1
|
Wijnhoven H, Martens J. A new species of Paktongius Suzuki (Opiliones: Assamiidae) from Malaysia with distinct leg apophyses. Zootaxa 2025; 5601:377-386. [PMID: 40173676 DOI: 10.11646/zootaxa.5601.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Indexed: 04/04/2025]
Abstract
A new species of the genus Paktongius Suzuki, 1969 is described as Paktongius riedeli sp. nov. In addition to a sexually dimorphic 'gonyleptoid-like' body morphology-a characteristic commonly attributed in the genus Paktongius to a proximo-laterally expanded scutum and exceptionally enlarged coxae IV-the male of the new species exhibits an apophysis on both the coxa and trochanter of leg IV. This feature is unprecedented in the Assamiidae and further accentuates its gonyleptoid appearance. Additionally, a discussion on the Assamiidae of Southeast Asian is included.
Collapse
Affiliation(s)
- Hay Wijnhoven
- Groesbeeksedwarsweg 300; NL-6521 DW Nijmegen; Netherlands.
| | - Jochen Martens
- Institute of Organismic and Molecular Evolution; Johannes Gutenberg University Mainz; D-55099 Mainz; Germany.; Senckenberg Research Institute; Arachnology D-60325 Frankfurt am Main; Germany.
| |
Collapse
|
2
|
Pereira MP, Porto W, Moya-Guerra NADE, Martínez-Hernández NJ, Pérez-González A. Two new species of Icaleptes (Opiliones: Laniatores: Icaleptidae) from Sierra Nevada de Santa Marta, Colombia. Zootaxa 2025; 5563:166-192. [PMID: 40173980 DOI: 10.11646/zootaxa.5563.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Indexed: 04/04/2025]
Abstract
The genus Icaleptes was proposed by Kury & Pérez-González in 2002 to accommodate a single Colombian species, Icaleptes malkini, collected in the southeastern slope of Sierra Nevada de Santa Marta, Cesar Department. In this study, we describe two new species for this previously monotypic genus collected on the northwestern slope of the Sierra Nevada de Santa Marta, in the department of Magdalena. The new species Icaleptes dimorphicus sp. nov. and Icaleptes armasi sp. nov. were included within Icaleptes based on external and genital similarities such as male scutum magnum continuously convex and lacking the sulci; pedipalps with highly reduced setae; chelicerae stout and unarmed with a low, wide bulla; capsula externa of the penis modified into a robust stragulum with two widely separated apical lobes and a wide capsula interna visible from the dorsal aspect with a well-developed parastylar collar. In contrast to Icaleptes malkini, the two new species have the ventral plate of the penis differentiated into two regions, which we interpreted here as a wide pergula basally and a short stout rutrum apically. The new species also have other remarkable sexual dimorphisms such as males with a strong protuberance on coxa IV, an arched movable finger in the chelicerae, and enlarged basitarsomeres on leg III. The modification of coxa IV in males is a strong diagnostic character that facilitates the identification of both new species. The description of two new species that are closely related to the type species Icaleptes malkini helps us to understand the morphological variation of the current concept of Icaleptidae.
Collapse
Affiliation(s)
- Maria Paula Pereira
- División Aracnología; Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Av. Ángel Gallardo 470 C1405DJR; Buenos Aires; Argentina..
| | - Willians Porto
- División Aracnología; Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Av. Ángel Gallardo 470 C1405DJR; Buenos Aires; Argentina.; Sección Aracnología y Miriapodología; Universidad Nacional de La Plata; Facultad de Ciencias Naturales y Museo; Paseo del Bosque s/n; (1900) La Plata; Argentina..
| | - Natalia Andrea DE Moya-Guerra
- Semillero Investigación Artrópodos (Neoptera) del Caribe colombiano; Grupo Biodiversidad del Caribe colombiano. Programa de Biología; Universidad del Atlántico; Puerto Colombia; Colombia..
| | - Neis José Martínez-Hernández
- Grupo Biodiversidad del Caribe colombiano. Programa de Biología; Universidad del Atlántico; Puerto Colombia; Colombia..
| | - Abel Pérez-González
- División Aracnología; Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Av. Ángel Gallardo 470 C1405DJR; Buenos Aires; Argentina..
| |
Collapse
|
3
|
Sharma PP, Gavish-Regev E. The Evolutionary Biology of Chelicerata. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:143-163. [PMID: 39259983 DOI: 10.1146/annurev-ento-022024-011250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chelicerata constitutes an ancient, biodiverse, and ecologically significant group of Arthropoda. The study of chelicerate evolution has undergone a renaissance in the past decade, resulting in major changes to our understanding of the higher-level phylogeny and internal relationships of living orders. Included among these conceptual advances are the discoveries of multiple whole-genome duplication events in a subset of chelicerate orders, such as horseshoe crabs, spiders, and scorpions. As a result, longstanding hypotheses and textbook scenarios of chelicerate evolution, such as the monophyly of Arachnida and a single colonization of land by the common ancestor of arachnids, have come into contention. The retention of ancient, duplicated genes across this lineage also offers fertile ground for investigating the role of gene duplication in chelicerate macroevolution. This new frontier of investigation is paralleled by the timely establishment of the first gene editing protocols for arachnid models, facilitating a new generation of experimental approaches.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Integrative Biology and Zoological Museum, University of Wisconsin, Madison, Wisconsin, USA;
| | - Efrat Gavish-Regev
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel;
| |
Collapse
|
4
|
Derkarabetian S, Lord A, Angier K, Frigyik E, Giribet G. An Opiliones-specific ultraconserved element probe set with a near-complete family-level phylogeny. Mol Phylogenet Evol 2023; 187:107887. [PMID: 37479049 DOI: 10.1016/j.ympev.2023.107887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Sequence capture of ultraconserved elements (UCEs) has transformed molecular systematics across many taxa, with arachnids being no exception. The probe set available for Arachnida has been repeatedly used across multiple arachnid lineages and taxonomic levels, however more specific probe sets for spiders have demonstrated that more UCEs can be recovered with higher probe specificity. In this study, we develop an Opiliones-specific UCE probe set targeting 1915 UCEs using a combination of probes designed from genomes and transcriptomes, as well as the most useful probes from the Arachnida probe set. We demonstrate the effectiveness of this probe set across Opiliones with the most complete family-level phylogeny made to date, including representatives from 61 of 63 currently described families. We also test UCE recovery from historical specimens with degraded DNA, examine population-level data sets, and assess "backwards compatibility" with samples hybridized with the Arachnida probe set. The resulting phylogenies - which include specimens hybridized using both the Opiliones and Arachnida probe sets, historical specimens, and transcriptomes - are largely congruent with previous multi-locus and phylogenomic analyses. The probe set is also "backwards compatible", increasing the number of loci obtained in samples previously hybridized with the Arachnida probe set, and shows high utility down to shallow population-level divergences. This probe set has the potential to further transform Opiliones molecular systematics, resolving many long-standing taxonomic issues plaguing this lineage.
Collapse
Affiliation(s)
- Shahan Derkarabetian
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Arianna Lord
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Katherine Angier
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Ella Frigyik
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
5
|
Palmieri L, Giribet G, Sharma PP. Too early for the ferry: The biogeographic history of the Assamiidae of southeast Asia (Chelicerata: Opiliones, Laniatores). Mol Phylogenet Evol 2023; 178:107647. [PMID: 36273758 DOI: 10.1016/j.ympev.2022.107647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022]
Abstract
Opiliones (harvestmen) have come to be regarded as an abundant source of model groups for study of historical biogeography, due to their ancient age, poor dispersal capability, and high fidelity to biogeographic terranes. One of the least understood harvestman groups is the Paleotropical Assamiidae, one of the more diverse families of Opiliones. Due to a labyrinthine taxonomy, poorly established generic and subfamilial boundaries, and the lack of taxonomic keys for the group, few efforts have been undertaken to decipher relationships within this arachnid lineage. Neither the monophyly of the family, nor its exact placement in the harvestman phylogeny, have been established. Here, we assessed the internal phylogeny of Assamiidae using a ten-locus Sanger dataset, sampling key lineages putatively ascribed to this family for five of the ten markers. Our analyses recovered Assamiidae as a monophyletic group, in a clade with the primarily Afrotropical Pyramidopidae and the southeast Asian Beloniscidae. Internal relationships of assamiids disfavored the systematic validity of subfamilies, with biogeography reflecting much better phylogenetic structure than the existing higher-level taxonomy. To assess whether the Asian assamiids came to occupy Indo-Pacific terranes via rafting on the Indian subcontinent, we performed divergence dating to infer the age of the family. Our results show that Indo-Pacific clades are ancient, originating well before the Cretaceous and therefore predate a vicariant mechanism commonly encountered for Paleotropical taxa.
Collapse
Affiliation(s)
- Luciano Palmieri
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53711, USA.
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53711, USA.
| |
Collapse
|
6
|
Medrano M, Kury AB, Mendes AC. Morphology-based cladistics splinters the century-old dichotomy of the pied harvestmen (Arachnida: Gonyleptoidea: Cosmetidae). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The cosmetids are conspicuous harvestmen, remarkably diverse in size, shape and colour. However, the effectiveness of all these morphological traits for diagnosing groups is scarcely explored in the literature. Since the early 20th century, the family Cosmetidae has been divided into two subfamilies, Cosmetinae and Discosomaticinae, and there has been no further effort to delimit additional or alternative subfamilial groups.
In this analysis, we aim to test the issue of the basal dichotomy of Cosmetinae and Discosomaticinae. Thus, we propose a more comprehensive phylogenetic analysis using both parsimony and Bayesian approach, comprising 103 terminals of Cosmetidae, plus seven outgroup terminals scored for 130 morphological characters. Discosomaticinae is revisited and all its species were included in our matrix. To offer a real challenge to the monophyly of Discosomaticinae, members of 36 genera of Cosmetinae have also been scored. Our results support neither Cosmetinae nor Discosomaticinae sensu Pickard-Cambridge/Roewer as monophyletic groups. We found that Cosmetidae may be organized into a few major clades, which are here diagnosed. Accordingly, taxonomic changes in the arrangement of the family are introduced: description of one new tribe, five new subfamilies and revalidation of a sixth, description of three new genera, and proposition of synonymies, transfers and revalidations at generic level.
Collapse
Affiliation(s)
- Miguel Medrano
- Departamento de Invertebrados, Museu Nacional/Universidade Federal do Rio de Janeiro (UFRJ), Quinta da Boa Vista, São Cristóvão, 20.940-040, Rio de Janeiro – RJ, Brazil
| | - Adriano Brilhante Kury
- Departamento de Invertebrados, Museu Nacional/Universidade Federal do Rio de Janeiro (UFRJ), Quinta da Boa Vista, São Cristóvão, 20.940-040, Rio de Janeiro – RJ, Brazil
| | - Amanda Cruz Mendes
- Departamento de Zoologia, Instituto de Biologia Roberto de Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier 524, Maracanã, 20.550-900, Rio de Janeiro – RJ, Brazil
| |
Collapse
|
7
|
Benavides LR, Pinto-da-Rocha R, Giribet G. The Phylogeny and Evolution of the Flashiest of the Armored Harvestmen (Arachnida: Opiliones). Syst Biol 2021; 70:648-659. [PMID: 33057723 DOI: 10.1093/sysbio/syaa080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 01/30/2023] Open
Abstract
Gonyleptoidea, largely restricted to the Neotropics, constitutes the most diverse superfamily of Opiliones and includes the largest and flashiest representatives of this arachnid order. However, the relationships among its main lineages (families and subfamilies) and the timing of their origin are not sufficiently understood to explain how this tropical clade has been able to colonize the temperate zone. Here, we used transcriptomics and divergence time dating to investigate the phylogeny of Gonyleptoidea. Our results support the monophyly of Gonyleptoidea and all of its families with more than one species represented. Resolution within Gonyleptidae s.s. is achieved for many clades, but some subfamilies are not monophyletic (Gonyleptinae, Mitobatinae, and Pachylinae), requiring taxonomic revision. Our data show evidence for one colonization of today's temperate zone early in the history of Gonyleptidae, during the Paleogene, at a time when the Neotropical area extended poleward into regions now considered temperate. This provides a possible mechanism for the colonization of the extratropics by a tropical group following the Paleocene-Eocene Thermal Maximum, explaining how latitudinal diversity gradients can be established. Taxonomic acts: Ampycidae Kury 2003 is newly ranked as family; Neosadocus Mello-Leitão is transferred to Progonyleptoidellinae (new subfamilial assignment). [Arachnids; biogeography; phylogenomics; transcriptomics.].
Collapse
Affiliation(s)
- Ligia R Benavides
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Ricardo Pinto-da-Rocha
- Instituto de Biociências - Universidade de São Paulo, Departamento de Zoologia, Rua do Matão, travessa 14, 321, 005508-900 São Paulo, SP, Brazil
| | - Gonzalo Giribet
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Derkarabetian S, Baker CM, Hedin M, Prieto CE, Giribet G. Phylogenomic re-evaluation of Triaenonychoidea (Opiliones : Laniatores), and systematics of Triaenonychidae, including new families, genera and species. INVERTEBR SYST 2021. [DOI: 10.1071/is20047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Opiliones superfamily Triaenonychoidea currently includes two families, the monogeneric New Zealand–endemic Synthetonychiidae Forster, 1954 and Triaenonychidae Sørensen, 1886, a diverse family distributed mostly throughout the temperate Gondwanan terranes, with ~110 genera and ~500 species and subspecies currently described. Traditionally, Triaenonychidae has been divided into subfamilies diagnosed by very few morphological characters largely derived from the troublesome ‘Roewerian system’ of morphology, and classifications based on this system led to many complications. Recent research within Triaenonychoidea using morphology and traditional multilocus data has shown multiple deeply divergent lineages, non-monophyly of Triaenonychidae, and non-monophyly of subfamilies, necessitating a revision based on phylogenomic data. We used sequence capture of ultraconserved elements across 164 samples to create a 50% taxon occupancy matrix with 704 loci. Using phylogenomic and morphological examinations, we explored family-level relationships within Triaenonychoidea, including describing two new families: (1) Lomanellidae Mendes & Derkarabetian, fam. nov., consisting of Lomanella Pocock, 1903, and a newly described genus Abaddon Derkarabetian & Baker, gen. nov. with one species, A. despoliator Derkarabetian, sp. nov.; and (2) the elevation to family of Buemarinoidae Karaman, 2019, consisting of Buemarinoa Roewer, 1956, Fumontana Shear, 1977, Flavonuncia Lawrence, 1959, and a newly described genus Turonychus Derkarabetian, Prieto & Giribet, gen. nov., with one species, T. fadriquei Derkarabetian, Prieto & Giribet, sp. nov. With our dataset we also explored phylogenomic relationships within Triaenonychidae with an extensive taxon set including samples representing ~80% of the genus-level diversity. Based on our results we (1) discuss systematics of this family including the historical use of subfamilies, (2) reassess morphology in the context of our phylogeny, (3) hypothesise placement for all unsampled genera, (4) highlight lineages most in need of taxonomic revision, and (5) provide an updated species-level checklist. Aside from describing new taxa, our study provides the phylogenomic context necessary for future evolutionary and systematic research across this diverse lineage.
ZooBank Registration: urn:lsid:zoobank.org:pub:81683834-98AB-43AA-B25A-C28C6A404F41
Collapse
|
9
|
Cruz-López JA, Monjaraz-Ruedas R, Colmenares PA, Francke OF. Historical biogeography of a neglected family of armoured harvestmen (Opiliones : Laniatores : Icaleptidae) with the first record and a new genus for tropical Mesoamerica. INVERTEBR SYST 2021. [DOI: 10.1071/is20008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Among Opiliones (Arachnida), there are many taxa either with no familial assignment or erroneously located in their current family. This is the case of Ethobunus pilosus, formerly in Phalangodidae and before this work in Zalmoxidae. To assess the phylogenetic position of this taxon, we started with a revision of the male genitalia; followed by the inclusion of three molecular markers: nuclear 28S and 18S, and mitochondrial protein-encoding cytochrome c oxidase subunit I (COI) from E. pilosus in the previously published phylogenies of the Samooidea + Zalmoxoidea clade. The results revealed that E. pilosus is a derived lineage within the family Icaleptidae, thus it is transferred from Zalmoxidae, and the new name Trypophobica gen. nov. is proposed to accommodate it, with the new combination Trypophobica pilosa comb. nov. With its inclusion in Icaleptidae, and the description of Trypophobica llama sp. nov., the current diagnosis of the family needs updating, and further morphological characters should be considered as putative synapomorphies. In addition, the reconstruction of the ancestral ranges of Icaleptidae suggests a mid-Cretaceous origin c. 104 Ma in South America, with a subsequent colonisation to north Mesoamerica c. 80 Ma.
Collapse
|
10
|
Giribet G, Sheridan K, Baker CM, Painting CJ, Holwell GI, Sirvid PJ, Hormiga G. A molecular phylogeny of the circum-Antarctic Opiliones family Neopilionidae. INVERTEBR SYST 2021. [DOI: 10.1071/is21012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Opiliones family Neopilionidae is restricted to the terranes of the former temperate Gondwana: South America, Africa, Australia, New Caledonia and New Zealand. Despite decades of morphological study of this unique fauna, it has been difficult reconciling the classic species of the group (some described over a century ago) with recent cladistic morphological work and previous molecular work. Here we attempted to investigate the pattern and timing of diversification of Neopilionidae by sampling across the distribution range of the family and sequencing three markers commonly used in Sanger-based approaches (18S rRNA, 28S rRNA and cytochrome-c oxidase subunit I). We recovered a well-supported and stable clade including Ballarra (an Australian ballarrine) and the Enantiobuninae from South America, Australia, New Caledonia and New Zealand, but excluding Vibone (a ballarrine from South Africa). We further found a division between West and East Gondwana, with the South American Thrasychirus/Thrasychiroides always being sister group to an Australian–Zealandian (i.e. Australia + New Zealand + New Caledonia) clade. Resolution of the Australian–Zealandian taxa was analysis-dependent, but some analyses found Martensopsalis, from New Caledonia, as the sister group to an Australian–New Zealand clade. Likewise, the species from New Zealand formed a clade in some analyses, but Mangatangi often came out as a separate lineage from the remaining species. However, the Australian taxa never constituted a monophyletic group, with Ballarra always segregating from the remaining Australian species, which in turn constituted 1–3 clades, depending on the analysis. Our results identify several generic inconsistencies, including the possibility of Thrasychiroides nested within Thrasychirus, Forsteropsalis being paraphyletic with respect to Pantopsalis, and multiple lineages of Megalopsalis in Australia. In addition, the New Zealand Megalopsalis need generic reassignment: Megalopsalis triascuta will require its own genus and M. turneri is here transferred to Forsteropsalis, as Forsteropsalis turneri (Marples, 1944), comb. nov.
Collapse
|
11
|
Baker CM, Sheridan K, Derkarabetian S, Pérez-González A, Vélez S, Giribet G. Molecular phylogeny and biogeography of the temperate Gondwanan family Triaenonychidae (Opiliones : Laniatores) reveals pre-Gondwanan regionalisation, common vicariance, and rare dispersal. INVERTEBR SYST 2020. [DOI: 10.1071/is19069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Triaenonychidae Sørensen in L. Koch, 1886 is a large family of Opiliones with ~480 described species broadly distributed across temperate forests in the Southern Hemisphere. However, it remains poorly understood taxonomically, as no comprehensive phylogenetic work has ever been undertaken. In this study we capitalise on samples largely collected by us during the last two decades and use Sanger DNA-sequencing techniques to produce a large phylogenetic tree with 300 triaenonychid terminals representing nearly 50% of triaenonychid genera and including representatives from all the major geographic areas from which they are known. Phylogenetic analyses using maximum likelihood and Bayesian inference methods recover the family as diphyletic, placing Lomanella Pocock, 1903 as the sister group to the New Zealand endemic family Synthetonychiidae Forster, 1954. With the exception of the Laurasian representatives of the family, all landmasses contain non-monophyletic assemblages of taxa. To determine whether this non-monophyly was the result of Gondwanan vicariance, ancient cladogenesis due to habitat regionalisation, or more recent over-water dispersal, we inferred divergence times. We found that most divergence times between landmasses predate Gondwanan breakup, though there has been at least one instance of transoceanic dispersal – to New Caledonia. In all, we identify multiple places in the phylogeny where taxonomic revision is needed, and transfer Lomanella outside of Triaenonychidae in order to maintain monophyly of the family.
Collapse
|
12
|
Acosta LE. A relictual troglomorphic harvestman discovered in a volcanic cave of western Argentina: Otilioleptes marcelae, new genus, new species, and Otilioleptidae, new family (Arachnida, Opiliones, Gonyleptoidea). PLoS One 2019; 14:e0223828. [PMID: 31644592 PMCID: PMC6808334 DOI: 10.1371/journal.pone.0223828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
The troglomorphic harvestman Otilioleptes marcelae gen. nov., sp. nov. from the basaltic cave Doña Otilia, Payunia region, Mendoza Province, Argentina, is described. Its systematic affinities were studied through cladistic and Bayesian analyses that included representatives of Gonyleptoidea; it was determined to represent a new monotypic family, Otilioleptidae fam. nov., occupying a basal position within the clade Laminata. This species shows accentuated troglomorphic traits, typical for troglobitic harvestmen: elongated appendages, depigmentation, reduction of eyes and fading of scutal sulci. Additionally, it almost lacks sexual dimorphism, the distal portion of coxa IV is not completely fused to the stigmatic segment, and penis morphology is remarkably divergent with other Laminata; these features cannot be attributed to cave adaptation and may reflect early lineage divergence. Otilioleptes marcelae is the first troglobitic gonyleptoid known from a lava tube. The xeric environments around the cave (Patagonian ecoregion) and the paleoenvironmental history of the area suggest the relictual character of O. marcelae. Scattered evidence supports a long time evolutionary scenario and a presumable relationship with the Chilean opiliofauna (especially with genus Osornogyndes). A comparative overview of all known troglobitic gonyleptoids is provided. The urgent need to protect this new species and its unique cave environment is emphasized.
Collapse
Affiliation(s)
- Luis E. Acosta
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Diversidad Biológica II, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| |
Collapse
|
13
|
McCulloch GA, Waters JM. Phylogenetic divergence of island biotas: Molecular dates, extinction, and "relict" lineages. Mol Ecol 2019; 28:4354-4362. [PMID: 31544990 DOI: 10.1111/mec.15229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 01/08/2023]
Abstract
Island formation is a key driver of biological evolution, and several studies have used geological ages of islands to calibrate rates of DNA change. However, many islands are home to "relict" lineages whose divergence apparently pre-dates island age. The geologically dynamic New Zealand (NZ) archipelago sits upon the ancient, largely submerged continent Zealandia, and the origin and age of its distinctive biota have long been contentious. While some researchers have interpreted NZ's biota as equivalent to that of a post-Oligocene island, a recent review of genetic studies identified a sizeable proportion of pre-Oligocene "relict" lineages, concluding that much of the biota survived an incomplete drowning event. Here, we assemble comparable genetic divergence data sets for two recently formed South Pacific archipelagos (Lord Howe; Chatham Islands) and demonstrate similarly substantial proportions of relict lineages. Similar to the NZ biota, our island reviews provide surprisingly little evidence for major genetic divergence "pulses" associated with island emergence. The dominance of Quaternary divergence estimates in all three biotas may highlight the importance of rapid biological turnover and new arrivals in response to recent climatic and/or geological disturbance and change. We provide a schematic model to help account for discrepancies between expected versus observed divergence-date distributions for island biotas, incorporating the effects of both molecular dating error and lineage extinction. We conclude that oceanic islands can represent both evolutionary "cradles" and "museums" and that the presence of apparently archaic island lineages does not preclude dispersal origins.
Collapse
|
14
|
Derkarabetian S, Benavides LR, Giribet G. Sequence capture phylogenomics of historical ethanol‐preserved museum specimens: Unlocking the rest of the vault. Mol Ecol Resour 2019; 19:1531-1544. [DOI: 10.1111/1755-0998.13072] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Shahan Derkarabetian
- Museum of Comparative Zoology Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Ligia R. Benavides
- Museum of Comparative Zoology Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| |
Collapse
|
15
|
Gainett G, Sharma PP, Fernandes N, Pinto-Da-Rocha R, Giribet G, Willemart RH. Evolution of a sensory cluster on the legs of Opiliones (Arachnida) informs multi-level phylogenetic relationships. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractPhylogenetic relationships in Opiliones (Arachnida) at the suborder level have greatly stabilized in recent years, largely due to advances in molecular systematics. Nonetheless, identifying morphological characters in the context of well-resolved phylogenies is essential for testing new systematic hypotheses and establishing diagnostic markers. Here, we investigate with SEM a promising character system across Opiliones: the sensilla on the distalmost article of legs I and II. We identified four discrete characters and scored species of nearly all families of Laniatores (28 families, 44 species), three Dyspnoi, two Eupnoi and two Cyphophthalmi. Using a phylogenetic backbone compiled from recent and ongoing phylogenomic studies, we trace the evolution of these sensilla using ancestral state reconstruction. We discover a widespread occurrence of three sensilla (a pair of sensilla basiconica and one hooded sensillum) on the anterior legs of all families of Laniatores studied, and that comparable structures occur in the other suborders of Opiliones. Our analysis shows that this sensory field provides diagnostic information at different levels of phylogenetic relationships. We discuss the implications of the widespread occurrence of these sensilla in Opiliones, which have recently been hypothesized as hygro-/thermoreceptors and their putative homology with tarsal organs in Arachnida.
Collapse
Affiliation(s)
- Guilherme Gainett
- Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Ermelino Matarazzo, São Paulo, SP, Brazil
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
- Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathália Fernandes
- Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ricardo Pinto-Da-Rocha
- Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gonzalo Giribet
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Rodrigo Hirata Willemart
- Laboratório de Ecologia Sensorial e Comportamento de Artrópodes, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Ermelino Matarazzo, São Paulo, SP, Brazil
- Programa de Pós-Graduação em Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de São Paulo, Campus Diadema, Jardim Eldorado, Diadema, SP, Brazil
| |
Collapse
|
16
|
Kury AB, García AF, Medrano MA. A new genus of Kimulidae; first record of the family from Colombia (Opliones, Grassatores). C R Biol 2019; 342:236-244. [PMID: 31471144 DOI: 10.1016/j.crvi.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
Abstract
Usatama gen. nov. is described to include a new species of Kimulidae from Colombia. This is the first record of the family from the country. The new genus presents a weakly armed ocularium, feeble sexual dimorphism, and unique genital structure with three parallel horseshoe-shaped girdles in pars distalis and absence of cochleariform macrosetae.
Collapse
Affiliation(s)
- Adriano B Kury
- Departamento de Invertebrados, Museu Nacional/UFRJ, Quinta da Boa Vista, 20.940-040 São Cristóvão, Rio de Janeiro, RJ, Brazil.
| | - Andrés F García
- Departamento de Invertebrados, Museu Nacional/UFRJ, Quinta da Boa Vista, 20.940-040 São Cristóvão, Rio de Janeiro, RJ, Brazil
| | - Miguel Angel Medrano
- Departamento de Invertebrados, Museu Nacional/UFRJ, Quinta da Boa Vista, 20.940-040 São Cristóvão, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Kury AB, Pérez-González A, Proud DN. A new Indo-Malayan family of Grassatores (Arachnida : Opiliones : Laniatores). INVERTEBR SYST 2019. [DOI: 10.1071/is19035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The laniatorean family Phalangodidae has been largely reduced to a core of Holarctic species; however, many taxa were never formally transferred to other families. We examined a group of harvestmen related to Beloniscus Thorell, 1891, from South-east Asia and determined the nature of the relationships of the ‘Beloniscus-like harvestmen’, herein described as the new family Beloniscidae, fam. nov., in the broad context of Laniatores. Based on a molecular phylogenetic analysis of a broad representative laniatorean Sanger-sequences dataset we found support for our taxonomic hypotheses that (1) inclusion of Beloniscidae, fam. nov. in Phalangodidae would render the family non-monophyletic, and (2) Beloniscidae, fam. nov. represents a lineage that is morphologically and genetically distinct from all other known laniatorean families. The new family Beloniscidae is endemic to South-east Asia and comprises 37 species in two new subfamilies: Beloniscinae, subfam. nov. and Buparinae, subfam. nov. Beloniscinae includes the genera Beloniscellus Roewer, 1931, Beloniscops Roewer, 1949, Belonisculus Roewer, 1923, Beloniscus (type genus) and Kendengus Roewer, 1949. Buparinae includes the genera Buparellus Roewer, 1949, Bupares Thorell, 1889 (type genus) and Buparomma Roewer, 1949. Members of Beloniscidae are relatively homogeneous in their external morphology, but are recognised by well marked genitalic features. Male genitalia are described for exemplar species, and the morphology is compared with that of Epedanidae. Names are given to two new genitalic structures: sella curulis and pseudocalyx.
http://zoobank.org/urn:lsid:zoobank.org:act:540BCE49-6F2E-4372-BFD4-D3C6068F045D
http://zoobank.org/urn:lsid:zoobank.org:act:FE8B011B-AA6D-4E6C-A321-123542A0563F
http://zoobank.org/urn:lsid:zoobank.org:act:E4A559CD-170A-40F2-924A-541C22974344
Collapse
|
18
|
Aharon S, Ballesteros JA, Crawford AR, Friske K, Gainett G, Langford B, Santibáñez-López CE, Ya'aran S, Gavish-Regev E, Sharma PP. The anatomy of an unstable node: a Levantine relict precipitates phylogenomic dissolution of higher-level relationships of the armoured harvestmen (Arachnida: Opiliones: Laniatores). INVERTEBR SYST 2019. [DOI: 10.1071/is19002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
After tumultuous revisions to the family-level systematics of Laniatores (the armored harvestmen), the basally branching family Phalangodidae presently bears a disjunct and irregular distribution, attributed to the fragmentation of Pangea. One of the curious lineages assigned to Phalangodidae is the monotypic Israeli genus Haasus, the only Laniatores species that occurs in Israel, and whose presence in the Levant has been inferred to result from biogeographic connectivity with Eurasia. Recent surveys of Israeli caves have also yielded a new troglobitic morphospecies of Haasus. Here, we describe this new species as Haasus naasane sp. nov. So as to test the biogeographic affinity of Haasus, we sequenced DNA from both species and RNA from Haasus naasane sp. nov., to assess their phylogenetic placement. Our results showed that the new species is clearly closely related to Haasus judaeus, but Haasus itself is unambiguously nested within the largely Afrotropical family Pyramidopidae. In addition, the Japanese ‘phalangodid’ Proscotolemon sauteri was recovered as nested within the Southeast Asian family Petrobunidae. Phylogenomic placement of Haasus naasane sp. nov. in a 1550-locus matrix indicates that Pyramidopidae has an unstable position in the tree of Laniatores, with alternative partitioning of the matrix recovering high nodal support for mutually exclusive tree topologies. Exploration of phylogenetic signal showed the cause of this instability to be a considerable conflict between partitions, suggesting that the basal phylogeny of Laniatores may not yet be stable to addition of taxa. We transfer Haasus to Pyramidopidae (new familial assignment). Additionally, we transfer Proscotolemon to the family Petrobunidae (new familial assignment). Future studies on basal Laniatores phylogeny should emphasise the investigation of small-bodied and obscure groups that superficially resemble Phalangodidae.
Collapse
|
19
|
Schmidt SM, Buenavente PAC, Blatchley DD, Diesmos AC, Diesmos ML, General DEM, Mohagan AB, Mohagan DJ, Clouse RM, Sharma PP. A new species of Tithaeidae (Arachnida: Opiliones: Laniatores) from Mindanao reveals contemporaneous colonisation of the Philippines by Sunda Shelf opiliofauna. INVERTEBR SYST 2019. [DOI: 10.1071/is18057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Philippine archipelago harbours a remarkable diversity of harvestmen, with respect to both taxonomy and complexity of biogeographic origins. Among the armoured harvestmen (suborder Laniatores), six families of distantly related groups occur in this archipelago. Here, we describe a new species of the family Tithaeidae, Tithaeus odysseus sp. nov., discovered during a collecting campaign on the island of Mindanao. The description of this species expands the known distribution of the family and demonstrates another exception to the zoogeographic boundary known as Huxley’s Line which putatively separates the biota of the Philippines (excluding the Palawan island group) from the Sunda Shelf biota. Given the coincident distributions of Tithaeidae and the mite harvestman family Stylocellidae (Cyphophthalmi), a group renowned for its poor dispersal ability, we inferred phylogenetic relationships and divergence times of the Philippines lineages of both families by using a comprehensive molecular dating analysis of all Opiliones. The internal phylogeny of Tithaeidae mirrored the biogeography of Philippine Stylocellidae, showing a close affinity between the Philippine and Bornean species. Molecular dating showed contemporaneous colonisation of Mindanao by both families in the Cretaceous. We infer these patterns to reflect faunal connections between the southern Philippines and Borneo via the Zamboanga Peninsula. To render the genus Tithaeus monophyletic, we synonymise Metatithaeus with Tithaeus (new synonymy).
Collapse
|
20
|
Benavides LR, Hormiga G, Giribet G. Phylogeny, evolution and systematic revision of the mite harvestman family Neogoveidae (Opiliones Cyphophthalmi). INVERTEBR SYST 2019. [DOI: 10.1071/is18018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mite harvestmen of the family Neogoveidae have a tropical trans-Atlantic distribution with representatives in equatorial West Africa and the Neotropics, specifically in the south-east region of the USA and in northern South America, being conspicuously absent from Central America. We provide a comprehensive molecular phylogeny of the family including representatives of all genera but the monotypic Tucanogovea Karaman, 2013, and new information on the type species described by Jochen Martens in 1969 that were unavailable for molecular study until now: Brasiliogovea microphaga, Metagovea oviformis and ‘? Gen. enigmaticus’. Additionally, we revisit the somatic and male genitalic morphology of representatives of all genera by means of scanning electron microscopy and confocal laser scanning microscopy, and describe the new genera Leggogovia Benavides & Giribet, gen. nov., Microgovia Benavides, Hormiga & Giribet, gen. nov., Waiwaigovia Benavides, Hormiga & Giribet, gen. nov. and 13 new species: Brasiliogovea aphantostylus Benavides, Hormiga & Giribet, sp. nov., Brasiliogovea microstylus Benavides, Hormiga & Giribet, sp. nov., Brasiliogovea yacambuensis Benavides, Hormiga & Giribet, sp. nov., Metagovea matapi Benavides, Hormiga & Giribet, sp. nov., Metagovea planada Benavides, Hormiga & Giribet, sp. nov., Microgovia chenepau Benavides, Hormiga & Giribet, sp. nov., Neogovea branstetteri Benavides, Hormiga & Giribet, sp. nov., Neogovea enigmatica Martens, sp. nov., Neogovea matawai Benavides, Hormiga & Giribet, sp. nov., Parogovia montealensis Benavides & Giribet, sp. nov., Parogovia prietoi Benavides & Giribet, sp. nov., Parogovia putnami Benavides & Giribet, sp. nov. and Waiwaigovia schultzi Benavides, Hormiga & Giribet, sp. nov. Phylogenetic analyses based on maximum likelihood, parsimony and Bayesian inference support the monophyly of Neogoveidae and a sister group relationship of Neogoveidae + Ogoveidae with Troglosironidae (a clade named Sternophthalmi). Relationships among neogoveid genera are largely congruent between methods as follows: ((Leggogovia gen. nov., Metasiro), (Parogovia, ((Canga, Microgovia gen. nov.), ((Brasiliogovea, Neogovea), (Huitaca, (Waiwaigovia gen. nov., Metagovea)))))). In light of our results, the following taxonomic changes are proposed: Metagovea oviformis Martens, 1969 is transferred to Microgovia, gen. nov.; Parogovia pabsgarnoni Legg, 1990 is transferred to Leggogovia, gen. nov.; ‘? Gen. enigmaticus Martens, 1969’ is an invalid name according to the ICZN; the corresponding taxon is redescribed and formally named as Neogovea enigmatica Martens, sp. nov.
Collapse
|
21
|
Cruz-López JA, Cruz-Bonilla A, Francke OF. Molecules and morphology reveal a new aberrant harvestman genus of Ortholasmatinae (Opiliones, Dypsnoi, Nemastomatidae) from Mexico. SYST BIODIVERS 2018. [DOI: 10.1080/14772000.2018.1476416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Jesús A. Cruz-López
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Universidad 3000, C.P. 04510, Coyoacán, Mexico City, Mexico
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 3er circuito exterior s/n. Apartado postal 70-153, C.P. 04510, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
| | - Akeri Cruz-Bonilla
- Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Xalapa, Veracruz, Mexico
| | - Oscar F. Francke
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, 3er circuito exterior s/n. Apartado postal 70-153, C.P. 04510, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
| |
Collapse
|
22
|
Derkarabetian S, Starrett J, Tsurusaki N, Ubick D, Castillo S, Hedin M. A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements. Zookeys 2018; 760:1-36. [PMID: 29872361 PMCID: PMC5986891 DOI: 10.3897/zookeys.760.24937] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/26/2018] [Indexed: 01/09/2023] Open
Abstract
Molecular phylogenetics has transitioned into the phylogenomic era, with data derived from next-generation sequencing technologies allowing unprecedented phylogenetic resolution in all animal groups, including understudied invertebrate taxa. Within the most diverse harvestmen suborder, Laniatores, most relationships at all taxonomic levels have yet to be explored from a phylogenomics perspective. Travunioidea is an early-diverging lineage of laniatorean harvestmen with a Laurasian distribution, with species distributed in eastern Asia, eastern and western North America, and south-central Europe. This clade has had a challenging taxonomic history, but the current classification consists of ~77 species in three families, the Travuniidae, Paranonychidae, and Nippononychidae. Travunioidea classification has traditionally been based on structure of the tarsal claws of the hind legs. However, it is now clear that tarsal claw structure is a poor taxonomic character due to homoplasy at all taxonomic levels. Here, we utilize DNA sequences derived from capture of ultraconserved elements (UCEs) to reconstruct travunioid relationships. Data matrices consisting of 317-677 loci were used in maximum likelihood, Bayesian, and species tree analyses. Resulting phylogenies recover four consistent and highly supported clades; the phylogenetic position and taxonomic status of the enigmatic genus Yuria is less certain. Based on the resulting phylogenies, a revision of Travunioidea is proposed, now consisting of the Travuniidae, Cladonychiidae, Paranonychidae (Nippononychidae is synonymized), and the new family Cryptomastridae Derkarabetian & Hedin, fam. n., diagnosed here. The phylogenetic utility and diagnostic features of the intestinal complex and male genitalia are discussed in light of phylogenomic results, and the inappropriateness of the tarsal claw in diagnosing higher-level taxa is further corroborated.
Collapse
Affiliation(s)
- Shahan Derkarabetian
- Department of Biology, San Diego State University, San Diego, California 92182-4614, USA
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA
- Present address: Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - James Starrett
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Nobuo Tsurusaki
- Laboratory of Zoological Systematics, Faculty of Agriculture, in Faculty of Regional Sciences Building, Tottori University, Tottori, 680-8551, Japan
| | - Darrell Ubick
- Department of Entomology, California Academy of Sciences, San Francisco, California 94118, USA
| | - Stephanie Castillo
- Department of Entomology, University of California, Riverside, Riverside, California 92521, USA
| | - Marshal Hedin
- Department of Biology, San Diego State University, San Diego, California 92182-4614, USA
| |
Collapse
|
23
|
Godwin RL, Opatova V, Garrison NL, Hamilton CA, Bond JE. Phylogeny of a cosmopolitan family of morphologically conserved trapdoor spiders (Mygalomorphae, Ctenizidae) using Anchored Hybrid Enrichment, with a description of the family, Halonoproctidae Pocock 1901. Mol Phylogenet Evol 2018; 126:303-313. [PMID: 29656103 DOI: 10.1016/j.ympev.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/08/2018] [Accepted: 04/06/2018] [Indexed: 02/08/2023]
Abstract
The mygalomorph family Ctenizidae has a world-wide distribution and currently contains nine genera and 135 species. However, the monophyly of this group has long been questioned on both morphological and molecular grounds. Here, we use Anchored Hybrid Enrichment (AHE) to gather hundreds of loci from across the genome for reconstructing the phylogenetic relationships among the nine genera and test the monophyly of the family. We also reconstruct the possible ancestral ranges of the most inclusive clade recovered. Using AHE, we generate a supermatrix of 565 loci and 115,209 bp for 27 individuals. For the first time, analyses using all nine genera produce results definitively establishing the non-monophyly of Ctenizidae. A lineage formed exclusively by representatives of South African Stasimopus was placed as the sister group to the remaining taxa in the tree, and the Mediterranean Cteniza and Cyrtocarenum were recovered with high support as sister to exemplars of Euctenizidae, Migidae, and Idiopidae. All the remaining genera-Bothriocyrtum, Conothele, Cyclocosmia, Hebestatis, Latouchia, and Ummidia-share a common ancestor. Based on these results, we formally elevate this clade to the level of family. Our results definitively establish both the non-monophyly of the Ctenizidae and non-validity of the subfamilies Ummidiinae and Ctenizinae. In order to establish the placement of the remaining three ctenizid genera, Cteniza, Cyrtocarenum, and Stasimopus, thorough analyses within the context of a complete mygalomorph phylogenetic framework are needed. We formally describe the family Halonoproctidae Pocock 1901 and infer that the family's most recent common ancestor was likely distributed in western North America and Asia.
Collapse
Affiliation(s)
- Rebecca L Godwin
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, 36849, USA.
| | - Vera Opatova
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, 36849, USA.
| | - Nicole L Garrison
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, 36849, USA.
| | - Chris A Hamilton
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Jason E Bond
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
24
|
Šťáhlavský F, Opatova V, Just P, Lotz LN, Haddad CR. Molecular technique reveals high variability of 18S rDNA distribution in harvestmen (Opiliones, Phalangiidae) from South Africa. COMPARATIVE CYTOGENETICS 2018; 12:41-59. [PMID: 29675136 PMCID: PMC5904373 DOI: 10.3897/compcytogen.v12i1.21744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/27/2017] [Indexed: 06/08/2023]
Abstract
The knowledge of cytogenetics in the harvestmen family Phalangiidae has been based on taxa from the Northern Hemisphere. We performed cytogenetic analysis on Guruia africana (Karsch, 1878) (2n=24) and four species of the genus Rhampsinitus Simon, 1879 (2n=24, 26, 34) from South Africa. Fluorescence in situ hybridization with an 18S rDNA probe was used to analyze the number and the distribution of this cluster in the family Phalangiidae for the first time. The results support the cytogenetic characteristics typical for the majority of harvestmen taxa, i.e. the predominance of small biarmed chromosomes and the absence of morphologically well-differentiated sex chromosomes as an ancestral state. We identified the number of 18S rDNA sites ranging from two in R. qachasneki Kauri, 1962 to seven in one population of R. leighi Pocock, 1903. Moreover, we found differences in the number and localization of 18S rDNA sites in R. leighi between populations from two localities and between sexes of R. capensis (Loman, 1898). The heterozygous states of the 18S rDNA sites in these species may indicate the presence of XX/XY and ZZ/ZW sex chromosomes, and the possible existence of these systems in harvestmen is discussed. The variability of the 18S rDNA sites indicates intensive chromosomal changes during the differentiation of the karyotypes, which is in contrast to the usual uniformity in chromosomal morphology known from harvestmen so far.
Collapse
Affiliation(s)
- František Šťáhlavský
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12844 Praha, Czech Republic
| | - Vera Opatova
- Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, AL 36849, USA
| | - Pavel Just
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-12844 Praha, Czech Republic
| | - Leon N. Lotz
- Department of Arachnology, National Museum, P.O. Box 266, Bloemfontein 9300, South Africa
| | - Charles R. Haddad
- Department of Zoology and Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
25
|
Barrales-Alcalá D, Francke OF, Prendini L. Systematic Revision of the Giant Vinegaroons of theMastigoproctus giganteusComplex (Thelyphonida: Thelyphonidae) of North America. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2018. [DOI: 10.1206/0003-0090-418.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Diego Barrales-Alcalá
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México; Colección Nacional de Arácnidos, Departamento de Zoologia, Instituto de Biología, Universidad Nacional Autónoma de México
| | - Oscar F. Francke
- Colección Nacional de Arácnidos, Departamento de Zoologia, Instituto de Biología, Universidad Nacional Autónoma de México
| | - Lorenzo Prendini
- Division of Invertebrate Zoology, American Museum of Natural History
| |
Collapse
|
26
|
Worsaae K, Giribet G, Martínez A. The role of progenesis in the diversification of the interstitial annelid lineage Psammodrilidae. INVERTEBR SYST 2018. [DOI: 10.1071/is17063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Psammodrilidae constitutes a family of understudied, nearly completely ciliated, small-sized annelids, whose systematic position in Annelida remains unsettled and whose internal phylogeny is here investigated for the first time. Psammodrilids possess hooked chaetae typical of macroscopic tube-dwelling semi-sessile annelids, such as Arenicolidae. Yet, several minute members resemble, with their conspicuous gliding by ciliary motion and vagile lifestyle, interstitial fauna, adapted to move between sand grains. Moreover, psammodrilids exhibit a range of unique features, for example, bendable aciculae, a collar region with polygonal unciliated cells, and a muscular pumping pharynx. We here present a combined phylogeny of Psammodrilidae including molecular and morphological data of all eight described species (two described herein as Psammodrilus didomenicoi, sp. nov. and P. norenburgi, sp. nov.) as well as four undescribed species. Ancestral character state reconstruction suggests the ancestor of Psammodrilidae was a semi-sessile larger form. Miniaturisation seems to have occurred multiple times independently within Psammodrilidae, possibly through progenesis, yielding small species with resemblance to a juvenile stage of the larger species. We find several new cryptic species and generally reveal an unexpected diversity and distribution of this small family. This success may be favoured by their adaptive morphology, here indicated to be genetically susceptible to progenesis.
Collapse
|
27
|
Pérez-González A, Ceccarelli FS, Monte BGO, Proud DN, DaSilva MB, Bichuette ME. Light from dark: A relictual troglobite reveals a broader ancestral distribution for kimulid harvestmen (Opiliones: Laniatores: Kimulidae) in South America. PLoS One 2017; 12:e0187919. [PMID: 29190302 PMCID: PMC5708626 DOI: 10.1371/journal.pone.0187919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/27/2017] [Indexed: 01/16/2023] Open
Abstract
A new troglobitic harvestman, Relictopiolus galadriel gen. nov et sp. nov., is described from Olhos d'Água cave, Itacarambi, Minas Gerais State, Brazil. Morphological characters, including male genitalia and exomorphology, suggest that this species belongs to the family Kimulidae, and it appears to share the greatest similarities with Tegipiolus pachypus. Bayesian inference analyses of a molecular dataset strongly support the inclusion of this species in Kimulidae and confirm the hypothesized sister-group relationship between R. galadriel and T. pachypus. A time calibrated phylogeny indicates that these sister-taxa diverged from a common ancestor approximately 40 Mya, during the Paleogene. The current range of Kimulidae illustrates a remarkable disjunct distribution, and leads us to hypothesize that the ancestral distribution of Kimulidae was once much more widespread across eastern Brazil. This may be attributed to the Eocene radiation associated with the warming (and humidifying) events in the Cenozoic when the best conditions for evergreen tropical vegetation in South America were established and followed by the extinction of kimulid epigean populations together with the retraction of rain forests during the Oligocene to Miocene cooling. The discovery of this relictual troglobite indicates that the Olhos d'Água cave was a stable refugium for this ancient lineage of kimulids and acted as a "museum" of biodiversity. Our findings, considered collectively with the diverse troglofauna of the Olhos d'Água cave, highlight it as one of the most important hotspots of troglobite diversity and endemism in the Neotropics. Given the ecological stresses on this habitat, the cavernicolous fauna are at risk of extinction and we emphasize the urgent need for appropriate conservation actions. Finally, we propose the transfer of Acanthominua, Euminua, Euminuoides and Pseudominua from Kimulidae to Zalmoxidae, resulting in two new synonymies and 13 new combinations.
Collapse
Affiliation(s)
- Abel Pérez-González
- División Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"—CONICET, Buenos Aires, Argentina
| | - F. Sara Ceccarelli
- División Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"—CONICET, Buenos Aires, Argentina
| | - Bruno G. O. Monte
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luis, São Carlos, Brasil
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, Rodovia Washington Luis, São Carlos, Brasil
| | - Daniel N. Proud
- División Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"—CONICET, Buenos Aires, Argentina
| | | | - Maria E. Bichuette
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, Rodovia Washington Luis, São Carlos, Brasil
| |
Collapse
|
28
|
Raspotnig G, Schaider M, Föttinger P, Schönhofer A. A Model for Phylogenetic Chemosystematics: Evolutionary History of Quinones in the Scent Gland Secretions of Harvestmen. Front Ecol Evol 2017. [PMID: 29527526 PMCID: PMC5844456 DOI: 10.3389/fevo.2017.00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
By the possession of unique exocrine scent glands, Opiliones (harvestmen) arise as a perfect model for studies on the evolutionary history of secretion chemistry. Among gland compounds of harvestmen, it is the quinones that represent recurring elements across the secretions of all suborders. Reliable data on quinone-distribution, however, is only known for Laniatores (benzoquinones) and Cyphophthalmi (naphthoquinones). We here unraveled the quinone-distribution across scent gland secretions of the third large harvestman suborder, the Palpatores (= Eu- and Dyspnoi): Naphthoquinones were found in phalangiid Eupnoi across all subfamilies as well as in nemastomatid (and at least one ischyropsalid) Dyspnoi. Benzoquinones (1,4-benzoquinone) were restricted to a small entity within Eupnoi, namely platybunine Phalangiidae, probably misplaced Gyantinae (currently Sclerosomatidae) and Amilenus (incertae sedis). Our findings, combined with data from Laniatores and Cyphophthalmi, allow evaluation of a comprehensive chemosystematic model for Opiliones for the first time. Evolutionary scenarios imply naphthoquinones as scent gland compounds of common ancestry, having evolved in an early harvestman ancestor and present in cyphophthalmids and palpatoreans, but lost in laniatoreans. Benzoquinones evolved later and independently at least twice: once in the secretions of gonyleptoid Laniatores (alkylated benzoquinones), and a second time in a lineage of phalangiid Eupnoi (1,4-benzoquinone).
Collapse
Affiliation(s)
- Günther Raspotnig
- Institute of Zoology, University of Graz, Graz, Austria.,Research Unit of Osteology and Analytical Mass Spectrometry, University Children's Hospital, Medical University Graz, Graz, Austria
| | | | - Petra Föttinger
- Institute of Zoology, University of Graz, Graz, Austria.,Research Unit of Osteology and Analytical Mass Spectrometry, University Children's Hospital, Medical University Graz, Graz, Austria
| | - Axel Schönhofer
- Institute of Zoology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
29
|
Fernández R, Sharma PP, Tourinho AL, Giribet G. The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics. Proc Biol Sci 2017; 284:20162340. [PMID: 28228511 PMCID: PMC5326524 DOI: 10.1098/rspb.2016.2340] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/27/2017] [Indexed: 12/12/2022] Open
Abstract
Opiliones are iconic arachnids with a Palaeozoic origin and a diversity that reflects ancient biogeographic patterns dating back at least to the times of Pangea. Owing to interest in harvestman diversity, evolution and biogeography, their relationships have been thoroughly studied using morphology and PCR-based Sanger approaches to infer their systematic relationships. More recently, two studies utilized transcriptomics-based phylogenomics to explore their basal relationships and diversification, but sampling was limiting for understanding deep evolutionary patterns, as they lacked good taxon representation at the family level. Here, we analysed a set of the 14 existing transcriptomes with 40 additional ones generated for this study, representing approximately 80% of the extant familial diversity in Opiliones. Our phylogenetic analyses, including a set of data matrices with different gene occupancy and evolutionary rates, and using a multitude of methods correcting for a diversity of factors affecting phylogenomic data matrices, provide a robust and stable Opiliones tree of life, where most families and higher taxa are precisely placed. Our dating analyses using alternative calibration points, methods and analytical parameters provide well-resolved old divergences, consistent with ancient regionalization in Pangea in some groups, and Pangean vicariance in others. The integration of state-of-the-art molecular techniques and analyses, together with the broadest taxonomic sampling to date presented in a phylogenomic study of harvestmen, provide new insights into harvestmen interrelationships, as well as an overview of the general biogeographic patterns of this ancient arthropod group.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 352 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Ana Lúcia Tourinho
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade (CBIO), Avenida André Araújo, 2936, Aleixo, CEP 69011-970, Manaus, Amazonas, Brazil
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
30
|
Cruz-López JA, Francke OF. Total evidence phylogeny of the North American harvestman family Stygnopsidae (Opiliones : Laniatores : Grassatores) reveals hidden diversity. INVERTEBR SYST 2017. [DOI: 10.1071/is16053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Systematic relationships among Laniatores have received considerable attention during the past few years. Many significant taxonomic changes have been proposed, particularly in the superfamily Gonyleptoidea. As part of this superfamily, the basalmost Stygnopsidae is the least known family. In order to propose the first total evidence phylogeny of the family, we produced four datasets: three molecular markers – partial nuclear 28S, mitochondrial ribosomal 16S, mitochondrial protein-encoding cytochrome c oxidase subunit I; and 72 morphological characters. With these data, we performed three different phylogenetic analyses: (1) Bayesian Inference with molecular data, and (2) Bayesian Inference and (3) Maximum Likelihood using combined data. Our results are congruent: a monophyletic Stygnopsidae subdivided into two major clades: Stygnopsinae and Karosinae, subfam. nov. The following genera are redefined: Stygnopsis, Hoplobunus and Serrobunus stat. rev. The following taxa are described: Iztlina venefica, gen. nov., sp. nov. and Tonalteca, gen. nov. Additionally, the following changes are proposed: Serrobunus queretarius (Šilhavý, 1974), comb. nov., Stygnopsis apoalensis (Goodnight & Goodnight, 1973), comb. nov., Stygnopsis mexicana (Roewer, 1915), comb. nov., Stygnopsis oaxacensis (Goodnight & Goodnight, 1973), comb. nov., and Tonalteca spinooculorum (Goodnight & Goodnight, 1973), comb. nov. We also discuss the status of the genera Isaeus stat. rev. and Mexotroglinus. Finally, we discuss the evolution of male genitalia and convergence of selected homoplastic diagnostic characters.
Collapse
|
31
|
Giribet G, Benavides LR, Merino-Sáinz I. The systematics and biogeography of the mite harvestman family Sironidae (Arachnida : Opiliones : Cyphophthalmi) with the description of five new species. INVERTEBR SYST 2017. [DOI: 10.1071/is16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sironidae, the first described family of Cyphophthalmi, is among the least understood phylogenetically. After examining recent collections across their distribution range, we provide the first comprehensive treatment of Sironidae by including molecular data from most of the known species, and all genera except for the monotypic Odontosiro Juberthie, 1961. We also revisit the male genitalic morphology for most genera by using confocal laser scanning microscopy and provide descriptions of five new species belonging to Iberosiro de Bivort & Giribet, 2004 (monotypic until now), Paramiopsalis Juberthie, 1962 and Siro Latreille, 1802. While the monophyly of Sironidae remains poorly supported using traditional Sanger-based markers, with the Mediterranean Parasiro Hansen & Sørensen, 1904 and the Japanese Suzukielus Juberthie, 1970b sometimes branching basally with respect to the other sironids, the remaining genera form a well-supported Laurentian/Laurasian clade. This group divides into a Western European/North American clade of Siro and the remaining genera, Iberosiro, Paramiopsalis and Cyphophthalmus Joseph, 1868. Iberosiro and Paramiopsalis form a well-supported clade from the NW corner of the Iberian Peninsula, while Cyphophthalmus is widespread in the Balkan region and Eastern Mediterranean. Finally, the following new taxa are described: Iberosiro rosae Giribet, Merino-Sáinz & Benavides, sp. nov., Paramiopsalis anadonae Giribet, Merino-Sáinz & Benavides, sp. nov., Paramiopsalis ramblae Benavides & Giribet, sp. nov., Siro ligiae Giribet, sp. nov., and Siro richarti Benavides & Giribet, sp. nov.
Collapse
|
32
|
Pinto-da-Rocha R, Bragagnolo C. Cladistic analysis of the family Nomoclastidae with descriptions of a new genus and eight new species (Opiliones, Laniatores). INVERTEBR SYST 2017. [DOI: 10.1071/is15050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The family Nomoclastidae is revised and, based on a cladistic analysis, Callcosma Roewer, 1932 is transferred to the family from Cranaidae. The monotypic genus Napostygnus Roewer, 1929, hitherto considered incertae sedis, is also assigned to Nomoclastidae. Zygopachylus Chamberlin, 1925 and Poassa Roewer, 1943 are synonymised under Quindina Roewer, 1914, consequently creating the new combinations Quindina limbata (Roewer, 1914) and Quindina albomarginis (Chamberlin, 1925). The new combination Quindina marginata (Roewer, 1963), comb. nov. is proposed, as the type-species of Deriacrus, D. simoni Roewer, 1932, is not congeneric with Deriacrus marginatus Roewer, 1963 and has the synapomorphies of Quindina, such as a row of large rounded tubercles on the lateral margin and enlarged tubercles on the dorsal scutum. A new genus and species are proposed, Kichua rheimsae, sp. nov., from Ecuador (type locality: Ecuador, Napo, Cantón Quijos, Parroquira Cozanga, Yanayacu Research Station). In addition, seven new species are herein described: Callcosma abrapatricia, sp. nov. (type locality: Peru, Moyobamba, Abra Patricia Private Conservation Area); Callcosma cofan, sp. nov. (type locality: Ecuador, Sucumbíos, Cabanas Cuyabeno); Callcosma barasana, sp. nov. (type locality: Colombia, Vaupés, Tararira, Estacción Biológica da Caparu); Quindina albiocularia, sp. nov. (type locality: Panama, Coclé, Valle de Antón); Quindina burbayar, sp. nov. (type locality: Panama, Reserva Natural Privada Burbayar); Quindina kuna, sp. nov. (type locality: Panama, Darién, Chucantí); and Quindina morae, sp. nov. (type locality: Panama, Gamboa, Sendero del Oleoducto).
Collapse
|
33
|
Henrard A, Jocqué R. Morphological and molecular evidence for new genera in the Afrotropical Cteninae (Araneae, Ctenidae) complex. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Arnaud Henrard
- Section Invertebrates Non-insects; Royal Museum for Central Africa; Leuvensesteenweg 13 3080 Tervuren Belgium
- Earth and Life Institute; Biodiversity Research Center; Université Catholique de Louvain; Pl. Croix du Sud, 1-4 1348 Louvain la Neuve Belgium
| | - Rudy Jocqué
- Section Invertebrates Non-insects; Royal Museum for Central Africa; Leuvensesteenweg 13 3080 Tervuren Belgium
| |
Collapse
|
34
|
Sharma PP, Santiago MA, Kriebel R, Lipps SM, Buenavente PAC, Diesmos AC, Janda M, Boyer SL, Clouse RM, Wheeler WC. A multilocus phylogeny of Podoctidae (Arachnida, Opiliones, Laniatores) and parametric shape analysis reveal the disutility of subfamilial nomenclature in armored harvestman systematics. Mol Phylogenet Evol 2016; 106:164-173. [PMID: 27664345 DOI: 10.1016/j.ympev.2016.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/20/2016] [Indexed: 11/17/2022]
Abstract
The taxonomy and systematics of the armored harvestmen (suborder Laniatores) are based on various sets of morphological characters pertaining to shape, armature, pedipalpal setation, and the number of articles of the walking leg tarsi. Few studies have tested the validity of these historical character systems in a comprehensive way, with reference to an independent data class, i.e., molecular sequence data. We examined as a test case the systematics of Podoctidae, a family distributed throughout the Indo-Pacific. We tested the validity of the three subfamilies of Podoctidae using a five-locus phylogeny, and examined the evolution of dorsal shape as a proxy for taxonomic utility, using parametric shape analysis. Here we show that two of the three subfamilies, Ibaloniinae and Podoctinae, are non-monophyletic, with the third subfamily, Erecananinae, recovered as non-monophyletic in a subset of analyses. Various genera were also recovered as non-monophyletic. As first steps toward revision of Podoctidae, the subfamilies Erecananinae Roewer, 1912 and Ibaloniinae Roewer, 1912 are synonymized with Podoctinae Roewer, 1912 new synonymies, thereby abolishing unsubstantiated subfamilial divisions within Podoctidae. We once again synonymize the genus Paralomanius Goodnight & Goodnight, 1948 with Lomanius Roewer, 1923 revalidated. We additionally show that eggs carried on the legs of male Podoctidae are not conspecific to the males, falsifying the hypothesis of paternal care in this group.
Collapse
Affiliation(s)
- Prashant P Sharma
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| | - Marc A Santiago
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Ricardo Kriebel
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Savana M Lipps
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Perry A C Buenavente
- Zoology Division, National Museum of the Philippines, Padre Burgos Avenue, Ermita 1000, Manila, Philippines
| | - Arvin C Diesmos
- Zoology Division, National Museum of the Philippines, Padre Burgos Avenue, Ermita 1000, Manila, Philippines
| | - Milan Janda
- Laboratorio Nacional de Análisis y Síntesis Ecológica, ENES, UNAM, Antigua Carretera a Pátzcuaro, 8701 Morelia, Mexico; Biology Centre, Czech Academy of Sciences, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
| | - Sarah L Boyer
- Biology Department, Macalester College, 1600 Grand Avenue, St. Paul, MN 55105, USA
| | - Ronald M Clouse
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
35
|
Derkarabetian S, Burns M, Starrett J, Hedin M. Population genomic evidence for multiple Pliocene refugia in a montane‐restricted harvestman (Arachnida, Opiliones,
Sclerobunus robustus
) from the southwestern United States. Mol Ecol 2016; 25:4611-31. [DOI: 10.1111/mec.13789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/11/2016] [Accepted: 07/19/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Shahan Derkarabetian
- Department of Biology San Diego State University 5500 Campanile Dr. San Diego CA 92182‐4614 USA
- Department of Biology University of California Riverside Riverside CA 92521 USA
| | - Mercedes Burns
- Department of Biology San Diego State University 5500 Campanile Dr. San Diego CA 92182‐4614 USA
| | - James Starrett
- Department of Biology San Diego State University 5500 Campanile Dr. San Diego CA 92182‐4614 USA
| | - Marshal Hedin
- Department of Biology San Diego State University 5500 Campanile Dr. San Diego CA 92182‐4614 USA
| |
Collapse
|
36
|
Machado G, Buzatto BA, García-Hernández S, Macías-Ordóñez R. Macroecology of Sexual Selection: A Predictive Conceptual Framework for Large-Scale Variation in Reproductive Traits. Am Nat 2016; 188 Suppl 1:S8-S27. [DOI: 10.1086/687575] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Cruz-López JA, Proud DN, Pérez-González A. When troglomorphism dupes taxonomists: morphology and molecules reveal the first pyramidopid harvestman (Arachnida, Opiliones, Pyramidopidae) from the New World. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12382] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jesús A. Cruz-López
- Colección Nacional de Arácnidos; Departamento de Zoología; Instituto de Biología; Universidad Nacional Autónoma de México; Apartado Postal 70-153 Mexico City DF 04510 México
- Posgrado en Ciencias Biológicas; Universidad Nacional Autónoma de México; Avenida Universidad 3000 CP 04510 Coyoacán DF México
| | - Daniel N. Proud
- División Aracnología; Museo Argentino de Ciencias Naturales - CONICET; Av. Ángel Gallardo 470 C1405DJR Buenos Aires Argentina
| | - Abel Pérez-González
- División Aracnología; Museo Argentino de Ciencias Naturales - CONICET; Av. Ángel Gallardo 470 C1405DJR Buenos Aires Argentina
| |
Collapse
|
38
|
Svojanovská H, Nguyen P, Hiřman M, Tuf IH, Wahab RA, Haddad CR, Šťáhlavský F. Karyotype Evolution in Harvestmen of the Suborder Cyphophthalmi (Opiliones). Cytogenet Genome Res 2016; 148:227-36. [PMID: 27245985 DOI: 10.1159/000445863] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 11/19/2022] Open
Abstract
The morphologically uniform suborder Cyphophthalmi represents a basal group of harvestmen (Opiliones). As such, it plays an important role in the reconstruction of the karyotype evolution within this arachnid order. The cytogenetic analysis of 6 representatives of the suborder Cyphophthalmi, namely Miopsalis sp. (2n = 30; Stylocellidae), Austropurcellia arcticosa (Cantrell, 1980) (2n = 30; Pettalidae), Parapurcellia amatola de Bivort & Giribet, 2010 (2n = 32; Pettalidae), Paramiopsalis aff. ramulosus Juberthie, 1962 (2n = 28; Sironidae), Cyphophthalmus duricorius Joseph, 1868 (2n = 24; Sironidae), and Siro carpaticus Rafalski, 1956 (2n = 52; Sironidae) was performed. Fluorescence in situ hybridization with 18S rDNA probe was used to analyze the distribution of major ribosomal RNA genes in harvestmen. We confront the obtained cytogenetic data with current hypotheses on cyphophthalmid phylogeny to reconstruct their karyotype evolution. We conclude that the ancestral karyotype of harvestmen consisted of 2n = 30 elements with 1 chromosome pair bearing terminal rDNA clusters. The rDNA locus was multiplicated in the evolution of Cyphophthalmi. However, decreases as well as increases in the number of chromosomes have been detected in the karyotype evolution of Cyphophthalmi. Our data thus reveal unexpected diversity in cyphophthalmid karyotypes.
Collapse
Affiliation(s)
- Hana Svojanovská
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
39
|
Giribet G, Boyer SL, Baker CM, Fernández R, Sharma PP, de Bivort BL, Daniels SR, Harvey MS, Griswold CE. A molecular phylogeny of the temperate Gondwanan family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) and the limits of taxonomic sampling. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12419] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Sarah L. Boyer
- Biology Department; Macalester College; 1600 Grand Avenue St. Paul MN 55105 USA
| | - Caitlin M. Baker
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Prashant P. Sharma
- Department of Zoology; University of Wisconsin-Madison; 352 Birge Hall, 430 Lincoln Drive Madison WI 53706 USA
| | - Benjamin L. de Bivort
- Department of Organismic and Evolutionary Biology; Harvard University; 26 Oxford Street Cambridge MA 02138 USA
| | - Savel R. Daniels
- Department of Botany and Zoology; University of Stellenbosch; Matieland Stellenbosch 7602 South Africa
| | - Mark S. Harvey
- Department of Terrestrial Zoology; Western Australian Museum; Welshpool DC WA 6986 Australia
| | - Charles E. Griswold
- Department of Entomology; California Academy of Sciences; San Francisco CA 94118 USA
| |
Collapse
|
40
|
Wolff JO, Schönhofer AL, Martens J, Wijnhoven H, Taylor CK, Gorb SN. The evolution of pedipalps and glandular hairs as predatory devices in harvestmen (Arachnida, Opiliones). Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12375] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonas O. Wolff
- Functional Morphology and Biomechanics; Zoological Institute; University of Kiel; Am Botanischen Garten 9 D-24098 Kiel Germany
| | - Axel L. Schönhofer
- Department of Evolutionary Biology; Institute of Zoology; Johannes Gutenberg University Mainz; Johannes-von-Müller-Weg 6 D-55128 Mainz Germany
| | - Jochen Martens
- Department of Evolutionary Biology; Institute of Zoology; Johannes Gutenberg University Mainz; Johannes-von-Müller-Weg 6 D-55128 Mainz Germany
| | - Hay Wijnhoven
- Groesbeeksedwarsweg 300; NL-6521 DW Nijmegen Netherlands
| | - Christopher K. Taylor
- Department of Environment & Agriculture; Curtin University; GPO Box U1987 Perth 6845 Australia
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics; Zoological Institute; University of Kiel; Am Botanischen Garten 9 D-24098 Kiel Germany
| |
Collapse
|
41
|
Harvey MS, Huey JA, Hillyer MJ, McIntyre E, Giribet G. The first troglobitic species of Gymnobisiidae (Pseudoscorpiones : Neobisioidea), from Table Mountain (Western Cape Province, South Africa) and its phylogenetic position. INVERTEBR SYST 2016. [DOI: 10.1071/is15044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fully troglobitic pseudoscorpions are rare in the Afrotropical Region, and we explored the identity and phylogenetic relationships of specimens of a highly modified troglobite of the family Gymnobisiidae in the dark zone of the Wynberg Cave system, on Table Mountain, South Africa. This large pseudoscorpion – described as Gymnobisium inukshuk Harvey & Giribet, sp. nov. – lacks eyes and has extremely long appendages, and has been found together with other troglobitic fauna endemic only to this cave system. Phylogenetic analyses using the nuclear ribosomal genes 18S rRNA and 28S rRNA and the mitochondrial protein-encoding gene cytochrome c oxidase subunit I unambiguously place the new species with other surface Gymnobisium from South Africa. This placement receives strong support and is stable to analytical treatments, including static and dynamic homology, parsimony and maximum likelihood, and data removal for ambiguously aligned sites. This species is the first troglobitic species of the family and one of the most highly modified pseudoscorpions from the Afrotropical Region. http://zoobank.org/urn:lsid:zoobank.org:pub:5227092B-A64B-4DB3-AD90-F474F0BA6AED
Collapse
|
42
|
Kury AB, Souza DR, Pérez-González A. World Checklist of Opiliones species (Arachnida). Part 2: Laniatores - Samooidea, Zalmoxoidea and Grassatoresincertae sedis. Biodivers Data J 2015; 3:e6482. [PMID: 26752965 PMCID: PMC4698464 DOI: 10.3897/bdj.3.e6482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/15/2015] [Indexed: 11/28/2022] Open
Abstract
Including more than 6500 species, Opiliones is the third most diverse order of Arachnida, after the megadiverse Acari and Araneae. This database is part 2 of 12 of a project containing an intended worldwide checklist of species and subspecies of Opiliones, and it includes the members of the suborder Laniatores, infraorder Grassatores of the superfamilies Samooidea and Zalmoxoidea plus the genera currently not allocated to any family (i.e. Grassatores incertae sedis). In this Part 2, a total of 556 species and subspecies are listed.
Collapse
Affiliation(s)
- Adriano B. Kury
- Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniele R. Souza
- Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Abel Pérez-González
- MACN - Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| |
Collapse
|
43
|
Richart CH, Hayashi CY, Hedin M. Phylogenomic analyses resolve an ancient trichotomy at the base of Ischyropsalidoidea (Arachnida, Opiliones) despite high levels of gene tree conflict and unequal minority resolution frequencies. Mol Phylogenet Evol 2015; 95:171-82. [PMID: 26691642 DOI: 10.1016/j.ympev.2015.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/16/2015] [Accepted: 11/13/2015] [Indexed: 11/19/2022]
Abstract
Phylogenetic resolution of ancient rapid radiations has remained problematic despite major advances in statistical approaches and DNA sequencing technologies. Here we report on a combined phylogenetic approach utilizing transcriptome data in conjunction with Sanger sequence data to investigate a tandem of ancient divergences in the harvestmen superfamily Ischyropsalidoidea (Arachnida, Opiliones, Dyspnoi). We rely on Sanger sequences to resolve nodes within and between closely related genera, and use RNA-seq data from a subset of taxa to resolve a short and ancient internal branch. We use several analytical approaches to explore this succession of ancient diversification events, including concatenated and coalescent-based analyses and maximum likelihood gene trees for each locus. We evaluate the robustness of phylogenetic inferences using a randomized locus sub-sampling approach, and find congruence across these methods despite considerable incongruence across gene trees. Incongruent gene trees are not recovered in frequencies expected from a simple multispecies coalescent model, and we reject incomplete lineage sorting as the sole contributor to gene tree conflict. Using these approaches we attain robust support for higher-level phylogenetic relationships within Ischyropsalidoidea.
Collapse
Affiliation(s)
- Casey H Richart
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA; Department of Biology, University of California, Riverside, CA 92521, USA.
| | - Cheryl Y Hayashi
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Marshal Hedin
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
44
|
Giribet G. Morphology should not be forgotten in the era of genomics–a phylogenetic perspective. ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.01.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Kury AB, Villarreal M. O. The prickly blade mapped: establishing homologies and a chaetotaxy for macrosetae of penis ventral plate in Gonyleptoidea (Arachnida, Opiliones, Laniatores). Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12225] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Adriano B. Kury
- Departamento de Invertebrados; Museu Nacional/UFRJ; Quinta da Boa Vista; São Cristóvão 20.940-040 Rio de Janeiro RJ Brazil
| | - Osvaldo Villarreal M.
- Departamento de Invertebrados; Museu Nacional/UFRJ; Quinta da Boa Vista; São Cristóvão 20.940-040 Rio de Janeiro RJ Brazil
| |
Collapse
|
46
|
Abstract
Opiliones are one of the largest arachnid orders, with more than 6,500 species in 50 families. Many of these families have been erected or reorganized in the last few years since the publication of The Biology of Opiliones. Recent years have also seen an explosion in phylogenetic work on Opiliones, as well as in studies using Opiliones as test cases to address biogeographic and evolutionary questions more broadly. Accelerated activity in the study of Opiliones evolution has been facilitated by the discovery of several key fossils, including the oldest known Opiliones fossil, which represents a new, extinct suborder. Study of the group's biology has also benefited from rapid accrual of genomic resources, particularly with respect to transcriptomes and functional genetic tools. The rapid emergence and utility of Phalangium opilio as a model for evolutionary developmental biology of arthropods serve as demonstrative evidence of a new area of study in Opiliones biology, made possible through transcriptomic data.
Collapse
Affiliation(s)
- Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138;
| | | |
Collapse
|
47
|
Polotow D, Carmichael A, Griswold CE. Total evidence analysis of the phylogenetic relationships of Lycosoidea spiders (Araneae, Entelegynae). INVERTEBR SYST 2015. [DOI: 10.1071/is14041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phylogenetic relationships within the superfamily Lycosoidea are investigated through the coding and analysis of character data derived from morphology, behaviour and DNA sequences. In total, 61 terminal taxa were studied, representing most of the major groups of the RTA-clade (i.e. spiders that have a retrolateral tibial apophysis on the male palp). Parsimony and model-based approaches were used, and several support values, partitions and implied weighting schemes were explored to assess clade stability. The morphological–behavioural matrix comprised 96 characters, and four gene fragments were used: 28S (~737 base pairs), actin (~371 base pairs), COI (~630 base pairs) and H3 (~354 base pairs). Major conclusions of the phylogenetic analysis include: the concept of Lycosoidea is restricted to seven families: Lycosidae, Pisauridae, Ctenidae, Psechridae, Thomisidae, Oxyopidae (but Ctenidae and Pisauridae are not monophyletic) and also Trechaleidae (not included in the analysis); the monophyly of the ‘Oval Calamistrum clade’ (OC-clade) appears to be unequivocal, with high support, and encompassing the Lycosoidea plus the relimited Zoropsidae and the proposed new family Udubidae (fam. nov.); Zoropsidae is considered as senior synonym of Tengellidae and Zorocratidae (syn. nov.); Viridasiinae (rank nov.) is raised from subfamily to family rank, excluded from the Ctenidae and placed in Dionycha. Our quantitative phylogenetic analysis confirms the synonymy of Halidae with Pisauridae. The grate-shaped tapetum appears independently at least three times and has a complex evolutionary history, with several reversions.
Collapse
|
48
|
Boyer SL, Baker CM, Popkin-Hall ZR, Laukó DI, Wiesner HA, Quay RH. Phylogeny and biogeography of the mite harvestmen (Arachnida : Opiliones : Cyphophthalmi) of Queensland, Australia, with a description of six new species from the rainforests of the Wet Tropics. INVERTEBR SYST 2015. [DOI: 10.1071/is14025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Wet Tropics of Queensland, Australia, represent the largest remaining fragment of vast rainforests that once covered the entire continent. Over the past few decades the Wet Tropics bioregion has received much attention from biologists interested in the effect of climate change on diversity and distribution of rainforest animals. However, most such studies have focused on vertebrates, and despite considerable interest in the biota of the area, the diversity of many of Wet Tropics invertebrate taxa remains poorly known. Here we describe six new species of mite harvestman from the area, identified using a combination of morphological and molecular data. Our study represents the first detailed phylogenetic study of the genus Austropurcellia, and provides insight into the historical biogeography of these dispersal-limited arachnids.
Collapse
|
49
|
Kury AB, Mendes AC, Souza DR. World Checklist of Opiliones species (Arachnida). Part 1: Laniatores - Travunioidea and Triaenonychoidea. Biodivers Data J 2014; 2:e4094. [PMID: 25425936 PMCID: PMC4238074 DOI: 10.3897/bdj.2.e4094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
Comprising more than 6500 species, Opiliones is the third most diverse order of Arachnida, after the megadiverse Acari and Araneae. The database referred here is part 1 of 12 of a project containing an intended worldwide checklist of species and subspecies of Opiliones as Darwin Core archives, and it includes the superfamilies Travunioidea and Triaenonychoidea. These two superfamilies are often treated together under the denomination of Insidiatores. In this Part 1, a total of 571 species and subspecies are listed. Briggsidae and Cladonychiidae are both downgraded to subfamilies of Travuniidae. Peltonychia Roewer, 1935 is an available name and senior synonym of Hadziana Roewer, 1935 and is herein revalidated. Seven genera of Triaenonychidae described by Lawrence between 1931 and 1933 originally failed to comply ICZN rules for availability (Art. 13.3). All of them only became available when Staręga (1992) designated a type species for each. Therefore, the correct authorships of Austromontia Lawrence, 1931, Biacumontia Lawrence, 1931, Graemontia Lawrence, 1931, Larifugella Lawrence, 1933, Mensamontia Lawrence, 1931, Monomontia Lawrence, 1931 and Rostromontia Lawrence, 1931 are all Staręga, 1992. Fumontana Shear, 1977, originally referred only to subfamily Triaenonychinae (as opposed to Soerensenellinae then and not corresponding to present Triaenonychinae), not to any tribe (which in turn correspond to modern subfamilies) is herein included in the subfamily Triaenonychinae. Picunchenops Maury, 1988 originally not included in any tribe of Triaenonychidae, is herein included in the subfamily Triaenonychinae. Trojanella Karaman, 2005, originally ranked as Travunioidea incertae sedis, is herein included in the TravuniidaeTravuniinae. Nunciaovata Roewer, 1915 (synonymized with Triaenonyxcockayni Hogg, 1920 by Forster (1954), but with inverted precedence) is here combined as Nunciacoriaceaovata Roewer, 1915 as correct senior synonym instead of Nunciacoriaceacockayni (Hogg, 1920), which is current in the literature. Neonunciaenderbei (Hogg, 1909) is reaffirmed as the correct spelling for the species, while the deliberate change to Neonunciaenderbyi by Forster (1954) is an incorrect subsequent spelling.
Collapse
Affiliation(s)
| | | | - Daniele R. Souza
- Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
50
|
De Laet J. Parsimony analysis of unaligned sequence data: maximization of homology and minimization of homoplasy, not minimization of operationally defined total cost or minimization of equally weighted transformations. Cladistics 2014; 31:550-567. [DOI: 10.1111/cla.12098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jan De Laet
- Göteborgs Botaniska Trädgård; Carl Skottsbergs Gata 22A SE-413 19 Göteborg Sweden
| |
Collapse
|