1
|
Salimi-Nezhad N, Missault S, Notario-Reinoso A, Hassani A, Amiri M, Keliris GA. The impact of selective and non-selective medial septum stimulation on hippocampal neuronal oscillations: A study based on modeling and experiments. Neurobiol Dis 2023; 180:106052. [PMID: 36822547 DOI: 10.1016/j.nbd.2023.106052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with a rising socioeconomic impact on societies. The hippocampus (HPC), which plays an important role in AD, is affected in the early stages. The medial septum (MS) in the forebrain provides major cholinergic input to the HPC and has been shown to play a significant role in generating oscillations in hippocampal neurons. Cholinergic neurons in the basal forebrain are particularly vulnerable to neurodegeneration in AD. To better understand the role of MS neurons including the cholinergic, glutamatergic, and GABAergic subpopulations in generating the well-known brain rhythms in HPC including delta, theta, slow gamma, and fast gamma oscillations, we designed a detailed computational model of the septohippocampal pathway. We validated the results of our model, using electrophysiological recordings in HPC with and without stimulation of the cholinergic neurons in MS using designer receptors exclusively activated by designer drugs (DREADDs) in healthy male ChAT-cre rats. Then, we eliminated 75% of the MS cholinergic neurons in the model to simulate degeneration in AD. A series of selective and non-selective stimulations of the remaining MS neurons were performed to understand the dynamics of oscillation regulation in the HPC during the degenerated state. In this way, appropriate stimulation strategies able to normalize the aberrant oscillations are proposed. We found that selectively stimulating the remaining healthy cholinergic neurons was sufficient for network recovery and compare this to stimulating other subpopulations and a non-selective stimulation of all MS neurons. Our data provide valuable information for the development of new therapeutic strategies in AD and a tool to test and predict the outcome of potential theranostic manipulations.
Collapse
Affiliation(s)
- Nima Salimi-Nezhad
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Anaïs Notario-Reinoso
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Atefe Hassani
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Georgios A Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
2
|
Mysin I, Shubina L. Hippocampal non-theta state: The "Janus face" of information processing. Front Neural Circuits 2023; 17:1134705. [PMID: 36960401 PMCID: PMC10027749 DOI: 10.3389/fncir.2023.1134705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
The vast majority of studies on hippocampal rhythms have been conducted on animals or humans in situations where their attention was focused on external stimuli or solving cognitive tasks. These studies formed the basis for the idea that rhythmical activity coordinates the work of neurons during information processing. However, at rest, when attention is not directed to external stimuli, brain rhythms do not disappear, although the parameters of oscillatory activity change. What is the functional load of rhythmical activity at rest? Hippocampal oscillatory activity during rest is called the non-theta state, as opposed to the theta state, a characteristic activity during active behavior. We dedicate our review to discussing the present state of the art in the research of the non-theta state. The key provisions of the review are as follows: (1) the non-theta state has its own characteristics of oscillatory and neuronal activity; (2) hippocampal non-theta state is possibly caused and maintained by change of rhythmicity of medial septal input under the influence of raphe nuclei; (3) there is no consensus in the literature about cognitive functions of the non-theta-non-ripple state; and (4) the antagonistic relationship between theta and delta rhythms observed in rodents is not always observed in humans. Most attention is paid to the non-theta-non-ripple state, since this aspect of hippocampal activity has not been investigated properly and discussed in reviews.
Collapse
|
3
|
A neuromimetic realization of hippocampal CA1 for theta wave generation. Neural Netw 2021; 142:548-563. [PMID: 34340189 DOI: 10.1016/j.neunet.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022]
Abstract
Recent advances in neural engineering allowed the development of neuroprostheses which facilitate functionality in people with neurological problems. In this research, a real-time neuromorphic system is proposed to artificially reproduce the theta wave and firing patterns of different neuronal populations in the CA1, a sub-region of the hippocampus. The hippocampal theta oscillations (4-12 Hz) are an important electrophysiological rhythm that contributes in various cognitive functions, including navigation, memory, and novelty detection. The proposed CA1 neuromimetic circuit includes 100 linearized Pinsky-Rinzel neurons and 668 excitatory and inhibitory synapses on a field programmable gate array (FPGA). The implemented spiking neural network of the CA1 includes the main neuronal populations for the theta rhythm generation: excitatory pyramidal cells, PV+ basket cells, and Oriens Lacunosum-Moleculare (OLM) cells which are inhibitory interneurons. Moreover, the main inputs to the CA1 region from the entorhinal cortex via the perforant pathway, the CA3 via Schaffer collaterals, and the medial septum via fimbria-fornix are also implemented on the FPGA using a bursting leaky-integrate and fire (LIF) neuron model. The results of hardware realization show that the proposed CA1 neuromimetic circuit successfully reconstructs the theta oscillations and functionally illustrates the phase relations between firing responses of the different neuronal populations. It is also evaluated the impact of medial septum elimination on the firing patterns of the CA1 neuronal population and the theta wave's characteristics. This neuromorphic system can be considered as a potential platform that opens opportunities for neuroprosthetic applications in future works.
Collapse
|
4
|
Mysin IE, Kitchigina VF, Kazanovich YB. Phase relations of theta oscillations in a computer model of the hippocampal CA1 field: Key role of Schaffer collaterals. Neural Netw 2019; 116:119-138. [DOI: 10.1016/j.neunet.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 02/04/2023]
|
5
|
Szőnyi A, Sos KE, Nyilas R, Schlingloff D, Domonkos A, Takács VT, Pósfai B, Hegedüs P, Priestley JB, Gundlach AL, Gulyás AI, Varga V, Losonczy A, Freund TF, Nyiri G. Brainstem nucleus incertus controls contextual memory formation. Science 2019; 364:eaaw0445. [PMID: 31123108 PMCID: PMC7210779 DOI: 10.1126/science.aaw0445] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/05/2019] [Indexed: 12/25/2022]
Abstract
Hippocampal pyramidal cells encode memory engrams, which guide adaptive behavior. Selection of engram-forming cells is regulated by somatostatin-positive dendrite-targeting interneurons, which inhibit pyramidal cells that are not required for memory formation. Here, we found that γ-aminobutyric acid (GABA)-releasing neurons of the mouse nucleus incertus (NI) selectively inhibit somatostatin-positive interneurons in the hippocampus, both monosynaptically and indirectly through the inhibition of their subcortical excitatory inputs. We demonstrated that NI GABAergic neurons receive monosynaptic inputs from brain areas processing important environmental information, and their hippocampal projections are strongly activated by salient environmental inputs in vivo. Optogenetic manipulations of NI GABAergic neurons can shift hippocampal network state and bidirectionally modify the strength of contextual fear memory formation. Our results indicate that brainstem NI GABAergic cells are essential for controlling contextual memories.
Collapse
Affiliation(s)
- András Szőnyi
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Katalin E Sos
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Rita Nyilas
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Dániel Schlingloff
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Andor Domonkos
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Virág T Takács
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Pósfai
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Panna Hegedüs
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - James B Priestley
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Andrew L Gundlach
- Peptide Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Attila I Gulyás
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Viktor Varga
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Losonczy
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Tamás F Freund
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
6
|
Unal G, Crump MG, Viney TJ, Éltes T, Katona L, Klausberger T, Somogyi P. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity. Brain Struct Funct 2018; 223:2409-2432. [PMID: 29500537 PMCID: PMC5968071 DOI: 10.1007/s00429-018-1626-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/10/2018] [Indexed: 01/06/2023]
Abstract
Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.
Collapse
Affiliation(s)
- Gunes Unal
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK.
- Department of Psychology, Bogazici University, 34342, Istanbul, Turkey.
| | - Michael G Crump
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK
| | - Tim J Viney
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK
| | - Tímea Éltes
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Hungary
| | - Linda Katona
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK
| | - Thomas Klausberger
- Center for Brain Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Peter Somogyi
- Department of Pharmacology, Mansfield Rd, University of Oxford, Oxford, OX1 3QT, UK.
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Hungary.
| |
Collapse
|
7
|
Brown RE, McKenna JT. Turning a Negative into a Positive: Ascending GABAergic Control of Cortical Activation and Arousal. Front Neurol 2015; 6:135. [PMID: 26124745 PMCID: PMC4463930 DOI: 10.3389/fneur.2015.00135] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/28/2015] [Indexed: 01/01/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. Recent technological advances have illuminated the role of GABAergic neurons in control of cortical arousal and sleep. Sleep-promoting GABAergic neurons in the preoptic hypothalamus are well-known. Less well-appreciated are GABAergic projection neurons in the brainstem, midbrain, hypothalamus, and basal forebrain, which paradoxically promote arousal and fast electroencephalographic (EEG) rhythms. Thus, GABA is not purely a sleep-promoting neurotransmitter. GABAergic projection neurons in the brainstem nucleus incertus and ventral tegmental nucleus of Gudden promote theta (4-8 Hz) rhythms. Ventral tegmental area GABAergic neurons, neighboring midbrain dopamine neurons, project to the frontal cortex and nucleus accumbens. They discharge faster during cortical arousal and regulate reward. Thalamic reticular nucleus GABAergic neurons initiate sleep spindles in non-REM sleep. In addition, however, during wakefulness, they tonically regulate the activity of thalamocortical neurons. Other GABAergic inputs to the thalamus arising in the globus pallidus pars interna, substantia nigra pars reticulata, zona incerta, and basal forebrain regulate motor activity, arousal, attention, and sensory transmission. Several subpopulations of cortically projecting GABAergic neurons in the basal forebrain project to the thalamus and neocortex and preferentially promote cortical gamma-band (30-80 Hz) activity and wakefulness. Unlike sleep-active GABAergic neurons, these ascending GABAergic neurons are fast-firing neurons which disinhibit and synchronize the activity of their forebrain targets, promoting the fast EEG rhythms typical of conscious states. They are prominent targets of GABAergic hypnotic agents. Understanding the properties of ascending GABAergic neurons may lead to novel treatments for diseases involving disorders of cortical activation and wakefulness.
Collapse
Affiliation(s)
- Ritchie E Brown
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School , Brockton, MA , USA
| | - James T McKenna
- Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School , Brockton, MA , USA
| |
Collapse
|
8
|
Modeling synchronous theta activity in the medial septum: key role of local communications between different cell populations. J Comput Neurosci 2015; 39:1-16. [DOI: 10.1007/s10827-015-0564-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/25/2022]
|
9
|
John D, Shelukhina I, Yanagawa Y, Deuchars J, Henderson Z. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus. Brain Res 2014; 1601:15-30. [PMID: 25553616 PMCID: PMC4350854 DOI: 10.1016/j.brainres.2014.12.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 12/19/2014] [Indexed: 02/07/2023]
Abstract
Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7*nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7*nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2-3 week-old Wistar rats, and 2-9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7*nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7*nicotinic receptor modulator, which were blocked by a specific α7*nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7*nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7*nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain.
Collapse
Affiliation(s)
- Danielle John
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Irina Shelukhina
- Department of Molecular Basis of Neurosignaling, Laboratory of Molecular Toxinology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow V-437, Russia
| | - Yuchio Yanagawa
- Department of Genetic and Behavioural Neuroscience, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; Japan Science and Technology Agency, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Jim Deuchars
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Zaineb Henderson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
Chometton S, Cvetkovic-Lopes V, Houdayer C, Franchi G, Mariot A, Poncet F, Fellmann D, Risold PY. Anatomical organization of MCH connections with the pallidum and dorsal striatum in the rat. Front Syst Neurosci 2014; 8:185. [PMID: 25324738 PMCID: PMC4181234 DOI: 10.3389/fnsys.2014.00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/11/2014] [Indexed: 12/27/2022] Open
Abstract
Neurons producing the melanin-concentrating hormone (MCH) are distributed in the posterior hypothalamus, but project massively throughout the forebrain. Many aspects regarding the anatomical organization of these projections are still obscure. The present study has two goals: first to characterize the topographical organization of neurons projecting into the cholinergic basal forebrain (globus pallidus, medial septal complex), and second to verify if MCH neurons may indirectly influence the dorsal striatum (caudoputamen) by innervating afferent sources to this structure. In the first series of experiments, the retrograde tracer fluorogold was injected into multiple sites in the pallidal and medial septal regions and the distribution of retrogradely labeled neurons were analyzed in the posterior lateral hypothalamus. In the second series of experiments, fluorogold was injected into the caudoputamen, and the innervation by MCH axons of retrogradely labeled cells was analyzed. Our results revealed that the MCH system is able to interact with the basal nuclei in several different ways. First, MCH neurons provide topographic inputs to the globus pallidus, medial septal complex, and substantia innominata. Second, striatal projecting neurons in the cortex, thalamus, and substantia nigra presumably receive only sparse inputs from MCH neurons. Third, the subthalamic nucleus is heavily innervated by MCH projections, thus, presumably serves as one important intermediate station to mediate MCH influence on other parts of the basal nuclei.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pierre-Yves Risold
- EA3922, SFR FED 4234, UFR Sciences Médicales et Pharmaceutiques, Université de Franche-ComtéBesançon, France
| |
Collapse
|
11
|
A model of synaptic plasticity: activation of mGluR I induced long-term theta oscillations in medial septal diagonal band of rat brain slice. Neurol Sci 2013; 35:551-7. [PMID: 24057118 DOI: 10.1007/s10072-013-1543-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 09/10/2013] [Indexed: 01/28/2023]
Abstract
This study aimed to establish a model of synaptic plasticity by the activation of metabotropic glutamate receptor (mGluR) I in rat medial septal diagonal band (MSDB). Electrophysiological experiment was performed to record the theta frequency oscillation activities in rat MSDB slices. The data were recorded and analyzed with Spike 2 (CED, Cambridge, UK). Application of aminocyclopentane-1, 3-dicarboxylic acid (ACPD) to MSDB slices produced theta frequency oscillations (4-12 Hz) which persisted for hours after ACPD washout, suggesting the existence of a form of synaptic plasticity in long-term oscillations (LTOs). Addition of NMDA receptor antagonist AP5 (50 μM) caused no significant change in area power. In contrast, AMPA/Kainate receptor antagonist NBQX administration partially reduced the area power. Infusion of ZD7288, a hyperpolarization-activated channel (Ih) inhibitor, caused additional reduction to control level. Comparable effects were also observed with administration of DHPG (3, 5-dihydroxyphenylglycine) which also elicited LTOs. mGluR I activation induced theta oscillation and this activity maintained hours after drug washout. Both AMPA and hyperpolarization-activated channel make an essential contribution to LTO. Our study herein established a model of synaptic plasticity.
Collapse
|
12
|
Kitchigina V, Popova I, Sinelnikova V, Malkov A, Astasheva E, Shubina L, Aliev R. Disturbances of septohippocampal theta oscillations in the epileptic brain: Reasons and consequences. Exp Neurol 2013; 247:314-27. [DOI: 10.1016/j.expneurol.2013.01.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/21/2013] [Accepted: 01/28/2013] [Indexed: 01/05/2023]
|
13
|
Induction of theta-frequency oscillations in the rat medial septal diagonal band slice by metabotropic glutamate receptor agonists. Neuroscience 2011; 177:1-11. [DOI: 10.1016/j.neuroscience.2011.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 11/20/2022]
|
14
|
Localization of pre- and postsynaptic cholinergic markers in rodent forebrain: a brief history and comparison of rat and mouse. Behav Brain Res 2010; 221:356-66. [PMID: 21129407 DOI: 10.1016/j.bbr.2010.11.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
Abstract
Rat and mouse models are widely used for studies in cognition and pathophysiology, among others. Here, we sought to determine to what extent these two model species differ for cholinergic and cholinoceptive features. For this purpose, we focused on cholinergic innervation patterns based on choline acetyltransferase (ChAT) immunostaining, and the expression of muscarinic acetylcholine receptors (mAChRs) detected immunocytochemically. In this brief review we first place cholinergic and cholinoceptive markers in a historic perspective, and then provide an overview of recent publications on cholinergic studies and techniques to provide a literature survey of current research. Next, we compare mouse (C57Bl/J6) and rat (Wistar) cholinergic and cholinoceptive systems simultaneously stained, respectively, for ChAT (analyzed qualitatively) and mAChRs (analyzed qualitatively and quantitatively). In general, the topographic cholinergic innervation patterns of both rodent species are highly comparable, with only considerable (but region specific) differences in number of detectable cholinergic interneurons, which are more numerous in rat. In contrast, immunolabeling for mAChRs, detected by the monoclonal antibody M35, differs markedly in the forebrain between the two species. In mouse brain, basal levels of activated and/or internalized mAChRs (as a consequence of cholinergic neurotransmission) are significantly higher. This suggests a higher cholinergic tone in mouse than rat, and hence the animal model of choice may have consequences for cholinergic drug testing experiments.
Collapse
|
15
|
Henderson Z, Matto N, John D, Nalivaeva NN, Turner AJ. Co-localization of PRiMA with acetylcholinesterase in cholinergic neurons of rat brain: an immunocytochemical study. Brain Res 2010; 1344:34-42. [PMID: 20471375 DOI: 10.1016/j.brainres.2010.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/06/2010] [Accepted: 05/06/2010] [Indexed: 12/12/2022]
Abstract
In the central nervous system, acetylcholinesterase (AChE) is present in a tetrameric form that is anchored to membranes via a proline-rich membrane anchor (PRiMA). Previously it has been found that principal cholinergic neurons in the brain express high concentrations of AChE enzymic activity at their neuronal membranes. The aim of this study was to use immunocytochemical methods to determine the distribution of PRiMA in these neurons in the rat brain. Confocal laser and electron microscopic investigations showed that PRiMA immunoreactivity is associated with the membranes of the somata, dendrites and axons of cholinergic neurons in the basal forebrain, striatum and pedunculopontine nuclei, i.e. the neurons that innervate forebrain and brainstem structures. In these neurones, PRiMA also co-localizes with AChE immunoreactivity at the plasma membrane. PRiMA label was absent from neighboring GABAergic neurons, and from other neurons of the brain known to express high levels of AChE enzymic activity including cranial nerve motor neurons and dopaminergic neurons of the substantia nigra zona compacta. A strong association of AChE with PRiMA at the plasma membrane is therefore a feature specific to principal cholinergic neurons that innervate the central nervous system.
Collapse
Affiliation(s)
- Zaineb Henderson
- Faculty of Biological Sciences, Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
16
|
Rescue of motor coordination by Purkinje cell-targeted restoration of Kv3.3 channels in Kcnc3-null mice requires Kcnc1. J Neurosci 2010; 29:15735-44. [PMID: 20016089 DOI: 10.1523/jneurosci.4048-09.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of cerebellar Kv3.1 and Kv3.3 channels in motor coordination was examined with an emphasis on the deep cerebellar nuclei (DCN). Kv3 channel subunits encoded by Kcnc genes are distinguished by rapid activation and deactivation kinetics that support high-frequency, narrow action potential firing. Previously we reported that increased lateral deviation while ambulating and slips while traversing a narrow beam of ataxic Kcnc3-null mice were corrected by restoration of Kv3.3 channels specifically to Purkinje cells, whereas Kcnc3-mutant mice additionally lacking one Kcnc1 allele were partially rescued. Here, we report mice lacking all Kcnc1 and Kcnc3 alleles exhibit no such rescue. For Purkinje cell output to reach the rest of the brain it must be conveyed by neurons of the DCN or vestibular nuclei. As Kcnc1, but not Kcnc3, alleles are lost, mutant mice exhibit increasing gait ataxia accompanied by spike broadening and deceleration in DCN neurons, suggesting the facet of coordination rescued by Purkinje-cell-restricted Kv3.3 restoration in mice lacking just Kcnc3 is hypermetria, while gait ataxia emerges when additionally Kcnc1 alleles are lost. Thus, fast repolarization in Purkinje cells appears important for normal movement velocity, whereas DCN neurons are a prime candidate locus where fast repolarization is necessary for normal gait patterning.
Collapse
|
17
|
Henderson Z, Lu CB, Janzsó G, Matto N, McKinley CE, Yanagawa Y, Halasy K. Distribution and role of Kv3.1b in neurons in the medial septum diagonal band complex. Neuroscience 2010; 166:952-69. [PMID: 20083165 DOI: 10.1016/j.neuroscience.2010.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 01/08/2010] [Accepted: 01/08/2010] [Indexed: 11/30/2022]
Abstract
The medial septum diagonal band complex (MS/DB) projects via cholinergic and GABAergic pathways to the hippocampus and plays a key role in the hippocampal theta rhythm. In the MS/DB we have previously described a population of fast spiking GABAergic neurons that contain parvalbumin and mediate theta frequency activity in vitro. The Kv3.1 potassium channel is a delayed rectifier channel that plays a major role in fast spiking neurons in the CNS, and has previously been localized in the MS/DB. To determine which cell types in the MS/DB express the Kv3.1b ion channel subunit, transgenic mice in which the expression of GABAergic and glutamate markers are associated with the expression of green fluorescent protein (GFP; GAD67-GFP and VGluT2-GFP mice, respectively) were used for immunofluorescence and axonal tract tracing. Electrophysiological studies were also carried out on rat MS/DB slices to examine the role of the Kv3.1 channel in theta frequency oscillations. The results for the MS/DB were as follows: (1) cholinergic cells did not express GFP in either GAD67-GFP or VGluT2-GFP mice, and there was GAD67 immunoreactivity in GFP-positive neurons in GAD67-GFP mice and in a small proportion (6%) of GFP-positive neurons in VGluT2-GFP mice. (2) Kv3.1b immunofluorescence was associated with the somata of GABAergic neurons, especially those that contained parvalbumin, and with a minority of glutamatergic neurons, but not with cholinergic neurons, and with GABAergic axonal terminal-like processes around certain GABAergic neurons. (3) Both Kv3.1b-positive and -negative GABAergic neurons were septo-hippocampal, and there was a minor projection to hippocampus from VGluT2-GFP neurons. (4) Kainate-induced theta oscillations in the MS/DB slice were potentiated rather than inhibited by the Kv3.1 blocker 4-aminopyridine, and this agent on its own produced theta frequency oscillations in MS/DB slices that were reduced by ionotropic glutamate and GABA receptor antagonists and abolished by low extracellular calcium. These studies confirm the presence of heterogeneous populations of septo-hippocampal neurons in the MS/DB, and suggest that presence of Kv3.1 in the GABAergic neurons does not contribute to theta activity through fast spiking properties, but possibly by the regulation of transmitter release from axonal terminals.
Collapse
Affiliation(s)
- Z Henderson
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | |
Collapse
|
18
|
Modulation of hippocampal theta oscillations and spatial memory by relaxin-3 neurons of the nucleus incertus. Learn Mem 2009; 16:730-42. [PMID: 19880588 DOI: 10.1101/lm.1438109] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the neuropeptide relaxin-3 (RLN3). Therefore, this study examined the possible contribution of RLN3 to MS activity, and associated hippocampal theta activity and spatial memory. In anesthetized and conscious rats, we identified the ability of intraseptal RLN3 signaling to modulate neuronal activity in the MS and hippocampus and promote hippocampal theta rhythm. Behavioral studies in a spontaneous alternation task indicated that endogenous RLN3 signaling within MS promoted spatial memory and exploratory activity significantly increased c-Fos immunoreactivity in RLN3-producing NI neurons. Anatomical studies demonstrated axons/terminals from NI/RLN3 neurons make close contact with septal GABAergic (and cholinergic) neurons, including those that project to the hippocampus. In summary, RLN3 neurons of the NI can modulate spatial memory and underlying hippocampal theta activity through axonal projections to pacemaker neurons of the MS. NI/RLN3 neurons are highly responsive to stress and express corticotropin-releasing factor type-1 receptors, suggesting that the effects observed could be an important component of memory processing associated with stress responses.
Collapse
|
19
|
Roland JJ, Savage LM. The role of cholinergic and GABAergic medial septal/diagonal band cell populations in the emergence of diencephalic amnesia. Neuroscience 2009; 160:32-41. [PMID: 19264109 DOI: 10.1016/j.neuroscience.2009.02.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 01/24/2009] [Accepted: 02/15/2009] [Indexed: 01/16/2023]
Abstract
The septohippocampal pathway, which is mostly composed of cholinergic and GABAergic projections between the medial septum/diagonal band (MS/DB) and the hippocampus, has an established role in learning, memory and disorders of cognition. In Wernicke-Korsakoff's syndrome (WKS) and the animal model of the disorder, pyrithiamine-induced thiamine deficiency (PTD), there is both diencephalic damage and basal forebrain cell loss that could contribute to the amnesic state. In the current experiment, we used the PTD animal model to access both cholinergic (choline acetyltransferase [ChAT] immunopositive) and GABAergic (parvalbumin [PV]; calbindin [CaBP]) neuronal loss in the MS/DB in relationship to midline-thalamic pathology. In addition, to gain an understanding about the role of such neuropathology in behavioral dysfunction, animals were tested on a non-rewarded spontaneous alternation task and behavioral performance was correlated to neuropathology. Unbiased stereological assessment of neuronal populations revealed that ChAT-positive neurons were significantly reduced in PTD rats, relative to control pair-fed rats, and thalamic mass and behavioral performance correlated with ChAT neuronal estimates. In contrast, both the PV- and CaBP-positive neurons in the MS/DB were not affected by PTD treatment. These results support an interactive role of both thalamic pathology and cholinergic cell loss in diencephalic amnesia.
Collapse
Affiliation(s)
- J J Roland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | | |
Collapse
|
20
|
Changes in oscillatory activity of neurons in the medial septal area in animals with a model of chronic temporal epilepsy. ACTA ACUST UNITED AC 2008; 38:995-9. [DOI: 10.1007/s11055-008-9079-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 05/16/2007] [Indexed: 11/27/2022]
|
21
|
Varga V, Hangya B, Kránitz K, Ludányi A, Zemankovics R, Katona I, Shigemoto R, Freund TF, Borhegyi Z. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum. J Physiol 2008; 586:3893-915. [PMID: 18565991 DOI: 10.1113/jphysiol.2008.155242] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The medial septum (MS) is an indispensable component of the subcortical network which synchronizes the hippocampus at theta frequency during specific stages of information processing. GABAergic neurons exhibiting highly regular firing coupled to the hippocampal theta rhythm are thought to form the core of the MS rhythm-generating network. In recent studies the hyperpolarization-activated, cyclic nucleotide-gated non-selective cation (HCN) channel was shown to participate in theta synchronization of the medial septum. Here, we tested the hypothesis that HCN channel expression correlates with theta modulated firing behaviour of MS neurons by a combined anatomical and electrophysiological approach. HCN-expressing neurons represented a subpopulation of GABAergic cells in the MS partly overlapping with parvalbumin (PV)-containing neurons. Rhythmic firing in the theta frequency range was characteristic of all HCN-expressing neurons. In contrast, only a minority of HCN-negative cells displayed theta related activity. All HCN cells had tight phase coupling to hippocampal theta waves. As a group, PV-expressing HCN neurons had a marked bimodal phase distribution, whereas PV-immunonegative HCN neurons did not show group-level phase preference despite significant individual phase coupling. Microiontophoretic blockade of HCN channels resulted in the reduction of discharge frequency, but theta rhythmic firing was perturbed only in a few cases. Our data imply that HCN-expressing GABAergic neurons provide rhythmic drive in all phases of the hippocampal theta activity. In most MS theta cells rhythm genesis is apparently determined by interactions at the level of the network rather than by the pacemaking property of HCN channels alone.
Collapse
Affiliation(s)
- Viktor Varga
- Department of Cell and Network Neurobiology, Institute of Experimental Medicine of the Hungarian Academy of Sciences; Szigony u. 43. Budapest, 1083 Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The nicotinic receptor blocker hexamethonium alters neuronal responses to glutamate in the medial septal area of the brain of the ground squirrel in vitro. ACTA ACUST UNITED AC 2008; 38:297-307. [DOI: 10.1007/s11055-008-0042-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 11/09/2006] [Indexed: 10/22/2022]
|
23
|
Repeated blockade of GABAA receptors in the medial septal region induces epileptiform activity in the hippocampus. Neurosci Lett 2008; 434:133-8. [PMID: 18304731 DOI: 10.1016/j.neulet.2008.01.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 12/13/2007] [Accepted: 01/24/2008] [Indexed: 11/21/2022]
Abstract
Changes in the activity of putative interneurons of the stratum oriens of the hippocampus and hippocampal EEG after the delivery of the GABAA receptor antagonist bicuculline (1.0nmol/1microl) to the medial septal region were investigated in awake rabbits. The injection of bicuculline produced a sharp increase in the firing rate in 94.3% of hippocampal cells. The effect of bicuculline on the neuronal theta rhythmicity depended on the number of injections. The first five daily infusions decreased the theta activity in 85.7% of cells. On the fourth to fifth experimental days paroxysmal discharges and 8-15Hz oscillations were recorded in the hippocampal EEG. Six to seven further daily bicuculline injections following a brief diminution of theta activity produced a sharp augmentation of theta oscillations in 78.9% of cells and provoked seizures. Immediately before seizures, stabilization of theta bursts and an increase in burst frequency was usually observed in putative interneurons. During seizures, neuronal rhythmic activity was either disordered and then turned into seizure discharges or was inhibited, partially or completely. In the hippocampal EEG, the power of theta rhythm before seizures usually strongly increased compared with controls. Injection of the GABAA agonist muscimol (30nmol/1microl) 15min before bicuculline infusion prevented the development of seizures. These findings suggest that the interplay between septal neurons via GABAA receptors is critical in the tuning of septal output signals that insure generation of natural theta rhythm as well as adequate functioning of the hippocampus.
Collapse
|
24
|
Ujfalussy B, Kiss T, Orbán G, Hoffmann WE, Erdi P, Hajós M. Pharmacological and computational analysis of alpha-subunit preferential GABAA positive allosteric modulators on the rat septo-hippocampal activity. Neuropharmacology 2007; 52:733-43. [PMID: 17113111 DOI: 10.1016/j.neuropharm.2006.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 08/28/2006] [Accepted: 09/22/2006] [Indexed: 11/21/2022]
Abstract
Clinically most active anxiolytic drugs are positive allosteric modulators (PAMs) of GABA(A) receptors, represented by benzodiazepine compounds. Due to their non-selective profile, however, they potently modulate several sup-type specific GABA(A) receptors, contributing to their broad-range side effects. Based on observations in genetically altered mice, however, it has been proposed that anxiolytic action of benzodiazepines is predominantly mediated by GABA(A) alpha2/3 subunit-containing receptors. In the present study we analyzed the actions of the preferential GABA(A) alpha1 and alpha2/3 PAMs, zolpidem and L-838417, respectively on hippocampal EEG and medial septum neuronal activity in anesthetized rats. In parallel, a computational model was constructed to model pharmacological actions of these compounds on the septo-hippocampal circuitry. The present results demonstrated that zolpidem inhibited theta oscillation both in the hippocampus and septum, and profoundly inhibited firing activity of septal neurons. L-838417 also inhibited hippocampal and septal theta oscillation, however, it did not significantly alter firing rate activity of septal neurons. Our computational model showed that cessation of periodic firing of hippocampo-septal neurons, representing absence of hippocampal theta activity, disrupted oscillation of septal units, without altering their overall firing activity, similar to changes observed in our in vivo experiments following administration of L-838417. Understanding the correlation between changes in septo-hippocampal activity and actions of selective modulators of GABA(A) subtype receptor modulators would further advance design of anxiolytic drugs.
Collapse
Affiliation(s)
- Balázs Ujfalussy
- Department of Biophysics, KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
25
|
Ma S, Bonaventure P, Ferraro T, Shen PJ, Burazin TCD, Bathgate RAD, Liu C, Tregear GW, Sutton SW, Gundlach AL. Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat. Neuroscience 2006; 144:165-90. [PMID: 17071007 DOI: 10.1016/j.neuroscience.2006.08.072] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 08/27/2006] [Indexed: 01/10/2023]
Abstract
Relaxin-3 (RLX3) is a newly identified member of the relaxin/insulin peptide family that is highly conserved across a range of species from fish to mammals and is highly expressed in rat, mouse and human brain. Extensive pharmacological studies have demonstrated that RLX3 is a high affinity, selective ligand for G-protein-coupled receptor-135 (GPCR135, now classified as relaxin family peptide-3 receptor; RXFP3). In ongoing studies to understand the physiological functions of RLX3, the distribution of RLX3-containing neuronal elements in rat brain was determined by immunohistochemistry, using an affinity-purified polyclonal antiserum raised against a conserved segment of the RLX3 C-peptide (AS-R3(85-101)). Consistent with the distribution of RLX3 mRNA, neurons containing RLX3-like immunoreactivity (LI) were observed in the pontine nucleus incertus and the majority of these cells, which are known to express corticotropin-releasing factor receptor-1, were shown to express glutamic acid decarboxylase-65-immunoreactivity, suggesting a GABA phenotype. Nerve fibers and terminals containing RLX3-LI were observed adjacent to cells in the nucleus incertus and in various forebrain regions known to receive afferents from the nucleus incertus, including cortex, septum, hippocampus, thalamus, hypothalamus and midbrain. Regions that contained highest densities of RLX3-positive fibers included the medial septum, lateral preoptic area, lateral hypothalamus/medial forebrain bundle and ventral hippocampus; and additional fibers were observed in olfactory bulb and olfactory and frontal/cingulate cortices, bed nucleus of the stria terminalis, dorsal endopiriform, intergeniculate, and supramammillary nuclei, and the periaqueductal gray and dorsal raphe. The RLX3-positive network overlapped the regional distribution of GPCR135 mRNA and specific binding sites for an [125I]-GPCR135-selective, chimeric peptide. These anatomical findings further support the proposition that RLX3 is the endogenous ligand for GPCR135 in rat brain and provide evidence for broad modulatory activity of RLX3 in behavioral activation relating to autonomic and neuroendocrine control of metabolism and reproduction and higher-order processes such as stress and cognition.
Collapse
Affiliation(s)
- S Ma
- Howard Florey Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ujfalussy B, Kiss T. How do glutamatergic and GABAergic cells contribute to synchronization in the medial septum? J Comput Neurosci 2006; 21:343-57. [PMID: 16896519 DOI: 10.1007/s10827-006-9082-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
The medial septum-diagonal band (MSDB) complex is considered as a pacemaker for the hippocampal theta rhythm. Identification of the different cell types, their electro-physiological properties and their possible function in the generation of a synchronized activity in the MSDB is a hot topic. A recent electro-physiological study showed the presence of two antiphasically firing populations of parvalbumin containing GABAergic neurons in the MSDB. Other papers described a network of cluster-firing glutamatergic neurons, which is able to generate synchronized activity in the MSDB. We propose two different computer models for the generation of synchronized population theta oscillation in the MSDB and compare their properties. In the first model GABAergic neurons are intrinsically theta periodic cluster-firing cells; while in the second model GABAergic cells are fast-firing cells and receive periodic input from local glutamatergic neurons simulated as cluster-firing cells. Using computer simulations we show that the GABAergic neurons in both models are capable of generating antiphasic theta periodic population oscillation relying on local, septal mechanisms. In the first model antiphasic theta synchrony could emerge if GABAergic neurons form two populations preferentially innervate each other. In the second model in-phase synchronization of glutamatergic neurons does not require specific network structure, and the network of these cells are able to act as a theta pacemaker for the local fast-firing GABAergic circuit. Our simulations also suggest that neurons being non-cluster-firing in vitro might exhibit clustering properties when connected into a network in vivo.
Collapse
Affiliation(s)
- Balázs Ujfalussy
- Department of Biophysics, KFKI Research Institute of the Hungarian Academy of Sciences, 29-33 Konkoly-Thege street, H-1121, Budapest, Hungary.
| | | |
Collapse
|
27
|
Bassant MH, Simon A, Poindessous-Jazat F, Csaba Z, Epelbaum J, Dournaud P. Medial septal GABAergic neurons express the somatostatin sst2A receptor: functional consequences on unit firing and hippocampal theta. J Neurosci 2005; 25:2032-41. [PMID: 15728843 PMCID: PMC6726075 DOI: 10.1523/jneurosci.4619-04.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABAergic septohippocampal neurons play a major role in the generation of hippocampal theta rhythm, but modulatory factors intervening in this function are poorly documented. The neuropeptide somatostatin (SST) may be one of these factors, because nearly all hippocampal GABAergic neurons projecting to the medial septum/diagonal band of Broca (MS-DB) express SST. In this study, we took advantage of the high and selective expression of the SST receptor sst2A in MS-DB to examine its possible role on theta-related activity. Immunohistochemical experiments demonstrated that sst2A receptors were selectively targeted to the somatodendritic domain of neurons expressing the GABAergic marker GAD67 but were not expressed by cholinergic neurons. In addition, a subpopulation of GABAergic septohippocampal projecting neurons expressing parvalbumin (PV) also displayed sst2A receptors. Using in vivo juxtacellular recording and labeling with neurobiotin, we showed that a number of bursting and nonbursting neurons exhibiting high discharge rates and brief spikes were immunoreactive for PV or GAD67 and expressed the sst2A receptor. Microiontophoresis applications of SST and the sst2A agonist octreotide (OCT) showed that sst2A receptor activation decreased the discharge rate of both nonbursting and bursting MS-DB neurons and lessened the rhythmic activity of the latter. Finally, intraseptal injections of OCT and SST in freely moving rats reduced the power of hippocampal EEG in the theta band. Together, these in vivo experiments suggest that SST action on MS-DB GABAergic neurons, through sst2A receptors, represents an important modulatory mechanism in the control of theta activity.
Collapse
Affiliation(s)
- Marie-Hélène Bassant
- Institut National de la Santé et de la Recherche Médicale, U549, Centre Paul Broca, F-75014 Paris, France
| | | | | | | | | | | |
Collapse
|
28
|
Castañeda MT, Sanabria ERG, Hernandez S, Ayala A, Reyna TA, Wu JY, Colom LV. Glutamic acid decarboxylase isoforms are differentially distributed in the septal region of the rat. Neurosci Res 2005; 52:107-19. [PMID: 15811558 DOI: 10.1016/j.neures.2005.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 01/31/2005] [Accepted: 02/02/2005] [Indexed: 01/23/2023]
Abstract
The septal region of the brain consists of a heterogeneous population of GABAergic neurons that play an important role in the generation of hippocampal theta rhythms. While GABAergic neurons employ two isoforms of the enzyme glutamic acid decarboxylase (GAD) for the synthesis of GABA, distribution of GAD isoforms has not been investigated in the septum. Immunohistochemical techniques were used to investigate the expression of GAD enzymes in medial and lateral septum. GAD65 and GAD67 immunohistochemistry revealed dense fibers and punctuated immunoreactivity in septal regions. While few GAD65-positive neuronal somas were detected in medial septum, a significantly higher number of immunoreactive neurons were detected in lateral septum. GAD65- and GAD67-positive neurons in the lateral septum exhibit higher complexity of dendritic arborizations than in the medial septum where staining was mainly restricted to the soma. Presumptive axon terminals (puncta) showed abundant immunoreactivity predominantly for GAD65 isoforms in all septal regions. This suggests that septal GABAergic neurons differentially express GAD enzymes thereby potentially reflecting functional differences. Differences found between medial and lateral septal GABAergic neuronal populations are in agreement with the concept that medial and lateral septum are brain structures with highly different connectivity and function despite anatomical proximity.
Collapse
Affiliation(s)
- Maria T Castañeda
- Department of Biology, The University of Texas at Brownsville, 80 Fort Brown, Brownsville, TX 78520, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Borhegyi Z, Varga V, Szilágyi N, Fabo D, Freund TF. Phase segregation of medial septal GABAergic neurons during hippocampal theta activity. J Neurosci 2005; 24:8470-9. [PMID: 15456820 PMCID: PMC6729892 DOI: 10.1523/jneurosci.1413-04.2004] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Septo-hippocampal GABAergic neurons immunoreactive for parvalbumin are thought to play a crucial role in the generation of hippocampal theta oscillations associated with a specific stage of memory formation. Here we use in vivo juxtacellular recording and filling in the medial septum followed by immunocytochemical identification of the recorded cells containing parvalbumin to determine their firing pattern, phase relationship with hippocampal theta, morphology, and to thereby reveal their involvement in the generation of hippocampal theta activity. We have demonstrated that GABAergic medial septal neurons form two distinct populations exhibiting highly regular bursting activity that is tightly coupled to either the trough (178 degrees ) or the peak (330 degrees ) of hippocampal theta waves. Additionally, different types of bursting as well as nonbursting activity patterns were also observed. The morphological reconstruction of theta-bursting neurons revealed extensive axon arbors of these cells with numerous local collaterals establishing symmetrical synapses; thus, synchrony among the septal pacemaker units may be brought about by their recurrent collateral interactions. Long projecting axons could also be found running dorsally toward the hippocampus and ventrally in the direction of basal forebrain regions. We conclude that GABAergic neurons in the medial septum, which are known to selectively innervate hippocampal interneurons, are in a position to induce rhythmic disinhibition in the hippocampus and other theta-related subcortical areas at two different phases of hippocampal theta.
Collapse
Affiliation(s)
- Zsolt Borhegyi
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine of the Hungarian Academy of Science, Budapest 1083, Hungary
| | | | | | | | | |
Collapse
|
30
|
Garner HL, Whittington MA, Henderson Z. Induction by kainate of theta frequency rhythmic activity in the rat medial septum-diagonal band complex in vitro. J Physiol 2005; 564:83-102. [PMID: 15677688 PMCID: PMC1456035 DOI: 10.1113/jphysiol.2004.080622] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The medial septum-diagonal band (MSDB) complex, via the septohippocampal pathway, is thought to be critical for the generation and/or maintenance of the hippocampal theta rhythm in vivo. The aim was to determine whether the MSDB is capable of generating and maintaining its own rhythmic firing activity, a mechanism by which it could impose a theta frequency oscillatory activity on the hippocampus. Bath application of 50-300 nM kainate to an in vitro preparation of 20- to 25-day-old rat MSDB elicited rhythmic extracellular field activity primarily within the theta frequency band (4-12 Hz). This activity was observed both at 33 degrees C and at 37 degrees C, and was localized to the midline part of the MSDB that is rich in parvalbumin-containing neurones. The application of neurotransmitter receptor antagonists and putative gap junction blockers showed that the oscillatory field activity was dependent upon the activation of GABA(A) receptors and possibly gap junctions, but not on the activation of NMDA, GABA(B), muscarinic or nicotinic receptors. The frequency of the oscillatory activity was reduced by the application of diazepam or low doses of baclofen. Intracellular recording showed that concomitant action potential firing activity in putative GABAergic and cholinergic neurone populations was of a single spiking rather than a bursting firing nature, and was coherent with extracellularly recorded oscillatory field activity. We conclude that kainate activation of neuronal circuitry in the MSDB is capable of synchronization of rhythmic activity in the MSDB, and that this may underlie the mechanism for phase-locking rhythmic burst activity in the MSDB in vivo.
Collapse
Affiliation(s)
- Helen L Garner
- School of Biomedical Sciences, The Worsley Building, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|