1
|
Kemper L, Hensel A. Campylobacter jejuni: targeting host cells, adhesion, invasion, and survival. Appl Microbiol Biotechnol 2023; 107:2725-2754. [PMID: 36941439 PMCID: PMC10027602 DOI: 10.1007/s00253-023-12456-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Campylobacter jejuni, causing strong enteritis, is an unusual bacterium with numerous peculiarities. Chemotactically controlled motility in viscous milieu allows targeted navigation to intestinal mucus and colonization. By phase variation, quorum sensing, extensive O-and N-glycosylation and use of the flagellum as type-3-secretion system C. jejuni adapts effectively to environmental conditions. C. jejuni utilizes proteases to open cell-cell junctions and subsequently transmigrates paracellularly. Fibronectin at the basolateral side of polarized epithelial cells serves as binding site for adhesins CadF and FlpA, leading to intracellular signaling, which again triggers membrane ruffling and reduced host cell migration by focal adhesion. Cell contacts of C. jejuni results in its secretion of invasion antigens, which induce membrane ruffling by paxillin-independent pathway. In addition to fibronectin-binding proteins, other adhesins with other target structures and lectins and their corresponding sugar structures are involved in host-pathogen interaction. Invasion into the intestinal epithelial cell depends on host cell structures. Fibronectin, clathrin, and dynein influence cytoskeletal restructuring, endocytosis, and vesicular transport, through different mechanisms. C. jejuni can persist over a 72-h period in the cell. Campylobacter-containing vacuoles, avoid fusion with lysosomes and enter the perinuclear space via dynein, inducing signaling pathways. Secretion of cytolethal distending toxin directs the cell into programmed cell death, including the pyroptotic release of proinflammatory substances from the destroyed cell compartments. The immune system reacts with an inflammatory cascade by participation of numerous immune cells. The development of autoantibodies, directed not only against lipooligosaccharides, but also against endogenous gangliosides, triggers autoimmune diseases. Lesions of the epithelium result in loss of electrolytes, water, and blood, leading to diarrhea, which flushes out mucus containing C. jejuni. Together with the response of the immune system, this limits infection time. Based on the structural interactions between host cell and bacterium, the numerous virulence mechanisms, signaling, and effects that characterize the infection process of C. jejuni, a wide variety of targets for attenuation of the pathogen can be characterized. The review summarizes strategies of C. jejuni for host-pathogen interaction and should stimulate innovative research towards improved definition of targets for future drug development. KEY POINTS: • Bacterial adhesion of Campylobacter to host cells and invasion into host cells are strictly coordinated processes, which can serve as targets to prevent infection. • Reaction and signalling of host cell depend on the cell type. • Campylobacter virulence factors can be used as targets for development of antivirulence drug compounds.
Collapse
Affiliation(s)
- Leon Kemper
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
2
|
Fukushima S, Shimohata T, Inoue Y, Kido J, Uebanso T, Mawatari K, Takahashi A. Recruitment of LC3 by Campylobacter jejuni to Bacterial Invasion Site on Host Cells via the Rac1-Mediated Signaling Pathway. Front Cell Infect Microbiol 2022; 12:829682. [PMID: 35310852 PMCID: PMC8927770 DOI: 10.3389/fcimb.2022.829682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Campylobacter jejuni is a leading cause of food-borne disease worldwide. The pathogenicity of C. jejuni is closely associated with the internalization process in host epithelial cells, which is related to a host immune response. Autophagy indicates a key role in the innate immune system of the host to exclude invasive pathogens. Most bacteria are captured by autophagosomes and degraded by autophagosome-lysosome fusion in host cells. However, several pathogens, such as Salmonella and Shigella, avoid and/or escape autophagic degradation to establish infection. But autophagy involvement as a host immune response to C. jejuni infection has not been clarified. This study revealed autophagy association in C. jejuni infection. During infection, C. jejuni activated the Rho family small GTPase Rac1 signaling pathway, which modulates actin remodeling and promotes the internalization of this pathogen. In this study, we found the LC3 contribution to C. jejuni invasion signaling via the Rac1 signaling pathway. Interestingly, during C. jejuni invasion, LC3 was recruited to bacterial entry site depending on Rac1 GTPase activation just at the early step of the infection. C. jejuni infection induced LC3-II conversion, and autophagy induction facilitated C. jejuni internalization. Also, autophagy inhibition attenuated C. jejuni invasion step. Moreover, Rac1 recruited LC3 to the cellular membrane, activating the invasion of C. jejuni. Altogether, our findings provide insights into the new function of LC3 in bacterial invasion. We found the interaction between the Rho family small GTPase, Rac1, and autophagy-associated protein, LC3.
Collapse
Affiliation(s)
- Shiho Fukushima
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- Faculty of Marine Biosciences, Fukui Prefectural University, Fukui, Japan
- *Correspondence: Takaaki Shimohata, ;
| | - Yuri Inoue
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Junko Kido
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
3
|
Negretti NM, Gourley CR, Talukdar PK, Clair G, Klappenbach CM, Lauritsen CJ, Adkins JN, Konkel ME. The Campylobacter jejuni CiaD effector co-opts the host cell protein IQGAP1 to promote cell entry. Nat Commun 2021; 12:1339. [PMID: 33637714 PMCID: PMC7910587 DOI: 10.1038/s41467-021-21579-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni is a foodborne pathogen that binds to and invades the epithelial cells lining the human intestinal tract. Maximal invasion of host cells by C. jejuni requires cell binding as well as delivery of the Cia proteins (Campylobacter invasion antigens) to the host cell cytosol via the flagellum. Here, we show that CiaD binds to the host cell protein IQGAP1 (a Ras GTPase-activating-like protein), thus displacing RacGAP1 from the IQGAP1 complex. This, in turn, leads to the unconstrained activity of the small GTPase Rac1, which is known to have roles in actin reorganization and internalization of C. jejuni. Our results represent the identification of a host cell protein targeted by a flagellar secreted effector protein and demonstrate that C. jejuni-stimulated Rac signaling is dependent on IQGAP1.
Collapse
Affiliation(s)
- Nicholas M Negretti
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Christopher R Gourley
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Prabhat K Talukdar
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Geremy Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Courtney M Klappenbach
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Cody J Lauritsen
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Joshua N Adkins
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michael E Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
4
|
Kreling V, Falcone FH, Kehrenberg C, Hensel A. Campylobacter sp.: Pathogenicity factors and prevention methods-new molecular targets for innovative antivirulence drugs? Appl Microbiol Biotechnol 2020; 104:10409-10436. [PMID: 33185702 PMCID: PMC7662028 DOI: 10.1007/s00253-020-10974-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/24/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
Infections caused by bacterial species from the genus Campylobacter are one of the four main causes of strong diarrheal enteritis worldwide. Campylobacteriosis, a typical food-borne disease, can range from mild symptoms to fatal illness. About 550 million people worldwide suffer from campylobacteriosis and lethality is about 33 million p.a. This review summarizes the state of the current knowledge on Campylobacter with focus on its specific virulence factors. Using this knowledge, multifactorial prevention strategies can be implemented to reduce the prevalence of Campylobacter in the food chain. In particular, antiadhesive strategies with specific adhesion inhibitors seem to be a promising concept for reducing Campylobacter bacterial load in poultry production. Antivirulence compounds against bacterial adhesion to and/or invasion into the host cells can open new fields for innovative antibacterial agents. Influencing chemotaxis, biofilm formation, quorum sensing, secretion systems, or toxins by specific inhibitors can help to reduce virulence of the bacterium. In addition, the unusual glycosylation of the bacterium, being a prerequisite for effective phase variation and adaption to different hosts, is yet an unexplored target for combating Campylobacter sp. Plant extracts are widely used remedies in developing countries to combat infections with Campylobacter. Therefore, the present review summarizes the use of natural products against the bacterium in an attempt to stimulate innovative research concepts on the manifold still open questions behind Campylobacter towards improved treatment and sanitation of animal vectors, treatment of infected patients, and new strategies for prevention. KEY POINTS: • Campylobacter sp. is a main cause of strong enteritis worldwide. • Main virulence factors: cytolethal distending toxin, adhesion proteins, invasion machinery. • Strong need for development of antivirulence compounds.
Collapse
Affiliation(s)
- Vanessa Kreling
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Franco H Falcone
- Institute of Parasitology, University of Gießen, Schubertstraße 81, 35392, Gießen, Germany
| | - Corinna Kehrenberg
- Institute of Veterinary Food Science, University of Gießen, Frankfurterstraße 81, 35392, Gießen, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
5
|
Hatayama S, Shimohata T, Amano S, Kido J, Nguyen AQ, Sato Y, Kanda Y, Tentaku A, Fukushima S, Nakahashi M, Uebanso T, Mawatari K, Takahashi A. Cellular Tight Junctions Prevent Effective Campylobacter jejuni Invasion and Inflammatory Barrier Disruption Promoting Bacterial Invasion from Lateral Membrane in Polarized Intestinal Epithelial Cells. Front Cell Infect Microbiol 2018; 8:15. [PMID: 29441328 PMCID: PMC5797580 DOI: 10.3389/fcimb.2018.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/12/2018] [Indexed: 01/23/2023] Open
Abstract
Campylobacter jejuni invasion is closely related to C. jejuni pathogenicity. The intestinal epithelium contains polarized epithelial cells that form tight junctions (TJs) to provide a physical barrier against bacterial invasion. Previous studies indicated that C. jejuni invasion of non-polarized cells involves several cellular features, including lipid rafts. However, the dynamics of C. jejuni invasion of polarized epithelial cells are not fully understood. Here we investigated the interaction between C. jejuni invasion and TJ formation to characterize the mechanism of C. jejuni invasion in polarized epithelial cells. In contrast to non-polarized epithelial cells, C. jejuni invasion was not affected by depletion of lipid rafts in polarized epithelial cells. However, depletion of lipid rafts significantly decreased C. jejuni invasion in TJ disrupted cells or basolateral infection and repair of cellular TJs suppressed lipid raft-mediated C. jejuni invasion in polarized epithelial cells. In addition, pro-inflammatory cytokine, TNF-α treatment that induce TJ disruption promote C. jejuni invasion and lipid rafts depletion significantly reduced C. jejuni invasion in TNF-α treated cells. These data demonstrated that TJs prevent C. jejuni invasion from the lateral side of epithelial cells, where they play a main part in bacterial invasion and suggest that C. jejuni invasion could be increased in inflammatory condition. Therefore, maintenance of TJs integrity should be considered important in the development of novel therapies for C. jejuni infection.
Collapse
Affiliation(s)
- Sho Hatayama
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Sachie Amano
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Junko Kido
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Anh Q Nguyen
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Yuri Sato
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Yuna Kanda
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Aya Tentaku
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Shiho Fukushima
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Mutsumi Nakahashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
6
|
Elmi A, Dorey A, Watson E, Jagatia H, Inglis NF, Gundogdu O, Bajaj-Elliott M, Wren BW, Smith DGE, Dorrell N. The bile salt sodium taurocholate induces Campylobacter jejuni outer membrane vesicle production and increases OMV-associated proteolytic activity. Cell Microbiol 2017; 20. [PMID: 29205766 DOI: 10.1111/cmi.12814] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023]
Abstract
Campylobacter jejuni, the leading cause of bacterial acute gastroenteritis worldwide, secretes an arsenal of virulence-associated proteins within outer membrane vesicles (OMVs). C. jejuni OMVs contain three serine proteases (HtrA, Cj0511, and Cj1365c) that cleave the intestinal epithelial cell (IEC) tight and adherens junction proteins occludin and E-cadherin, promoting enhanced C. jejuni adhesion to and invasion of IECs. C. jejuni OMVs also induce IECs innate immune responses. The bile salt sodium taurocholate (ST) is sensed as a host signal to coordinate the activation of virulence-associated genes in the enteric pathogen Vibrio cholerae. In this study, the effect of ST on C. jejuni OMVs was investigated. Physiological concentrations of ST do not have an inhibitory effect on C. jejuni growth until the early stationary phase. Coculture of C. jejuni with 0.1% or 0.2% (w/v) ST stimulates OMV production, increasing both lipid and protein concentrations. C. jejuni ST-OMVs possess increased proteolytic activity and exhibit a different protein profile compared to OMVs isolated in the absence of ST. ST-OMVs exhibit enhanced cytotoxicity and immunogenicity to T84 IECs and enhanced killing of Galleria mellonella larvae. ST increases the level of mRNA transcripts of the OMVs-associated serine protease genes and the cdtABC operon that encodes the cytolethal distending toxin. Coculture with ST significantly enhances the OMVs-induced cleavage of E-cadherin and occludin. C. jejuni OMVs also cleave the major endoplasmic reticulum chaperone protein BiP/GRP78 and this activity is associated with the Cj1365c protease. These data suggest that C. jejuni responds to the presence of physiological concentrations of the bile salt ST that increases OMV production and the synthesis of virulence-associated factors that are secreted within the OMVs. We propose that these events contribute to pathogenesis.
Collapse
Affiliation(s)
- Abdi Elmi
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Amber Dorey
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Heena Jagatia
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ozan Gundogdu
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Mona Bajaj-Elliott
- Infection, Immunity, Inflammation and Physiological Medicine, UCL Institute of Child Health, London, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - David G E Smith
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Nick Dorrell
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
7
|
Fonseca BB, Santos IL, Rossi DA, Melo RT, Araújo TG, Vieira CU, Mendonça EP, Beletti ME. Participation of the Cytoskeletal and Lysosomal Compartments in Campylobacter jejuni Invasion of Caco-2 cells, the Cellular Response by Morphometric Analysis and the Presence of Cytokine and Chemokine Transcripts. Indian J Microbiol 2014; 53:155-62. [PMID: 24426102 DOI: 10.1007/s12088-012-0324-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022] Open
Abstract
This study aimed to evaluate the participation of actin and tubulin in the process of internalisation, the interaction of bacterial phagosomes with lysosomes, the morphometric changes and the expression of inflammatory cytokines in Caco-2 cells infected with Campylobacter jejuni. Both actin and tubulin participated in the process of internalisation. Inside the cells, lysosomes fuse with phagosomes, which may lead to bacterial death because after 2 h, the bacteria were not detected by Transmission electron microscopy (TEM). There is increased expression of TGF-β3 during the early stages, and IL-8 was expressed after 60 min p.i. This work showed that C. jejuni invades and causes major morphometric changes in epithelial cells. In response, the cells increase their expression of cytokines that can lead to inflammation. The mechanisms of invasion are dependent on actin and tubulin, and once internalised, lysosomes fuse with phagosomes.
Collapse
Affiliation(s)
- B B Fonseca
- Electronic Microscopy Centre at the Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia-MG, Brazil ; Applied Animal Biotechnology Laboratory at the School of Veterinary Science, Universidade Federal de Uberlândia, Uberlândia-MG, Brazil ; Instituto de Ciências Biomédicas, Rua Ceará, sem número, segundo andar, sala 23, bloco 2D, Campus Umuarama, CEP 38400-902 Uberlândia-MG, Brazil
| | - I L Santos
- Applied Animal Biotechnology Laboratory at the School of Veterinary Science, Universidade Federal de Uberlândia, Uberlândia-MG, Brazil
| | - D A Rossi
- Applied Animal Biotechnology Laboratory at the School of Veterinary Science, Universidade Federal de Uberlândia, Uberlândia-MG, Brazil
| | - R T Melo
- Applied Animal Biotechnology Laboratory at the School of Veterinary Science, Universidade Federal de Uberlândia, Uberlândia-MG, Brazil
| | - T G Araújo
- Genetics Laboratory of the Institute of Genetics and Biochemistry, The Universidade Federal de Uberlâdia, Uberlândia-MG, Brazil
| | - C U Vieira
- Genetics Laboratory of the Institute of Genetics and Biochemistry, The Universidade Federal de Uberlâdia, Uberlândia-MG, Brazil
| | - E P Mendonça
- Applied Animal Biotechnology Laboratory at the School of Veterinary Science, Universidade Federal de Uberlândia, Uberlândia-MG, Brazil
| | - M E Beletti
- Electronic Microscopy Centre at the Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia-MG, Brazil
| |
Collapse
|
8
|
Konkel ME, Samuelson DR, Eucker TP, Shelden EA, O'Loughlin JL. Invasion of epithelial cells by Campylobacter jejuni is independent of caveolae. Cell Commun Signal 2013; 11:100. [PMID: 24364863 PMCID: PMC3880046 DOI: 10.1186/1478-811x-11-100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 12/17/2013] [Indexed: 11/20/2022] Open
Abstract
Caveolae are 25–100 nm flask-like membrane structures enriched in cholesterol and glycosphingolipids. Researchers have proposed that Campylobacter jejuni require caveolae for cell invasion based on the finding that treatment of cells with the cholesterol-depleting compounds filipin III or methyl-β-cyclodextrin (MβCD) block bacterial internalization in a dose-dependent manner. The purpose of this study was to determine the role of caveolae and caveolin-1, a principal component of caveolae, in C. jejuni internalization. Consistent with previous work, we found that the treatment of HeLa cells with MβCD inhibited C. jejuni internalization. However, we also found that the treatment of HeLa cells with caveolin-1 siRNA, which resulted in greater than a 90% knockdown in caveolin-1 protein levels, had no effect on C. jejuni internalization. Based on this observation we performed a series of experiments that demonstrate that MβCD acts broadly, disrupting host cell lipid rafts and C. jejuni-induced cell signaling. More specifically, we found that MβCD inhibits the cellular events necessary for C. jejuni internalization, including membrane ruffling and Rac1 GTPase activation. We also demonstrate that MβCD disrupted the association of the β1 integrin and EGF receptor, which are required for the maximal invasion of epithelial cells. In agreement with these findings, C. jejuni were able to invade human Caco-2 cells, which are devoid of caveolae, at a level equal to that of HeLa cells. Taken together, the results of our study demonstrate that C. jejuni internalization occurs in a caveolae-independent manner.
Collapse
Affiliation(s)
- Michael E Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Life Sciences Bldg, Room 302c, Pullman, WA, USA.
| | | | | | | | | |
Collapse
|
9
|
Meraz IM, Arikawa K, Ogasawara J, Hase A, Nishikawa Y. Epithelial Cells Secrete Interleukin-8 in Response to Adhesion and Invasion of Diffusely AdheringEscherichia coliLacking Afa/Dr Genes. Microbiol Immunol 2013; 50:159-69. [PMID: 16547413 DOI: 10.1111/j.1348-0421.2006.tb03781.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli that sparsely adhere to human epithelial cells are known as diffusely adherent E. coli (DAEC), and the role of the Afa/Dr family of adhesins is now understood. Strains that do not possess Afa/Dr, however, comprise another group of DAEC, of which the pathogenicity remains unknown. The ability to induce interleukin-8 (IL-8) secretion from intestinal epithelial cells might be a feature of enterovirulent bacteria. We previously found that some Afa/Dr DAEC strains induce IL-8 by stimulating epithelial cells with flagella. The present study examines whether non-Afa/Dr DAEC can induce IL-8 in epithelial cells (HEp-2, INT407, and T84). Among 21 strains, 11 (52%; 11/21) induced as much IL-8 as high inducer strains of Afa/Dr DAEC. Adhesion did not significantly differ between high and low inducers; therefore diffuse adhesion alone is probably insufficient to induce IL-8. It was shown that IL-8 induction and the number of intracellular bacteria directly correlated. Wortmannin, an inhibitor of the phosphatidylinositol-3-phosphate kinase, reduced both intracellular bacteria and IL-8 secretion. Motile strains were significantly more prevalent among high (10/11) than low (4/10) inducers. However, 4 low invasive strains hardly induced IL-8 despite their motility. In conclusion, some non-Afa/Dr DAEC invoke the induction of high levels of inflammatory cytokines. Unlike Afa/Dr DAEC, however, non-Afa/Dr strains may require invasion to cause strong induction. These non-Afa/Dr high inducers can be enteropathogenic for the cytokine-inducing properties.
Collapse
Affiliation(s)
- Ismail Mustafa Meraz
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka 558-8585, Japan
| | | | | | | | | |
Collapse
|
10
|
Molecular methods to investigate adhesion, transmigration, invasion and intracellular survival of the foodborne pathogen Campylobacter jejuni. J Microbiol Methods 2013; 95:8-23. [DOI: 10.1016/j.mimet.2013.06.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 01/08/2023]
|
11
|
Mertins S, Allan BJ, Townsend HG, Köster W, Potter AA. Role of motAB in adherence and internalization in polarized Caco-2 cells and in cecal colonization of Campylobacter jejuni. Avian Dis 2013; 57:116-22. [PMID: 23678739 DOI: 10.1637/10235-050412-resnote.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Campylobacter jejuni, a gram-negative motile bacterium commonly found in the chicken gastrointestinal tract, is one of the leading causes of bacterial gastroenteritis in humans worldwide. An intact and functional flagellum is important for C. jejuni virulence and colonization. To understand the role of C. jejuni motility in adherence and internalization in polarized Caco-2 cells and in cecal colonization of chickens we constructed a C. jejuni NCTC11168 V1 deltamotAB mutant. The motAB genes code for the flagellar motor, which enables the rotation of the flagellum. The nonmotile deltamotAB mutant expressed a full-length flagellum, which allowed us to differentiate between the roles of full-length flagella and motility in the ability of C. jejuni to colonize. To study the adherence and invasion abilities of the C. jejuni deltamotAB mutant we chose to use polarized Caco-2 cells, which are thought to be more representative of in vivo intestinal cell architecture and function. Although the C. jejuni deltamotAB mutant adhered significantly better than the wild type to the Caco-2 cells, we observed a significant reduction in the ability to invade the cells. In this study we obtained evidence that the flagellar rotation triggers C. jejuni invasion into polarized Caco-2 cells and we believe that C. jejuni is propelled into the cell with a drill-like rotation. The deltamotAB mutant was also tested for its colonization potential in a 1-day-old chicken model. The nonmotile C. jejuni deltamotAB mutant was not able to colonize any birds at days 3 and 7, suggesting that motility is essential for C. jejuni colonization.
Collapse
Affiliation(s)
- Sonja Mertins
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | | | | | | | |
Collapse
|
12
|
O Cróinín T, Backert S. Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism? Front Cell Infect Microbiol 2012; 2:25. [PMID: 22919617 PMCID: PMC3417527 DOI: 10.3389/fcimb.2012.00025] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/17/2012] [Indexed: 11/18/2022] Open
Abstract
Campylobacter jejuni, a spiral-shaped Gram-negative pathogen, is a highly frequent cause of gastrointestinal foodborne illness in humans worldwide. Clinical outcome of C. jejuni infections ranges from mild to severe diarrheal disease, and some other complications including reactive arthritis and Guillain–Barré syndrome. This review article highlights various C. jejuni pathogenicity factors, host cell determinants, and proposed signaling mechanisms involved in human host cell invasion and their potential role in the development of C. jejuni-mediated disease. A model is presented which outlines the various important interactions of C. jejuni with the intestinal epithelium, and we discuss the pro’s and con’s for the “zipper” over the “trigger” mechanism of invasion. Future work should clarify the contradictory role of some previously identified factors, and should identify and characterize novel virulence determinants, which are crucial to provide fresh insights into the diversity of strategies employed by this pathogen to cause disease.
Collapse
Affiliation(s)
- Tadhg O Cróinín
- UCD School of Biomolecular and Biomedical Sciences, University College Dublin Dublin, Ireland
| | | |
Collapse
|
13
|
Salmonella enterica serovar typhimurium invades fibroblasts by multiple routes differing from the entry into epithelial cells. Infect Immun 2010; 78:2700-13. [PMID: 20368348 DOI: 10.1128/iai.01389-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fibroblasts are ubiquitous cells essential to tissue homeostasis. Despite their nonphagocytic nature, fibroblasts restrain replication of intracellular bacterial pathogens such as Salmonella enterica serovar Typhimurium. The extent to which the entry route of the pathogen determines this intracellular response is unknown. Here, we analyzed S. Typhimurium invasion in fibroblasts obtained from diverse origins, including primary cultures and stable nontransformed cell lines derived from normal tissues. Features distinct to the invasion of epithelial cells were found in all fibroblasts tested. In some fibroblasts, bacteria lacking the type III secretion system encoded in the Salmonella pathogenicity island 1 displayed significant invasion rates and induced the formation of lamellipodia and filopodia at the fibroblast-bacteria contact site. Other bacterial invasion traits observed in fibroblasts were the requirement of phosphatidylinositol 3-kinase, mitogen-activated protein kinase MEK1, and both actin filaments and microtubules. RNA interference studies showed that different Rho family GTPases are targeted by S. Typhimurium to enter into distinct fibroblasts. Rac1 and Cdc42 knockdown affected invasion of normal rat kidney fibroblasts, whereas none of the GTPases tested (Rac1, Cdc42, RhoA, or RhoG) was essential for invasion of immortalized human foreskin fibroblasts. Collectively, these data reveal a marked diversity in the modes used by S. Typhimurium to enter into fibroblasts.
Collapse
|
14
|
Pizarro-Cerdá J, Cossart P. Listeria monocytogenesMembrane Trafficking and Lifestyle: The Exception or the Rule? Annu Rev Cell Dev Biol 2009; 25:649-70. [DOI: 10.1146/annurev.cellbio.042308.113331] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Javier Pizarro-Cerdá
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F75015, France
- INSERM, U604, Paris F75015, France
- INRA, USC2020, Paris F75015, France; ,
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F75015, France
- INSERM, U604, Paris F75015, France
- INRA, USC2020, Paris F75015, France; ,
| |
Collapse
|
15
|
Dasti JI, Tareen AM, Lugert R, Zautner AE, Gross U. Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol 2009; 300:205-11. [PMID: 19665925 DOI: 10.1016/j.ijmm.2009.07.002] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/17/2009] [Accepted: 07/04/2009] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni has long been recognized as a cause of bacterial food-borne illness, and surprisingly, it remains the most prevalent bacterial food-borne pathogen in the industrial world to date. Natural reservoirs for this Gram-negative, spiral-shaped bacterium are wild birds, whose intestines offer a suitable biological niche for the survival and dissemination of C. jejuni Chickens become colonized shortly after birth and are the most important source for human infection. In the last decade, effective intervention strategies to limit infections caused by this elusive pathogen were hindered mainly because of a paucity in understanding the virulence mechanisms of C. jejuni and in part, unavailability of an adequate animal model for the disease. However, recent developments in deciphering molecular mechanisms of virulence of C. jejuni made it clear that C. jejuni is a unique pathogen, being able to execute N-linked glycosylation of more than 30 proteins related to colonization, adherence, and invasion. Moreover, the flagellum is not only depicted to facilitate motility but as well secretion of Campylobacter invasive antigens (Cia). The only toxin of C. jejuni, the so-called cytolethal distending toxin (CdtA,B,C), seems to be important for cell cycle control and induction of host cell apoptosis and has been recognized as a major pathogenicity-associated factor. In contrast to other diarrhoea-causing bacteria, no other classical virulence factors have yet been identified in C. jejuni. Instead, host factors seem to play a major role for pathogenesis of campylobacteriosis of man. Indeed, several lines of evidence suggest exploitation of different adaptation strategies by this pathogen depending on its requirement, whether to establish itself in the natural avian reservoir or during the course of human infection.
Collapse
Affiliation(s)
- Javid I Dasti
- Institute of Medical Microbiology, University Medical Centre Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|
16
|
Chan YGY, Cardwell MM, Hermanas TM, Uchiyama T, Martinez JJ. Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell Microbiol 2009; 11:629-44. [PMID: 19134120 DOI: 10.1111/j.1462-5822.2008.01279.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rickettsia conorii, an obligate intracellular tick-borne pathogen and the causative agent of Mediterranean spotted fever, binds to and invades non-phagocytic mammalian cells. Previous work identified Ku70 as a mammalian receptor involved in the invasion process and identified the rickettsial autotransporter protein, rOmpB, as a ligand; however, little is known about the role of Ku70-rOmpB interactions in the bacterial invasion process. Using an Escherichia coli heterologous expression system, we show here that rOmpB mediates attachment to mammalian cells and entry in a Ku70-dependent process. A purified recombinant peptide corresponding to the rOmpB passenger domain interacts with Ku70 and serves as a competitive inhibitor of adherence. We observe that rOmpB-mediated infection culminates in actin recruitment at the bacterial foci, and that this entry process relies in part on actin polymerization likely imparted through protein tyrosine kinase and phosphoinositide 3-kinase-dependent activities and microtubule stability. Small-interfering RNA studies targeting components of the endocytic pathway reveal that entry by rOmpB is dependent on c-Cbl, clathrin and caveolin-2. Together, these results illustrate that rOmpB is sufficient to mediate Ku70-dependent invasion of mammalian cells and that clathrin- and caveolin-dependent endocytic events likely contribute to the internalization process.
Collapse
Affiliation(s)
- Yvonne G Y Chan
- Department of Microbiology, University of Chicago, 920 East 58th Street, Cummings Life Sciences Center 707A, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
17
|
Wine E, Chan VL, Sherman PM. Campylobacter jejuni mediated disruption of polarized epithelial monolayers is cell-type specific, time dependent, and correlates with bacterial invasion. Pediatr Res 2008; 64:599-604. [PMID: 18679160 DOI: 10.1203/pdr.0b013e31818702b9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The precise mechanism by which the most common cause of bacterial enterocolitis in humans, Campylobacter jejuni, perturbs the intestinal mucosa remains elusive. To define effects of C. jejuni infection on mucosal permeability, Madin-Darby canine kidney (MDCK)-I and T84 cell monolayers were infected with C. jejuni for up to 48 h. All three tested C. jejuni strains caused a 73-78% reduction in transepithelial electrical resistance (TER) in intestinal (T84) cell monolayers, whereas only one strain slightly reduced TER of MDCK-I cells by 25% after 48 h infection. Infection with C. jejuni strains also caused a 2.3-4.5-fold increase in dextran permeability, but only in T84 cells. C. jejuni infection of monolayers also caused morphologic changes in desmosomes, observed by transmission electron microscopy. The cell-type specificity, demonstrated by increased T84 monolayer permeability, correlated with higher bacterial invasion into these cells, relative to MDCK-I cells. In T84 cells, invasion and bacterial translocation preceded barrier disruption and inhibition of C. jejuni invasion using a pharmacological inhibitor of phosphoinositide 3-kinase, reduced the drop in TER. These findings suggest that C. jejuni disruption of monolayers is mediated by invasion, provide new insights into C. jejuni-host epithelial barrier interactions, and offer potential mechanisms of intestinal injury and chronic immune stimulation.
Collapse
Affiliation(s)
- Eytan Wine
- Department of Paediatrics, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | | | | |
Collapse
|
18
|
Enhanced microscopic definition of Campylobacter jejuni 81-176 adherence to, invasion of, translocation across, and exocytosis from polarized human intestinal Caco-2 cells. Infect Immun 2008; 76:5294-304. [PMID: 18765731 DOI: 10.1128/iai.01408-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Campylobacter jejuni-mediated pathogenesis involves gut adherence and translocation across intestinal cells. The current study was undertaken to examine the C. jejuni interaction with and translocation across differentiated Caco-2 cells to better understand Campylobacter's pathogenesis. The efficiency of C. jejuni 81-176 invasion of Caco-2 cells was two- to threefold less than the efficiency of invasion of INT407 cells. Adherence-invasion analyses indicated that C. jejuni 81-176 adhered to most INT407 cells but invaded only about two-thirds of the host cells over 2 h (two bacteria/cell). In contrast, only 11 to 17% of differentiated Caco-2 cells were observed to bind and internalize either C. jejuni strain 81-176 or NCTC 11168, and a small percentage of infected Caco-2 cells contained 5 to 20 internalized bacteria per cell after 2 h. Electron microscopy revealed that individual C. jejuni cells adhered to the tips of host cell microvilli via intimate flagellar contacts and by lateral bacterial binding to the sides of microvilli. Next, bacteria were observed to bind at the apical host membrane surface via presumed interactions at one pole of the bacterium and with host membrane protrusions located near intercellular junctions. The latter contacts apparently resulted in coordinated, localized plasma membrane invagination, causing simultaneous internalization of bacteria into an endosome. Passage of this Campylobacter endosome intracellularly from the apical surface to the basolateral surface occurred over time, and bacterial release apparently resulted from endosome-basolateral membrane fusion (i.e., exocytosis). Bacteria were found intercellularly below tight junctions at 60 min postinfection, but not at earlier times. This study revealed unique host cell adherence contacts, early endocytosis-specific structures, and a presumptive exocytosis component of the transcellular transcytosis route.
Collapse
|
19
|
Van Deun K, Pasmans F, Ducatelle R, Flahou B, Vissenberg K, Martel A, Van den Broeck W, Van Immerseel F, Haesebrouck F. Colonization strategy of Campylobacter jejuni results in persistent infection of the chicken gut. Vet Microbiol 2008; 130:285-97. [DOI: 10.1016/j.vetmic.2007.11.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/15/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
|
20
|
Craven RR, Hall JD, Fuller JR, Taft-Benz S, Kawula TH. Francisella tularensis invasion of lung epithelial cells. Infect Immun 2008; 76:2833-42. [PMID: 18426871 PMCID: PMC2446690 DOI: 10.1128/iai.00043-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/19/2008] [Accepted: 04/11/2008] [Indexed: 01/16/2023] Open
Abstract
Francisella tularensis, a gram-negative facultative intracellular bacterial pathogen, causes disseminating infections in humans and other mammalian hosts. Macrophages and other monocytes have long been considered the primary site of F. tularensis replication in infected animals. However, recently it was reported that F. tularensis also invades and replicates within alveolar epithelial cells following inhalation in a mouse model of tularemia. TC-1 cells, a mouse lung epithelial cell line, were used to study the process of F. tularensis invasion and intracellular trafficking within nonphagocytic cells. Live and paraformaldehyde-fixed F. tularensis live vaccine strain organisms associated with, and were internalized by, TC-1 cells at similar frequencies and with indistinguishable differences in kinetics. Inhibitors of microfilament and microtubule activity resulted in significantly decreased F. tularensis invasion, as did inhibitors of phosphatidylinositol 3-kinase and tyrosine kinase activity. Collectively, these results suggest that F. tularensis epithelial cell invasion is mediated by a preformed ligand on the bacterial surface and driven entirely by host cell processes. Once internalized, F. tularensis-containing endosomes associated with early endosome antigen 1 (EEA1) followed by lysosome-associated membrane protein 1 (LAMP-1), with peak coassociation frequencies occurring at 30 and 120 min postinoculation, respectively. By 2 h postinoculation, 70.0% (+/- 5.5%) of intracellular bacteria were accessible to antibody delivered to the cytoplasm, indicating vacuolar breakdown and escape into the cytoplasm.
Collapse
Affiliation(s)
- Robin R Craven
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7290, USA
| | | | | | | | | |
Collapse
|
21
|
van Alphen LB, Bleumink-Pluym NMC, Rochat KD, van Balkom BWM, Wösten MMSM, van Putten JPM. Active migration into the subcellular space precedes Campylobacter jejuni invasion of epithelial cells. Cell Microbiol 2008; 10:53-66. [PMID: 18052944 DOI: 10.1111/j.1462-5822.2007.01014.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial pathogen Campylobacter jejuni invades mucosal cells via largely undefined and rather inefficient (0.01-2 bacteria per cell) mechanisms. Here we report a novel, highly efficient C. jejuni infection pathway resulting in 10-15 intracellular bacteria per cell within 3 h of infection. Electron microscopy, pulse-chase infection assays and time-lapse multiphoton laser confocal microscopy demonstrated that the mechanism involved active and rapid migration of the pathogen into the subcellular space (termed 'subvasion'), followed by bacterial entry ('invasion') at the cell basis. Efficient subvasion was maximal after repeated rounds of selection for the subvasive phenotype. Targeted mutagenesis indicated that the CadF, JlpA or PEB1 adhesins were not required. Dissection of the selected and parental phenotypes by SDS-PAGE yielded comparable capsule polysaccharide and lipooligosaccharide profiles. Proteomics revealed reduced amounts of the chemotaxis protein CheW for the subvasive phenotype. Swarming assays confirmed that the selected phenotype exhibited altered migration behaviour. Introduction of a plasmid carrying chemotaxis genes into the subvasive strain yielded wild-type subvasion levels and migration behaviour. These results indicate that alterations in the bacterial migration machinery enable C. jejuni to actively penetrate the subcellular space and gain access to the cell interior with unprecedented efficiency.
Collapse
Affiliation(s)
- Lieke B van Alphen
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Lack of response of INT-407 cells to the presence of non-culturable Campylobacter jejuni. Epidemiol Infect 2007; 136:1401-6. [PMID: 18081950 DOI: 10.1017/s0950268807000040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Many contradictory articles on the infectivity of non-culturable Campylobacter jejuni can be found. We studied the effect of non-culturable C. jejuni in an in vitro assay. To prevent the potential effect of a few culturable bacteria in the non-culturable suspension, INT-407 cells, which mimic the outer cell layer in the small intestines, were exposed to culturable C. jejuni suspensions with or without non-culturable C. jejuni. The number of bacteria adhering to and/or invading INT-407 cells and the IL-8 secretion were measured. No differences were found between bacterial suspensions with or without non-culturable C. jejuni added. These findings show that non-culturable C. jejuni do not adhere to or invade INT-407 cells and do not induce an immune response. As previous studies showed a correlation between the used in vitro assays and the effect in vivo, our study strongly suggests that culturability is a good indicator of the risk for C. jejuni infection.
Collapse
|
23
|
Mohan Nair MK, Venkitanarayanan K. Role of bacterial OmpA and host cytoskeleton in the invasion of human intestinal epithelial cells by Enterobacter sakazakii. Pediatr Res 2007; 62:664-9. [PMID: 17957161 DOI: 10.1203/pdr.0b013e3181587864] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Enterobacter sakazakii is an emerging pathogen in neonates and infants. Interactions of E. sakazakii with intestinal epithelium could be vital in the pathogenesis of enteric infections and in its systemic dissemination. The present study investigated the interaction of E. sakazakii with human intestinal epithelial (INT407) cells and the role of bacterial outer membrane protein A (OmpA) and host cytoskeleton in these interactions. E. sakazakii invaded INT407 cells with moderate efficiency. An ompA mutant of E. sakazakii was significantly attenuated in its invasiveness, and complementation restored the invasive phenotype significantly. Drugs acting on host cell microfilaments (MF) and microtubules (MT) significantly inhibited bacterial invasion. Localization of both microfilaments (MF) and microtubules (MT) was observed in INT407 cells following E. sakazakii infection. The results suggest that E. sakazakii invasion of INT407 cells involves participation of both MF and MT and bacterial OmpA plays a critical role in invasion.
Collapse
|
24
|
Abstract
Campylobacter jejuni is a foodborne bacterial pathogen that is common in the developed world. However, we know less about its biology and pathogenicity than we do about other less prevalent pathogens. Interest in C. jejuni has increased in recent years as a result of the growing appreciation of its importance as a pathogen and the availability of new model systems and genetic and genomic technologies. C. jejuni establishes persistent, benign infections in chickens and is rapidly cleared by many strains of laboratory mouse, but causes significant inflammation and enteritis in humans. Comparing the different host responses to C. jejuni colonization should increase our understanding of this organism.
Collapse
Affiliation(s)
- Kathryn T Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
25
|
Zilbauer M, Dorrell N, Elmi A, Lindley KJ, Schüller S, Jones HE, Klein NJ, Núnez G, Wren BW, Bajaj-Elliott M. A major role for intestinal epithelial nucleotide oligomerization domain 1 (NOD1) in eliciting host bactericidal immune responses to Campylobacter jejuni. Cell Microbiol 2007; 9:2404-16. [PMID: 17521327 DOI: 10.1111/j.1462-5822.2007.00969.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Campylobacter jejuni is the foremost cause of bacterial-induced diarrhoeal disease worldwide. Although it is well established that C. jejuni infection of intestinal epithelia triggers host innate immune responses, the mechanism(s) involved remain poorly defined. Innate immunity can be initiated by families of structurally related pattern-recognition receptors (PRRs) that recognize specific microbial signature motifs. Here, we demonstrated maximal induction of epithelial innate responses during infection with live C. jejuni cells. In contrast when intestinal epithelial cells (IECs) were exposed to paraformaldehyde-fixed bacteria, host responses were minimal and a marked reduction in the number of intracellular bacteria was noted in parallel. These findings suggested a role for intracellular host-C. jejuni interactions in eliciting early innate immunity. We therefore investigated the potential involvement of a family of intracellular, cytoplasmic PRRs, the nucleotide-binding oligomerization domain (NOD) proteins in C. jejuni recognition. We identified NOD1, but not NOD2, as a major PRR for C. jejuni in IEC. We also found that targeting intestinal epithelial NOD1 with small interfering RNA resulted in an increase in number of intracellular C. jejuni, thus highlighting a critical role for NOD1-mediated antimicrobial defence mechanism(s) in combating this infection at the gastrointestinal mucosal surface.
Collapse
Affiliation(s)
- Matthias Zilbauer
- Infectious Diseases and Microbiology Unit, Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dogan B, Klaessig S, Rishniw M, Almeida RA, Oliver SP, Simpson K, Schukken YH. Adherent and invasive Escherichia coli are associated with persistent bovine mastitis. Vet Microbiol 2006; 116:270-82. [PMID: 16787715 DOI: 10.1016/j.vetmic.2006.04.023] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 04/03/2006] [Accepted: 04/05/2006] [Indexed: 10/24/2022]
Abstract
Bovine mastitis caused by Escherichia coli has traditionally been viewed as a transient infection. However, E. coli can also cause clonal persistent intramammary infection (IMI) in dairy cows. In this study, we explored the possibility that E. coli strains associated with persistent IMI are better able to adhere to, invade, survive and replicate in cultured mammary epithelial cells (MAC-T) than transient strains, and examined their serotype, overall genotype, phylogenetic group, and the presence of known virulence genes. Both transient and persistent E. coli strains adhered to MAC-T cells, but persistent strains invaded MAC-T cells 2.6-63.5 times more than transient strains. Blocking the adhesin/invasin FimH with mannose diminished but did not eliminate adhesion and invasion of any strain. Cytoskeletal and protein kinase inhibitors cytochalasin D, colchicine, genistein and wortmannin dramatically reduced invasion of MAC-T cells by both strains. All of the persistent strains, but only one transient strain, were able to survive and replicate intracellularly in MAC-T cells over 48 h. Transient and persistent strains displayed heterogeneous serotypes and overall genotypes, but similar phylogeny (group A), and lacked virulence genes of invasive E. coli. We have found that E. coli strains associated with persistent IMI are better able to invade and replicate within cultured mammary epithelial cells than transient strains. The invasion process involves the host cytoskeleton and signaling cascades and is not FimH dependent. Our findings suggest that the invasion of mammary epithelial cells and intracellular survival play an important role in the pathogenesis of persistent E. coli mastitis.
Collapse
Affiliation(s)
- Belgin Dogan
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853, United States.
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Nazli A, Wang A, Steen O, Prescott D, Lu J, Perdue MH, Söderholm JD, Sherman PM, McKay DM. Enterocyte cytoskeleton changes are crucial for enhanced translocation of nonpathogenic Escherichia coli across metabolically stressed gut epithelia. Infect Immun 2006; 74:192-201. [PMID: 16368973 PMCID: PMC1346602 DOI: 10.1128/iai.74.1.192-201.2006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Substantial data implicate the commensal flora as triggers for the initiation of enteric inflammation or inflammatory disease relapse. We have shown that enteric epithelia under metabolic stress respond to nonpathogenic bacteria by increases in epithelial paracellular permeability and bacterial translocation. Here we assessed the structural basis of these findings. Confluent filter-grown monolayers of the human colonic T84 epithelial cell line were treated with 0.1 mM dinitrophenol (which uncouples oxidative phosphorylation) and noninvasive, nonpathogenic Escherichia coli (strain HB101, 10(6) CFU) with or without pretreatment with various pharmacological agents. At 24 h later, apoptosis, tight-junction protein expression, transepithelial resistance (TER; a marker of paracellular permeability), and bacterial internalization and translocation were assessed. Treatment with stabilizers of microtubules (i.e., colchicine), microfilaments (i.e., jasplakinolide) and clathrin-coated pit endocytosis (i.e., phenylarsine oxide) all failed to block DNP+E. coli HB101-induced reductions in TER but effectively prevented bacterial internalization and translocation. Neither the TER defect nor the enhanced bacterial translocations were a consequence of increased apoptosis. These data show that epithelial paracellular and transcellular (i.e., bacterial internalization) permeation pathways are controlled by different mechanisms. Thus, epithelia under metabolic stress increase their endocytotic activity that can result in a microtubule-, microfilament-dependent internalization and transcytosis of bacteria. We speculate that similar events in vivo would allow excess unprocessed antigen and bacteria into the mucosa and could evoke an inflammatory response by, for example, the activation of resident or recruited immune cells.
Collapse
Affiliation(s)
- Aisha Nazli
- Intestinal Disease Research Programme, HSC-3N5C, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
This review describes characteristics of the family Campylobacteraceae and traits of Campylobacter jejuni. The review then focuses on the worldwide problem of C. jejuni antimicrobial resistance and mechanisms of pathogenesis and virulence. Unravelling these areas will help with the development of new therapeutic agents and ultimately decrease illness caused by this important human pathogen.
Collapse
Affiliation(s)
- W J Snelling
- School of Biomedical Sciences, University of Ulster, Coleraine, Co., Londonderry, UK.
| | | | | | | |
Collapse
|
30
|
GILBERT C, SLAVIK M. EVALUATION OF ATTACHMENT AND PENETRATION ABILITIES OF CAMPYLOBACTER JEJUNI ISOLATES OBTAINED FROM HUMANS AND CHICKEN CARCASSES DURING PROCESSING AND AT RETAIL. J Food Saf 2005. [DOI: 10.1111/j.1745-4565.2005.00550.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|