1
|
Leggett MA, Vink CJ, Nelson XJ. Adaptation and Survival of Marine-Associated Spiders (Araneae). ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:481-501. [PMID: 37788437 DOI: 10.1146/annurev-ento-062923-102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aquatic environments are an unusual habitat for most arthropods. Nevertheless, many arthropod species that were once terrestrial dwelling have transitioned back to marine and freshwater environments, either as semiaquatic or, more rarely, as fully aquatic inhabitants. Transition to water from land is exceptional, and without respiratory modifications to allow for extended submergence and the associated hypoxic conditions, survival is limited. In this article, we review marine-associated species that have made this rare transition in a generally terrestrial group, spiders. We include several freshwater spider species for comparative purposes. Marine-associated spiders comprise less than 0.3% of spider species worldwide but are found in over 14% of all spider families. As we discuss, these spiders live in environments that, with tidal action, hydraulic forces, and saltwater, are more extreme than freshwater habitats, often requiring physiological and behavioral adaptations to survive. Spiders employ many methods to survive inundation from encroaching tides, such as air bubble respiration, airtight nests, hypoxic comas, and fleeing incoming tides. While airway protection is the primary survival strategy, further survival adaptations include saltwater-induced osmotic regulation, dietary composition, predator avoidance, reproduction, locomotory responses, and adaptation to extreme temperatures and hydrostatic pressures that challenge existence in marine environments.
Collapse
Affiliation(s)
- Marlene A Leggett
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand;
| | - Cor J Vink
- Department of Pest Management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Ximena J Nelson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand;
| |
Collapse
|
2
|
Bechard S, Timm ML, Masoud H, Rothstein JP. Using Footpad Sculpturing to Enhance the Maneuverability and Speed of a Robotic Marangoni Surfer. Biomimetics (Basel) 2023; 8:440. [PMID: 37754191 PMCID: PMC10527320 DOI: 10.3390/biomimetics8050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
From insects to arachnids to bacteria, the surfaces of lakes and ponds are teaming with life. Many modes of locomotion are employed by these organisms to navigate along the air-water interface, including the use of lipid-laden excretions that can locally change the surface tension of the water and induce a Marangoni flow. In this paper, we improved the speed and maneuverability of a miniature remote-controlled robot that mimics insect locomotion using an onboard tank of isopropyl alcohol and a series of servomotors to control both the rate and location of alcohol release to both propel and steer the robot across the water. Here, we studied the effect of a series of design changes to the foam rubber footpads, which float the robot and are integral in efficiently converting the alcohol-induced surface tension gradients into propulsive forces and effective maneuvering. Two designs were studied: a two-footpad design and a single-footpad design. In the case of two footpads, the gap between the two footpads was varied to investigate its impact on straight-line speed, propulsion efficiency, and maneuverability. An optimal design was found with a small but finite gap between the two pads of 7.5 mm. In the second design, a single footpad without a central gap was studied. This footpad had a rectangular cut-out in the rear to capture the alcohol. Footpads with wider and shallower cut-outs were found to optimize efficiency. This observation was reinforced by the predictions of a simple theoretical mechanical model. Overall, the optimized single-footpad robot outperformed the two-footpad robot, producing a 30% improvement in speed and a 400% improvement in maneuverability.
Collapse
Affiliation(s)
- Samuel Bechard
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA;
| | - Mitchel L. Timm
- Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA; (M.L.T.); (H.M.)
| | - Hassan Masoud
- Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, USA; (M.L.T.); (H.M.)
| | - Jonathan P. Rothstein
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA;
| |
Collapse
|
3
|
Dickel L, Monsimet J, Lafage D, Devineau O. Characterization of habitat requirements of European fishing spiders. PeerJ 2022; 10:e12806. [PMID: 35178294 PMCID: PMC8815374 DOI: 10.7717/peerj.12806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Wetlands are among the most threatened habitats in the world, and so are their species, which suffer habitat loss due to climate and land use changes. Freshwater species, and especially arthropods, receive comparatively little attention in conservation plans, and the goals to stop and reverse the destruction of wetlands published 25 years ago in a manifesto by the Union of Concerned Scientists have not been reached. In this study, we investigated the occurrence and habitat requirements at two spatial scales of two species of European fishing spiders Dolomedes, which rely heavily on declining wetland habitats in Sweden and southern Norway. We collected occurrence data for Dolomedes plantarius and Dolomedes fimbriatus, using a live-determination method. We modelled the placement of nursery webs to describe fine-scale habitat requirements related to vegetation and micro-climate. Using a machine learning approach, we described the habitat features for each species and for co-occurrence sites, thus providing insight into variables relevant for the presence and detectability of Dolomedes. Nursery placement is mostly dependent on proximity to water, presence of Carex sp. (Sedges) and crossing vegetation structures, and on humidity, while detection can be affected by weather conditions. Furthermore, co-occurrence sites were more similar to D. plantarius sites than to D. fimbriatus sites, whereby surrounding forest, water type and velocity, elevation and latitude were of importance for explaining which species of Dolomedes was present. Overall, habitat requirements were narrower for D. plantarius compared to D. fimbiratus.
Collapse
Affiliation(s)
- Lisa Dickel
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Koppang, Norway,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Sciences and Technology (NTNU), Trondheim, Norway
| | - Jérémy Monsimet
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Koppang, Norway
| | - Denis Lafage
- Department of Environmental and Life Sciences/Biology, Karslstad University, Karlstad, Sweden,CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)-UMR 6553, University of Rennes, Rennes, France
| | - Olivier Devineau
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Koppang, Norway
| |
Collapse
|
4
|
Timm ML, Jafari Kang S, Rothstein JP, Masoud H. A remotely controlled Marangoni surfer. BIOINSPIRATION & BIOMIMETICS 2021; 16:066014. [PMID: 34500437 DOI: 10.1088/1748-3190/ac253c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Inspired by creatures that have naturally mastered locomotion on the air-water interface, we developed and built a self-powered, remotely controlled surfing robot capable of traversing this boundary by harnessing surface tension modification for both propulsion and steering through a controlled release of isopropyl alcohol. In this process, we devised and implemented novel release valve and steering mechanisms culminating in a surfer with distinct capabilities. Our robot measures about 110 mm in length and can travel as fast as 0.8 body length per second. Interestingly, we found that the linear speed of the robot follows a 1/3 power law with the release rate of the propellant. Additional maneuverability tests also revealed that the robot is able to withstand 20 mm s-2in centripetal acceleration while turning. Here, we thoroughly discuss the design, development, performance, overall capabilities, and ultimate limitations of our robotic surfer.
Collapse
Affiliation(s)
- Mitchel L Timm
- Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Saeed Jafari Kang
- Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Jonathan P Rothstein
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, United States of America
| | - Hassan Masoud
- Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931, United States of America
| |
Collapse
|
5
|
Albín A, González M, Simó M, Kossyrczyk EW, Bidegaray‐Batista L, Aisenberg A. Eight‐legged swimmers: Behavioral responses to floods in two South American spiders. Ethology 2021. [DOI: 10.1111/eth.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Albín
- Departamento de Ecología y Biología Evolutiva Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
- Sección Entomología Facultad de Ciencias Universidad de la República Montevideo Uruguay
| | - Macarena González
- Departamento de Ecología y Biología Evolutiva Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
- Departamento de Biodiversidad y Genética Instituto de Investigaciones Biológicas Clemente Montevideo Uruguay
| | - Miguel Simó
- Sección Entomología Facultad de Ciencias Universidad de la República Montevideo Uruguay
| | - Elizabeth W. Kossyrczyk
- Departamento de Ecología y Biología Evolutiva Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Leticia Bidegaray‐Batista
- Departamento de Biodiversidad y Genética Instituto de Investigaciones Biológicas Clemente Montevideo Uruguay
| | - Anita Aisenberg
- Departamento de Ecología y Biología Evolutiva Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| |
Collapse
|
6
|
Gould J, Valdez JW. Locomotion with a twist: Aquatic beetle walks upside down on the underside of the water's surface. Ethology 2021. [DOI: 10.1111/eth.13203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John Gould
- School of Environmental and Life Sciences University of Newcastle Callaghan NSW Australia
| | - Jose. W. Valdez
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| |
Collapse
|
7
|
Silva NFDS, Pagoti GF, Willemart RH. Water locomotion and survival under water in a riparian harvestman (Opiliones, Arachnida). Behav Processes 2020; 179:104220. [PMID: 32791201 DOI: 10.1016/j.beproc.2020.104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022]
Abstract
Animals that live by rivers may benefit from being able to cross them, but behavioral adaptations are needed. Additionally, being able to remain submerged is also important if the animal moves under water. Here we asked whether the harvestman Heteromitobates discolor (Opiliones), that lives by rivers, (a) can propel itself across the water surface, (b) moves onto the water if disturbed and (c) can survive for long periods when submerged. Heteromitobates discolor exhibited two gaits on water, whereas a strictly terrestrial species was not able to propel itself. When experimentally submitted to simulated predator attack on a rock on the river, H. discolor walked onto the water, while a strictly terrestrial species did not. Finally, it was able to survive for 6 h under water, presumably due to the conspicuous air film that formed around its body, which was also observed in a strictly terrestrial species. Altogether, these observations suggest that the aquatic environment is not a barrier for regular activity and can be used as an extension of the terrestrial environment for H. discolor.
Collapse
Affiliation(s)
- Norton Felipe Dos Santos Silva
- Programa de Pós-Graduação em Biologia de Sistemas, Departamento de Biologia Celular, Tecidual e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av Professor Lineu Prestes, 1524, Cidade Universitária, São Paulo, SP, 05508-000, Brazil; Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo, SP, 03828-000, Brazil
| | - Guilherme Ferreira Pagoti
- Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo, SP, 03828-000, Brazil; Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, Cidade Universitária, São Paulo, SP, 05508-090, Brazil
| | - Rodrigo Hirata Willemart
- Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo, SP, 03828-000, Brazil; Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, Travessa 14, Cidade Universitária, São Paulo, SP, 05508-090, Brazil; Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Rua Professor Artur Riedel 275, Jardim Eldorado, Diadema, SP, 09972-270, Brazil.
| |
Collapse
|
8
|
Brandt EE, Roberts KT, Williams CM, Elias DO. Low temperatures impact species distributions of jumping spiders across a desert elevational cline. JOURNAL OF INSECT PHYSIOLOGY 2020; 122:104037. [PMID: 32087221 DOI: 10.1016/j.jinsphys.2020.104037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Temperature is known to influence many aspects of organisms and is frequently linked to geographical species distributions. Despite the importance of a broad understanding of an animal's thermal biology, few studies incorporate more than one metric of thermal biology. Here we examined an elevational assemblage of Habronattus jumping spiders to measure different aspects of their thermal biology including thermal limits (CTmin, CTmax), thermal preference, V̇CO2 as proxy for metabolic rate, locomotor behavior and warming tolerance. We used these data to test whether thermal biology helped explain how species were distributed across elevation. Habronattus had high CTmax values, which did not differ among species across the elevational gradient. The highest-elevation species had a lower CTmin than any other species. All species had a strong thermal preference around 37 °C. With respect to performance, one of the middle elevation species was significantly less temperature-sensitive in metabolic rate. Differences between species with respect to locomotion (jump distance) were likely driven by differences in mass, with no differences in thermal performance across elevation. We suggest that Habronattus distributions follow Brett's rule, a rule that predicts more geographical variation in cold tolerance than heat. Additionally, we suggest that physiological tolerances interact with biotic factors, particularly those related to courtship and mate choice to influence species distributions. Habronattus also had very high warming tolerance values (> 20 °C, on average). Taken together, these data suggest that Habronattus are resilient in the face of climate-change related shifts in temperature.
Collapse
Affiliation(s)
- Erin E Brandt
- Department of Environmental Sciences, Policy, and Management, University of California, Berkeley, Berkeley, United States.
| | - Kevin T Roberts
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Damian O Elias
- Department of Environmental Sciences, Policy, and Management, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
9
|
Crews SC, Garcia EL, Spagna JC, Van Dam MH, Esposito LA. The life aquatic with spiders (Araneae): repeated evolution of aquatic habitat association in Dictynidae and allied taxa. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Despite the dominance of terrestriality in spiders, species across a diverse array of families are associated with aquatic habitats. Many species in the spider family Dictynidae are associated with water, either living near it or, in the case of Argyroneta aquatica, in it. Previous studies have indicated that this association arose once within the family. Here we test the hypothesis of a single origin via the broadest phylogeny of dictynids and related ‘marronoids’ to date, using several taxa that were not previously sampled in molecular analyses to provide the first quantitative test of the hypothesis put forth by Wheeler et al. (2016). We sampled 281 terminal taxa from 14 families, assembling a matrix with 4380 total base pairs of data from most taxa. We also assembled an atlas of morphological traits with potential significance for both ecology and taxonomy. Our resulting trees indicate that an aquatic habitat association has arisen multiple times within dictynids. Dictynidae and the genus Dictyna are polyphyletic and the genera Lathys and Cicurina remain unplaced. A review of aquatic habitat associations in spiders indicates that it occurs in members of at least 21 families. With our morphological atlas, we explore characters that have been implicated in aiding an aquatic lifestyle, which in the past may have caused confusion regarding taxon placement. Our results indicate that not all spiders with traits thought to be useful for aquatic habitat associations occupy such habitats, and that some spider taxa lacking these traits are nonetheless associated with water.
Collapse
Affiliation(s)
- Sarah C Crews
- California Academy of Sciences, Department of Entomology, San Francisco, CA, USA
| | - Erika L Garcia
- California Academy of Sciences, Department of Entomology, San Francisco, CA, USA
- San Francisco State University, San Francisco, CA
- Denver Museum of Nature & Science, Department of Zoology, Denver, CO, USA
| | - Joseph C Spagna
- Department of Biology, William Paterson University, Wayne, NJ, USA
| | - Matthew H Van Dam
- California Academy of Sciences, Department of Entomology, San Francisco, CA, USA
| | - Lauren A Esposito
- California Academy of Sciences, Department of Entomology, San Francisco, CA, USA
| |
Collapse
|
10
|
Correa-Garhwal SM, Clarke TH, Janssen M, Crevecoeur L, McQuillan BN, Simpson AH, Vink CJ, Hayashi CY. Spidroins and Silk Fibers of Aquatic Spiders. Sci Rep 2019; 9:13656. [PMID: 31541123 PMCID: PMC6754431 DOI: 10.1038/s41598-019-49587-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/24/2019] [Indexed: 12/21/2022] Open
Abstract
Spiders are commonly found in terrestrial environments and many rely heavily on their silks for fitness related tasks such as reproduction and dispersal. Although rare, a few species occupy aquatic or semi-aquatic habitats and for them, silk-related specializations are also essential to survive in aquatic environments. Most spider silks studied to date are from cob-web and orb-web weaving species, leaving the silks from many other terrestrial spiders as well as water-associated spiders largely undescribed. Here, we characterize silks from three Dictynoidea species: the aquatic spiders Argyroneta aquatica and Desis marina as well as the terrestrial Badumna longinqua. From silk gland RNA-Seq libraries, we report a total of 47 different homologs of the spidroin (spider fibroin) gene family. Some of these 47 spidroins correspond to known spidroin types (aciniform, ampullate, cribellar, pyriform, and tubuliform), while other spidroins represent novel branches of the spidroin gene family. We also report a hydrophobic amino acid motif (GV) that, to date, is found only in the spidroins of aquatic and semi-aquatic spiders. Comparison of spider silk sequences to the silks from other water-associated arthropods, shows that there is a diversity of strategies to function in aquatic environments.
Collapse
Affiliation(s)
- Sandra M Correa-Garhwal
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92591, USA.
| | - Thomas H Clarke
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92591, USA
- J. Craig Venter Institute, Rockville, MD, 28050, USA
| | | | - Luc Crevecoeur
- Limburg Dome for Nature Study, Provincial Nature Center, Genk, 3600, Belgium
| | | | | | - Cor J Vink
- Canterbury Museum, Christchurch, 8013, New Zealand
| | - Cheryl Y Hayashi
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92591, USA
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| |
Collapse
|
11
|
Hayashi M, Bakkali M, Hyde A, Goodacre SL. Sail or sink: novel behavioural adaptations on water in aerially dispersing species. BMC Evol Biol 2015; 15:118. [PMID: 26138616 PMCID: PMC4490750 DOI: 10.1186/s12862-015-0402-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long-distance dispersal events have the potential to shape species distributions and ecosystem diversity over large spatial scales, and to influence processes such as population persistence and the pace and scale of invasion. How such dispersal strategies have evolved and are maintained within species is, however, often unclear. We have studied long-distance dispersal in a range of pest-controlling terrestrial spiders that are important predators within agricultural ecosystems. These species persist in heterogeneous environments through their ability to re-colonise vacant habitat by repeated long-distance aerial dispersal ("ballooning") using spun silk lines. Individuals are strictly terrestrial, are not thought to tolerate landing on water, and have no control over where they land once airborne. Their tendency to spread via aerial dispersal has thus been thought to be limited by the costs of encountering water, which is a frequent hazard in the landscape. RESULTS In our study we find that ballooning in a subset of individuals from two groups of widely-distributed and phylogenetically distinct terrestrial spiders (linyphiids and one tetragnathid) is associated with a hitherto undescribed ability of those same individuals to survive encounters with both fresh and marine water. Individuals that showed a high tendency to adopt 'ballooning' behaviour adopted elaborate postures to seemingly take advantage of the wind current whilst on the water surface. CONCLUSIONS The ability of individuals capable of long-distance aerial dispersal to survive encounters with water allows them to disperse repeatedly, thereby increasing the pace and spatial scale over which they can spread and subsequently exert an influence on the ecosystems into which they migrate. The potential for genetic connectivity between populations, which can influence the rate of localized adaptation, thus exists over much larger geographic scales than previously thought. Newly available habitat may be particularly influenced given the degree of ecosystem disturbance that is known to follow new predator introductions.
Collapse
Affiliation(s)
- Morito Hayashi
- School of Biology, University of Nottingham, Nottingham, UK. .,Department of Zoology, The Natural History Museun, London, UK. .,Environmental Education Center, Miyagi University of Education, Miyagi, Japan.
| | - Mohammed Bakkali
- Departamento de Genetica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain.
| | | | - Sara L Goodacre
- School of Biology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
12
|
Abstract
Upon falling onto the water surface, most terrestrial arthropods helplessly struggle and are quickly eaten by aquatic predators. Exceptions to this outcome mostly occur among riparian taxa that escape by walking or swimming at the water surface. Here we document sustained, directional, neustonic locomotion (i.e. surface swimming) in tropical arboreal ants. We dropped 35 species of ants into natural and artificial aquatic settings in Peru and Panama to assess their swimming ability. Ten species showed directed surface swimming at speeds >3 body lengths s(-1), with some swimming at absolute speeds >10 cm s(-1). Ten other species exhibited partial swimming ability characterized by relatively slow but directed movement. The remaining species showed no locomotory control at the surface. The phylogenetic distribution of swimming among ant genera indicates parallel evolution and a trend toward negative association with directed aerial descent behavior. Experiments with workers of Odontomachus bauri showed that they escape from the water by directing their swimming toward dark emergent objects (i.e. skototaxis). Analyses of high-speed video images indicate that Pachycondyla spp. and O. bauri use a modified alternating tripod gait when swimming; they generate thrust at the water surface via synchronized treading and rowing motions of the contralateral fore and mid legs, respectively, while the hind legs provide roll stability. These results expand the list of facultatively neustonic terrestrial taxa to include various species of tropical arboreal ants.
Collapse
Affiliation(s)
- S P Yanoviak
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA
| | - D N Frederick
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| |
Collapse
|
13
|
Cross FR, Jackson RR. Solving a novel confinement problem by spartaeine salticids that are predisposed to solve problems in the context of predation. Anim Cogn 2014; 18:509-15. [PMID: 25392261 DOI: 10.1007/s10071-014-0819-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/25/2014] [Accepted: 11/03/2014] [Indexed: 11/25/2022]
Abstract
Intricate predatory strategies are widespread in the salticid subfamily Spartaeinae. The hypothesis we consider here is that the spartaeine species that are proficient at solving prey-capture problems are also proficient at solving novel problems. We used nine species from this subfamily in our experiments. Eight of these species (two Brettus, one Cocalus, three Cyrba, two Portia) are known for specialized invasion of other spiders' webs and for actively choosing other spiders as preferred prey ('araneophagy'). Except for Cocalus, these species also use trial and error to derive web-based signals with which they gain dynamic fine control of the resident spider's behaviour ('aggressive mimicry').The ninth species, Paracyrba wanlessi, is not araneophagic and instead specializes at preying on mosquitoes. We presented these nine species with a novel confinement problem that could be solved by trial and error. The test spider began each trial on an island in a tray of water, with an atoll surrounding the island. From the island, the spider could choose between two potential escape tactics (leap or swim), but we decided at random before the trial which tactic would fail and which tactic would achieve partial success. Our findings show that the seven aggressive-mimic species are proficient at solving the confinement problem by repeating 'correct' choices and by switching to the alternative tactic after making an 'incorrect' choice. However, as predicted, there was no evidence of C. gibbosus or P. wanlessi, the two non-aggressive-mimic species, solving the confinement problem. We discuss these findings in the context of an often-made distinction between domain-specific and domain-general cognition.
Collapse
Affiliation(s)
- Fiona R Cross
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand,
| | | |
Collapse
|
14
|
Bolzern A, Burckhardt D, Hänggi A. Phylogeny and taxonomy of European funnel-web spiders of theTegenaria−Malthonicacomplex (Araneae: Agelenidae) based upon morphological and molecular data. Zool J Linn Soc 2013. [DOI: 10.1111/zoj.12040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Daniel Burckhardt
- Naturhistorisches Museum Basel; Augustinergasse 2; CH-4001; Basel; Switzerland
| | - Ambros Hänggi
- Naturhistorisches Museum Basel; Augustinergasse 2; CH-4001; Basel; Switzerland
| |
Collapse
|
15
|
Marx MT, Guhmann P, Decker P. Adaptations and Predispositions of Different Middle European Arthropod Taxa (Collembola, Araneae, Chilopoda, Diplopoda) to Flooding and Drought Conditions. Animals (Basel) 2012; 2:564-90. [PMID: 26487164 PMCID: PMC4494283 DOI: 10.3390/ani2040564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/13/2012] [Accepted: 09/25/2012] [Indexed: 11/17/2022] Open
Abstract
Simple Summary This review summarizes adaptations and predispositions of different arthropod taxa (springtails, web spiders, millipedes and centipedes) to flood and drought conditions. The main focus sis directed to arthropod species, which are living in Middle European floodplain forests and wetlands, because of the fast change of flood and drought conditions in these habitats. Furthermore the effects of the predicted regional climate change like increasing aperiodic summer flooding and decreasing winter and spring floods are also discussed. Abstract Floodplain forests and wetlands are amongst the most diverse and species rich habitats on earth. Arthropods are a key group for the high diversity pattern of these landscapes, due to the fact that the change between flooding and drought causes in different life cycles and in a variety of adaptations in the different taxa. The floodplain forests and wetlands of Central Amazonia are well investigated and over the last 50 years many adaptations of several hexapod, myriapod and arachnid orders were described. In contrast to Amazonia the Middle European floodplains were less investigated concerning the adaptations of arthropods to flood and drought conditions. This review summarizes the adaptations and predispositions of springtails, web spiders, millipedes and centipedes to the changeable flood and drought conditions of Middle European floodplain forests and wetlands. Furthermore the impact of regional climate change predictions like increasing aperiodic summer floods and the decrease of typical winter and spring floods are discussed in this article.
Collapse
Affiliation(s)
- Michael Thomas Marx
- Institute of Zoology, Johannes Gutenberg-University of Mainz, Department IV, Becherweg 13, 55128 Mainz, Germany.
| | - Patrick Guhmann
- Institute of Zoology, Johannes Gutenberg-University of Mainz, Department IV, Becherweg 13, 55128 Mainz, Germany.
| | - Peter Decker
- Department of Soil Zoology, Senckenberg Museum of Natural History Görlitz, Edaphobase, P.O. Box 300154, 02806 Görlitz, Germany.
| |
Collapse
|
16
|
Wilder S, Rypstra A. Sexual Size Dimorphism Predicts the Frequency of Sexual Cannibalism Within and Among Species of Spiders. Am Nat 2008; 172:431-40. [DOI: 10.1086/589518] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Maestripieri D. On the Importance of Comparative Research for the Understanding of Human Behavior and Development: A Reply to Gottlieb & Lickliter (2004). SOCIAL DEVELOPMENT 2005. [DOI: 10.1111/j.1467-9507.2005.00296.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|