1
|
Legionella feeleii: pneumonia or Pontiac fever? Bacterial virulence traits and host immune response. Med Microbiol Immunol 2018; 208:25-32. [PMID: 30386929 DOI: 10.1007/s00430-018-0571-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/27/2018] [Indexed: 12/19/2022]
Abstract
Gram-negative bacterium Legionella is able to proliferate intracellularly in mammalian host cells and amoeba, which became known in 1976 since they caused a large outbreak of pneumonia. It had been reported that different strains of Legionella pneumophila, Legionella micdadei, Legionella longbeachae, and Legionella feeleii caused human respiratory diseases, which were known as Pontiac fever or Legionnaires' disease. However, the differences of the virulence traits among the strains of the single species and the pathogenesis of the two diseases that were due to the bacterial virulence factors had not been well elucidated. L. feeleii is an important pathogenic organism in Legionellae, which attracted attention due to cause an outbreak of Pontiac fever in 1981 in Canada. In published researches, it has been found that L. feeleii serogroup 2 (ATCC 35849, LfLD) possess mono-polar flagellum, and L. feeleii serogroup 1 (ATCC 35072, WRLf) could secrete some exopolysaccharide (EPS) materials to the surrounding. Although the virulence of the L. feeleii strain was evidenced that could be promoted, the EPS might be dispensable for the bacteria that caused Pontiac fever. Based on the current knowledge, we focused on bacterial infection in human and murine host cells, intracellular growth, cytopathogenicity, stimulatory capacity of cytokines secretion, and pathogenic effects of the EPS of L. feeleii in this review.
Collapse
|
2
|
Prashar A, Ortiz ME, Lucarelli S, Barker E, Tabatabeiyazdi Z, Shamoun F, Raju D, Antonescu C, Guyard C, Terebiznik MR. Small Rho GTPases and the Effector VipA Mediate the Invasion of Epithelial Cells by Filamentous Legionella pneumophila. Front Cell Infect Microbiol 2018; 8:133. [PMID: 29774203 PMCID: PMC5943596 DOI: 10.3389/fcimb.2018.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
Legionella pneumophila (Lp) exhibits different morphologies with varying degrees of virulence. Despite their detection in environmental sources of outbreaks and in respiratory tract secretions and lung autopsies from patients, the filamentous morphotype of Lp remains poorly studied. We previously demonstrated that filamentous Lp invades lung epithelial cells (LECs) and replicates intracellularly in a Legionella containing vacuole. Filamentous Lp activates β1integrin and E-cadherin receptors at the surface of LECs leading to the formation of actin-rich cell membrane structures we termed hooks and membrane wraps. These structures entrap segments of an Lp filament on host cell surface and mediate bacterial internalization. Here we investigated the molecular mechanisms responsible for the actin rearrangements needed for the formation and elongation of these membrane wraps and bacterial internalization. We combined genetic and pharmacological approaches to assess the contribution of signaling downstream of β1integrin and E-cadherin receptors, and Lp Dot/Icm secretion system- translocated effectors toward the invasion process. Our studies demonstrate a multi-stage mechanism of LEC invasion by filamentous Lp. Bacterial attachment to host cells depends on signaling downstream of β1integrin and E-cadherin activation, leading to Rho GTPases-dependent activation of cellular actin nucleating proteins, Arp2/3 and mDia. This mediates the formation of primordial membrane wraps that entrap the filamentous bacteria on the cell surface. Following this, in a second phase of the invasion process the Dot/Icm translocated effector VipA mediates rapid membrane wrap elongation, leading to the engulfment of the filamentous bacteria by the LECs. Our findings provide the first description of Rho GTPases and a Dot/Icm effector VipA regulating the actin dynamics needed for the invasion of epithelial cells by Lp.
Collapse
Affiliation(s)
- Akriti Prashar
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - María Eugenia Ortiz
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Stefanie Lucarelli
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Elizabeth Barker
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Zohreh Tabatabeiyazdi
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Feras Shamoun
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Deepa Raju
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Costin Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Cyril Guyard
- Bioaster, Lyon, France.,Molecular Microbiology, Public Health Ontario, Toronto, ON, Canada
| | - Mauricio R Terebiznik
- Department of Biological Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Kawamoto Y, Morinaga Y, Kimura Y, Kaku N, Kosai K, Uno N, Hasegawa H, Yanagihara K. TNF-α inhibits the growth of Legionella pneumophila in airway epithelial cells by inducing apoptosis. J Infect Chemother 2016; 23:51-55. [PMID: 27865699 DOI: 10.1016/j.jiac.2016.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND TNF-α plays an important role in the pathogenesis of Legionella pneumophila (Lp)-induced pneumonia. Patients undergoing anti-TNF-α therapy are at an increased risk of Lp infection. Lp infects both phagocytic and non-phagocytic cells such as airway epithelial cells; however, the role of TNF-α in airway epithelial cells is unknown. METHODS Human airway epithelial cell line NCI-H292 was infected with Lp NUL1 strain. After infection, both intracellular growth of Lp and cell death were evaluated after treating the cells with or without TNF-α. Apoptosis was examined by performing activated caspase-3/7 staining and by using a pan-caspase inhibitor. RESULTS Lp infected and replicated in NCI-H292 cells in a time-dependent manner, and TNF-α treatment of Lp-infected NCI-H292 cells inhibited Lp replication. Inhibitory effects of TNF-α on Lp replication were suppressed after treatment with a TNF-α-neutralizing antibody. Lp infection increased extracellular lactate dehydrogenase levels and decreased the number of living cells. Increased number of Lp-infected NCI-H292 cells showed caspase-3/7 activation, indicating they underwent apoptosis. TNF-α treatment inhibited Lp replication by increasing the apoptosis of NCI-H292 cells. CONCLUSIONS Thus, our results suggested that airway epithelial cells were involved in the pathogenesis of Lp infection and that TNF-α played a protective role by inhibiting the intracellular replication of Lp and by increasing the apoptosis of Lp-infected airway epithelial cells. However, Lp infection should be investigated further in patients undergoing anti-TNF-α therapy who develop pneumonia.
Collapse
Affiliation(s)
- Yasuhide Kawamoto
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 851-2128, Japan
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 851-2128, Japan.
| | - Yumiko Kimura
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 851-2128, Japan
| | - Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 851-2128, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 851-2128, Japan
| | - Naoki Uno
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 851-2128, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 851-2128, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 851-2128, Japan
| |
Collapse
|
4
|
Edelstein PH. Legionella jamestowniensis fatal pneumonia in an immunosuppressed man. J Infect Chemother 2016; 23:59-61. [PMID: 27578025 DOI: 10.1016/j.jiac.2016.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 11/24/2022]
Abstract
A fatal case of Legionnaires' disease caused by Legionella jamestowniensis is reported in a severely immunocompromised patient with metastatic hepatocellular carcinoma, and liver and kidney transplants. L. jamestowniensis was cultured from two separate respiratory tract specimens and a PCR test for Legionella species was also positive from the same specimens. This is apparently the first reported case of human infection caused by L. jamestowniensis.
Collapse
Affiliation(s)
- Paul H Edelstein
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Wang C, Saito M, Ogawa M, Yoshida SI. Colony types and virulence traits of Legionella feeleii determined by exopolysaccharide materials. FEMS Microbiol Lett 2016; 363:fnw098. [PMID: 27190244 DOI: 10.1093/femsle/fnw098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2016] [Indexed: 11/14/2022] Open
Abstract
Legionella feeleii is a Gram-negative pathogenic bacterium that causes Pontiac fever and pneumonia in humans. When L. feeleii serogroup 1 (ATCC 35072) was cultured on BCYE agar plates, two types of colonies were observed and exhibited differences in color, opacity and morphology. Since the two colony types are white rugose and brown translucent, they were termed as white rugose L. feeleii (WRLf) and brown translucent L. feeleii (BTLf), respectively. They exhibited different growth capacities in BYE broth in vitro, and it was found that WRLf could transform to BTLf. Under the electron microscope, it was observed that WRLf secreted materials which could be stained with ruthenium red, which was absent in BTLf. When U937 macrophages and HeLa cells were infected with the bacteria, WRLf manifested stronger internalization ability than BTLf. Intracellular growth in murine macrophages and Acanthamoeba cells was affected by the level of initial phagocytosis. WRLf was more resistant to human serum bactericidal action than BTLf. After being inoculated to guinea pigs, both organisms caused fever in the animals. These results suggest that ruthenium red-stained materials secreted in the surroundings may play a crucial role in determining L. feeleii colony morphology and virulence traits.
Collapse
Affiliation(s)
- Changle Wang
- Department of Bacteriology, Graduate school of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsumasa Saito
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Midori Ogawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Shin-Ichi Yoshida
- Department of Bacteriology, Graduate school of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Wang C, Saito M, Tanaka T, Amako K, Yoshida SI. Comparative analysis of virulence traits between a Legionella feeleii strain implicated in Pontiac fever and a strain that caused Legionnaires' disease. Microb Pathog 2015; 89:79-86. [PMID: 26386398 DOI: 10.1016/j.micpath.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/30/2015] [Accepted: 09/10/2015] [Indexed: 12/15/2022]
Abstract
Legionella strains of the same species and serogroup are known to cause Legionnaires' disease (a potentially fatal atypical pneumonia) or Pontiac fever (a mild, flu-like disease), but the bacterial factors that define these dramatic differences in pathology have not been elucidated. To gain a better understanding of these factors, we compared the characteristics of Legionella feeleii strains that were isolated from either a sample of freshwater implicated in an outbreak of Pontiac fever (ATCC 35072, serogroup 1, LfPF), or a patient with Legionnaires' disease (ATCC 38549, serogroup 2, LfLD). Growth of LfPF and LfLD in BYE broth was slower than the positive control, Legionella pneumophila strain JR32. However, LfLD grew faster than LfPF at 42 °C. After in vitro infection to J774 murine or U937 human macrophage cell lines and A549 human lung epithelial cell line, LfLD showed a higher cell infection rate, stronger internalization by host cells, and greater cytotoxicity than that of LfPF. Large amounts of IL-6 and IL-8 were secreted by human host cells after infection with LfLD, but not with LfPF. LfLD possessed mono-polar flagellum while LfPF was unflagellated. When LfLD was cultured at 25, 30 and 37 °C, the bacteria had higher motility rate at lower temperatures. Based on our results, this is the first study that showed distinct characteristics between LfPF and LfLD, which may give important leads in elucidating differences in their virulence.
Collapse
Affiliation(s)
- Changle Wang
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Mitsumasa Saito
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Tamami Tanaka
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazunobu Amako
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shin-ichi Yoshida
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
7
|
Justice SS, Harrison A, Becknell B, Mason KM. Bacterial differentiation, development, and disease: mechanisms for survival. FEMS Microbiol Lett 2014; 360:1-8. [PMID: 25228010 DOI: 10.1111/1574-6968.12602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 12/27/2022] Open
Abstract
Bacteria have the exquisite ability to maintain a precise diameter, cell length, and shape. The dimensions of bacteria size and shape are a classical metric in the distinction of bacterial species. Much of what we know about the particular morphology of any given species is the result of investigations of planktonic cultures. As we explore deeper into the natural habitats of bacteria, it is increasingly clear that bacteria can alter their morphology in response to the environment in which they reside. Specific morphologies are also becoming recognized as advantageous for survival in hostile environments. This is of particular importance in the context of both colonization and infection in the host. There are multiple examples of bacterial pathogens that use morphological changes as a mechanism for evasion of host immune responses and continued persistence. This review will focus on two systems where specific morphological changes are essential for persistence in animal models of human disease. We will also offer insight into the mechanism underlying the morphological changes and how these morphotypes aid in persistence. Additional examples of morphological changes associated with survival will be presented.
Collapse
Affiliation(s)
- Sheryl S Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; The Ohio State University School of Medicine, Columbus, OH, USA
| | | | | | | |
Collapse
|
8
|
Brzuszkiewicz E, Schulz T, Rydzewski K, Daniel R, Gillmaier N, Dittmann C, Holland G, Schunder E, Lautner M, Eisenreich W, Lück C, Heuner K. Legionella oakridgensis ATCC 33761 genome sequence and phenotypic characterization reveals its replication capacity in amoebae. Int J Med Microbiol 2013; 303:514-28. [PMID: 23932911 DOI: 10.1016/j.ijmm.2013.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/27/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022] Open
Abstract
Legionella oakridgensis is able to cause Legionnaires' disease, but is less virulent compared to L. pneumophila strains and very rarely associated with human disease. L. oakridgensis is the only species of the family legionellae which is able to grow on media without additional cysteine. In contrast to earlier publications, we found that L. oakridgensis is able to multiply in amoebae. We sequenced the genome of L. oakridgensis type strain OR-10 (ATCC 33761). The genome is smaller than the other yet sequenced Legionella genomes and has a higher G+C-content of 40.9%. L. oakridgensis lacks a flagellum and it also lacks all genes of the flagellar regulon except of the alternative sigma-28 factor FliA and the anti-sigma-28 factor FlgM. Genes encoding structural components of type I, type II, type IV Lvh and type IV Dot/Icm, Sec- and Tat-secretion systems could be identified. Only a limited set of Dot/Icm effector proteins have been recognized within the genome sequence of L. oakridgensis. Like in L. pneumophila strains, various proteins with eukaryotic motifs and eukaryote-like proteins were detected. We could demonstrate that the Dot/Icm system is essential for intracellular replication of L. oakridgensis. Furthermore, we identified new putative virulence factors of Legionella.
Collapse
Affiliation(s)
- Elzbieta Brzuszkiewicz
- Department of Genomics and Applied Microbiology & Göttinger Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ponnusamy D, Clinkenbeard KD. Yersinia pestis intracellular parasitism of macrophages from hosts exhibiting high and low severity of plague. PLoS One 2012; 7:e42211. [PMID: 22848745 PMCID: PMC3407133 DOI: 10.1371/journal.pone.0042211] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/03/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Yersinia pestis causes severe disease in natural rodent hosts, but mild to inapparent disease in certain rodent predators such as dogs. Y. pestis initiates infection in susceptible hosts by parasitizing and multiplying intracellularly in local macrophages prior to systemic dissemination. Thus, we hypothesize that Y. pestis disease severity may depend on the degree to which intracellular Y. pestis overcomes the initial host macrophage imposed stress. METHODOLOGY/PRINCIPAL FINDINGS To test this hypothesis, the progression of in vitro infection by Y. pestis KIM62053.1+ of mouse splenic and RAW264.7 tissue culture macrophages and dog peripheral blood-derived and DH82 tissue culture macrophages was studied using microscopy and various parameters of infection. The study showed that during the early stage of infection, intracellular Y. pestis assumed filamentous cellular morphology with multiple copies of the genome per bacterium in both mouse and dog macrophages. Later, in mouse macrophages, the infection elicited spacious vacuolar extension of Yersinia containing vacuoles (YCV), and the filamentous Y. pestis reverted to coccobacillary morphology with genomic equivalents approximately equaling colony forming units. In contrast, Y. pestis infected dog macrophages did not show noticeable extension of YCV, and intracellular Y. pestis retained the filamentous cellular morphology for the entire experiment in DH82 cells or were killed by blood-derived macrophages. In addition, during the later stage of infection, Y. pestis infected mouse macrophages exhibited cell lysis whereas dog macrophages did not. CONCLUSION/SIGNIFICANCE Overall, these results support our hypothesis that Y. pestis in mouse macrophages can overcome the initial intracellular stress necessary for subsequent systemic infection. However, in dogs, failure of Y. pestis to overcome macrophage imposed stress may result in mild or in apparent disease in dogs.
Collapse
Affiliation(s)
- Duraisamy Ponnusamy
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Kenneth D. Clinkenbeard
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| |
Collapse
|
10
|
Prashar A, Bhatia S, Tabatabaeiyazdi Z, Duncan C, Garduño RA, Tang P, Low DE, Guyard C, Terebiznik MR. Mechanism of invasion of lung epithelial cells by filamentousLegionella pneumophila. Cell Microbiol 2012; 14:1632-55. [DOI: 10.1111/j.1462-5822.2012.01828.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 01/22/2023]
Affiliation(s)
| | - Sonam Bhatia
- Department of Biological Sciences; University of Toronto at Scarborough; Toronto; ON; M1C 1A4; Canada
| | | | - Carla Duncan
- Ontario Agency for Health Protection and Promotion; Toronto; ON; M9P 3T1; Canada
| | - Rafael A. Garduño
- Department of Microbiology and Immunology and Department of Medicine - Division of Infectious Diseases; Dalhousie University; Halifax; NS; B3H 1X5; Canada
| | - Patrick Tang
- Ontario Agency for Health Protection and Promotion; Toronto; ON; M9P 3T1; Canada
| | | | | | | |
Collapse
|
11
|
Takekawa Y, Saito M, Wang C, Qin T, Ogawa M, Kanemaru T, Yoshida SI. Characteristic morphology of intracellular microcolonies ofLegionella oakridgensisOR-10. Can J Microbiol 2012; 58:179-83. [DOI: 10.1139/w11-126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuta Takekawa
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812 - 8582, Japan
| | - Mitsumasa Saito
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812 - 8582, Japan
| | - Changle Wang
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812 - 8582, Japan
| | - Tian Qin
- National Institute for Communicable Disease Control and Prevention and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, P.O. Box 5, Changping, Beijing 102206, People’s Republic of China
| | - Midori Ogawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, 807 - 8555, Japan
| | - Takaaki Kanemaru
- Department of Morphology Core Unit, Kyushu University Hospital, Fukuoka, 812 - 8582, Japan
| | - Shin-ichi Yoshida
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, 812 - 8582, Japan
| |
Collapse
|
12
|
Goclaw-Binder H, Sendersky E, Shimoni E, Kiss V, Reich Z, Perelman A, Schwarz R. Nutrient-associated elongation and asymmetric division of the cyanobacterium Synechococcus PCC 7942. Environ Microbiol 2011; 14:680-90. [DOI: 10.1111/j.1462-2920.2011.02620.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Nomoto M, Ogawa M, Fukuda K, Miyamoto H, Taniguchi H. A host-vector system for molecular study of the intracellular growth ofMycobacterium tuberculosisin phagocytic cells. Microbiol Immunol 2009; 53:550-8. [DOI: 10.1111/j.1348-0421.2009.00158.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Justice SS, Hunstad DA, Cegelski L, Hultgren SJ. Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 2008; 6:162-8. [PMID: 18157153 DOI: 10.1038/nrmicro1820] [Citation(s) in RCA: 412] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria have evolved complex systems to maintain consistent cell morphologies. Nevertheless, in certain circumstances, bacteria alter this highly regulated process to transform into filamentous organisms. Accumulating evidence attributes important biological roles to filamentation in stressful environments, including, but not limited to, sites of interaction between pathogenic bacteria and their hosts. Filamentation could represent an intended response to specific environmental cues that promote survival amidst the threats of consumption and killing.
Collapse
Affiliation(s)
- Sheryl S Justice
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | | | | | | |
Collapse
|
15
|
Piao Z, Sze CC, Barysheva O, Iida KI, Yoshida SI. Temperature-regulated formation of mycelial mat-like biofilms by Legionella pneumophila. Appl Environ Microbiol 2006; 72:1613-22. [PMID: 16461717 PMCID: PMC1392928 DOI: 10.1128/aem.72.2.1613-1622.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fifty strains representing 38 species of the genus Legionella were examined for biofilm formation on glass, polystyrene, and polypropylene surfaces in static cultures at 25 degrees C, 37 degrees C, and 42 degrees C. Strains of Legionella pneumophila, the most common causative agent of Legionnaires' disease, were found to have the highest ability to form biofilms among the test strains. The quantity, rate of formation, and adherence stability of L. pneumophila biofilms showed considerable dependence on both temperature and surface material. Glass and polystyrene surfaces gave between two- to sevenfold-higher yields of biofilms at 37 degrees C or 42 degrees C than at 25 degrees C; conversely, polypropylene surface had between 2 to 16 times higher yields at 25 degrees C than at 37 degrees C or 42 degrees C. On glass surfaces, the biofilms were formed faster but attached less stably at 37 degrees C or 42 degrees C than at 25 degrees C. Both scanning electron microscopy and confocal laser scanning microscopy revealed that biofilms formed at 37 degrees C or 42 degrees C were mycelial mat like and were composed of filamentous cells, while at 25 degrees C, cells were rod shaped. Planktonic cells outside of biofilms or in shaken liquid cultures were rod shaped. Notably, the filamentous cells were found to be multinucleate and lacking septa, but a recA null mutant of L. pneumophila was unaffected in its temperature-regulated filamentation within biofilms. Our data also showed that filamentous cells were able to rapidly give rise to a large number of short rods in a fresh liquid culture at 37 degrees C. The possibility of this biofilm to represent a novel strategy by L. pneumophila to compete for proliferation among the environmental microbiota is discussed.
Collapse
Affiliation(s)
- Zhenyu Piao
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
16
|
Sauer JD, Shannon JG, Howe D, Hayes SF, Swanson MS, Heinzen RA. Specificity of Legionella pneumophila and Coxiella burnetii vacuoles and versatility of Legionella pneumophila revealed by coinfection. Infect Immun 2005; 73:4494-504. [PMID: 16040960 PMCID: PMC1201193 DOI: 10.1128/iai.73.8.4494-4504.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 03/11/2005] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila and Coxiella burnetii are phylogenetically related intracellular bacteria that cause aerosol-transmitted lung infections. In host cells both pathogens proliferate in vacuoles whose biogenesis displays some common features. To test the functional similarity of their respective intracellular niches, African green monkey kidney epithelial (Vero) cells, A/J mouse bone marrow-derived macrophages, human macrophages, and human dendritic cells (DC) containing mature C. burnetii replication vacuoles were superinfected with L. pneumophila, and then the acidity, lysosome-associated membrane protein (LAMP) content, and cohabitation of mature replication vacuoles was assessed. In all cell types, wild-type L. pneumophila occupied distinct vacuoles in close association with acidic, LAMP-positive C. burnetii replication vacuoles. In murine macrophages, but not primate macrophages, DC, or epithelial cells, L. pneumophila replication vacuoles were acidic and LAMP positive. Unlike wild-type L. pneumophila, type IV secretion-deficient dotA mutants trafficked to lysosome-like C. burnetii vacuoles in Vero cells where they survived but failed to replicate. In primate macrophages, DC, or epithelial cells, growth of L. pneumophila was as robust in superinfected cell cultures as in those singly infected. Thus, despite their noted similarities, L. pneumophila and C. burnetii are exquisitely adapted for replication in unique replication vacuoles, and factors that maintain the C. burnetii replication vacuole do not alter biogenesis of an adjacent L. pneumophila replication vacuole. Moreover, L. pneumophila can replicate efficiently in either lysosomal vacuoles of A/J mouse cells or in nonlysosomal vacuoles of primate cells.
Collapse
Affiliation(s)
- John-Demian Sauer
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | | | | | | | |
Collapse
|
17
|
Belyi I, Popoff MR, Cianciotto NP. Purification and characterization of a UDP-glucosyltransferase produced by Legionella pneumophila. Infect Immun 2003; 71:181-6. [PMID: 12496164 PMCID: PMC143419 DOI: 10.1128/iai.71.1.181-186.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila is the agent of Legionnaires' disease. It invades and replicates within eukaryotic cells, including aquatic protozoans, mammalian macrophages, and epithelial cells. The molecular mechanisms of the Legionella interaction with target cells are not fully defined. In an attempt to discover novel virulence factors of L. pneumophila, we searched for bacterial enzymes with transferase activity. Upon screening ultrasonic extracts of virulent legionellae, we identified a uridine diphospho (UDP)-glucosyltransferase activity, which was capable of modifying a 45-kDa substrate in host cells. An approximately 60-kDa UDP-glucosyltransferase was purified from L. pneumophila and subjected to microsequencing. An N-terminal amino acid sequence, as well as the sequence of an internal peptide, allowed us to identify the gene for the enzyme within the unfinished L. pneumophila genome database. The intact gene was cloned and expressed in Escherichia coli, and the recombinant protein was purified and confirmed to possess an enzymatic activity similar to that of the native UDP-glucosyltransferase. We designated this gene ugt (UDP-glucosyltransferase). The Legionella enzyme did not exhibit significant homology with any known protein, suggesting that it is novel in structure and, perhaps, in function. Based on PCR data, an enzyme assay, and an immunoblot analysis, the glucosyltransferase appeared to be conserved in L. pneumophila strains but was absent from the other Legionella species. This study represents the first identification of a UDP-glucosyltransferase in an intracellular parasite, and therefore modification of a eukaryotic target(s) by this enzyme may influence host cell function and promote L. pneumophila proliferation.
Collapse
Affiliation(s)
- Iouri Belyi
- Gamaleya Research Institute of Epidemiology and Microbiology, Moscow 123098, Russia
| | | | | |
Collapse
|