+) T cells increased, but inflammatory phenotype manifesting as thrombocytopenia and splenomegaly was still observed in Ifng(-/-) or Il17a(-/-) D34A mice. In contrast to T cell-derived cytokines, Ifnar1(-/-) D34A mice showed an ameliorated phenotype with lower expression of TLR7 in B cells and conventional dendritic cells (cDCs). The amount of TLR7 decreased in B cells from Ifnar1(-/-) D34A mice, but the percentage of TLR7(+) cells decreased among CD8α(-) cDCs. In conclusion, type I IFNs maintain expression of TLR7 in B cells and cDCs in different ways; total amount of TLR7 is kept in B cells and TLR7(+) population is retained among cDCs. Our results suggested that these TLR7-expressing cells are activated initially and influence TLR7-dependent systemic inflammation.
Collapse
Affiliation(s)
- Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; and
| | - Atsuo Kanno
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; and Laboratory of Innate Immunity, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; and Laboratory of Innate Immunity, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
33
|
Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines. J Immunol Res 2015; 2015:785634. [PMID: 26583156 PMCID: PMC4637118 DOI: 10.1155/2015/785634] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 08/26/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023] Open
Abstract
In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.
Collapse
|
34
|
Mohammadpour H, Pourfathollah AA, Nikougoftar Zarif M, Tahoori MT. Effects of DKK-3, a Wnt signaling inhibitor, on dendritic cell phenotype and T cell polarization. Immunopharmacol Immunotoxicol 2015; 37:481-7. [PMID: 26471223 DOI: 10.3109/08923973.2015.1089274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Wnt signaling plays crucial roles in regulation of a wide range of processes in different cell types including immune cells and, in particular, dendritic cells and T cells. Growing indications point out that Wnt pathway components modulate the both innate and adaptive immune responses through regulating DC functions. We investigated the effects of recombinant DKK-3 protein on the phenotype and biological functions of bone marrow-derived DCs (BM-DCs) as well as T cell polarization. The phenotype and the cytokine production of BM-derived DCs in the presence DKK-3 were analyzed using flow cytometry and ELISA, respectively. Also, capability of DCs to activate T cells was evaluated by CFSE-labeled splenocytes. Regulatory T cell induction, T cell polarization, and cytokine secretion were assessed by flow cytometry and ELISA in splenocytes cultured in the presence of DKK-3. Our results showed that the expression of CD86 and CD40 increased in the DKK-3-treated DC, while the expression of PDL-1 and PDL-2 diminished. Furthermore, the presence of DKK-3 decreased IL-10 and IL-4 production and increased IFN-gamma production by treated DCs.DKK-3. Moreover, DKK-3 shifted naive CD4 T cells towards TH1 cells through up-regulation of T-bet and down-regulation of GATA-3. Our results, therefore, suggest that DKK-3 protein has the ability to promote the generation of Th1-immunostimulatory DCs from its precursors.
Collapse
Affiliation(s)
- Hemn Mohammadpour
- a Department of Medical Immunology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Ali Akbar Pourfathollah
- a Department of Medical Immunology, Faculty of Medical Sciences , Tarbiat Modares University , Tehran , Iran
| | - Mahin Nikougoftar Zarif
- b Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran , Iran , and
| | - Mohammad Taher Tahoori
- c Department of Immunology, Faculty of Medicine , Shahid Sadoughi University of Medical Sciences , Yazd , Iran
| |
Collapse
|
35
|
Roehrich ME, Wyss JC, Kumar R, Pascual M, Golshayan D, Vassalli G. Additive effects of rapamycin and aspirin on dendritic cell allostimulatory capacity. Immunopharmacol Immunotoxicol 2015; 37:434-41. [DOI: 10.3109/08923973.2015.1081606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Song JY, Lim DS. Radiation-induced gamma-synuclein in regards to DC function. Cell Death Dis 2015; 6:e1883. [PMID: 26355346 PMCID: PMC4650448 DOI: 10.1038/cddis.2015.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- J-Y Song
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - D-S Lim
- Department of Biotechnology, CHA University, Gyeonggi-do 463-400, Korea
| |
Collapse
|
37
|
Scott NM, Ng RLX, McGonigle TA, Gorman S, Hart PH. Reduced immune responses in chimeric mice engrafted with bone marrow cells from mice with airways inflammation. Inflamm Res 2015; 64:861-73. [PMID: 26280298 DOI: 10.1007/s00011-015-0868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. METHODS Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). RESULTS Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. CONCLUSIONS Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.
Collapse
Affiliation(s)
- Naomi M Scott
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6872, Australia
| | - Royce L X Ng
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6872, Australia
| | - Terence A McGonigle
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6872, Australia
| | - Shelley Gorman
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6872, Australia
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, PO Box 855, West Perth, WA, 6872, Australia.
| |
Collapse
|
38
|
Duan YG, Wang P, Zheng W, Zhang Q, Huang W, Jin F, Cai Z. Characterisation of dendritic cell subsets in chronically inflamed human epididymis. Andrologia 2015; 48:431-40. [PMID: 26257153 DOI: 10.1111/and.12463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 12/27/2022] Open
Affiliation(s)
- Y.-G. Duan
- Centre of Reproductive Medicine and Andrology; The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Shenzhen China
- Shenzhen PKU-HKUST Medical Center; Peking University Shenzhen Hospital; Shenzhen China
| | - P. Wang
- Department of Urology; Daping Hospital; Institute of Surgery Research; Third Military Medical University; Chongqing China
| | - W. Zheng
- Shenzhen PKU-HKUST Medical Center; Peking University Shenzhen Hospital; Shenzhen China
| | - Q. Zhang
- Centre of Reproductive Medicine and Andrology; The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Shenzhen China
| | - W. Huang
- Centre of Reproductive Medicine and Andrology; The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Shenzhen China
| | - F. Jin
- Department of Urology; Daping Hospital; Institute of Surgery Research; Third Military Medical University; Chongqing China
| | - Z. Cai
- Centre of Reproductive Medicine and Andrology; The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Shenzhen China
- Shenzhen PKU-HKUST Medical Center; Peking University Shenzhen Hospital; Shenzhen China
| |
Collapse
|
39
|
Modulation of dendritic cell function by the radiation-mediated secretory protein γ-synuclein. Cell Death Discov 2015; 1:15011. [PMID: 27551446 PMCID: PMC4979407 DOI: 10.1038/cddiscovery.2015.11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/18/2022] Open
Abstract
Recently, γ-synuclein (SNCG), which is also known as breast cancer-specific gene-1, has been demonstrated to be an adverse and aggressive marker in breast cancer. In our previous study, SNCG was significantly upregulated in irradiated human breast cancer cells. The aim of this study was to investigate whether radiation-induced, tumor-derived SNCG can influence dendritic cell (DC) function in immune systems. The phenotypical and functional changes of DCs in the presence or absence of SNCG were investigated by FACS analysis, ELISA, and real-time PCR. The ability of SNCG-treated DCs to influence T cells was also examined by coculturing with T cells. The treatment of DCs with SNCG protein inhibited the surface expression of the co-stimulatory molecules CD40 and CD86, and decreased the mRNA levels of pro-inflammatory cytokines. The SNCG-treated DCs inhibited T-cell proliferation slightly, but distinctively increased the population of regulatory T cells. In addition, the production of TGF-β from T cells was significantly increased when they were cocultured with SNCG-treated DCs. Taken together, these results demonstrate that tumor-derived SNCG contributes to immunosuppressive effects via the inhibition of DC differentiation and activation, thus making it a potential target for cancer treatment.
Collapse
|
40
|
Montano-Loza AJ, Czaja AJ. Cell mediators of autoimmune hepatitis and their therapeutic implications. Dig Dis Sci 2015; 60:1528-42. [PMID: 25487192 DOI: 10.1007/s10620-014-3473-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
Autoimmune hepatitis is associated with interactive cell populations of the innate and adaptive immune systems, and these populations are amenable to therapeutic manipulation. The goals of this review are to describe the key cell populations implicated in autoimmune hepatitis and to identify investigational opportunities to develop cell-directed therapies for this disease. Studies cited in PubMed from 1972 to 2014 for autoimmune hepatitis, innate and adaptive immune systems, and therapeutic interventions were examined. Dendritic cells can promote immune tolerance to self-antigens, present neo-antigens that enhance the immune response, and expand the regulatory T cell population. Natural killer cells can secrete pro-inflammatory and anti-inflammatory cytokines and modulate the activity of dendritic cells and antigen-specific T lymphocytes. T helper 2 lymphocytes can inhibit the cytotoxic activities of T helper 1 lymphocytes and limit the expansion of T helper 17 lymphocytes. T helper 17 lymphocytes can promote inflammatory activity, and they can also up-regulate genes that protect against oxidative stress and hepatocyte apoptosis. Natural killer T cells can expand the regulatory T cell population; gamma delta lymphocytes can secrete interleukin-10, stimulate hepatic regeneration, and induce the apoptosis of hepatic stellate cells; and antigen-specific regulatory T cells can dampen immune cell proliferation and function. Pharmacological agents, neutralizing antibodies, and especially the adoptive transfer of antigen-specific regulatory T cells that have been freshly generated ex vivo are evolving as management strategies. The cells within the innate and adaptive immune systems are key contributors to the occurrence of autoimmune hepatitis, and they are attractive therapeutic targets.
Collapse
Affiliation(s)
- Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta Hospital, Edmonton, AB, Canada
| | | |
Collapse
|
41
|
Quan S, Kim HJ, Dukala D, Sheng JR, Soliven B. Impaired dendritic cell function in a spontaneous autoimmune polyneuropathy. THE JOURNAL OF IMMUNOLOGY 2015; 194:4175-84. [PMID: 25825437 DOI: 10.4049/jimmunol.1401766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022]
Abstract
Spontaneous autoimmune polyneuropathy (SAP) in B7-2 knockout NOD mice mimics the progressive form of chronic inflammatory demyelinating polyradiculoneuropathy, and is mediated by myelin protein zero (P0)-reactive Th1 cells. In this study, we focused on the effect of B7-2 deletion on the function of dendritic cells (DCs) within the context of SAP. We found that development of SAP was associated with a preponderance or increase of CD11b(+) DCs in peripheral lymph nodes and sciatic nerves. B7-2 deletion led to altered immunophenotypic properties that differ between CD11b(+) DCs and CD8α(+) DCs. Both DC subsets from B7-2 knockout NOD mice exhibited impaired capacity to capture fluorophore-labeled myelin P0, but diminished Ag-presenting function was observed only in CD11b(+) DCs. Clinical assessment, electrophysiologic studies, and splenocyte proliferation studies revealed that absence of B7-2 on DCs was sufficient to cause impaired ability to induce tolerance to P0, which could be overcome by preconditioning with IL-10. Tolerance induction by Ag-pulsed wild-type NOD DCs was dependent on IL-10 and was associated with increased CD4(+) regulatory T cells, whereas tolerance induction by IL-10-conditioned B7-2-deficient DCs was associated with increased percentages of both regulatory T cells and B10 cells in the spleen. We conclude that B7-2 deletion has an impact on the distribution of DC subsets in lymphoid organs and alters the expression of costimulatory molecules, but functional consequences are not uniform across DC subsets. Defective tolerance induction in the absence of B7-2 can be restored by preconditioning of DCs with IL-10.
Collapse
Affiliation(s)
- Songhua Quan
- Department of Neurology, University of Chicago, Chicago, IL 60637; and
| | - Hye-Jung Kim
- Department of Neurology, University of Chicago, Chicago, IL 60637; and Department of Pathology, Inje University School of Medicine, Busan 614-735, Korea
| | - Danuta Dukala
- Department of Neurology, University of Chicago, Chicago, IL 60637; and
| | - Jian Rong Sheng
- Department of Neurology, University of Chicago, Chicago, IL 60637; and
| | - Betty Soliven
- Department of Neurology, University of Chicago, Chicago, IL 60637; and
| |
Collapse
|
42
|
Bao LQ, Nhi DM, Huy NT, Kikuchi M, Yanagi T, Hamano S, Hirayama K. Splenic CD11c+ cells derived from semi-immune mice protect naïve mice against experimental cerebral malaria. Malar J 2015; 14:23. [PMID: 25626734 PMCID: PMC4318192 DOI: 10.1186/s12936-014-0533-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/26/2014] [Indexed: 01/27/2023] Open
Abstract
Background Immunity to malaria requires innate, adaptive immune responses and Plasmodium-specific memory cells. Previously, mice semi-immune to malaria was developed. Three cycles of infection and cure (‘three-cure’) were required to protect mice against Plasmodium berghei (ANKA strain) infection. Methods C57BL/6 J mice underwent three cycles of P. berghei infection and drug-cure to become semi-immune. The spleens of infected semi-immune mice were collected for flow cytometry analysis. CD11c(+) cells of semi-immune mice were isolated and transferred into naïve mice which were subsequently challenged and followed up by survival and parasitaemia. Results The percentages of splenic CD4(+) and CD11c(+) cells were increased in semi-immune mice on day 7 post-infection. The proportion and number of B220(+)CD11c(+)low cells (plasmacytoid dendritic cells, DCs) was higher in semi-immune, three-cure mice than in their naïve littermates on day 7 post-infection (2.6 vs 1.1% and 491,031 vs 149,699, respectively). In adoptive transfer experiment, three months after the third cured P. berghei infection, splenic CD11c(+) DCs of non-infected, semi-immune, three-cure mice slowed Plasmodium proliferation and decreased the death rate due to neurological pathology in recipient mice. In addition, anti-P. berghei IgG1 level was higher in mice transferred with CD11c(+) cells of semi-immune, three-cure mice than mice transferred with CD11c(+) cells of naïve counterparts. Conclusion CD11c(+) cells of semi-immune mice protect against experimental cerebral malaria three months after the third cured malaria, potentially through protective plasmacytoid DCs and enhanced production of malaria-specific antibody.
Collapse
Affiliation(s)
- Lam Q Bao
- Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Goyvaerts C, Kurt DG, Van Lint S, Heirman C, Van Ginderachter JA, De Baetselier P, Raes G, Thielemans K, Breckpot K. Immunogenicity of targeted lentivectors. Oncotarget 2015; 5:704-15. [PMID: 24519916 PMCID: PMC3996667 DOI: 10.18632/oncotarget.1680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To increase the safety and possibly efficacy of HIV-1 derived lentivectors (LVs) as an anti-cancer vaccine, we recently developed the Nanobody (Nb) display technology to target LVs to antigen presenting cells (APCs). In this study, we extend these data with exclusive targeting of LVs to conventional dendritic cells (DCs), which are believed to be the main cross-presenting APCs for the induction of a TH1-conducted antitumor immune response. The immunogenicity of these DC-subtype targeted LVs was compared to that of broad tropism, general APC-targeted and non-infectious LVs. Intranodal immunization with ovalbumin encoding LVs induced proliferation of antigen specific CD4+ T cells, irrespective of the LVs' targeting ability. However, the cytokine secretion profile of the restimulated CD4+ T cells demonstrated that general APC targeting induced a similar TH1-profile as the broad tropism LVs while transduction of conventional DCs alone induced a similar and less potent TH1 profile as the non-infectious LVs. This observation contradicts the hypothesis that conventional DCs are the most important APCs and suggests that the activation of other APCs is also meaningful. Despite these differences, all targeted LVs were able to stimulate cytotoxic T lymphocytes, be it to a lesser extent than broad tropism LVs. Furthermore this induction was shown to be dependent on type I interferon for the targeted and non-infectious LVs, but not for broad tropism LVs. Finally we demonstrated that the APC-targeted LVs were as potent in therapy as broad tropism LVs and as such deliver on their promise as safer and efficacious LV-based vaccines.
Collapse
Affiliation(s)
- Cleo Goyvaerts
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Stojić-Vukanić Z, Nacka-Aleksić M, Bufan B, Pilipović I, Arsenović-Ranin N, Djikić J, Kosec D, Leposavić G. 17β-Estradiol influences in vitro response of aged rat splenic conventional dendritic cells to TLR4 and TLR7/8 agonists in an agonist specific manner. Int Immunopharmacol 2014; 24:24-35. [PMID: 25479725 DOI: 10.1016/j.intimp.2014.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/14/2014] [Accepted: 11/10/2014] [Indexed: 11/15/2022]
Abstract
This study was undertaken considering that, despite the broad use of the unopposed estrogen replacement therapy in elderly women, data on estrogen influence on the functional capacity of dendritic cells (DCs), and consequently immune response are limited. We examined the influence of 17β-estradiol on phenotype, cytokine secretory profile, and allostimulatory and polarizing capacity of splenic (OX62+) conventional DCs from 26-month-old (aged) Albino Oxford rats matured in vitro in the presence of LPS, a TLR4 agonist, and R848, a TLR7/8 agonist. In the presence of 17β-estradiol, DCs from aged rats exhibited an impaired ability to mature upon stimulation with LPS, as shown by the lower surface density of MHC II and costimulatory CD80 and CD86 molecules. 17β-Estradiol alone enhanced CD40 expression in OX62+ DCs without affecting the expression of other costimulatory molecules, thereby confirming that the expression of this molecule is regulated independently from the regulation of other costimulatory molecules. However, although R848 upregulated the expression of MHC II and CD80 and CD40 costimulatory molecules on DCs, 17β-estradiol diminished the effect of this TLR agonist only on MHC II expression. In conjunction, the previous findings suggest that LPS and R848 elicit changes in the expression of costimulatory molecules via triggering differential intracellular signaling pathways. Furthermore, 17β-estradiol diminished the stimulatory influence of both LPS- and R848-matured OX62+ DCs on allogeneic CD4+ T lymphocyte proliferation in a mixed lymphocyte reaction (MLR). Moreover, as shown in MLR, the exposure to 17β-estradiol during LPS- and R848-induced maturation diminished Th1- and enhanced Th17-driving capacity and reduced Th1-driving capacity of OX62+ DCs, respectively. This suggests that LPS and R848 affect not only the surface phenotype, but also functional characteristics of OX62+ DCs triggering distinct intracellular signaling pathways. Collectively, the findings indicate that estrogen directly acting on OX62+ DCs, may affect CD4+ lymphocyte-dependent immune response in aged female rats.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Center "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jasmina Djikić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Center "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
45
|
Ashok D, Acha-Orbea H. Timing is everything: dendritic cell subsets in murine Leishmania infection. Trends Parasitol 2014; 30:499-507. [DOI: 10.1016/j.pt.2014.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 02/02/2023]
|
46
|
Go N, Bidot C, Belloc C, Touzeau S. Integrative model of the immune response to a pulmonary macrophage infection: what determines the infection duration? PLoS One 2014; 9:e107818. [PMID: 25233096 PMCID: PMC4169448 DOI: 10.1371/journal.pone.0107818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/09/2014] [Indexed: 12/23/2022] Open
Abstract
The immune mechanisms which determine the infection duration induced by pathogens targeting pulmonary macrophages are poorly known. To explore the impact of such pathogens, it is indispensable to integrate the various immune mechanisms and to take into account the variability in pathogen virulence and host susceptibility. In this context, mathematical models complement experimentation and are powerful tools to represent and explore the complex mechanisms involved in the infection and immune dynamics. We developed an original mathematical model in which we detailed the interactions between the macrophages and the pathogen, the orientation of the adaptive response and the cytokine regulations. We applied our model to the Porcine Respiratory and Reproductive Syndrome virus (PRRSv), a major concern for the swine industry. We extracted value ranges for the model parameters from modelling and experimental studies on respiratory pathogens. We identified the most influential parameters through a sensitivity analysis. We defined a parameter set, the reference scenario, resulting in a realistic and representative immune response to PRRSv infection. We then defined scenarios corresponding to graduated levels of strain virulence and host susceptibility around the reference scenario. We observed that high levels of antiviral cytokines and a dominant cellular response were associated with either short, the usual assumption, or long infection durations, depending on the immune mechanisms involved. To identify these mechanisms, we need to combine the levels of antiviral cytokines, including , and . The latter is a good indicator of the infected macrophage level, both combined provide the adaptive response orientation. Available PRRSv vaccines lack efficiency. By integrating the main interactions between the complex immune mechanisms, this modelling framework could be used to help designing more efficient vaccination strategies.
Collapse
Affiliation(s)
- Natacha Go
- UR341 MIA, INRA, Jouy-en-Josas, France
- LUNAM Université, Oniris, INRA UMR 1300 BioEpAR, Nantes, France
- * E-mail:
| | | | | | - Suzanne Touzeau
- UMR1355 ISA, INRA, Université Nice Sophia Antipolis, CNRS, Sophia Antipolis, France
- BIOCORE, Inria, Sophia Antipolis, France
| |
Collapse
|
47
|
Gaurav R, Agrawal DK. Clinical view on the importance of dendritic cells in asthma. Expert Rev Clin Immunol 2014; 9:899-919. [PMID: 24128155 DOI: 10.1586/1744666x.2013.837260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allergic asthma is characterized by airway hyperresponsiveness and inflammation and may lead to airway remodeling in uncontrolled cases. Genetic predisposition to an atopic phenotype plays a major component in the pathophysiology of asthma. However, with tremendous role of epigenetic factors and environmental stimuli in precipitating an immune response, the underlying pathophysiological mechanisms are complicated. Dendritic cells are principal antigen-presenting cells and initiators of the immune response in allergic asthma. Their phenotype, guided by multiple factors may dictate the immune reaction to an allergic or tolerogenic response. Involvement of the local cytokine milieu, microbiome and interplay between immune cells add dimension to the fate of immune response. In addition to allergen exposure, these factors modulate DC phenotype and function. In this article, integration of many factors and pathways associated with the recruitment and activation of DCs in the pathophysiology of allergic asthma is presented in a clinical and translational manner.
Collapse
Affiliation(s)
- Rohit Gaurav
- Department of Biomedical Sciences and Center for Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza Omaha, NE 68178, USA
| | | |
Collapse
|
48
|
Gamazo C, Gastaminza G, Ferrer M, Sanz ML, Irache JM. Nanoparticle based-immunotherapy against allergy. Immunotherapy 2014; 6:885-97. [DOI: 10.2217/imt.14.63] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Allergic diseases are one of the most prevalent diseases, reaching epidemic proportions in developed countries. An allergic reaction occurs after contact with an environmental protein, such as inhalants allergens (pollen, animal dander, house dust mites), or food proteins. This response is known as part of the type 2 immunity that is counterbalanced by Type 1 immunity and Tregs. Widely used allergen-specific immunotherapy (IT) is a long term treatment to induce such switch from Th2 to Th1 response. However, conventional IT requires multiple allergen injections over a long period of time and is not free of risk of producing allergic reactions. As a consequence, new safer and faster immunotherapeutic methods are required. This review deals with allergen IT using nanoparticles as allergen delivery system that will allow a different way of administration, reduce dose and diminish allergen exposure to IgE bound to mast cells or basophils.
Collapse
Affiliation(s)
- Carlos Gamazo
- University of Navarra Dept. Microbiology C/Irunlarrea, 1; 31080 - Pamplona, Spain
| | - Gabriel Gastaminza
- Department Allergy & Clinical Immunology, Clinica Universidad de Navarra Av. Pio XII 36, 31008 – Pamplona, Spain
| | - Marta Ferrer
- Department Allergy & Clinical Immunology, Clinica Universidad de Navarra Av. Pio XII 36, 31008 – Pamplona, Spain
| | - María L Sanz
- Department Allergy & Clinical Immunology, Clinica Universidad de Navarra Av. Pio XII 36, 31008 – Pamplona, Spain
| | - Juan M Irache
- University of Navarra Dept. Pharmacy & Pharmaceutical Technology C/Irunlarrea, 1; 31080 – Pamplona, Spain
| |
Collapse
|
49
|
A systems biology approach to the analysis of subset-specific responses to lipopolysaccharide in dendritic cells. PLoS One 2014; 9:e100613. [PMID: 24949855 PMCID: PMC4065045 DOI: 10.1371/journal.pone.0100613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/28/2014] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are critical for regulating CD4 and CD8 T cell immunity, controlling Th1, Th2, and Th17 commitment, generating inducible Tregs, and mediating tolerance. It is believed that distinct DC subsets have evolved to control these different immune outcomes. However, how DC subsets mount different responses to inflammatory and/or tolerogenic signals in order to accomplish their divergent functions remains unclear. Lipopolysaccharide (LPS) provides an excellent model for investigating responses in closely related splenic DC subsets, as all subsets express the LPS receptor TLR4 and respond to LPS in vitro. However, previous studies of the LPS-induced DC transcriptome have been performed only on mixed DC populations. Moreover, comparisons of the in vivo response of two closely related DC subsets to LPS stimulation have not been reported in the literature to date. We compared the transcriptomes of murine splenic CD8 and CD11b DC subsets after in vivo LPS stimulation, using RNA-Seq and systems biology approaches. We identified subset-specific gene signatures, which included multiple functional immune mediators unique to each subset. To explain the observed subset-specific differences, we used a network analysis approach. While both DC subsets used a conserved set of transcription factors and major signalling pathways, the subsets showed differential regulation of sets of genes that ‘fine-tune’ the network Hubs expressed in common. We propose a model in which signalling through common pathway components is ‘fine-tuned’ by transcriptional control of subset-specific modulators, thus allowing for distinct functional outcomes in closely related DC subsets. We extend this analysis to comparable datasets from the literature and confirm that our model can account for cell subset-specific responses to LPS stimulation in multiple subpopulations in mouse and man.
Collapse
|
50
|
|