1
|
Uddin MH, Ritu JR, Chivers DP, Niyogi S. Neurodevelopmental and behavioural effects of waterborne selenite in larval zebrafish (Denio rerio). ENVIRONMENTAL RESEARCH 2025; 273:121240. [PMID: 40020856 DOI: 10.1016/j.envres.2025.121240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Affiliation(s)
- Md Helal Uddin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Jinnath Rehana Ritu
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| |
Collapse
|
2
|
de Faria NPVM, Araújo BC, Kida BMS, Abdalla RP, Brito DDS, Moreira RG, Honji RM. Can Aluminum Affect Social Behavior and Cortisol Plasma Profile in the Neotropical Freshwater Teleost Astyanax lacustris (Teleostei: Characidae)? Life (Basel) 2024; 14:1697. [PMID: 39768403 PMCID: PMC11678517 DOI: 10.3390/life14121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Aluminum (Al) can cause endocrine disruption in aquatic animals, but assessments of animal social behavior in neotropical teleost fish species with importance for Brazilian aquaculture have still not been addressed so far, which can further complete this ecotoxicological knowledge. In order to evaluate the social behavior and plasma cortisol concentration of fish exposed to Al, we performed a 1 h acute exposure with Astyanax lacustris couples in three different experimental groups: control in neutral pH (CTL/n group), acid pH (pH/ac group), and aluminum in acid pH (Al/ac group; 2.0 mg L-1). An ethogram of social interactions between males and females and swimming activities were performed. Furthermore, the cortisol plasma concentration was measured by enzyme-linked immunosorbent, and the gonadal maturation stage of the animals was evaluated by histology. Adult and mature females in the CTL/n and pH/ac groups were more aggressive and active than mature males, including several attacks on the male. Moreover, males did not present attack behavior in these groups at any time, but did show submission behavior and constant avoidance of female attacks. In the Al/ac, females did not attack males, couple decreased swimming activity, a repetitive movement toward the aquarium surface, and high mucus production were observed, making the water cloudy. Regarding cortisol plasma concentration, males had higher cortisol plasma concentrations than females in the CTL/n and pH/ac groups, which was not observed in the Al/ac group. Therefore, Al in addition to being described in the literature as an endocrine disruptor, it can be considered as behavioral disrupter in A. lacustris in this important freshwater species cultivated in South America.
Collapse
Affiliation(s)
- Natália Pires Vieira Morais de Faria
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Bruno Cavalheiro Araújo
- Laboratório de Fisiologia e Nutrição de Organismos Aquáticos (LAFINUTRI), Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes, Avenida Dr. Cândido Xavier de Almeida e Souza, No. 200, Mogi das Cruzes 08701-970, SP, Brazil
| | - Bianca Mayumi Silva Kida
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Raisa Pereira Abdalla
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Diego dos Santos Brito
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Renata Guimarães Moreira
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos (LAMEROA), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| | - Renato Massaaki Honji
- Laboratório de Aquicultura e Ecofisiologia Marinha (LAQUEFIM), Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo (IB/USP), Rua do Matão, trav. 14, No. 321, Cidade Universitária, São Paulo 05508-090, SP, Brazil
| |
Collapse
|
3
|
Xiao QH, Xiang H, Tian YN, Huang JL, Li MQ, Wang PQ, Lian K, Yu PX, Xu MY, Zhang RN, Zhang Y, Huang J, Zhang WC, Duan P. Polystyrene microplastics alleviate the developmental toxicity of silver nanoparticles in embryo-larval zebrafish (Danio rerio) at the transcriptomic level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176485. [PMID: 39341243 DOI: 10.1016/j.scitotenv.2024.176485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Since silver nanoparticles (AgNPs) and polystyrene microplastics (PS-MP) share common environmental niches, their interactions can modulate their hazard impacts. Herein, we assessed the developmental toxicity of 1 mg/L PS-MP, 0.5 mg/L AgNPs and the mixtures of AgNPs and PS-MP on embryo-larval zebrafish. We found that AgNPs co-exposure with PS-MP remarkably decreased mortality rates, malformation rates, heart rates and yolk sac area, while it increased hatching rates and eye size compared to the AgNPs group. These phenomena revealed that the cell cycle, oxidative stress, apoptosis, lipid metabolism, ferroptosis and p53 signalling pathway were obviously affected by single AgNPs exposure at 96 hpf (hours post fertilization). Interestingly, all these effects were effectively ameliorated by co-exposure with PS-MP. The combination of transcriptomic and metabolomic analyses showed that the imbalance of DEGs (differentially expressed genes) and DEMs (differentially expressed metabolites) (PI, phosphatidylinositol and TAG-FA, triacylglycerol-fatty acid) disturbed both the cell cycle and lipid metabolism following single AgNPs exposure and co-exposure with PS-MP. These findings suggest that PS-MP attenuates the developmental toxicity of AgNPs on embryo-larval zebrafish. Overall, this study provides important insight into understanding the transcriptional responses and mechanisms of AgNPs alone or in combination with PS-MPs on embryo-larval zebrafish, providing a reference for ecological risk assessment of combined exposure to PS-MP and metal nanoparticles.
Collapse
Affiliation(s)
- Qiao-Hong Xiao
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Hao Xiang
- Department of Nuclear Medicine, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Ya-Nan Tian
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Jiao-Long Huang
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Ming-Qun Li
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Pu-Qing Wang
- Hubei Provincial Clinical Research Center for Parkinson's Disease, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Kai Lian
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Peng-Xia Yu
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Meng-Yao Xu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Ruo-Nan Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Yan Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Jie Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China
| | - Wei-Cheng Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Peng Duan
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China; Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, China.
| |
Collapse
|
4
|
Habib SS, Maqaddas S, Fazio F, El Amouri R, Shaikh GS, Rahim A, Khan K, Ullah J, Mohany M, Parrino V, Al-Emam A. Evaluation of lead exposure effects on tissue accumulation, behavior, morphological and hemato-biochemical changes in common carp, Cyprinus carpio. J Trace Elem Med Biol 2024; 86:127523. [PMID: 39243732 DOI: 10.1016/j.jtemb.2024.127523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Heavy metal pollution, particularly lead (Pb), poses a significant threat to aquatic ecosystems and their inhabitants, threatening their delicate balance and long-term viability. This study highlights the urgent need to mitigate heavy metal pollution in aquatic ecosystems. OBJECTIVE This study investigates Pb(NO3)2 exposure effects on tissue accumulation, behavioral abnormalities, and hemato-biochemical parameters in common carp (Cyprinus carpio), a widely distributed freshwater fish species. METHODOLOGY Fish (115 ± 5.23 g) were exposed to various Pb(NO3)2 concentrations for 10 and 20 days, representing control (0 %), 25 %, 50 %, and 75 % of the LC50 equivalent to 19.33, 38.66, and 58.0 mg/l, respectively. The standard manual procedure was used for blood sampling. The lead concentration in fish tissue was determined using an atomic absorption spectrophotometer. RESULTS Results revealed that fish gills showed significant (P < 0.05) increase in Pb(NO3)2 after 10 days, further rising after 20 days. Liver concentrations also rose significantly (P < 0.05) with prolonged exposure and increasing Pb levels. Muscle had lower concentrations. Hematological parameters (RBC, WBC, HB, HCT) decreased with higher Pb(NO3)2 levels. Behavioral and morphological changes were significantly more pronounced in the exposure groups when compared to the control group. Hepatic enzyme activities (AST, ALT), glucose, and lipid levels increased, while total protein decreased. CONCLUSIONS The study highlights Pb(NO3)2 harmful effects on common carp, impacting tissue accumulation, hematological parameters, and biochemical disruptions. It emphasizes the need to monitor and mitigate heavy metal pollution in aquatic environments to safeguard freshwater organisms and ecosystems, and to further increase our understanding of Pb toxicity in freshwater ecosystems.
Collapse
Affiliation(s)
- Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, Punjab 40100, Pakistan
| | - Sawera Maqaddas
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Via Palatucci, n. 13, Messina 98168, Italy.
| | - Rim El Amouri
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Ghulam Serwar Shaikh
- Department of Biochemistry, Chandka Medical College, Shaheed Mohtarma Benazir Bhutho Medical University Larkana, Pakistan
| | - Abdur Rahim
- Department of Zoology, University of Malakand, Dir Lower, Chakdara, KP 18800, Pakistan
| | - Kaleem Khan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Javed Ullah
- Department of Zoology, University of Balochistan, Quetta 0971, Pakistan
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Vincenzo Parrino
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, Messina, Italy
| | - Ahmed Al-Emam
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Pathology, College of Medicine, King Khalid University, Abha 9004, Saudi Arabia
| |
Collapse
|
5
|
Ahmed AIM, Macirella R, Talarico F, Muoio MF, Mezzasalma M, Tronci V, Lal P, Gharbi N, Brunelli E. Effect of short-term exposure to the strobilurin fungicide dimoxystrobin: Morphofunctional, behavioural and mitochondrial alterations in Danio rerio embryos and larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116493. [PMID: 38805825 DOI: 10.1016/j.ecoenv.2024.116493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Strobilurins, among the most used fungicides worldwide, are considered non-toxic to mammals and birds, but there is growing evidence that these compounds are highly toxic to aquatic species. Dimoxystrobin has been included in the 3rd Watch List of the European Commission, and it has been classified as very toxic to aquatic life. However, previous studies focused on acute toxicity and only two reports are available on its impact on fish, and none on its effects during the early life stages. Here, we evaluated for the first time the effects induced on zebrafish embryos and larvae by two dimoxystrobin sublethal concentrations (6.56 and 13.13 μg/L) falling in the range of predicted environmental concentrations. We demonstrated that short-term exposure to dimoxystrobin may exert adverse effects on multiple targets, inducing severe morphological alterations. Moreover, we showed enhanced mRNA levels of genes related to the mitochondrial respiratory chain and ATP production. Impairment of the swim bladder inflation has also been recorded, which may be related to the observed swimming performance alterations.
Collapse
Affiliation(s)
- Abdalmoiz I M Ahmed
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy
| | - Federica Talarico
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy
| | - Mariarosaria F Muoio
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy
| | - Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy
| | - Valentina Tronci
- Fish Biology and Aquaculture Group, Ocean and Environment Department, NORCE Norwegian Research Center, Bergen 5006, Norway
| | - Pradeep Lal
- Fish Biology and Aquaculture Group, Ocean and Environment Department, NORCE Norwegian Research Center, Bergen 5006, Norway
| | - Naouel Gharbi
- Fish Biology and Aquaculture Group, Ocean and Environment Department, NORCE Norwegian Research Center, Bergen 5006, Norway.
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science (DiBEST) - University of Calabria, Via P. Bucci 4/B, Rende, Cosenza 87036, Italy.
| |
Collapse
|
6
|
Li G, Dang Y, Li X, Chen X, Chen X, Tang B, Xiang M, Hu G, Yu Y, Yu Y. Transcriptome-based approach to identify mechanisms underlying locomotor abnormality induced by decabromodiphenyl ethane in zebrafish larvae. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133228. [PMID: 38141303 DOI: 10.1016/j.jhazmat.2023.133228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/25/2023]
Abstract
The brominated flame retardant decabromodiphenyl ethane (DBDPE) has been extensively used following restrictions on BDE-209 and thus, been frequently detected in aquatic environment. However, information on impact of DBDPE on fish development and the potential mechanisms remains scarce. In present study, developing zebrafish were employed as a study model. Embryos were exposed until 5 d to DBDPE at concentrations of 0, 3, 30, and 300 μg/L, following which the impact on larval development was investigated. DBDPE bioaccumulation and locomotor hyperactivity were observed in developing zebrafish exposed to DBDPE. Transcriptome and bioinformatics analyses indicated that pathways associated with cardiac muscle contraction and retinol metabolism were notably affected. The mechanisms of DBDPE to induce locomotor abnormality were further investigated by analyzing levels of retinol and retinol metabolites, eye and heart histology, heart rates, and ATPase activity. Our results indicate that locomotor hyperactivity observed in larvae exposed to DBDPE results from abnormal heartbeat, which in turn is attributable to inhibition of Na+/K+-ATPase activity. Furthermore, DBDPE did not change larval eye histology and contents of retinoid (retinol, retinal, and retinoic acid). This study provides insight into the mechanisms underlying DBDPE-induced developmental toxicity and highlights the need for addressing the environmental risks for aquatic organisms.
Collapse
Affiliation(s)
- Gang Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaowen Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
7
|
Guo X, Zhang R, Li C, Duan M, Cao N, Jin Q, Chen X, Li L, Li X, Pang S. Environmental levels of azoxystrobin disturb male zebrafish behavior: Possible roles of oxidative stress, cholinergic system, and dopaminergic system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115744. [PMID: 38086263 DOI: 10.1016/j.ecoenv.2023.115744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/05/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024]
Abstract
A widely applied pesticide of azoxystrobin, is increasingly detected in the water environment. Concern has been raised against its potential detriment to aquatic ecosystems. It has been shown that exposure to azoxystrobin interfere with the locomotor behavior of zebrafish larvae. This study aims to investigate whether exposure to environmental levels of azoxystrobin (2 μg/L, 20 μg/L, and 200 μg/L) changes the behavior of male adult zebrafish. Herein, we evaluated behavioral response (locomotor, anxiety-like, and exploratory behaviors), histopathology, biochemical indicators, and gene expression in male adult zebrafish upon azoxystrobin exposure. The study showed that exposure to azoxystrobin for 42 days remarkably increased the locomotor ability of male zebrafish, resulted in anxiety-like behavior, and inhibited exploratory behavior. After treatment with 200 μg/L azoxystrobin, vasodilatation, and congestion were observed in male zebrafish brains. Exposure to 200 μg/L azoxystrobin notably elevated ROS level, MDA concentration, CAT activity, and AChE activity, while inhibiting SOD activity, GPx activity, ACh concentration, and DA concentration in male zebrafish brains. Moreover, the expression levels of genes related to the antioxidant, cholinergic, and dopaminergic systems were significantly changed. This suggests that azoxystrobin may interfere with the homeostasis of neurotransmitters by causing oxidative stress in male zebrafish brains, thus affecting the behavioral response of male zebrafish.
Collapse
Affiliation(s)
- Xuanjun Guo
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Changsheng Li
- Institute of Cultural Heritage and History of science & Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Manman Duan
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Niannian Cao
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xuefeng Li
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China
| | - Sen Pang
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Latif F, Iqbal R, Ambreen F, Kousar S, Ahmed T, Aziz S. Studies on bioaccumulation patterns, biochemical and genotoxic effects of copper on freshwater fish, Catla catla: an in vivo analysis. BRAZ J BIOL 2024; 84:e256905. [DOI: 10.1590/1519-6984.256905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022] Open
Abstract
Abstract During present study, the copper (Cu) mediated oxidative stress was measured that induced DNA damage by concentrating in the tissues of fish, Catla catla (14.45±1.24g; 84.68±1.45mm) (Hamilton,1822). Fish fingerlings were retained in 5 groups for 14, 28, 42, 56, 70 and 84 days of the exposure period. They were treated with 2/3, 1/3, 1/4 and 1/5 (T1-T4) of 96h lethal concentration of copper. Controls were run along with all the treatments for the same durations. A significant (p < 0.05) dose and time dependent concentration of Cu was observed in the gills, liver, kidney, muscles, and brain of C. catla. Among organs, the liver showed a significantly higher concentration of Cu followed by gills, kidney, brain, and muscles. Copper accumulation in these organs caused a significant variation in the activities of enzymes viz. superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). The SOD activity varied significantly in response to the exposure time of Cu as 56 > 70 > 42 > 84 > 28 > 14 days while CAT activity exhibited an inverse relationship with the increase in Cu concentration. POD activity showed a significant rise with an increase in Cu exposure duration. Comet assay exhibited significant DNA damage in the peripheral erythrocytes of Cu exposed C. catla. Among four exposure concentrations, 2/3rd of LC50 (T1) caused significantly higher damage to the nuclei compared to control. Increased POD and SOD activity, as well as a decrease in CAT activity in response to Cu, demonstrates the involvement of a protective mechanism against reactive oxygen species (ROS), whereas increased ROS resulted in higher DNA damage. These above-mentioned molecular markers can be efficiently used for the biomonitoring of aquatic environments and conservation of edible fish fauna.
Collapse
Affiliation(s)
- F. Latif
- Bahauddin Zakariya University, Pakistan
| | - R. Iqbal
- Bahauddin Zakariya University, Pakistan
| | - F. Ambreen
- Government College Women University, Pakistan
| | - S. Kousar
- Government College Women University, Pakistan
| | - T. Ahmed
- Khwaja Fareed University of Engineering and Information Technology, Pakistan
| | - S. Aziz
- University of Agriculture, Pakistan
| |
Collapse
|
9
|
Jiao F, Zhao Y, Limbu SM, Kong L, Zhang D, Liu X, Yang S, Gui W, Rong H. Cyhexatin causes developmental toxic effects by disrupting endocrine system and inducing behavioral inhibition, apoptosis and DNA hypomethylation in zebrafish (Danio rerio) larvae. CHEMOSPHERE 2023; 339:139769. [PMID: 37562506 DOI: 10.1016/j.chemosphere.2023.139769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Cyhexatin (CYT), an organotin acaricide, is extensively utilized in developing countries to mitigate plant diseases caused by mites and minimize agricultural crop losses. However, the comprehensive mechanisms underlying the developmental stage of non-target organisms remain largely unexplored. In this study, zebrafish embryos were firstly exposed to CYT (0.06, 0.12, and 0.20 ng/mL, referred to as CYTL, CYTM, and CYTH, respectively) from 2 hpf (hours post fertilization) to 30 dpf (days post fertilization). No developmental toxicity was observed in the CYTL and CYTM groups, except for induced deformed phenotypes in the CYTM group at 120 hpf. However, exposure to CYTH resulted in significant reductions in spontaneous movement (24 hpf), heart rate (48 hpf), hatching rate (48 and 72 hpf), body weight (30 dpf), whole body length (30 dpf), and locomotion (30 dpf). Additionally, CYTH exposure induced morphological malformations, including spinal curvature, pericardial edema, and tail curvature in zebrafish larvae. Moreover, CYTH treatment induced apoptosis, increased reactive oxygen species (ROS) production, and resulted in significant reductions in free T3, cholesterol, estradiol, and testosterone levels in zebrafish larvae, while free T4 levels were increased. RNA-Seq analysis indicated that CYTH exposure led to significant alterations in the genome-wide gene expression profiles of zebrafish, particularly in the thyroid hormone and steroid biosynthesis signaling pathways, indicating endocrine disruption. Furthermore, CYTH exposure induced global DNA hypomethylation, reduced S-adenosylmethionine (SAM) levels and the SAM/S-adenosylhomocysteine (SAH) ratio, elevated SAH levels, and suppressed the mRNA expression of DNA methyltransferases (DNMTs) while also downregulating DNMT1 at both the gene and protein levels in zebrafish larvae. Overall, this study partially elucidated the developmental toxicity and endocrine disruption caused by CYT in zebrafish, providing evidence of the environmental hazards associated with this acaricide.
Collapse
Affiliation(s)
- Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China
| | - Yang Zhao
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, PR China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P. O. Box 60091, Dar es Salaam, Tanzania
| | - Lingfu Kong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Daitao Zhang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Xianghe Liu
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Sha Yang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| | - Hua Rong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China; Xiangyang Polytechnic, Xiangyang, 441050, PR China.
| |
Collapse
|
10
|
Yi J, Ma Y, Ma J, Yu H, Zhang K, Jin L, Yang Q, Sun D, Wu D. Rapid Assessment of Ocular Toxicity from Environmental Contaminants Based on Visually Mediated Zebrafish Behavior Studies. TOXICS 2023; 11:706. [PMID: 37624211 PMCID: PMC10459940 DOI: 10.3390/toxics11080706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The presence of contaminants in the environment has increased in recent years, and studies have demonstrated that these contaminants have the ability to penetrate the blood-retinal barrier and directly affect the visual systems of organisms. Zebrafish are recognized as an ideal model for human eye diseases due to their anatomical and functional similarities to the human eye, making them an efficient and versatile organism for studying ocular toxicity caused by environmental contaminants in the field of environmental toxicology. Meanwhile, zebrafish exhibit a diverse repertoire of visually mediated behaviors, and their visual system undergoes complex changes in behavioral responses when exposed to environmental contaminants, enabling rapid assessment of the ocular toxicity induced by such pollutants. Therefore, this review aimed to highlight the effectiveness of zebrafish as a model for examining the effects of environmental contaminants on ocular development. Special attention is given to the visually mediated behavior of zebrafish, which allows for a rapid assessment of ocular toxicity resulting from exposure to environmental contaminants. Additionally, the potential mechanisms by which environmental contaminants may induce ocular toxicity are briefly outlined.
Collapse
Affiliation(s)
- Jia Yi
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yilei Ma
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Kun Zhang
- Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Da Sun
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Dejun Wu
- Emergency Department, Quzhou People’s Hospital, Quzhou 324000, China
| |
Collapse
|
11
|
Li X, He X, Lin X, Li W, Gao J, Zhang N, Guo Y, Wang Z, Zhao N, Zhang B, Dong Z. Effects of bisphenols on lipid metabolism and neuro-cardiovascular toxicity in marine medaka larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106551. [PMID: 37156703 DOI: 10.1016/j.aquatox.2023.106551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/29/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Bisphenols are environmental endocrine disruptors that have detrimental effects on aquatic organisms. Using marine medaka larvae, this study explored the effects of bisphenol compounds [bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF)] on the early growth and development of aquatic organisms. Marine medaka larvae were exposed to bisphenol compounds at concentrations of 0.05, 0.5, and 5 μM for 72 h, and changes in heartbeat rate, behavior, hormone levels, and gene expression were determined. Bisphenols were shown to have a toxic effect on the cardiovascular system of larvae and can cause neurotoxicity and endocrine disruption, such as changes to thyroid-related hormones. Functional enrichment showed that bisphenols mainly affect lipid metabolism and cardiac muscle contraction of larvae, which implied that the main toxic effects of bisphenols on marine medaka larvae targeted the liver and heart. This study provides a theoretical foundation for evaluating the toxicological effects of bisphenols on the early development of aquatic organisms.
Collapse
Affiliation(s)
- Xueyou Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin 300200, China
| | - Xiaona Lin
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Weihao Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Ning Zhang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Na Zhao
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Bo Zhang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Tianjin Fisheries Research Institute, Tianjin 300200, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
12
|
Jiang M, Zhang Z, Han Q, Peng R, Shi H, Jiang X. Embryonic exposure to environmentally relevant levels of tributyltin affects embryonic tributyltin bioaccumulation and the physiological responses of juveniles in cuttlefish (Sepia pharaonis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114894. [PMID: 37059015 DOI: 10.1016/j.ecoenv.2023.114894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Tributyltin (TBT) is a typical organic pollutant that persists in aquatic sediments due to its wide usage as an antifouling fungicide during the past few decades. Despite increased awareness of the serious negative consequences of TBT on aquatic species, studies on the effects of TBT exposure on cephalopod embryonic development and juvenile physiological performance are scarce. To investigate the lasting effects of TBT toxicity on Sepia pharaonis from embryo to hatchling, embryos (gastrula stage, 3-5 h post fertilization) were exposed to four levels of TBT until hatching: 0 (control), 30 (environmental level), 60, and 120 ng/L. Subsequently, juvenile growth performance endpoints and behavioral alterations were assessed over 15 days post-hatching. Egg hatchability was significantly reduced and embryonic development (i.e., premature hatching) was accelerated in response to 30 ng/L TBT exposure. Meanwhile, TBT-induced alterations in embryonic morphology primarily included yolk-sac lysis, embryonic malformations, and uneven pigment distributions. During the pre-middle stage of embryonic development, the eggshell serves as an effective barrier to safeguard the embryo from exposure to 30-60 ng/L TBT, according to patterns of TBT accumulation and distribution in the egg compartment. However, even environmental relevant levels of TBT (30 ng/L) exposure during embryonic development had a negative impact on juvenile behavior and growth, including slowing growth, shortening eating times, causing more irregular movements, and increasing inking times. These findings indicate that after TBT exposure, negative long-lasting effects on S. pharaonis development from embryo to hatchling persist, suggesting that long-lasting toxic effects endure from S. pharaonis embryos to hatchlings.
Collapse
Affiliation(s)
- Maowang Jiang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China
| | - Zihan Zhang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China
| | - Qingxi Han
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China
| | - Ruibing Peng
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China
| | - Huilai Shi
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan 316022, China
| | - Xiamin Jiang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China.
| |
Collapse
|
13
|
Ribeiro O, Ribeiro C, Félix L, Gaivão I, Carrola JS. Effects of acute metaphedrone exposure on the development, behaviour, and DNA integrity of zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49567-49576. [PMID: 36781667 PMCID: PMC10104909 DOI: 10.1007/s11356-023-25233-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023]
Abstract
The presence of new psychoactive substances (NPS), like metaphedrone (3-MMC), in aquatic environments raises concern about the potential negative effects on ichthyofauna. Therefore, the aim of this study was to evaluate the potential effects of 3-MMC on zebrafish embryonic development, behaviour, and DNA integrity. For that, embryos were exposed during 96 h post-fertilization to 3-MMC (0.1, 1, 10, and 100 µg/L). Overall, an increase in the eye area of zebrafish larvae was observed for the concentrations of 1 μg/L (increase of 24%) and 100 μg/L (increase of 25%) in comparison with the control group. Genetic damage was noted at the highest concentration (100 µg/L) with an increase of DNA damage (increase of 48%) and hyperactivity and disorganised swimming pattern characterised by an increase in speed (increase of 49%), total distance moved (increase of 53%), and absolute turn angle (increase of 48%) of zebrafish larvae. These findings pointed that, at environmental low levels, 3-MMC harmful effects are not expected to occur during critical development life stages of fish.
Collapse
Affiliation(s)
- Ondina Ribeiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Cláudia Ribeiro
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, 4585-116, Gandra, CRL, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício Do Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/N, 4050-208, Matosinhos, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Vila Real, Portugal
| | - Isabel Gaivão
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - João Soares Carrola
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, Vila Real, Portugal.
- Department of Biology and Environment (DeBA/ECVA), University of Trás-os-Montes and Alto Douro, CITAB, Vila Real, Portugal.
| |
Collapse
|
14
|
Rao C, Cao X, Li L, Zhou J, Sun D, Li B, Guo S, Yuan R, Cui H, Chen J. Bisphenol AF induces multiple behavioral and biochemical changes in zebrafish (Danio rerio) at different life stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106345. [PMID: 36351319 DOI: 10.1016/j.aquatox.2022.106345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/16/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
As common environmental endocrine-disrupting chemicals (EDCs), bisphenol AF (BPAF) raises potential concerns for aquatic organisms due to its widespread presence and continued release in the aquatic environment. This research aimed to use zebrafish embryos and adult fish to explore the effects of environmentally relevant concentrations (5 μg/L), 50 μg/L and 500 μg/L of BPAF on zebrafish embryonic development, behavioral alterations, and the potential mechanisms driving these effects. The results showed that 500 μg/L of BPAF severely affected the growth and development of embryos. In behavioral experiments, all concentrations of BPAF significantly inhibited the locomotor activity of larvae, 50 and 500 μg/L BPAF significantly altered the anxiety-like and aggressive behavior of adult zebrafish. Furthermore, environmentally relevant concentrations and higher concentrations of BPAF induced varying degrees of oxidative stress in both embryonic and adult fish. The most significant histopathological changes and decreased acetylcholinesterase (AChE) activity were observed in the brain at 50 and 500 μg/L of BPAF. We hypothesized that oxidative stress is an important cause of behavioral disturbances in larvae and adult fish. To our best knowledge, the present experiment is a pioneer in studying the effects of BPAF on a variety of complex behaviors (swimming performance, anxiety-like, social behavior, aggression) in zebrafish, which emphasizes the potential health risk of higher concentrations of BPAF in terms of induced neurotoxicity.
Collapse
Affiliation(s)
- Chenyang Rao
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lulu Li
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Baohua Li
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Suqi Guo
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
15
|
Boukadida K, Banni M, Romero-Ramirez A, Clerandeau C, Gourves PY, Cachot J. Metal contamination and heat stress impair swimming behavior and acetylcholinesterase activity in embryo-larval stages of the Mediterranean mussel, Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105677. [PMID: 35738152 DOI: 10.1016/j.marenvres.2022.105677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/27/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Behavioral parameters are increasingly considered sensitive and early bioindicators of toxicity in aquatic organisms. A video-tracking tool was specifically developed to monitor the swimming behaviour of D-larvae of the Mediterranean mussel, Mytilus galloprovincialis, in controlled laboratory conditions. Both maximum and average swimming speeds and trajectories were recorded. We then investigated the impact of copper and silver with or without a moderate rise of temperature on swimming behavior and acetylcholinesterase (AChE) activity of mussel D-larvae and the possible mechanistic link between both biological responses. Our results showed that copper and/or silver exposure, as well as temperature increase, disrupts the swimming behavior of mussel larvae which could compromise their dispersal and survival. In addition, the combined effect of temperature and metals significantly (p < 0.05) increased AChE activity in mussel larvae. Pearson's correlation analysis was performed and results showed that the AChE activity is positively correlated with maximum speeds (r = 0.71, p < 0.01). This study demonstrates the value of behavioral analyzes of aquatic invertebrates as a sensitive and integrate marker of the effects of stressors.
Collapse
Affiliation(s)
- Khouloud Boukadida
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France; Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042, Sousse, Tunisia.
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042, Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Alicia Romero-Ramirez
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| | - Christelle Clerandeau
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| | - Pierre-Yves Gourves
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| | - Jérôme Cachot
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| |
Collapse
|
16
|
Redondo-López S, León AC, Jiménez K, Solano K, Blanco-Peña K, Mena F. Transient exposure to sublethal concentrations of a pesticide mixture (chlorpyrifos-difenoconazole) caused different responses in fish species from different trophic levels of the same community. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109208. [PMID: 34626844 DOI: 10.1016/j.cbpc.2021.109208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/16/2023]
Abstract
The assessment of early effects caused in biota by sublethal exposure to pesticide mixtures should enhance the realism in the ecological risk assessment for agricultural landscapes. This study aimed to evaluate sub-individual responses in fish, which can be linked with outcomes at higher levels of biological organization and affect their trophic relationships. A multilevel biomarker approach was applied to assess the effects of a 48 h exposure of two freshwater mesoamerican fish species (Parachromis dovii and Poecilia gillii) to a mixture of sublethal concentrations of chlorpyrifos (5 μg/L) and difenoconazole (325 μg/L). Transcriptomic induction of cyp1A and the activities of 7-ethoxy-resorufin-O-distillase (EROD) and glutathione S-transferase (GST) were measured as biotransformation-related biomarkers; cholinesterase activity (ChE) was assessed as a neurotoxicity biomarker; resting metabolic rate (RMR) was measured as a physiological biomarker; and the movement of fish in a dark-light environment as a behavior biomarker. The exposure to the mixture had evident effects on P. gillii, with significant induction of cyp1A transcription, increased EROD activity, ChE inhibition in muscle, and increased permanence in the light side of the dark-light environment. Meanwhile, P. dovii only showed significant induction of cyp1A, without evidence of neurotoxicity or changes in behavior. This study demonstrates that the severity of the effects caused by the exposure to a mixture of pesticides can differ among species from the same trophic chain. The potential impairment of predator-prey relationships is a relevant effect that pesticide pollution can cause and it should be considered for the risk assessment of such contaminants.
Collapse
Affiliation(s)
- Sergei Redondo-López
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica.
| | - Ana C León
- Escuela de Medicina Veterinaria, School of Veterinary Medicine, Universidad Nacional, Costa Rica.
| | - Katherine Jiménez
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica
| | - Karla Solano
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica
| | - Kinndle Blanco-Peña
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica
| | - Freylan Mena
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica.
| |
Collapse
|
17
|
Araújo MJ, Soares AMVM, Monteiro MS. Effects of exposure to the UV-filter 4-MBC during Solea senegalensis metamorphosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51440-51452. [PMID: 33987723 DOI: 10.1007/s11356-021-14235-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Many personal care products integrate UV-filters, such as 4-methylbenzylidene camphor (4-MBC), a compound frequently detected in aquatic habitats, including coastal areas. However, the potential effects of 4-MBC to saltwater species have been poorly studied. Therefore, the main objective of this work is to study the effects of 4-MBC exposure on Solea senegalensis during metamorphosis, a sensitive life stage of this flatfish. To achieve this, fish were exposed to 4-MBC (0.2-2.0 mg L-1) for 48 h at the beginning of metamorphosis (13 days after hatching, dah). After this period, the fish were transferred to a clean medium. They were fed and maintained until more than 80% of individuals in the control group completed the metamorphosis (24 dah). Mortality, malformations, and metamorphic progression were studied daily. Growth, behavior, and biochemical markers of neurotransmission (acetylcholinesterase, AChE), oxidative stress (catalase, CAT; lipid peroxidation, LPO), detoxification (glutathione S-transferase, GST), and anaerobic metabolism (lactate dehydrogenase, LDH) were also determined at the end of the experiment. An acceleration of metamorphosis progression was observed during and 2 days after the 4-MBC exposure in all concentrations tested. In addition, reduced length, inhibition of CAT activity, and induction of oxidative damage were observed (lowest observed effect concentration, LOEC = 0.928 mg L-1 4-MBC for length, CAT, and LPO). Short-term exposure to 4-MBC at the onset of metamorphosis affected S. senegalensis at several levels of organization, even after 9 days in a clean medium, including growth and metamorphic progression, suggesting possible long-term adverse effects in this species.
Collapse
Affiliation(s)
- Mário J Araújo
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Amadeu M V M Soares
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marta S Monteiro
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
18
|
Hamilton TJ, Krook J, Szaszkiewicz J, Burggren W. Shoaling, boldness, anxiety-like behavior and locomotion in zebrafish (Danio rerio) are altered by acute benzo[a]pyrene exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145702. [PMID: 33609832 DOI: 10.1016/j.scitotenv.2021.145702] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Environmental exposure to crude oil and/or its derivatives in fishes can negatively impact survival, morphology and physiology, but relatively little focus has been on behavior. Exposures can influence prey-predator interactions, courtship and other vital behaviors, leading to individual or population disruption at toxicant levels well below those producing morphological or physiological changes. The few behavioral studies of polycyclic aromatic hydrocarbons (PAHs) on fish behavior have yielded highly inconsistent results, likely relating to chronic vs. acute treatment. A few studies report lethargy and decreased exploratory behavior, while others indicate increased anxiety and greater exploratory behavior with PAH exposure. In our study on zebrafish (Danio rerio), we hypothesized that even relatively brief (30 min) exposure to the PAH benzo[a]pyrene (B[a]P) would impact group shoaling and individual behaviors in open field and novel object exploration tests. Exposures comprised measured concentrations of 1.0 μM, 10 μM, or 100 μM, B[a]P. Compared to controls, inter-individual distance (IID) was significantly increased by 100 μM B[a]P, but not by 1.0 μM or 10 μM B[a]P. Total distance moved by shoals was decreased significantly at B[a]P concentrations of 1.0 μM, 10 μM and 100 μM. In the open field test of individual locomotion and anxiety-like behavior, time spent in the thigmotaxis zone along the walls of the circular test arena (a proxy for anxiety-like behavior), was decreased at 100 μM. In the novel object approach test to investigate boldness, time spent near the object was significantly increased by both 10 μM and 100 μM B[a]P. Collectively, these data indicate a complex suite of changes in zebrafish including altered shoal dynamics, decreased anxiety, increased boldness, and decreased locomotion associated with exposure to B[a]P.
Collapse
Affiliation(s)
- Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Jeffrey Krook
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | | | - Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
19
|
Wang X, Li X, Wang Y, Qin Y, Yan B, Martyniuk CJ. A comprehensive review of strobilurin fungicide toxicity in aquatic species: Emphasis on mode of action from the zebrafish model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116671. [PMID: 33582629 DOI: 10.1016/j.envpol.2021.116671] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Strobilurins are popular fungicides used in agriculture on a global scale. Due to their widespread use as agrochemicals, they can enter aquatic environments at concentrations that can elicit adverse effects in organisms. This review synthesizes the current state of knowledge regarding the toxic effects of strobilurin fungicides on aquatic species, including algal species, Daphnia magna, and fish species, to determine risk to aquatic organisms and ecosystems. Data show that the toxicities of strobilurins vary widely across aquatic species. Strobilurins bind cytochrome bc1 in mitochondrial complex III in fungi, and as such, research in aquatic species has focused on mitochondria-related endpoints following exposures to strobilurins. In fish, studies into the activities of mitochondrial complexes and the expression of genes involved in the electron transfer chain have been conducted, converging on the theme that mitochondrial complexes and their enzymes are impaired by strobilurins. In general, the order of toxicity of strobilurins for fish species are pyraoxystrobin > pyraclostrobin ≈ trifloxystrobin > picoxystrobin > kresoxim-methyl > fluoxastrobin > azoxystrobin. In addition to mitochondrial toxicity, studies also report genotoxicity, immunotoxicity, cardiotoxicity, neurotoxicity, and endocrine disruption, and each of these events can potentially impact whole organism-level processes such as development, reproduction, and behavior. Screening data from the US Environmental Protection Agency ToxCast database supports the hypothesis that these fungicides may act as endocrine disruptors, and high throughput data suggest estrogen receptor alpha and thyroid hormone receptor beta can be activated by some strobilurins. It is recommended that studies investigate the potential for endocrine disruption by strobilurins more thoroughly in aquatic species. Based on molecular, physiological, and developmental outcomes, a proposed adverse outcome pathway is presented with complex III inhibition in the electron transfer chain as a molecular initiating event. This review comprehensively addresses sub-lethal toxicity mechanisms of strobilurin fungicides, important as the detection of strobilurins in aquatic environments suggests exposure risks in wildlife.
Collapse
Affiliation(s)
- Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoyu Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yue Wang
- The New Hope Liuhe Co., Ltd., Qingdao, China
| | - Yingju Qin
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences in Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
20
|
Rebechi D, Palacio-Cortés AM, Richardi VS, Beltrão T, Vicentini M, Grassi MT, da Silva SB, Alessandre T, Hasenbein S, Connon R, Navarro-Silva MA. Molecular and biochemical evaluation of effects of malathion, phenanthrene and cadmium on Chironomus sancticaroli (Diptera: Chironomidae) larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111953. [PMID: 33482495 DOI: 10.1016/j.ecoenv.2021.111953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/27/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
In-vitro effects of sub-lethal concentrations of malathion, phenanthrene (Phe) and cadmium (Cd) were tested on Chironomus sancticaroli larvae in acute bioassays by measuring biochemical and molecular parameters. Malathion was evaluated at 0.001, 0.0564 and 0.1006 mg L-1; Phe at 0.0025, 1.25 and 2.44 mg L-1; and Cd at 0.001, 3.2 and 7.4 mg L-1. The recovery test carried out at the highest concentration of each compound showed that survival of larvae exposed to Phe ranged from 4% to 5%, while the effects of malathion and Cd were irreversible, not allowing the emergence of adults. Results showed that malathion and Cd inhibited AChE, EST-α and ES-β activities at the two highest concentrations. Phe at 0.0025, 1.25 and 2.44 mg L-1; and Cd at 3.2 and 7.4 mg L-1 inhibited glutathione S-transferase activity. Oxidative stress was exclusively induced by the lowest concentration of malathion considering SOD activity once CAT was unaffected by the stressors. Lipid peroxidation was registered exclusively by malathion at the two highest concentrations, and total hemoglobin content was only reduced by Cd at the two highest concentrations. The relationship among biochemical results, examined using the PCA, evidenced that malathion and Cd concentrations were clustered into two groups, while Phe only formed one group. Four hemoglobin genes of C. sancticaroli were tested for the first time in this species, with Hemoglobin-C being upregulated by malathion. The toxicity ranking was malathion > Phe > Cd, while biochemical and molecular results showed the order malathion > Cd > Phe. Our results highlight the importance of combining different markers to understand the effects of the diverse compounds in aquatic organisms.
Collapse
Affiliation(s)
- Débora Rebechi
- Department of Zoology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | - Tiago Beltrão
- Department of Zoology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Maiara Vicentini
- Department of Zoology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Marco Tadeu Grassi
- Department of Chemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Thiago Alessandre
- Department of Chemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Simone Hasenbein
- Department of Anatomy, Physiology & Cell Biology, University of California, Davis, CA, USA
| | - Richard Connon
- Department of Anatomy, Physiology & Cell Biology, University of California, Davis, CA, USA
| | | |
Collapse
|
21
|
Vieira RSF, Venâncio CAS, Félix LM. Embryonic zebrafish response to a commercial formulation of azoxystrobin at environmental concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111920. [PMID: 33497861 DOI: 10.1016/j.ecoenv.2021.111920] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Azoxystrobin is a broad-spectrum strobilurin fungicide for use on a wide range of crops available to end-users as formulated products. Due to its extensive application, it has been detected in aquatic ecosystems, raising concerns about its environmental impact, which is still poorly explored. The objective of this work was to study the effects of a commercial formulation of azoxystrobin in the zebrafish embryo model. Sublethal and lethal effects were monitored during the exposure period from 2 h post fertilisation (hpf) to 96 hpf after exposure to azoxystrobin concentrations (1, 10 and 100 μg L-1). The responses of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR)) as well as detoxifying enzymes (glutathione-s-transferase (GST) and carboxylesterase (CarE)) were evaluated at 96 hpf. Similarly, glutathione levels (reduced (GSH) and oxidised (GSSG) glutathione), neurotransmission (acetylcholinesterase (AChE)) and anaerobic respiration (lactate dehydrogenase (LDH)) -related enzymes were assayed. At 120 hpf, larvae from each group were used for behaviour analysis. Results from this study showed concentration-dependent teratogenic effects, particularly by increasing the number of malformations (yolk and eye), with a higher prevalence at the highest concentration. However, it was found that the lowest concentration induced a high generation of reactive oxygen species (ROS) and increased activity of SOD, GST, and CarE. In addition, GR and GSSG levels were decreased by the lowest concentration, suggesting an adaptive response to oxidative stress, which is also supported by the increased AChE activity and absence of behavioural changes. These findings advance the knowledge of the azoxystrobin developmental and environmental impacts, which may impose ecotoxicological risks to non-target species.
Collapse
Affiliation(s)
- Raquel S F Vieira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Institute for Research and Innovation in Health, Laboratory Animal Science, Institute of Molecular and Cell Biology, University of Porto, Rua Alfredo Allen, nº 208, 4200-135 Porto, Portugal.
| |
Collapse
|
22
|
Yang H, Liang X, Zhao Y, Gu X, Mao Z, Zeng Q, Chen H, Martyniuk CJ. Molecular and behavioral responses of zebrafish embryos/larvae after sertraline exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111700. [PMID: 33396031 DOI: 10.1016/j.ecoenv.2020.111700] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Sertraline (SER) is one of the most frequently detected antidepressant drugs in aquatic environments. However, knowledge regarding SER-induced behavioral alterations in fish is insufficient, as well as the mechanisms underlying SER-induced toxicity. The present study aimed to determine behavioral and molecular responses in larval fish following SER exposure with a focus on its mode of action. Zebrafish embryos (~6 h-post-fertilization, hpf) were exposed to one of three concentrations of SER (1, 10, 100 μg/L) for 6 days, respectively. Evaluated parameters included development, behavior, transcripts related to serotonin signaling, serotonin levels, and acetylcholinesterase activity. Accelerated hatching of zebrafish embryos was observed for those fish exposed to 100 μg/L SER at 54 hpf. Locomotor activity (e.g. distance moved and mobile cumulative duration) was significantly reduced in larval zebrafish following exposure to 10 and 100 μg/L SER. Conversely, larval fish showed increased dark-avoidance after exposure to 1-100 μg/L SER. Of the measured transcripts related to serotonin signaling, only serotonin transporter (serta) and serotonin receptor 2c (5-ht2c) mRNA levels were increased in fish in response to 10 μg/L SER treatment. However, serotonin levels were unaltered in larvae exposed to SER. There were no differences among groups in acetylcholinesterase activity at any concentration tested. Taking together, the results evidenced that exposure to SER alters behavioral responses in early-staged zebrafish, which may be related to the abnormal expression of 5-ht2c. This study elucidates molecular responses to SER and characterizes targets that may be sensitive to antidepressant pharmaceuticals in larval fish.
Collapse
Affiliation(s)
- Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| |
Collapse
|
23
|
Grimard C, Mangold-Döring A, Schmitz M, Alharbi H, Jones PD, Giesy JP, Hecker M, Brinkmann M. In vitro-in vivo and cross-life stage extrapolation of uptake and biotransformation of benzo[a]pyrene in the fathead minnow (Pimephales promelas). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105616. [PMID: 33039795 DOI: 10.1016/j.aquatox.2020.105616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Understanding internal dose metrics is integral to adequately assess effects environmental contaminants might have on aquatic wildlife, including fish. In silico toxicokinetic (TK) models are a leading approach for quantifying internal exposure metrics for fishes; however, they often do not adequately consider chemicals that are actively biotransformed and have not been validated against early-life stages (ELS) that are often considered the most sensitive to the exposure to contaminants. To address these uncertainties, TK models were parameterized for the rapidly biotransformed chemical benzo[a]pyrene (B[a]P) in embryo-larval and adult life stages of fathead minnows. Biotransformation of B[a]P was determined through measurements of in vitro clearance. Using in vitro-in vivo extrapolation, in vitro clearance was integrated into a multi-compartment TK model for adult fish and a one-compartment model for ELS. Model predictions were validated using measurements of B[a]P metabolites from in vivo flow-through exposures to graded concentrations of water-borne B[a]P. Significantly greater amounts of B[a]P metabolites were observed with exposure to greater concentrations of parent compound in both life stages. However, when assessing biotransformation capacity, no differences in phase I or phase II biotransformation were observed with greater exposures to B[a]P. Results of modelling suggested that biotransformation of B[a]P can be successfully implemented into in silico models to accurately predict life stage-specific abundances of B[a]P metabolites in either whole-body larvae or the bile of adult fish. Models developed increase the scope of applications in which TK models can be used to support environmental risk assessments.
Collapse
Affiliation(s)
- Chelsea Grimard
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Annika Mangold-Döring
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
| | - Markus Schmitz
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt, Germany
| | - Hattan Alharbi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Sciences, Baylor University, Waco, Texas, USA
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
24
|
Rebelo D, Correia AT, Nunes B. Acute and chronic effects of environmental realistic concentrations of clofibric acid in Danio rerio: Behaviour, oxidative stress, biotransformation and lipid peroxidation endpoints. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103468. [PMID: 32805388 DOI: 10.1016/j.etap.2020.103468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Due to their widespread use, pharmaceuticals can be metabolized, excreted and ultimately discarded in the environment, thereby affecting aquatic organisms. Lipid-regulating drugs are among the most prescribed medications around the world, controlling human cholesterol levels, in more than 20 million patients. Despite this growing use of lipid-regulating drugs, particularly those whose active metabolite is clofibric acid, the potential toxicological effects of these pharmaceuticals in the environment is not fully characterized. This work intended to characterize the toxicity of an acute (120 hours post-fertilization) and chronic (60 days post-fertilization) exposures to clofibric acid in concentrations of 10.35, 20.7, 41.4, 82.8, and 165.6 μg L-1 in zebrafish (Danio rerio). The concentrations which were implemented in both exposures were based on predicted environmental concentrations for Portuguese surface waters. The acute effects were analysed focusing on behavioural endpoints (small and large distance travelled, swimming time and total distance travelled), biomarkers of oxidative stress (activity of the enzymes superoxide dismutase, Cu/Zn- and Mn SOD; catalase, CAT; glutathione peroxidase, Se- and total GPx), biotransformation (activity of glutathione S-transferases, GSTs) and lipid peroxidation (thiobarbituric acid reactive substances, TBARS). Chronically exposed individuals were also histologically analysed for sex determination and gonadal developmental stages. In terms of acute exposure, significant alterations were reported, in terms of behavioural alterations (hypoactivity), followed by an overall increase in all tested biomarkers. Chronically exposed organisms did not show alterations in terms of sex ratio and maturation stages, suggesting that clofibric acid did not act as an endocrine disruptor. Moreover, the metabolism of clofibric acid resulted in increased levels of both forms of SOD activity, especially for animals exposed to higher levels of this drug. An increase of CAT activity was observed in fish exposed to low levels, and a decrease in those exposed to higher amounts of clofibric acid. Both GPx forms had their activities increased. The enzyme of biotransformation GSTs were increased at low levels of clofibric acid but inhibited at higher amounts of this substance. Lipid peroxidation levels were also changed, with an induction of this parameter with increasing amounts of clofibric acid. Changes also occurred in behavioural endpoints and patterns for control organisms and for those exposed to clofibric acid were significantly distinct, for all types (light and darkness) of exposure, and for the two analysed endpoints (small and large distance). Results from this assay allow inferring that clofibric acid can have an ecologically relevant impact in living organisms exposed to this substance, with putative effects on the metabolism of individuals, affecting their behaviour and ultimately their survival.
Collapse
Affiliation(s)
- D Rebelo
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - A T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos SN, 4550-208 Matosinhos, Portugal; Faculdade de Ciências da Saúde, Universidade Fernando Pessoa (UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal
| | - B Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
25
|
Tu X, Li YW, Chen QL, Shen YJ, Liu ZH. Tributyltin enhanced anxiety of adult male zebrafish through elevating cortisol level and disruption in serotonin, dopamine and gamma-aminobutyric acid neurotransmitter pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111014. [PMID: 32888589 DOI: 10.1016/j.ecoenv.2020.111014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Tributyltin (TBT), a widely and persistently distributed organontin, has been well documented to disrupt reproduction and behaviors in animals due to its anti-aromatase activity. TBT has been also reported to enhance anxiety in several fish species, whereas the mechanism underlying remains largely unknown. To investigate the disruption of TBT on fish anxiety and the mechanisms possibly involved, adult male zebrafish (Danio rerio) were treated with TBT (100 and 500 ng/L) for 28 days and anxiety behavior was further investigated using a novel tank dive test. Result showed that TBT treatment significantly enhanced the total time of the fish spent in the lower half, delayed the onset time to the higher half of the tank and increased the total duration of freezing of the fish, indicating an enhanced anxiety in TBT-treated fish. Accordingly, TBT sharply elevated the cortisol levels in plasma in a concentration-dependent manner, suggesting that the elevated cortisol level might be involved in the enhanced anxiety. Although the expression of crha was significantly increased and crhbp was significantly decreased in the brain of TBT-treated fish which is consistent to the elevated cortisol level, the expressions of actha and acthb were sharply down-regulated. In contrast, the expressions of genes responsible for the synthesis and action of serotonin (5-HT) (pet1, thp2 and htr1aa), dopamine (DA) (th1, slc6a3, drd2a and drd2b) and gamma-aminobutyric acid (GABA) (gad2 and gabrg2) were all significantly inhibited. The down-regulation of these pivotal genes acting in 5-HT, DA and GABA neurotransmitter systems in response to TBT corresponded well with the TBT-enhanced anxiety in fish. It was thus strongly suggested that these neurotransmitters might be also involved in TBT-enhanced anxiety in adult male zebrafish. The present study extended our understanding of the neurotoxicity of TBT on the anxiety control and behavioral modulation in fish.
Collapse
Affiliation(s)
- Xin Tu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
26
|
de Paulo DV, Mariz CF, de Melo Alves MK, Alves RN, Batista RM, Fillmann G, Carvalho PSM. Histological and Behavioral Toxicity of Tributyltin in the Tropical Guppy Poecilia vivipara. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1953-1963. [PMID: 32593223 DOI: 10.1002/etc.4808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The tropical estuarine guppy Poecilia vivipara was used to address fish early life stage toxicity caused by the antifouling contaminant tributyltin. Six-day-old P. vivipara were exposed for 7 d to control water and waterborne tributyltin at 15.8, 83.8, 716, and 818 ng tin (Sn) L-1 . After exposure, swimming, feeding, growth, and eye histological endpoints were evaluated. Histopathological analysis of the retinal pigment epithelium (RPE) indicated alterations in pigment positioning at all tributyltin concentrations. A dose-dependent increase in photoreceptor layer disorganization and iris melanin hyperpigmentation was verified, and high frequencies of RPE invaginations and iris epithelial cell atrophy were observed even at the lowest exposure concentration of 15.8 ng Sn L-1 . At the highest exposure level (818 ng Sn L-1 ) fish also presented reductions in swimming speed, swimming resistance, daily capture of Artemia nauplii, and growth in weight of 85, 60, 33, and 56% relative to controls, respectively. This association between retinal histopathology and reduced swimming and foraging behavior can reduce recruitment to the adult population. Environ Toxicol Chem 2020;39:1953-1963. © 2020 SETAC.
Collapse
Affiliation(s)
- Driele Ventura de Paulo
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Célio Freire Mariz
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Maria Karolaine de Melo Alves
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Romulo Nepomuceno Alves
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Rodrigo Moço Batista
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Gilberto Fillmann
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Paulo S M Carvalho
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
27
|
Di Nica V, González ABM, Lencioni V, Villa S. Behavioural and biochemical alterations by chlorpyrifos in aquatic insects: an emerging environmental concern for pristine Alpine habitats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30918-30926. [PMID: 31630352 DOI: 10.1007/s11356-019-06467-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to assess how different concentrations of the insecticide chlorpyrifos (1.1, 5.24, 11, 52.4, 110, 262, 524 and 1100 ng L-1) affect the swimming behaviour of Diamesa zernyi larvae following exposure. A video tracking system was employed to analyse two swimming traits (total distance moved and average speed) of the larvae simultaneously after 3 days of exposure to the pesticide at 2 °C. The behavioural results were also interpreted according to biochemical responses to oxidative stress (OS) induced by chlorpyrifos, based on malondialdehyde (MDA) and protein carbonyl (PCC) content. Both distance and speed significantly decreased after 72 h of exposure to chlorpyrifos concentrations of ≥ 110 ng L-1, under which significant OS was detected as lipid peroxidation (level of MDA) and protein carbonylation (level of carbonyl). Analysis of altered swimming behaviour, along with MDA and carbonyl content, indicated that ≥ 110 ng L-1 contamination levels of the insecticide cause the organism to reallocate energy normally used for locomotor activity to repair cell damage, which might explain the strong impairment to locomotor performance. Locomotor performance is an ecologically relevant trait for elucidating the population dynamics of key species, with disturbance to this trait having long-term negative impacts on population and community structure. Therefore, chlorpyrifos insecticides represent a serious ecological risk for mountain aquatic species based on the detrimental effects observed in the current study, as the tested concentrations were those at which the insecticide is found in many Alpine rivers of Italy.
Collapse
Affiliation(s)
- Valeria Di Nica
- Department of Earth and Environmental Sciences - DISAT, University of Milano - Bicocca, Milan, Italy
| | - Ana Belén Muñiz González
- Department of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122, Trento, Italy
- Group of Biology and Environmental Toxicology, Department Physics, Mathematics and Fluids, Science Faculty, National Distance Education University (UNED), Madrid, Spain
| | - Valeria Lencioni
- Department of Invertebrate Zoology and Hydrobiology, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122, Trento, Italy.
| | - Sara Villa
- Department of Earth and Environmental Sciences - DISAT, University of Milano - Bicocca, Milan, Italy
| |
Collapse
|
28
|
Faria M, Wu X, Luja-Mondragón M, Prats E, Gómez-Oliván LM, Piña B, Raldúa D. Screening anti-predator behaviour in fish larvae exposed to environmental pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136759. [PMID: 31986390 DOI: 10.1016/j.scitotenv.2020.136759] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Predation is one of the main sources of mortality for fish larvae. During evolution, they have developed different anti-predator behaviours, as the vibrational-evoked startle response and its habituation, for promoting survival to predator's strikes. Whereas these two behaviours can be altered by the exposure to some neurotoxicants, it is currently unknown if the exposure to environmentally relevant concentration (ERC) of neurotoxic pollutants could impair them. In this study thirty neurotoxic environmental pollutants from nine chemical groups, including: herbicides; carbamate, organophosphate (OP), organochlorine (OC), neonicotinoid and pyrethroid insecticides; toxins; metal and non-metal elements, have been screened at two concentrations, including one environmental relevant concentration (ERC), for adverse effects on anti-predator behaviours by using the Vibrational Startle Response Assay on zebrafish larvae. Significant effects over anti-predator responses were equally observed in both exposure concentrations. Focusing on the ERC scenario, it was found that the startle response was the less affected behaviour, where ten pollutants from all chemical groups except for organochlorine, neonicotinoid and pyrethroids, altered this response. Interestingly, organic and inorganic pollutants showed opposite effects on this response: whereas all organic pollutants decreased the startle response, the three remaining inorganic pollutants increased it. On the other hand, more pollutants affected habituation of the startle response of the larvae, where thirteen of the pollutants from all groups, except for herbicides, altered this behaviour at ERC, generally resulting in a faster habituation except for one OP and one marine toxin, which were able to delay this response. Ultimately, only one chemical from the OP, toxin, metal and non-metal element groups altered both the startle response and its habituation at both ERC and WSC. These results emphasize the environmental risk of the current levels of some neurotoxicants present in our aquatic ecosystems, as they are high enough to impair essential anti-predator behaviours in fish larvae.
Collapse
Affiliation(s)
- Melissa Faria
- IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain.
| | - Xiaona Wu
- IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Marlenne Luja-Mondragón
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Eva Prats
- CID-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | | | | |
Collapse
|
29
|
Jacquin L, Petitjean Q, Côte J, Laffaille P, Jean S. Effects of Pollution on Fish Behavior, Personality, and Cognition: Some Research Perspectives. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00086] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
30
|
Ward JL, Korn V, Auxier AN, Schoenfuss HL. Temperature and Estrogen Alter Predator-Prey Interactions between Fish Species. Integr Org Biol 2020; 2:obaa008. [PMID: 33791552 PMCID: PMC7671136 DOI: 10.1093/iob/obaa008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A variety of environmental estrogens are commonly detected in human-impacted waterways. Although much is known about the effects of these environmental estrogens on the reproductive physiology and behavior of individuals within species, comparatively less is known about how these compounds alter the outcomes of interactions between species. Furthermore, few studies have considered how the effects of contaminants are modulated by natural variation in abiotic factors, such as temperature. To help fill this knowledge gap, we conducted a factorial experiment to examine the independent and combined effects of estrone (E1) and temperature on the outcome of predator-prey interactions between two common North American freshwater fishes, fathead minnows (Pimephales promelas) and bluegill sunfish (Lepomis macrochirus). Larval fathead minnows and adult sunfish were exposed to either a low (mean±standard deviation, 90.1 ± 18 ng/L; n = 16) or high (414 ± 147 ng/L; n = 15) concentration of E1 or to a solvent control for 30 days at one of four natural seasonal temperatures (15°C, 18°C, 21°C, and 24°C) before predation trials were performed. Exposure to E1 was associated with a significant increase in larval predation mortality that was independent of temperature. Across all temperature treatments, approximately 74% of control minnows survived; this survivorship significantly exceeded that of minnows exposed to either concentration of E1 (49% and 53% for minnows exposed to the low and high concentrations, respectively). However, exposure to E1 also impaired the prey-capture success of sunfish, partially mitigating predation pressure on exposed minnows. Overall prey-capture success by sunfish showed an inverted U-shaped distribution with temperature, with maximal prey consumption occurring at 21°C. This study illustrates the vulnerability of organismal interactions to estrogenic pollutants and highlights the need to include food web interactions in assessments of risk.
Collapse
Affiliation(s)
- J L Ward
- Department of Biology, Ball State University, 2111 W Riverside Ave, Muncie, IN 47306, USA
| | - V Korn
- Aquatic Toxicology Laboratory, Department of Biology, St. Cloud State University, 720 4th Avenue South, St Cloud, MN 56301, USA
| | - A N Auxier
- Department of Biology, Ball State University, 2111 W Riverside Ave, Muncie, IN 47306, USA
| | - H L Schoenfuss
- Aquatic Toxicology Laboratory, Department of Biology, St. Cloud State University, 720 4th Avenue South, St Cloud, MN 56301, USA
| |
Collapse
|
31
|
Kumar N, Willis A, Satbhai K, Ramalingam L, Schmitt C, Moustaid-Moussa N, Crago J. Developmental toxicity in embryo-larval zebrafish (Danio rerio) exposed to strobilurin fungicides (azoxystrobin and pyraclostrobin). CHEMOSPHERE 2020; 241:124980. [PMID: 31600620 DOI: 10.1016/j.chemosphere.2019.124980] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Azoxystrobin and pyraclostrobin are broad spectrum strobilurin fungicides that have been measured in the aquatic environment. Strobilurins inhibit mitochondrial respiration by binding to the mitochondrial respiratory complex III. The goal of this study was to investigate mitochondrial dysfunction and oxidative stress in the developing zebrafish from exposure to azoxystrobin and pyraclostrobin. Exposure studies were performed where zebrafish embryos were exposed to azoxystrobin and pyraclostrobin at 0.1, 10, 100 μg/L from 4 hpf to 48 hpf to measure mitochondrial dysfunction and oxidative stress mRNA transcripts, and 5 dpf to measure movement, growth, oxygen consumption, enzymatic activities, and mRNA transcripts. Results from this study indicated that there was a significant reduction in both basal and maximal respiration at 48 hpf in zebrafish exposed to 100 μg/L of pyraclostrobin. There was no difference in oxidative stress or apoptotic mRNA transcripts at 48 hpf, indicating that the two strobilurins were acting first on mitochondrial function and not directly through oxidative stress. At 5 dpf, standard body length was significantly reduced with exposure to pyraclostrobin and azoxystrobin exposure as compared to the control. These reductions in apical endpoints corresponded with increases in oxidative stress and apoptotic mRNA transcripts in treatment groups at 5 dpf indicating that strobilurins' exposure followed the adverse outcome pathway for mito-toxicants. Our results indicate that strobilurins can decrease mitochondrial function, which in turn lead to diminished growth and movement.
Collapse
Affiliation(s)
- N Kumar
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA.
| | - A Willis
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - K Satbhai
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | - L Ramalingam
- Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - C Schmitt
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | | | - J Crago
- The Institute of Environmental and Human Health (TIEHH), Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
32
|
Liang X, Zhao Y, Liu W, Li Z, Souders CL, Martyniuk CJ. Butylated hydroxytoluene induces hyperactivity and alters dopamine-related gene expression in larval zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113624. [PMID: 31780362 DOI: 10.1016/j.envpol.2019.113624] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/30/2019] [Accepted: 11/12/2019] [Indexed: 05/21/2023]
Abstract
Butylated hydroxytoluene (BHT) is one of the most frequently used synthetic phenolic antioxidants added to food and consumer products such as plastics as a preservative. Due to its high production volume, BHT has been detected in aquatic environments, raising concerns about sub-lethal toxicity. However, there are limited toxicological data for BHT, especially in fish. In this study, zebrafish embryos were exposed to BHT at concentrations ranging 0.01-100 μM for up to 6 days post fertilization (dpf). Acute toxicity was assessed, and experiments revealed that BHT had a 96 h LC50 value of 57.61 μM. At sub-lethal doses (0.1-60 μM), BHT markedly decreased heart rates of zebrafish embryos at 48 h and 72 h by ∼25-30%. Basal and maximal respiration of zebrafish embryos at 24 hpf were decreased by 59.3% and 41.4% respectively following exposure to 100 μM BHT. Behavior in zebrafish was measured at 6 dpf following exposures to 0.01-10 μM BHT. Locomotor behaviors (e.g. total distance moved and velocity) were significantly increased in larvae at doses higher than 0.1 μM BHT. In addition, dark-avoidance behavior was decreased following exposure to 0.01 μM BHT, while conversely, it was increased in zebrafish exposed to 0.1 μM BHT. To investigate potential underlying mechanisms that could explain behavioral changes, transcripts involved in dopamine signaling were measured. Relative expression of dat mRNA was increased in larval fish from the 0.01 μM BHT treatment, while there were no effects on dat mRNA levels at higher concentrations. The mRNA levels of drd3 were decreased in zebrafish from the 1 μM BHT treatment. Taken together, BHT can affect the expression of the dopamine system, which is hypothesized to be related to the abnormal anxiety-associated behavior of larval zebrafish.
Collapse
Affiliation(s)
- Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yaqian Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Wang Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Zhitong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
33
|
Chen L, Tsui MMP, Hu C, Wan T, Au DWT, Lam JCW, Lam PKS, Zhou B. Parental Exposure to Perfluorobutanesulfonate Impairs Offspring Development through Inheritance of Paternal Methylome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12018-12025. [PMID: 31539238 DOI: 10.1021/acs.est.9b03865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Perfluorobutanesulfonate (PFBS), an environmental pollutant of emerging concern, significantly impairs offspring development and overall health after parental exposure. However, the true inducer of offspring developmental defects among the complexity of parental influences remains unknown. In the present study, marine medaka (Oryzias melastigma) were exposed to environmentally realistic concentrations of PFBS (0, 1, 3, and 10 μg/L) for an entire life cycle. By mixing and mating control and exposed medaka (male or female), a crossbreeding strategy was employed to produce offspring eggs from various crossbreeds, with the aim of differentiating the maternal and paternal influences. Measurements of swimming performance in larval offspring showed that larvae of exposed male parents swam hyperactively in comparison to the control larvae. Contrasting trends in PFBS transfer and maternal factor transfer (e.g., proteins and lipids) to that of swimming behavior eliminated these two factors as major inducers of offspring developmental impairment. Inheritance of the exposed paternal methylome marks in offspring may be partially responsible for abnormal swimming behavior, although different toxic mechanisms may be involved depending on the exposure concentration. Overall, these findings suggest that inheritance of epigenetic modifications implicates a long-lasting threat of PFBS to the fitness and sustainability of fish populations.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , People's Republic of China
| | - Mirabelle M P Tsui
- State Key Laboratory of Marine Pollution , City University of Hong Kong , Kowloon, Hong Kong SAR , People's Republic of China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Wuhan 430072 , People's Republic of China
| | - Teng Wan
- Department of Chemistry , City University of Hong Kong , Kowloon, Hong Kong SAR , People's Republic of China
| | - Doris W T Au
- Department of Chemistry , City University of Hong Kong , Kowloon, Hong Kong SAR , People's Republic of China
| | - James C W Lam
- State Key Laboratory of Marine Pollution , City University of Hong Kong , Kowloon, Hong Kong SAR , People's Republic of China
- Department of Science and Environmental Studies , The Education University of Hong Kong , Hong Kong SAR People's Republic of China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution , City University of Hong Kong , Kowloon, Hong Kong SAR , People's Republic of China
- Department of Chemistry , City University of Hong Kong , Kowloon, Hong Kong SAR , People's Republic of China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , People's Republic of China
| |
Collapse
|
34
|
Stenzel A, Wirt H, Patten A, Theodore B, King-Heiden T. Larval exposure to environmentally relevant concentrations of triclosan impairs metamorphosis and reproductive fitness in zebrafish. Reprod Toxicol 2019; 87:79-86. [PMID: 31102721 DOI: 10.1016/j.reprotox.2019.05.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 01/05/2023]
Abstract
Developmental exposure to endocrine disruptors can cause organizational changes resulting in latent and transgenerational disease. We exposed zebrafish to environmentally relevant concentrations of triclosan during the critical period of metamorphosis and somatic sex differentiation to determine effects on metamorphosis and reproduction. We use biological and morphological biomarkers to predict potential modes of action. Larval exposure to environmentally relevant concentrations of triclosan was sufficient to cause adverse effects in adults and their offspring. TCS exposure delays metamorphosis and impairs fecundity and fertility. Offspring from TCS-exposed fish show decreased survival and delayed maturation, but their reproductive capacity is not altered. Delays in metamorphosis in conjunction with morphological indicators suggest that toxicity may result from lowered thyroid hormones in parental fish. This work illustrates the importance of evaluating the latent effects of early exposure to environmental contaminants, and that further studies to evaluate the effects of triclosan on the thyroid axis are warranted.
Collapse
Affiliation(s)
- Amanda Stenzel
- University of Wisconsin - La Crosse, Department of Biology and River Studies Center, 1725 State Street, La Crosse, WI, 54601, United States
| | - Heidi Wirt
- University of Wisconsin - La Crosse, Department of Biology and River Studies Center, 1725 State Street, La Crosse, WI, 54601, United States
| | - Alyssa Patten
- University of Wisconsin - La Crosse, Department of Biology and River Studies Center, 1725 State Street, La Crosse, WI, 54601, United States
| | - Briannae Theodore
- University of Wisconsin - La Crosse, Department of Biology and River Studies Center, 1725 State Street, La Crosse, WI, 54601, United States
| | - Tisha King-Heiden
- University of Wisconsin - La Crosse, Department of Biology and River Studies Center, 1725 State Street, La Crosse, WI, 54601, United States.
| |
Collapse
|
35
|
Huang IJ, Sirotkin HI, McElroy AE. Varying the exposure period and duration of neuroactive pharmaceuticals and their metabolites modulates effects on the visual motor response in zebrafish (Danio rerio) larvae. Neurotoxicol Teratol 2019; 72:39-48. [PMID: 30711622 DOI: 10.1016/j.ntt.2019.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/21/2023]
Abstract
Pharmaceuticals and personal care products are emerging contaminants that are increasingly detected in surface waters around the world. Despite the rise in environmental detections, measured concentrations are still typically low, raising the importance of environmental risk assessments that focus on ecologically relevant sublethal endpoints, such as altered behavior. Neuroactive pharmaceuticals, like mental health medications, pain killers, etc., may be particularly potent in this regard as they are specifically designed to cause behavioral changes without causing physiologic impairment in mammalian systems. We screened 15 different popular neuroactive pharmaceuticals, ranging from antidepressants (including 3 major antidepressant metabolites), anxiety medications, and pain killers, under three different exposure scenarios (repeated, late acute and early transient exposure) to look for behavioral effects in larval zebrafish using the visual motor response (VMR). Drugs were screened at 0, 1, 10, and 100 μg/L in the repeated exposure scenario, and at 0 and 100 μg/L in the late acute and early transient exposure scenarios. Eight of the 15 compounds tested, specifically the antidepressants amitriptyline, fluoxetine, nor-fluoxetine, paroxetine, sertraline, nor-sertraline, venlafaxine, and the antipsychotic drug haloperidol decreased swimming activity by 25% to 40% under repeated exposure conditions. Five of the compounds (amitriptyline, fluoxetine, nor-fluoxetine, paroxetine, and sertraline) also significantly decreased activity by 17% to 31% in the late acute exposure paradigm. Three compounds (fluoxetine, paroxetine and venlafaxine) significantly altered swimming activity with early transient exposure, however creating a hyperactive response and increasing activity from 24% to 28%, while haloperidol significantly decreased activity by 31%. This paper is, to our knowledge, the first to screen so many neuroactive pharmaceuticals, including major metabolites, in parallel under multiple exposure conditions. We show that antidepressants most consistently alter VMR swimming activity. Additionally, we show that major antidepressant metabolites can potentially alter behavior as much as their parent compounds. Furthermore, we show that the magnitude and direction of behavioral effect is dependent on the exposure duration and period, indicating that a more diverse experimental approach might be needed to more accurately assess the risk these compounds pose to the environment.
Collapse
Affiliation(s)
- Irvin J Huang
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Howard I Sirotkin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States of America
| | - Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States of America.
| |
Collapse
|
36
|
Thoré ESJ, Steenaerts L, Philippe C, Grégoir AF, Brendonck L, Pinceel T. Improving the reliability and ecological validity of pharmaceutical risk assessment: Turquoise killifish (Nothobranchius furzeri) as a model in behavioral ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:262-270. [PMID: 30357889 DOI: 10.1002/etc.4301] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/08/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals are essential for human well-being, but their increasing and continuous use pollutes the environment. Although behavioral ecotoxicology is increasingly advocated to assess the effects of pharmaceutical pollution on wildlife and ecosystems, a consensus on the actual environmental risks is lacking for most compounds. The main limitation is the lack of standardized reproducible tests that are based on sensitive behavioral endpoints and that accommodate a high ecological relevance. In the present study, we assessed the impact of a 3-wk exposure to the antidepressant fluoxetine on multiple behavioral traits in the promising new model organism Nothobranchius furzeri (turquoise killifish). Overall, our study shows that fluoxetine can impact feeding behavior, habitat choice in a novel environment, and antipredator response of N. furzeri individuals; effects on spontaneous activity and exploration tendency were less pronounced. However, effects became only apparent when individuals were exposed to fluoxetine concentrations that were 10 times higher than typical concentrations in natural aquatic environments. Ecotoxicologists are challenged to maximize both the reliability and ecological validity of risk assessments of pollutants. Our study contributes to the development of a time- and cost-efficient, standardized ecotoxicological test based on sensitive, ecologically relevant behavioral endpoints in N. furzeri. Environ Toxicol Chem 2019;38:262-270. © 2018 SETAC.
Collapse
Affiliation(s)
- Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Laure Steenaerts
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Systemic Physiological and Ecotoxicological Research, University of Antwerp, Antwerp, Belgium
| | - Arnout F Grégoir
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium
- Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
37
|
Frank DF, Brander SM, Hasenbein S, Harvey DJ, Lein PJ, Geist J, Connon RE. Developmental exposure to environmentally relevant concentrations of bifenthrin alters transcription of mTOR and ryanodine receptor-dependent signaling molecules and impairs predator avoidance behavior across early life stages in inland silversides (Menidia beryllina). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:1-13. [PMID: 30414561 PMCID: PMC6464817 DOI: 10.1016/j.aquatox.2018.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 05/05/2023]
Abstract
Altered transcription of calcium-dependent signaling cascades involving the ryanodine receptor (RyR) and mechanistic target of rapamycin (mTOR) in response to environmental exposures have been described in model vertebrates, including zebrafish, while the relevance for wild fishes remains unknown. To address this knowledge gap, we exposed the euryhaline model species Menidia beryllina (inland silversides) to the insecticide bifenthrin, a known modulator of calcium signaling. The main objectives of this study were to determine: (1) whether exposure of developing silversides to environmentally relevant concentrations of bifenthrin alters their behavior; and (2) whether behavioral changes correlate with altered expression of genes involved in RyR and mTOR-dependent signaling pathways. At six hours post fertilization (hpf), inland silversides were exposed to bifenthrin at 3, 27 and 122 ng/L until 7 days post fertilization (dpf, larvae hatched at 6dpf), followed by a 14-day recovery period in uncontaminated water. Transcriptional responses were measured at 5, 7 and 21 dpf; locomotor behavior following external stimuli and response to an olfactory predator cue were assessed at 7 and 21 dpf. Bifenthrin elicited significant non-monotonic transcriptional responses in the majority of genes examined at 5 dpf and at 21 dpf. Bifenthrin also significantly altered predator avoidance behavior via olfactory mechanisms with main effects identified for animals exposed to 3 and 27 ng/L. Behavioral effects were not detected in response to visual stimuli during acute exposure, but were significant in the predator-cue assessment following the recovery period, suggesting delayed and long-term effects of early developmental exposures to bifenthrin. Our findings demonstrate that at picomolar (pM) concentrations, which are often not represented in ecotoxicological studies, bifenthrin perturbs early development of inland silversides. These developmental impacts are manifested behaviorally at later life stages, specifically as altered patterns of predator avoidance behavior, which have been correlated with population decline. Collectively, these data suggest that bifenthrin may be negatively impacting wild fish populations.
Collapse
Affiliation(s)
- Daniel F Frank
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Department of Biology & Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Simone Hasenbein
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Danielle J Harvey
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Juergen Geist
- Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Richard E Connon
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
38
|
Wirt H, Botka R, Perez KE, King-Heiden T. Embryonic exposure to environmentally relevant concentrations of triclosan impairs foraging efficiency in zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:3124-3133. [PMID: 30264895 DOI: 10.1002/etc.4281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/13/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
The ubiquitous and persistent contaminant triclosan is known to cause developmental and behavioral toxicity in fish, but few studies have evaluated the long-term effects of these responses. We used a phenotypically anchored approach to evaluate the behavioral responses caused by early exposure to environmentally relevant concentrations of triclosan to better understand the risk triclosan poses to fish. Zebrafish were exposed to 0, 0.4, 4, or 40 μg triclosan/L (nominal concentrations) for 5 d followed by depuration for 16 d to assess effects on mortality, development, and foraging efficiency. Because foraging efficiency can be impacted by neurological and structural alterations, we assessed morphological and behavioral indicators of neurotoxicity and morphology of craniofacial features associated with gape to identify potential underlying mechanisms associated with altered foraging behaviors. To our knowledge, we are the first to show that early exposure to environmentally relevant concentrations of triclosan impairs foraging efficiency in larval fish by 10%, leading to emaciation and reduced growth and survival. The cause of the impacts of triclosan on foraging efficiency remains unknown, because effects were not associated with overt indicators of neurotoxicity or grossly malformed craniofacial structures. Our results suggest that early exposure to triclosan has the potential to impact the sustainability of wild fish populations, and thus the mechanism underlying behavioral alterations following exposure to triclosan warrants further study. Environ Toxicol Chem 2018;37:3124-3133. © 2018 SETAC.
Collapse
Affiliation(s)
- Heidi Wirt
- Department of Biology and River Studies Center, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - Rosalea Botka
- Department of Biology and River Studies Center, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - Kathryn E Perez
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Tisha King-Heiden
- Department of Biology and River Studies Center, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| |
Collapse
|
39
|
Wang XH, Zheng SS, Huang T, Su LM, Zhao YH, Souders CL, Martyniuk CJ. Fluazinam impairs oxidative phosphorylation and induces hyper/hypo-activity in a dose specific manner in zebrafish larvae. CHEMOSPHERE 2018; 210:633-644. [PMID: 30031347 DOI: 10.1016/j.chemosphere.2018.07.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 06/08/2023]
Abstract
Fluazinam is a pyridinamine fungicide that induces oxidative stress and mitochondrial damage in cells, and it has been reported to be neurotoxic. To characterize the biological effects of fluazinam, we assessed mitochondrial bioenergetics, dopamine system expression, and behavior of early life staged zebrafish (0.01 μM-0.5 μM). Fluazinam at environmentally-relevant levels did not induce sub-lethal effects in larvae, but at the LC50 (0.5 μM), fluazinam decreased basal and ATP-linked respiration significantly in embryos. As mitochondria are directly related to redox homeostasis and apoptosis, the expression of genes related to oxidative stress and apoptosis were measured. Superoxide dismutase 2 (sod2), heat stock protein 70 (hsp70), bcl2-associated X protein (bax), and caspase 9 (casp9) mRNA levels were up-regulated by 0.5 μM fluazinam. Taken together, there was evidence for mitochondrial dysfunction and oxidative damage at the highest concentration of fluazinam (0.5 μM) tested. As there are reports for fluazinam-induced neurotoxicity in dopamine synthesizing cells, transcriptional targets in the dopamine system were assessed in the zebrafish. Tyrosine hydroxylase 1 (th1) and dopamine receptor 2a (drd2a) mRNA levels were decreased by 0.5 μM fluazinam, suggesting that this fungicide may affect the dopaminergic system. To further assess the potential for fluazinam-mediated neuromodulation, the dark photokinesis response was assessed in larvae following exposure. Larvae exposed to 0.1 μM fluazinam showed hyperactivity, while larvae exposed to 0.2 and 0.3 μM showed hypo-activity. This study demonstrates that fluazinam disrupts mitochondrial bioenergetics in zebrafish, inducing an oxidative stress response, and aberrant behaviors in larvae that are dose dependent.
Collapse
Affiliation(s)
- Xiao H Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Shan S Zheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Tao Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Li M Su
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China.
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
40
|
Kohler SA, Parker MO, Ford AT. Species-specific behaviours in amphipods highlight the need for understanding baseline behaviours in ecotoxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:173-180. [PMID: 30053685 DOI: 10.1016/j.aquatox.2018.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Behavioural studies in ecotoxicology are increasing with techniques and endpoints used in pharmacology being translated to other vertebrate and invertebrate species. Despite this, data on the baseline behaviours of model organisms, and inter-species variability in behaviour are currently under-studied. This study assessed a range of behaviours associated with anxiety including swimming speed, phototaxis and thigmotaxis in a marine and freshwater amphipod (Echinogammarus marinus and Gammarus pulex). Differences in sensitivity to these assays were observed between species with E. marinus showing a greater sensitivity to the phototaxis assay than G. pulex, while in thigmotaxis assays G. pulex appeared better suited than E. marinus for measuring differences in the use of central zones. Significant inter-species differences were also observed in swimming patterns when breaking the data into ten second time bins but not when data was broken into two-minute time bins. The results of this study provide evidence of phototactic and thigmotactic behaviours in two model crustacean species with potential for use in behavioural ecotoxicology. Inter-species variability in sensitivity to behavioural assays highlights the importance of systematic assessment of baseline responses for all model species used in behavioural studies. Careful analysis of data is also required when performing behavioural studies so as not to lose sensitivity in your data.
Collapse
Affiliation(s)
- Shanelle A Kohler
- School of Biological Sciences, Institute of Marine Sciences Laboratories, Langstone Harbour, Ferry Road, Eastney, Portsmouth, P04 9LY, United Kingdom
| | - Matthew O Parker
- School of Pharmacy and Biomedical Science, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, United Kingdom
| | - Alex T Ford
- School of Biological Sciences, Institute of Marine Sciences Laboratories, Langstone Harbour, Ferry Road, Eastney, Portsmouth, P04 9LY, United Kingdom.
| |
Collapse
|
41
|
Kohler SA, Parker MO, Ford AT. Shape and size of the arenas affect amphipod behaviours: implications for ecotoxicology. PeerJ 2018; 6:e5271. [PMID: 30065877 PMCID: PMC6064634 DOI: 10.7717/peerj.5271] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/29/2018] [Indexed: 01/18/2023] Open
Abstract
The use of behaviour in ecotoxicology is expanding, however the lack of standardisation and validation of these assays currently presents a major drawback in moving forward in the development of behavioural assays. Furthermore, there is a current paucity of control data on test species, particularly invertebrate models. In this study we assessed a range of behaviours associated with spatial distribution and locomotion in relation to arena size and shape in two species of amphipod crustacean (Echinogammarus marinus and Gammarus pulex). Arena shape had significant effects on almost all behavioural parameters analysed. Increasing arena size resulted in an increased mean velocity and activity plus increased proportional use of the central zones. These results indicate that 'ceiling effects' may occur in some ecotoxicological studies resulting in potentially 'false' negative effects if careful consideration is not paid to experimental design. Differences in behaviours were observed between the two species of amphipod. For example, G. pulex spend approximately five times (∼20%) more of the available time crossing the central zones of the arenas compared to E. marinus (∼4%) which could have implications on assessing anxiolytic behaviours. The results of this study highlight several behaviours with potential for use in behavioural ecotoxicology with crustaceans but also underscore the need for careful consideration when designing these behavioural assays.
Collapse
Affiliation(s)
- Shanelle A. Kohler
- Institute of Marine Sciences, Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Matthew O. Parker
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Alex T. Ford
- Institute of Marine Sciences, Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
42
|
Villa S, Di Nica V, Pescatore T, Bellamoli F, Miari F, Finizio A, Lencioni V. Comparison of the behavioural effects of pharmaceuticals and pesticides on Diamesa zernyi larvae (Chironomidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:130-139. [PMID: 29554561 DOI: 10.1016/j.envpol.2018.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 05/20/2023]
Abstract
Several studies have indicated the presence of contaminants in Alpine aquatic ecosystems. Even if measured concentrations are far below those that cause acute effects, continuous exposure to sub-lethal concentrations may have detrimental effects on the aquatic species present in these remote environments. This may lead to a cascade of indirect effects at higher levels of the ecological hierarchy (i.e., the community). To improve the determination of ecologically relevant risk endpoints, behavioural alterations in organisms due to pollutants are increasingly studied in ecotoxicology. In fact, behaviour links physiological function with ecological processes, and can be very sensitive to environmental stimuli and chemical exposure. This is the first study on behavioural alteration in a wild population of an Alpine species. In the present study, a video tracking system was standardized and subsequently used to identify contaminant-induced behavioural alterations in Diamesa zernyi larvae (Diptera, Chironomidae). Diamesa zernyi larvae, collected in an Italian Alpine stream (Rio Presena, Trentino Region), were acclimated for 24 h and successively exposed to several aquatic contaminants (pesticides: chlorpyrifos, metolachlor, boscalid, captan; pharmaceuticals: ibuprofen, furosemide, trimethoprim) at concentrations corresponding to their Lowest Observed Effect Concentration (LOEC). After 24, 48, 72, and 96 h of exposure, changes in the distance moved, the average speed, and the frequency of body bends were taken to reflect contaminant- and time-dependent effects on larval behaviour. In general, metolachlor, captan, and trimethoprim tended to reduce all the endpoints under consideration, whereas chlorpyrifos, boscalid, ibuprofen, and furosemide seemed to increase the distances moved by the larvae. This could be related to the different mechanisms of action of the investigated chemicals. Independently of the contaminant, after 72 h a general slowing down of all the behavioural activities occurred. Finally, we propose a behavioural stress indicator to compare the overall behavioural effects induced by the various contaminants.
Collapse
Affiliation(s)
- Sara Villa
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Valeria Di Nica
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Tanita Pescatore
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29.300, Monterotondo, 00015 Rome, Italy
| | - Francesco Bellamoli
- Section of Invertebrate Zoology and Hydrobiology, MUSE - Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy
| | - Francesco Miari
- Section of Invertebrate Zoology and Hydrobiology, MUSE - Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy
| | - Antonio Finizio
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Valeria Lencioni
- Section of Invertebrate Zoology and Hydrobiology, MUSE - Museo delle Scienze, Corso del Lavoro e della Scienza 3, 38122 Trento, Italy.
| |
Collapse
|
43
|
Poulsen R, Cedergreen N, Hayes T, Hansen M. Nitrate: An Environmental Endocrine Disruptor? A Review of Evidence and Research Needs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3869-3887. [PMID: 29494771 DOI: 10.1021/acs.est.7b06419] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nitrate is heavily used as an agricultural fertilizer and is today a ubiquitous environmental pollutant. Environmental endocrine effects caused by nitrate have received increasing attention over the last 15 years. Nitrate is hypothesized to interfere with thyroid and steroid hormone homeostasis and developmental and reproductive end points. The current review focuses on aquatic ecotoxicology with emphasis on field and laboratory controlled in vitro and in vivo studies. Furthermore, nitrate is just one of several forms of nitrogen that is present in the environment and many of these are quickly interconvertible. Therefore, the focus is additionally confined to the oxidized nitrogen species (nitrate, nitrite and nitric oxide). We reviewed 26 environmental toxicology studies and our main findings are (1) nitrate has endocrine disrupting properties and hypotheses for mechanisms exist, which warrants for further investigations; (2) there are issues determining actual nitrate-speciation and abundance is not quantified in a number of studies, making links to speciation-specific effects difficult; and (3) more advanced analytical chemistry methodologies are needed both for exposure assessment and in the determination of endocrine biomarkers.
Collapse
Affiliation(s)
- Rikke Poulsen
- Department of Plant and Environmental Sciences , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Tyrone Hayes
- Laboratory for Integrative Studies in Amphibian Biology, Molecular Toxicology, Group in Endocrinology, Energy and Resources Group, Museum of Vertebrate Zoology, and Department of Integrative Biology , University of California , Berkeley , California 94720 , United States
| | - Martin Hansen
- Department of Plant and Environmental Sciences , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
- Laboratory for Integrative Studies in Amphibian Biology, Molecular Toxicology, Group in Endocrinology, Energy and Resources Group, Museum of Vertebrate Zoology, and Department of Integrative Biology , University of California , Berkeley , California 94720 , United States
- Department of Environmental and Civil Engineering , University of California , Berkeley , California 94720 , United States
- Department of Environmental Science , Aarhus University , 4000 Roskilde , Denmark
| |
Collapse
|
44
|
Ferrario C, Parolini M, De Felice B, Villa S, Finizio A. Linking sub-individual and supra-individual effects in Daphnia magna exposed to sub-lethal concentration of chlorpyrifos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:411-418. [PMID: 29310084 DOI: 10.1016/j.envpol.2017.12.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/15/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
The main objective of the present study was to investigate possible links between sub-individual and supra-individual levels (i.e. population level) biomarkers in D. magna exposed to sublethal concentrations of the insecticide chlorpyrifos (CPF). To achieve the aim, 8-day old individuals were exposed for 96 h to two environmentally relevant concentrations of CPF (50 and 250 ng/L). Sub-individual level effects were investigated by measuring the activity of antioxidant (SOD, CAT, and GPx) and detoxifying (GST) enzymes, as well as by measuring the acetylcholinesterase (AChE) inhibition. In addition, the effects at supra-individual level were assessed by using a video-tracking system and analyzing changes in swimming capabilities (i.e. percentage of activity time, distance moved, and velocity). Our data have shown that daphnids exposed to both CPF concentrations were in a condition of stress which was highlighted by changes in both sub- and supra-individual biomarkers. Moreover, our results highlighted that the lowest tested CPF concentration did not modulate the antioxidant and detoxifying enzymes, whereas, an inhibition of AChE and a decrease of some parameters related to swimming behaviour (distance moved and velocity) were noted. On the contrary, significant changes in all the sub-individual biomarkers were measured at the highest tested concentration. In addition, organisms recovered the movement capability (distance moved) and also activate a mechanism of avoidance (increased swimming velocity). On the other hand, a reduction in the percent of active time was measured and this was attributed to the energy spent by organisms to activate antioxidant and detoxifying enzymes and the mechanism of avoidance. Based on these results, our study suggests the existence of a link between sub- and supra-individual levels, as the activation or non-activation in the antioxidant and detoxifying enzymes activities can led to different modifications of the swimming behaviour in D. magna.
Collapse
Affiliation(s)
- Claudia Ferrario
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, I-20133 Milano, Italy
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, I-20133 Milano, Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Antonio Finizio
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| |
Collapse
|
45
|
Sonnack L, Klawonn T, Kriehuber R, Hollert H, Schäfers C, Fenske M. Comparative analysis of the transcriptome responses of zebrafish embryos after exposure to low concentrations of cadmium, cobalt and copper. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 25:99-108. [DOI: 10.1016/j.cbd.2017.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/20/2017] [Accepted: 12/07/2017] [Indexed: 12/24/2022]
|
46
|
Wang XH, Souders CL, Zhao YH, Martyniuk CJ. Mitochondrial bioenergetics and locomotor activity are altered in zebrafish (Danio rerio) after exposure to the bipyridylium herbicide diquat. Toxicol Lett 2018; 283:13-20. [DOI: 10.1016/j.toxlet.2017.10.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/06/2017] [Accepted: 10/29/2017] [Indexed: 12/19/2022]
|
47
|
Liang X, Souders CL, Zhang J, Martyniuk CJ. Tributyltin induces premature hatching and reduces locomotor activity in zebrafish (Danio rerio) embryos/larvae at environmentally relevant levels. CHEMOSPHERE 2017; 189:498-506. [PMID: 28961535 DOI: 10.1016/j.chemosphere.2017.09.093] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 05/08/2023]
Abstract
Tributyltin (TBT) is an organotin compound that is the active ingredient of many biocides and antifouling agents. In addition to its well established role as an endocrine disruptor, TBT is also associated with adverse effects on the nervous system and behavior. In this study, zebrafish (Danio rerio) embryos were exposed to environmentally relevant concentrations of TBT (0.01, 0.1, 1 nM) to determine how low levels affected development and behavior. Fish exposed to 1 nM TBT hatched earlier when compared to controls. Following a 96-h exposure, total swimming distance, velocity, and activity of zebrafish larvae were reduced compared to controls. To identify putative mechanisms for these altered endpoints, we assessed embryo bioenergetics and gene expression. We reasoned that the accelerated hatch time could be related to ATP production and energy, thus embryos were exposed to TBT for 24 and 48-h exposure prior to hatch. There were no differences among groups for endpoints related to bioenergetics (i.e. basal, ATP-dependent, and maximal respiration). To address mechanisms related to changes in behavioral activity, we measured transcripts associated with muscle function (myf6, myoD, and myoG) and dopamine signaling (th, dat, dopamine receptors) as dopamine regulates behavior. No transcript was altered in expression by TBT in larvae, suggesting that other mechanisms exist that may explain changes in higher level endpoints. These results suggest that endpoints related to the whole animal (i.e. timing of hatch and locomotor behavior) are more sensitive to environmentally-relevant concentrations of TBT compared to the molecular and metabolic endpoints examined here.
Collapse
Affiliation(s)
- Xuefang Liang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher L Souders
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA
| | - Jiliang Zhang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
48
|
Qiu X, Nomichi S, Chen K, Honda M, Kang IJ, Shimasaki Y, Oshima Y. Short-term and persistent impacts on behaviors related to locomotion, anxiety, and startle responses of Japanese medaka (Oryzias latipes) induced by acute, sublethal exposure to chlorpyrifos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:148-154. [PMID: 28957716 DOI: 10.1016/j.aquatox.2017.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Although most exposures to chlorpyrifos (CPF) in natural flowing waters are brief and episodic, there have been a few reports of the persistence of abnormal fish behaviors caused by such acute exposure. The present study focused on the behavioral and biochemical responses of Japanese medaka (Oryzias latipes) to acute, sublethal exposure to CPF, as well as the persistence of the effects during a 3-week recovery test in CPF-free water. The medaka became hyperactive and exhibited an elevated anxiety state after a 4-day exposure to 0.024mg/L of CPF, but they recovered from these abnormal behavioral responses within 7days of recovery treatment. In contrast, persistent impacts on some startle responses to a sudden stimulation (induced by a ball drop) were observed in medaka exposed to CPF. The reaction latency did not change immediately after the 4-day exposure, but was significantly prolonged by as much as 21days after the termination of exposure. The post-stimulus swimming distance within 5s significantly decreased on the day immediately after the 4-day exposure, but it significantly increased after 7days of recovery treatment. The activity of acetylcholinesterase (AChE) in the brains of medaka was significantly inhibited on the day immediately after the 4-day exposure, but it returned to 80% and 110% of that in control fish on days 7 and 21 of the recovery period, respectively. However, AChE activities in the eyes of exposed medaka were persistently inhibited and declined to 33%, 71%, and 72% of that in control fish on days 0 (immediately after the 4-day exposure), 7, and 21 of recovery, respectively. Correlation analysis suggested that the changes of AChE activities in the brains of medaka may underlie some of the observed acute behavioral changes, and the changes of AChE activities in the eyes may contribute to the persistence of the abnormalities in the reaction latency of the startle response. Our findings suggest that medaka need a long time to recover from acute, sublethal exposure to CPF, and the persistence of the behavioral abnormalities might affect their fitness in natural habitats.
Collapse
Affiliation(s)
- Xuchun Qiu
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Sayaka Nomichi
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kun Chen
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Masato Honda
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Ik Joon Kang
- International Student Center, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yohei Shimasaki
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
49
|
Ward JL, Cox MK, Schoenfuss H. Thermal modulation of anthropogenic estrogen exposure on a freshwater fish at two life stages. Horm Behav 2017; 94:21-32. [PMID: 28571937 DOI: 10.1016/j.yhbeh.2017.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 05/05/2017] [Accepted: 05/28/2017] [Indexed: 11/22/2022]
Abstract
Human-mediated environmental change can induce changes in the expression of complex behaviors within individuals and alter the outcomes of interactions between individuals. Although the independent effects of numerous stressors on aquatic biota are well documented (e.g., exposure to environmental contaminants), fewer studies have examined how natural variation in the ambient environment modulates these effects. In this study, we exposed reproductively mature and larval fathead minnows (Pimephales promelas) to three environmentally relevant concentrations (14, 22, and 65ng/L) of a common environmental estrogen, estrone (E1), at four water temperatures (15, 18, 21, and 24°C) reflecting natural spring and summer variation. We then conducted a series of behavioral experiments to assess the independent and interactive effects of temperature and estrogen exposure on intra- and interspecific interactions in three contexts with important fitness consequences; reproduction, foraging, and predator evasion. Our data demonstrated significant independent effects of temperature and/or estrogen exposure on the physiology, survival, and behavior of larval and adult fish. We also found evidence suggesting that thermal regime can modulate the effects of exposure on larval survival and predator-prey interactions, even within a relatively narrow range of seasonally fluctuating temperatures. These findings improve our understanding of the outcomes of interactions between anthropogenic stressors and natural abiotic environmental factors, and suggest that such interactions can have ecological and evolutionary implications for freshwater populations and communities.
Collapse
Affiliation(s)
- J L Ward
- Department of Biology, Ball State University, Cooper Life Science Building, Muncie, IN 47306, United States.
| | - M K Cox
- Aquatic Toxicology Laboratory, Saint Cloud State University, 720 Fourth Avenue South, Saint Cloud, MN 56301, United States
| | - H Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, 720 Fourth Avenue South, Saint Cloud, MN 56301, United States
| |
Collapse
|
50
|
Faimali M, Gambardella C, Costa E, Piazza V, Morgana S, Estévez-Calvar N, Garaventa F. Old model organisms and new behavioral end-points: Swimming alteration as an ecotoxicological response. MARINE ENVIRONMENTAL RESEARCH 2017; 128:36-45. [PMID: 27194191 DOI: 10.1016/j.marenvres.2016.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 05/28/2023]
Abstract
Behavioral responses of aquatic organisms have received much less attention than developmental or reproductive ones due to the scarce presence of user-friendly tools for their acquisition. The technological development of data acquisition systems for quantifying behavior in the aquatic environment and the increase of studies on the understanding the relationship between the behavior of aquatic organisms and the physiological/ecological activities have generated renewed interest in using behavioral responses also in marine ecotoxicology. Recent reviews on freshwater environment show that behavioral end-points are comparatively fast and sensitive, and warrant further attention as tools for assessing the toxicological effects of environmental contaminants. In this mini-review, we perform a systematic analysis of the most recent works that have used marine invertebrate swimming alteration as behavioral end-point in ecotoxicological studies by assessing the differences between behavioral and acute responses in a wide range of species, in order to compare their sensitivity.
Collapse
Affiliation(s)
- Marco Faimali
- National Research Council - Institute of Marine Science (CNR-ISMAR), Via De Marini, 6, 16149 Genova, Italy.
| | - Chiara Gambardella
- National Research Council - Institute of Marine Science (CNR-ISMAR), Via De Marini, 6, 16149 Genova, Italy
| | - Elisa Costa
- National Research Council - Institute of Marine Science (CNR-ISMAR), Arsenale - Tesa 104, Castello 2737/F, 30122 Venezia, Italy
| | - Veronica Piazza
- National Research Council - Institute of Marine Science (CNR-ISMAR), Via De Marini, 6, 16149 Genova, Italy
| | - Silvia Morgana
- National Research Council - Institute of Marine Science (CNR-ISMAR), Via De Marini, 6, 16149 Genova, Italy
| | - Noelia Estévez-Calvar
- National Research Council - Institute of Marine Science (CNR-ISMAR), Arsenale - Tesa 104, Castello 2737/F, 30122 Venezia, Italy
| | - Francesca Garaventa
- National Research Council - Institute of Marine Science (CNR-ISMAR), Arsenale - Tesa 104, Castello 2737/F, 30122 Venezia, Italy
| |
Collapse
|