1
|
Bharti DK, Pawar PY, Edgecombe GD, Joshi J. Genetic diversity varies with species traits and latitude in predatory soil arthropods (Myriapoda: Chilopoda). GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2023; 32:1508-1521. [PMID: 38708411 PMCID: PMC7615927 DOI: 10.1111/geb.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/13/2023] [Indexed: 05/07/2024]
Abstract
Aim To investigate the drivers of intra-specific genetic diversity in centipedes, a group of ancient predatory soil arthropods. Location Asia, Australasia and Europe. Time Period Present. Major Taxa Studied Centipedes (Class: Chilopoda). Methods We assembled a database of 1245 mitochondrial cytochrome c oxidase subunit I sequences representing 128 centipede species from all five orders of Chilopoda. This sequence dataset was used to estimate genetic diversity for centipede species and compare its distribution with estimates from other arthropod groups. We studied the variation in centipede genetic diversity with species traits and biogeography using a beta regression framework, controlling for the effect of shared evolutionary history within a family. Results A wide variation in genetic diversity across centipede species (0-0.1713) falls towards the higher end of values among arthropods. Overall, 27.57% of the variation in mitochondrial COI genetic diversity in centipedes was explained by a combination of predictors related to life history and biogeography. Genetic diversity decreased with body size and latitudinal position of sampled localities, was greater in species showing maternal care and increased with geographic distance among conspecifics. Main Conclusions Centipedes fall towards the higher end of genetic diversity among arthropods, which may be related to their long evolutionary history and low dispersal ability. In centipedes, the negative association of body size with genetic diversity may be mediated by its influence on local abundance or the influence of ecological strategy on long-term population history. Species with maternal care had higher genetic diversity, which goes against expectations and needs further scrutiny. Hemispheric differences in genetic diversity can be due to historic climatic stability and lower seasonality in the southern hemisphere. Overall, we find that despite the differences in mean genetic diversity among animals, similar processes related to life-history strategy and biogeography are associated with the variation within them.
Collapse
Affiliation(s)
- D. K. Bharti
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Jahnavi Joshi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Chen TY, Jiang C, Huang LQ. A new species of Otostigmus (Chilopoda, Scolopendromorpha, Scolopendridae) from China, with remarks on the phylogenetic relationships of Otostigmuspolitus Karsch, 1881. Zookeys 2023; 1168:161-178. [PMID: 38328623 PMCID: PMC10848867 DOI: 10.3897/zookeys.1168.82750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/27/2023] [Indexed: 02/09/2024] Open
Abstract
Through a combination of morphological and DNA data, a new scolopendrid centipede from southern and southwestern China was revealed: O.tricarinatussp. nov. The species belong to the politus group but has three sharp tergal keels. Validation of phylogenetic status was performed through molecular analysis of the cytochrome c oxidase subunit I (COI), 16S rRNA, and 28S rRNA sequences from 16 Otostigmus species. Otostigmustricarinatussp. nov. was found to be two populations and varied in the number of spines on the ultimate prefemur, the sutures on a sternite, and a pore-free median longitudinal strip in the pore field. The Yunnan-Guizhou plateau population of O.tricarinatussp. nov. was sister to the clade O.polituspolitus + O.politusyunnanensis + Guangxi population of O.tricarinatussp. nov. with strong support from both BI (bayesian inference) and ML (maximum likelihood) analyses (PP = 1, BS = 97%).
Collapse
Affiliation(s)
- Tian-Yun Chen
- Guangdong Pharmaceutical University, Guangzhou 510006, ChinaChina Academy of Chinese Medical SciencesBeijingChina
- State Key Laboratory of Dao–di Herbs Breeding Base, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Chao Jiang
- State Key Laboratory of Dao–di Herbs Breeding Base, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
| | - Lu-Qi Huang
- State Key Laboratory of Dao–di Herbs Breeding Base, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, ChinaGuangdong Pharmaceutical UniversityGuangzhouChina
| |
Collapse
|
3
|
Benavides LR, Edgecombe GD, Giribet G. Re-evaluating and dating myriapod diversification with phylotranscriptomics under a regime of dense taxon sampling. Mol Phylogenet Evol 2023; 178:107621. [PMID: 36116731 DOI: 10.1016/j.ympev.2022.107621] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
Recent transcriptomic studies of myriapod phylogeny have been based on relatively small datasets with <40 myriapod terminals and variably supported or contradicted the traditional morphological groupings of Progoneata and Dignatha. Here we amassed a large dataset of 104 myriapod terminals, including multiple species for each of the four myriapod classes. Across the tree, most nodes are stable and well supported. Most analyses across a range of gene occupancy levels provide moderate to strong support for a deep split of Myriapoda into Symphyla + Pauropoda (=Edafopoda) and an uncontradicted grouping of Chilopoda + Diplopoda (=Pectinopoda nov.), as in other recent transcriptome-based analyses; no analysis recovers Progoneata or Dignatha as clades. As in all recent multi-locus and phylogenomic studies, chilopod interrelationships resolve with Craterostigmus excluded from Amalpighiata rather than uniting with other centipedes with maternal brood care in Phylactometria. Diplopod ordinal interrelationships are largely congruent with morphology-based classifications. Chilognathan clades that are not invariably advocated by morphologists include Glomerida + Glomeridesmida, such that the volvation-related characters of pill millipedes may be convergent, and Stemmiulida + Polydesmida more closely allied to Juliformia than to Callipodida + Chordeumatida. The latter relationship implies homoplasy in spinnerets and contradicts Nematophora. A time-tree with nodes calibrated by 25 myriapod and six outgroup fossil terminals recovers Cambrian-Ordovician divergences for the deepest splits in Myriapoda, Edafopoda and Pectinopoda, predating the terrestrial fossil record of myriapods as in other published chronograms, whereas age estimates within Chilopoda and Diplopoda overlap with or do not appreciably predate the calibration fossils. The grouping of Chilopoda and Diplopoda is recovered in all our analyses and is formalized as Pectinopoda nov., named for the shared presence of mandibular comb lamellae. New taxonomic proposals for Chilopoda based on uncontradicted clades are Tykhepoda nov. for the three blind families of Scolopendromorpha that share a "sieve-type" gizzard, and Taktikospina nov. for Scolopendromorpha to the exclusion of Mimopidae.
Collapse
Affiliation(s)
- Ligia R Benavides
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | | | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Jonishi T, Nakano T. Taxonomic Accounts and Phylogenetic Positions of the Far East Asian Centipedes Scolopocryptops elegans and S. curtus (Chilopoda: Scolopendromorpha). Zoolog Sci 2022; 39:581-593. [PMID: 36495493 DOI: 10.2108/zs220029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
The epigean centipede genus Scolopocryptops Newport, 1844 consists of two monophyletic lineages, the "Asian/North American" and "Neotropical/Afrotropical" groups. Most of the "Asian/North American" species bear the complete sulcus/sulci along the lateral margin of the cephalic plate and sternites lacking sulci, whereas Japanese Scolopocryptops elegans (Takakuwa, 1937) bears short lateral sulci on the cephalic plate and Taiwanese Scolopocryptops curtus (Takakuwa, 1939) lacks the cephalic marginal sulci, and both species bear a longitudinal sternal sulcus. The taxonomic accounts of S. elegans and S. curtus were revisited in this study based on newly collected specimens. We found that these two species share a characteristic of the second maxilla, that they lack the transparent margin on the dorsal brush, which distinguishes them from other "Asian/North American" species. Scolopocryptops elegans and S. curtus can be distinguished from each other by the characters of their antennal articles, cephalic plate, forcipular coxosternite, tergite 23, and coxopleuron. Phylogenetic analyses using nuclear 28S ribosomal RNA and mitochondrial cytochrome c oxidase subunit I sequences confirmed that S. elegans and S. curtus are closely related and form a single clade sister to a clade comprising all the other "Asian/North American" Scolopocryptops species.
Collapse
Affiliation(s)
- Taro Jonishi
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan,
| | - Takafumi Nakano
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Benavides LR, Jiang C, Giribet G. Mimopidae is the sister group to all other scolopendromorph centipedes (Chilopoda, Scolopendromorpha): a phylotranscriptomic approach. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00502-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Vahtera V, Stoev P, Akkari N. Five million years in the darkness: A new troglomorphic species of Cryptops Leach, 1814 (Chilopoda, Scolopendromorpha) from Movile Cave, Romania. Zookeys 2020; 1004:1-26. [PMID: 33384564 PMCID: PMC7758309 DOI: 10.3897/zookeys.1004.58537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/13/2020] [Indexed: 02/04/2023] Open
Abstract
A new species of Cryptops Leach, 1814, C. speleorex sp. nov., is described from Movile Cave, Dobrogea, Romania. The cave is remarkable for its unique ecosystem entirely dependent on methane- and sulfur-oxidising bacteria. Until now, the cave was thought to be inhabited by the epigean species C. anomalans, which is widespread in Europe. Despite its resemblance to C. anomalans, the new species is well-defined morphologically and molecularly based on two mitochondrial (cytochrome c oxidase subunit I COI and 16S rDNA) and one nuclear (28S rDNA) markers. Cryptops speleorex sp. nov. shows a number of troglomorphic traits such as a generally large body and elongated appendages and spiracles, higher number of coxal pores and saw teeth on the tibia of the ultimate leg. With this record, the number of endemic species known from the Movile Cave reaches 35, which ranks it as one of the most species-rich caves in the world.
Collapse
Affiliation(s)
- Varpu Vahtera
- Zoological Museum, Biodiversity Unit, University of Turku, Turku, FinlandUniversity of TurkuTurkuFinland
| | - Pavel Stoev
- National Museum of Natural History and Pensoft Publishers, Sofia, BulgariaNational Museum of Natural HistorySofiaBulgaria
| | - Nesrine Akkari
- Naturhistorisches Museum Wien, Burgring 7, Wien 1010, AustriaNaturhistorisches Museum WienViennaAustria
| |
Collapse
|
7
|
Jiang C, Bai Y, Shi M, Liu J. Rediscovery and phylogenetic relationships of the scolopendromorph centipede Mimops orientalis Kraepelin, 1903 (Chilopoda): a monotypic species of Mimopidae endemic to China, for more than one century. Zookeys 2020; 932:75-91. [PMID: 32476974 PMCID: PMC7239954 DOI: 10.3897/zookeys.932.51461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022] Open
Abstract
Mimops orientalis Kraepelin, 1903 is a monotypic species of Mimopidae endemic to China. The species is known only from a single specimen, the holotype. Little is known about its biology, habitat associations, or phylogenetic relationships. It was rediscovered on Qinling Mountain in Shaanxi and Henan provinces, China, 117 years after its last record. Detailed descriptions and colour photographs of living specimens are provided along with its ecology, updated conservation notes, and data on sexual dimorphism. A genetic analysis (COI, 16S rRNA, and 28S rRNA) was conducted to assess the phylogenetic relationships among Mimopidae, Cryptopidae, Scolopendridae, Scolopocryptopidae, and Plutoniumidae. The results support classifying Mimopidae as a valid family.
Collapse
Affiliation(s)
- Chao Jiang
- State Key Laboratory of Dao-di Herbs Breeding Base, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, ChinaNational Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijingChina
| | - Yunjun Bai
- State Key Laboratory of Dao-di Herbs Breeding Base, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, ChinaNational Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijingChina
| | - Mengxuan Shi
- School of Life Sciences, Henan University, Kaifeng, 475001, ChinaHenan UniversityKaifengChina
| | - Juan Liu
- State Key Laboratory of Dao-di Herbs Breeding Base, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, ChinaNational Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
8
|
Joshi J, Karanth PK, Edgecombe GD. The out-of-India hypothesis: evidence from an ancient centipede genus, Rhysida (Chilopoda: Scolopendromorpha) from the Oriental Region, and systematics of Indian species. Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The Oriental Region has been a focus of biogeographical research for more than two centuries. We examined systematics and biogeography of the centipede genus Rhysida in this region. A robust species hypothesis for the Indian subcontinental and Southeast Asian Rhysida clade uses molecular, morphological and distribution data. Twelve species are recognized in two monophyletic species complexes, eight belonging to the Rhysida immarginata and four to the Rhysida longipes species complex. They include Rhysida aspinosa, Rhysida crassispina, R. immarginata, R. longipes and seven new species, five of which are formally named in this paper: Rhysida ikhalama, Rhysida konda, Rhysida lewisi, Rhysida pazhuthara and Rhysida sada The nine Rhysida species are documented taxonomically and their morphological variation is reviewed. An integrative systematic approach reveals that diversity of Rhysida in the Indian subcontinent has been underestimated. Both species complexes started to diversify in the Early to Late Cretaceous in the Indian subcontinent. The out-of-India hypothesis is supported in both clades, because Southeast Asian species are nested in Indian subcontinental clades. Historical biogeographical analyses suggest two independent post-collision dispersal events, one in the immarginata clade and another where R. longipes expanded its range into Southeast Asia.
Collapse
Affiliation(s)
| | - Praveen K Karanth
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
9
|
Joshi J, Edgecombe GD. Evolutionary biogeography of the centipede genus Ethmostigmus from Peninsular India: testing an ancient vicariance hypothesis for Old World tropical diversity. BMC Evol Biol 2019; 19:41. [PMID: 30709332 PMCID: PMC6359765 DOI: 10.1186/s12862-019-1367-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/18/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Understanding the relative influence of vicariance and dispersal in shaping Old World tropical biodiversity remains a challenge. We aimed to infer the roles of these alternative biogeographic processes using a species time-tree for the centipede genus Ethmostigmus from the Old World tropics. Additionally, we explored fine-scale biogeographic patterns for an endemic radiation of Ethmostigmus from the peninsular Indian Plate (PIP), an area with complex geological and climatic history. RESULTS Divergence time estimates suggest that Ethmostigmus began diversifying in the Late Cretaceous, 99 (± 25) million years ago (Ma), its early biogeographic history shaped by vicariance. Members of Ethmostigmus in PIP form a monophyletic group that underwent endemic radiation in the Late Cretaceous, 72 (± 25) Ma. In contrast, a new species of Ethmostigmus from north-east India formed a clade with African/Australian species. Fine-scale biogeographic analyses in PIP predict that Indian Ethmostigmus had an ancestor in southern-central parts of the Western Ghats. This was followed by four independent dispersal events from the southern-central Western Ghats to the Eastern Ghats, and between different parts of the Western Ghats in the Cenozoic. CONCLUSIONS Our results are consistent with Gondwanan break-up driving the early evolutionary history of the genus Ethmostigmus. Multiple dispersal events coinciding with geo-climatic events throughout the Cenozoic shaped diversification in PIP. Ethmostigmus species in PIP are restricted to wet forests and have retained that niche throughout their diversification.
Collapse
Affiliation(s)
- Jahnavi Joshi
- The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | | |
Collapse
|
10
|
Edgecombe GD, Huey JA, Humphreys WF, Hillyer M, Burger MA, Volschenk ES, Waldock JM. Blind scolopendrid centipedes of the genus Cormocephalus from subterranean habitats in Western Australia (Myriapoda: Scolopendromorpha: Scolopendridae). INVERTEBR SYST 2019. [DOI: 10.1071/is19015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Only a single blind species is known in the centipede family Scolopendridae, representing the monotypic genus Tonkinodentus Schileyko, 1992, from Vietnam. All of more than 400 other species have four ocelli on each side of the cephalic plate. A complex of three new blind species of the genus Cormocephalus Newport, 1844, is described from the subterranean fauna of the central Pilbara region of Western Australia. Phylogenies based on sequence data for the barcode region of COI and a concatenated matrix that also includes 12S rRNA, 28S rRNA and ITS2 unite the blind Pilbara species as a monophyletic group, albeit with moderate bootstrap support, informally named the C. sagmus species group. Cormocephalus sagmus, C. pyropygus and C. delta spp. nov. supplement 17 epigean congeners previously described from Australia. The new species are all morphologically similar, but can be distinguished using the shape and spinulation of the ultimate leg prefemur. Two additional genetically distinct lineages were recovered that are not described, owing to the specimens being immature or lacking diagnostic morphological characters. The subterranean radiation in the Pilbara is more closely related to species from forests in the south-west of Western Australia than to congeners from the arid zone.
http://zoobank.org/urn:lsid:zoobank.org:pub:6F67FD31-A373-4DC5-A5FD-374D32DEE02C
Collapse
|
11
|
Ward MJ, Rokyta DR. Venom-gland transcriptomics and venom proteomics of the giant Florida blue centipede, Scolopendra viridis. Toxicon 2018; 152:121-136. [PMID: 30086358 DOI: 10.1016/j.toxicon.2018.07.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
The limited number of centipede venom characterizations have revealed a rich diversity of toxins, and recent work has suggested centipede toxins may be more rapidly diversifying than previously considered. Additionally, many identified challenges in venomics research, including assembly and annotation methods, toxin quantification, and the ability to provide biological or technical replicates, have yet to be addressed in centipede venom characterizations. We performed high-throughput, quantifiable transcriptomic and proteomic methods on two individual Scolopendra viridis centipedes from North Florida. We identified 39 toxins that were proteomically confirmed, and 481 nontoxins that were expressed in the venom gland of S. viridis. The most abundant toxins expressed in the venom of S. viridis belonged to calcium and potassium ion-channel toxins, venom allergens, metalloproteases, and β-pore forming toxins. We compared our results to the previously characterized S. viridis from Morelos, Mexico, and found only five proteomically confirmed toxins in common to both localities, suggesting either extreme toxin divergence within S. viridis, or that these populations may represent entirely different species. By using multiple assembly and annotation methods, we generated a comprehensive and quantitative reference transcriptome and proteome of a Scolopendromorpha centipede species, while overcoming some of the challenges present in venomics research.
Collapse
Affiliation(s)
- Micaiah J Ward
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
12
|
Joshi J, Edgecombe GD. Molecular phylogeny and systematics of the centipede genus Ethmostigmus Pocock (Chilopoda : Scolopendromorpha) from peninsular India. INVERTEBR SYST 2018. [DOI: 10.1071/is18030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Integrative taxonomy assesses the congruence between different lines of evidence for delimiting species, such as morphological, molecular or ecological data. Herein molecular phylogenetics is used to test monophyly and determine the phylogenetic position of the Old World tropical centipede genus Ethmostigmus Pocock, 1898, and to define species boundaries for Ethmostigmus in peninsular India. A phylogeny of the family Scolopendridae based on DNA sequence data for three markers from 427 specimens sampling in all major lineages (144 individuals generated in this study) recovers Ethmostigmus as a monophyletic group, but relationships among the genera in its subfamily Otostigminae are poorly supported. Two species delimitation methods for DNA sequence data and phylogeny are integrated with morphology and geographic data to propose a well-supported species hypothesis for Ethmostigmus on the peninsular Indian plate. Five species of Ethmostigmus are recognised in peninsular India, of which E. coonooranus Chamberlin, 1920 and three new species, namely, E. agasthyamalaiensis, sp. nov., E. sahyadrensis, sp. nov. and E. praveeni, sp. nov., occur in the Western Ghats, a biodiversity hotspot. The lesser-known Eastern Ghats harbour one species, E. tristis (Meinert, 1886), which has been nearly unreported for 130 years. This study highlights the value of an integrative approach to systematics, especially in underexplored, high biodiversity regions and where morphological variation is limited among closely related species.
Collapse
|
13
|
Siriwut W, Edgecombe GD, Sutcharit C, Tongkerd P, Panha S. Systematic revision and phylogenetic reassessment of the centipede genera Rhysida Wood, 1862 and Alluropus Silvestri, 1912 (Chilopoda: Scolopendromorpha) in Southeast Asia, with further discussion of the subfamily Otostigminae. INVERTEBR SYST 2018. [DOI: 10.1071/is17081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phylogenetic relationships of two morphologically similar scolopendrid genera, Rhysida Wood, 1862, and Alluropus Silvestri, 1912, were investigated based on broad-scale taxonomic sampling from SE Asia, India and Australia. Morphological revision and molecular phylogenetics using three loci validate seven Rhysida species in SE Asia and Australia: R. lithobioides (Newport, 1845), R. longipes (Newport, 1845), R. immarginata (Porat, 1876), R. nuda (Newport, 1845), R. carinulata (Haase, 1887), R. singaporiensis Verhoeff, 1937 and R. polyacantha Koch, 1985. The nominal SE Asian species R. leviventer Attems, 1953 and R. marginata Attems, 1953 are placed in junior subjective synonymy with R. lithobioides and Alluropus calcaratus (Pocock, 1891), respectively. The monotypic genus Alluropus is redescribed, molecular phylogeny recovering it nesting together with Indo-Australian Rhysida. Taxonomic revision reassigned R. calcarata Pocock, 1891 to Alluropus based on its morphological and molecular similarity to the type, A. demangei Silvestri, 1912, the differences between putative species being sexual variation. Two morphologically distinct allopatric populations of A. calcaratus, comb. nov. (= A. demangei, syn. nov.) were found in the Indochina subregion. Phylogenetic relationships in Otostigminae remain unsettled because clades within several genera lack significant support, although Rhysida consistently falls into two clades that are not each other’s closest relative.
Collapse
|
14
|
Kenning M, Müller CH, Sombke A. The ultimate legs of Chilopoda (Myriapoda): a review on their morphological disparity and functional variability. PeerJ 2017; 5:e4023. [PMID: 29158971 PMCID: PMC5691793 DOI: 10.7717/peerj.4023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/22/2017] [Indexed: 01/16/2023] Open
Abstract
The arthropodium is the key innovation of arthropods. Its various modifications are the outcome of multiple evolutionary transformations, and the foundation of nearly endless functional possibilities. In contrast to hexapods, crustaceans, and even chelicerates, the spectrum of evolutionary transformations of myriapod arthropodia is insufficiently documented and rarely scrutinized. Among Myriapoda, Chilopoda (centipedes) are characterized by their venomous forcipules-evolutionarily transformed walking legs of the first trunk segment. In addition, the posterior end of the centipedes' body, in particular the ultimate legs, exhibits a remarkable morphological heterogeneity. Not participating in locomotion, they hold a vast functional diversity. In many centipede species, elongation and annulation in combination with an augmentation of sensory structures indicates a functional shift towards a sensory appendage. In other species, thickening, widening and reinforcement with a multitude of cuticular protuberances and glandular systems suggests a role in both attack and defense. Moreover, sexual dimorphic characteristics indicate that centipede ultimate legs play a pivotal role in intraspecific communication, mate finding and courtship behavior. We address ambiguous identifications and designations of podomeres in order to point out controversial aspects of homology and homonymy. We provide a broad summary of descriptions, illustrations, ideas and observations published in past 160 years, and propose that studying centipede ultimate legs is not only essential in itself for filling gaps of knowledge in descriptive morphology, but also provides an opportunity to explore diverse pathways of leg transformations within Myriapoda.
Collapse
Affiliation(s)
- Matthes Kenning
- Zoological Institute and Museum, Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Carsten H.G. Müller
- Zoological Institute and Museum, General and Systematic Zoology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Andy Sombke
- Zoological Institute and Museum, Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Fernández R, Edgecombe GD, Giribet G. Exploring Phylogenetic Relationships within Myriapoda and the Effects of Matrix Composition and Occupancy on Phylogenomic Reconstruction. Syst Biol 2016; 65:871-89. [PMID: 27162151 PMCID: PMC4997009 DOI: 10.1093/sysbio/syw041] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/28/2016] [Indexed: 11/14/2022] Open
Abstract
Myriapods, including the diverse and familiar centipedes and millipedes, are one of the dominant terrestrial arthropod groups. Although molecular evidence has shown that Myriapoda is monophyletic, its internal phylogeny remains contentious and understudied, especially when compared to those of Chelicerata and Hexapoda. Until now, efforts have focused on taxon sampling (e.g., by including a handful of genes from many species) or on maximizing matrix size (e.g., by including hundreds or thousands of genes in just a few species), but a phylogeny maximizing sampling at both levels remains elusive. In this study, we analyzed 40 Illumina transcriptomes representing 3 of the 4 myriapod classes (Diplopoda, Chilopoda, and Symphyla); 25 transcriptomes were newly sequenced to maximize representation at the ordinal level in Diplopoda and at the family level in Chilopoda. Ten supermatrices were constructed to explore the effect of several potential phylogenetic biases (e.g., rate of evolution, heterotachy) at 3 levels of gene occupancy per taxon (50%, 75%, and 90%). Analyses based on maximum likelihood and Bayesian mixture models retrieved monophyly of each myriapod class, and resulted in 2 alternative phylogenetic positions for Symphyla, as sister group to Diplopoda + Chilopoda, or closer to Diplopoda, the latter hypothesis having been traditionally supported by morphology. Within centipedes, all orders were well supported, but 2 deep nodes remained in conflict in the different analyses despite dense taxon sampling at the family level. Relationships among centipede orders in all analyses conducted with the most complete matrix (90% occupancy) are at odds not only with the sparser but more gene-rich supermatrices (75% and 50% supermatrices) and with the matrices optimizing phylogenetic informativeness or most conserved genes, but also with previous hypotheses based on morphology, development, or other molecular data sets. Our results indicate that a high percentage of ribosomal proteins in the most complete matrices, in conjunction with distance from the root, can act in concert to compromise the estimated relationships within the ingroup. We discuss the implications of these findings in the context of the ever more prevalent quest for completeness in phylogenomic studies.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Siriwut W, Edgecombe GD, Sutcharit C, Tongkerd P, Panha S. A taxonomic review of the centipede genus Scolopendra Linnaeus, 1758 (Scolopendromorpha, Scolopendridae) in mainland Southeast Asia, with description of a new species from Laos. Zookeys 2016; 590:1-124. [PMID: 27408540 PMCID: PMC4926625 DOI: 10.3897/zookeys.590.7950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/30/2016] [Indexed: 12/31/2022] Open
Abstract
The centipede genus Scolopendra in mainland Southeast Asia is reviewed taxonomically based on morphological characters, informed by a molecular phylogenetic analysis using sequences from three mitochondrial and nuclear genes (COI, 16S rRNA and 28S rRNA). Eight nominal species of Scolopendra, namely Scolopendra morsitans Linnaeus, 1758, Scolopendra subspinipes Leach, 1816, Scolopendra dehaani Brandt, 1840, Scolopendra multidens Newport, 1844, Scolopendra calcarata Porat, 1876, Scolopendra japonica Koch, 1878, Scolopendra pinguis Pocock, 1891, and Scolopendra dawydoffi Kronmüller, 2012, are redescribed together with some revision of type materials. Geographical variation in each species has been compiled with reference to samples that span their distribution ranges in Southeast Asia and some parts of neighbouring areas such as East Asia, the Indian Ocean, and Africa. Comparative study of traditional taxonomic characters from external morphology provides further information to distinguish some closely related species. Scolopendra cataracta Siriwut, Edgecombe & Panha, sp. n., is described from the southern part of Laos, with additional records in Thailand and Vietnam. The phylogenetic framework for Southeast Asian Scolopendra recognizes Scolopendra calcarata + Scolopendra pinguis, Scolopendra morsitans, and a Scolopendra subspinipes group that unites the other six species as the main clades. Within the Scolopendra subspinipes group, two monophyletic groups can be distinguished by having either slender or short, thick ultimate leg prefemora and different numbers of apical spines on the coxopleuron. Scolopendra arborea Lewis, 1982, is placed in subjective synonymy with Scolopendra dehaani. A survey of external morphology of the genital segments confirms its potential for improving species identification in Scolopendra. Some observations on biology and behaviour are recorded based on field surveys in this area.
Collapse
Affiliation(s)
- Warut Siriwut
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Gregory D. Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Chirasak Sutcharit
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyoros Tongkerd
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somsak Panha
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
17
|
Wesener T, Voigtländer K, Decker P, Oeyen JP, Spelda J. Barcoding of Central European Cryptops centipedes reveals large interspecific distances with ghost lineages and new species records from Germany and Austria (Chilopoda, Scolopendromorpha). Zookeys 2016; 564:21-46. [PMID: 27081331 PMCID: PMC4820090 DOI: 10.3897/zookeys.564.7535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/14/2016] [Indexed: 01/08/2023] Open
Abstract
In order to evaluate the diversity of Central European Myriapoda species in the course of the German Barcode of Life project, 61 cytochrome c oxidase I sequences of the genus Cryptops Leach, 1815, a centipede genus of the order Scolopendromorpha, were successfully sequenced and analyzed. One sequence of Scolopendra cingulata Latreille, 1829 and one of Theatops erythrocephalus Koch, 1847 were utilized as outgroups. Instead of the expected three species (Cryptops parisi Brolemann, 1920; Cryptops anomalans Newport, 1844; Cryptops hortensis (Donovan, 1810)), analyzed samples included eight to ten species. Of the eight clearly distinguishable morphospecies of Cryptops, five (Cryptops parisi; Cryptops croaticus Verhoeff, 1931; Cryptops anomalans; Cryptops umbricus Verhoeff, 1931; Cryptops hortensis) could be tentatively determined to species level, while a further three remain undetermined (one each from Germany, Austria and Croatia, and Slovenia). Cryptops croaticus is recorded for the first time from Austria. A single specimen (previously suspected as being Cryptops anomalans), was redetermined as Cryptops umbricus Verhoeff, 1931, a first record for Germany. All analyzed Cryptops species are monophyletic and show large genetic distances from one another (p-distances of 13.7-22.2%). Clear barcoding gaps are present in lineages represented by >10 specimens, highlighting the usefulness of the barcoding method for evaluating species diversity in centipedes. German specimens formally assigned to Cryptops parisi are divided into three clades differing by 8.4-11.3% from one another; their intra-lineage genetic distance is much lower at 0-1.1%. The three clades are geographically separate, indicating that they might represent distinct species. Aside from Cryptops parisi, intraspecific distances of Cryptops spp. in Central Europe are low (<3.3%).
Collapse
Affiliation(s)
- Thomas Wesener
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Center for Taxonomy and Evolutionary Research (Section Myriapoda), Adenauerallee 160, 53113 Bonn, Germany
| | - Karin Voigtländer
- Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826 Görlitz, Germany
| | - Peter Decker
- Senckenberg Museum of Natural History Görlitz, Am Museum 1, 02826 Görlitz, Germany
| | - Jan Philip Oeyen
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for Animal Biodiversity, Center for Taxonomy and Evolutionary Research (Section Myriapoda), Adenauerallee 160, 53113 Bonn, Germany
| | - Jörg Spelda
- Bavarian State Collection of Zoology, Münchhausenstraße 21, 81247 Munich, Germany
| |
Collapse
|
18
|
Siriwut W, Edgecombe GD, Sutcharit C, Panha S. The Centipede Genus Scolopendra in Mainland Southeast Asia: Molecular Phylogenetics, Geometric Morphometrics and External Morphology as Tools for Species Delimitation. PLoS One 2015; 10:e0135355. [PMID: 26270342 PMCID: PMC4536039 DOI: 10.1371/journal.pone.0135355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/21/2015] [Indexed: 12/31/2022] Open
Abstract
Seven Scolopendra species from the Southeast Asian mainland delimited based on standard external morphological characters represent monophyletic groups in phylogenetic trees inferred from concatenated sequences of three gene fragments (cytochrome c oxidase subunit 1, 16S rRNA and 28S rRNA) using Maximum likelihood and Bayesian inference. Geometric morphometric description of shape variation in the cephalic plate, forcipular coxosternite, and tergite of the ultimate leg-bearing segment provides additional criteria for distinguishing species. Colouration patterns in some Scolopendra species show a high degree of fit to phylogenetic trees at the population level. The most densely sampled species, Scolopendra dehaani Brandt, 1840, has three subclades with allopatric distributions in mainland SE Asia. The molecular phylogeny of S. pinguis Pocock, 1891, indicated ontogenetic colour variation among its populations. The taxonomic validation of S. dawydoffi Kronmüller, 2012, S. japonica Koch, 1878, and S. dehaani Brandt, 1840, each a former subspecies of S. subspinipes Leach, 1814 sensu Lewis, 2010, as full species was supported by molecular information and additional morphological data. Species delimitation in these taxonomically challenging animals is facilitated by an integrative approach that draws on both morphology and molecular phylogeny.
Collapse
Affiliation(s)
- Warut Siriwut
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Animal Systematics Research Unit, Department of Biology, Chulalongkorn University, Bangkok, Thailand
| | - Gregory D. Edgecombe
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
| | - Chirasak Sutcharit
- Animal Systematics Research Unit, Department of Biology, Chulalongkorn University, Bangkok, Thailand
| | - Somsak Panha
- Animal Systematics Research Unit, Department of Biology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Vahtera V, Edgecombe GD. First molecular data and the phylogenetic position of the millipede-like centipede Edentistoma octosulcatum Tömösváry, 1882 (Chilopoda: Scolopendromorpha: Scolopendridae). PLoS One 2014; 9:e112461. [PMID: 25389773 PMCID: PMC4229182 DOI: 10.1371/journal.pone.0112461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/08/2014] [Indexed: 11/19/2022] Open
Abstract
Edentistoma octosulcatum Tömösváry, 1882, is a rare, superficially millipede-like centipede known only from Borneo and the Philippines. It is unique within the order Scolopendromorpha for its slow gait, robust tergites, and highly modified gizzard and mandible morphology. Not much is known about the biology of the species but it has been speculated to be arboreal with a possibly vegetarian diet. Until now its phylogenetic position within the subfamily Otostigminae has been based only on morphological characters, being variably ranked as a monotypic tribe (Arrhabdotini) or classified with the Southeast Asian genus Sterropristes Attems, 1934. The first molecular data for E. octosulcatum sourced from a newly collected specimen from Sarawak were analysed with and without morphology. Parsimony analysis of 122 morphological characters together with two nuclear and two mitochondrial loci resolves Edentistoma as sister group to three Indo-Australian species of Rhysida, this clade in turn grouping with Ethmostigmus, whereas maximum likelihood and parsimony analyses of the molecular data on their own ally Edentistoma with species of Otostigmus. A position of Edentistoma within Otostigmini (rather than being its sister group as predicted by the Arrhabdotini hypothesis) is consistently retrieved under different analytical conditions, but support values within the subfamily remain low for most nodes. The species exhibits strong pushing behaviour, suggestive of burrowing habits. Evidence against a suggested vegetarian diet is provided by observation of E. octosulcatum feeding on millipedes in the genus Trachelomegalus.
Collapse
Affiliation(s)
- Varpu Vahtera
- Zoological Museum, Department of Biology, University of Turku, Turku, Finland
- Finnish Museum of Natural History, Zoology Unit, University of Helsinki, Helsinki, Finland
| | - Gregory D. Edgecombe
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
| |
Collapse
|
20
|
De Laet J. Parsimony analysis of unaligned sequence data: maximization of homology and minimization of homoplasy, not minimization of operationally defined total cost or minimization of equally weighted transformations. Cladistics 2014; 31:550-567. [DOI: 10.1111/cla.12098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jan De Laet
- Göteborgs Botaniska Trädgård; Carl Skottsbergs Gata 22A SE-413 19 Göteborg Sweden
| |
Collapse
|
21
|
Haug JT, Haug C, Schweigert G, Sombke A. The evolution of centipede venom claws - open questions and possible answers. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:5-16. [PMID: 24211515 DOI: 10.1016/j.asd.2013.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 06/02/2023]
Abstract
The maxilliped venom claw is an intriguing structure in centipedes. We address open questions concerning this structure. The maxillipeds of fossil centipedes from the Carboniferous (about 300 million years old) have been described, but not been depicted previously. Re-investigation demonstrates that they resemble their modern counterparts. A Jurassic geophilomorph centipede (about 150 million years old) was originally described as possessing a rather leg-like maxilliped. Our re-investigation shows that the maxilliped is, in fact, highly specialized as in modern Geophilomorpha. A scenario for the evolution of the centipede maxilliped is presented. It supports one of the two supposed hypotheses of centipede phylogeny, the Pleurostigmophora hypothesis. Although this hypothesis appears now well established, many aspects of character evolution resulting from this phylogeny remain to be told in detail. One such aspect is the special joint of the maxilliped in some species of Cryptops. Cryptops is an in-group of Scolopendromorpha, but its maxilliped joint can resemble that of Lithobiomorpha or even possess a mixture of characters between the both. Detailed investigation of fossils, larger sample sizes of extant species, and developmental data will be necessary to allow further improvements of the reconstruction of the evolutionary history of centipedes.
Collapse
Affiliation(s)
- Joachim T Haug
- Ludwig-Maximilians-University of Munich (LMU), Department of Biology II, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| | - Carolin Haug
- Ludwig-Maximilians-University of Munich (LMU), Department of Biology II, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Günter Schweigert
- Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany
| | - Andy Sombke
- Ernst-Moritz-Arndt-University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Soldmannstrasse 23, 17487 Greifswald, Germany
| |
Collapse
|
22
|
Bonato L, Drago L, Murienne J. Phylogeny of Geophilomorpha (Chilopoda) inferred from new morphological and molecular evidence. Cladistics 2013; 30:485-507. [DOI: 10.1111/cla.12060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Lucio Bonato
- Dipartimento di Biologia; Università di Padova; Padova Italy
| | - Leandro Drago
- Dipartimento di Biologia; Università di Padova; Padova Italy
| | - Jérôme Murienne
- CNRS; Université Paul Sabatier; ENFA; UMR 5174 EDB (Laboratoire Evolution et Diversité Biologique); Université de Toulouse; Toulouse France
| |
Collapse
|
23
|
Vahtera V, Edgecombe GD, Giribet G. Phylogenetics of scolopendromorph centipedes: can denser taxon sampling improve an artificial classification? INVERTEBR SYST 2013. [DOI: 10.1071/is13035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous phylogenetic analyses of the centipede order Scolopendromorpha indicated a fundamental division into blind and ocellate clades. These analyses corroborated the monophyly of most families and tribes but suggested that several species-rich, cosmopolitan genera in traditional and current classifications are polyphyletic. Denser taxon sampling is applied to a dataset of 122 morphological characters and sequences for four nuclear and mitochondrial loci. Phylogenetic analyses including 98 species and subspecies of Scolopendromorpha employ parsimony under dynamic and static homology schemes as well as maximum likelihood and Bayesian inference of multiple sequence alignments. The monotypic Australian genera Notiasemus and Kanparka nest within Cormocephalus and Scolopendra, respectively, and the New Caledonian Campylostigmus is likewise a clade within Cormocephalus. New World Scolopendra are more closely related to Hemiscolopendra and Arthrorhabdus than to Scolopendra s.s., which is instead closely allied to Asanada; the tribe Asanadini nests within Scolopendrini for molecular and combined datasets. The generic classification of Otostigmini has a poor fit to phylogenetic relationships, although nodal support within this tribe is weak. New synonymies are proposed for Ectonocryptopinae Shelley & Mercurio, 2005 (= Newportiinae Pocock, 1896), Asanadini Verhoeff, 1907 (= Scolopendrini Leach, 1814), and Kanparka Waldock & Edgecombe, 2012 (= Scolopendra Linnaeus, 1758). Scolopendrid systematics largely depicts incongruence between phylogeny and classification rather than between morphology and molecules.
Collapse
|
24
|
EDGECOMBE GREGORYD, VAHTERA VARPU, STOCK STUARTR, KALLONEN AKI, XIAO XIANGHUI, RACK ALEXANDER, GIRIBET GONZALO. A scolopocryptopid centipede (Chilopoda: Scolopendromorpha) from Mexican amber: synchrotron microtomography and phylogenetic placement using a combined morphological and molecular data set. Zool J Linn Soc 2012. [DOI: 10.1111/j.1096-3642.2012.00860.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Dugon MM, Black A, Arthur W. Variation and specialisation of the forcipular apparatus of centipedes (Arthropoda: Chilopoda): a comparative morphometric and microscopic investigation of an evolutionary novelty. ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:231-243. [PMID: 22370199 DOI: 10.1016/j.asd.2012.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 05/31/2023]
Abstract
The forcipules of centipedes are the only known example in the animal kingdom of an evolutionary transition from walking legs to venom-injecting appendages. They provide a classic case of an evolutionary novelty under most (but not all) definitions of that concept. Although there is a reasonable literature on forcipules, and on the forcipular segment more generally, it is fragmentary and scattered. Also, many previous studies have been based on a single species and hence have no comparative component. Here, we build on this earlier literature by providing detailed qualitative and quantitative information on the forcipular segments of representatives of the five extant orders of centipedes. Our results reveal notable differences between the orders - as well as considerable variation within some of them. The pattern of inter-group differences can be used to infer, albeit cautiously, a major evolutionary trend from a presumed scutigeromorph-like last common ancestor (LCA), in which the forcipules were probably leg-like (as in present-day scutigeromorphs) to a more specialized claw-like structure with movement restricted to the horizontal plane. This morphological trend may reflect an ecological trend from open-habitat ambush predation to leaf-litter and subterranean predatory opportunism.
Collapse
Affiliation(s)
- Michel M Dugon
- Department of Zoology, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | | | | |
Collapse
|
26
|
Spiracle structure in scolopendromorph centipedes (Chilopoda: Scolopendromorpha) and its contribution to phylogenetics. ZOOMORPHOLOGY 2012. [DOI: 10.1007/s00435-012-0157-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|