1
|
Miwa N, Fujimoto M, Sakae K, Iwase T, Hirohata M, Naiki Y, Nishikawa K, Nawa H, Hasegawa Y. Identification of a transposon variant of Porphyromonas gingivalis expressing long Mfa1 fimbriae due to mfa2 inactivation. J Oral Biosci 2025:100677. [PMID: 40541782 DOI: 10.1016/j.job.2025.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 06/12/2025] [Accepted: 06/12/2025] [Indexed: 06/22/2025]
Abstract
OBJECTIVES Fimbriae expressed by Porphyromonas gingivalis, a periodontal pathogen, play a pivotal role in biofilm formation. In the type strain ATCC 33277, Mfa1 fimbriae form short structures anchored to the cell surface by Mfa2, an outer membrane protein involved in regulation of fimbrial length. Mfa1, the major fimbrilin, is classified into three genotypic types-mfa170A, mfa170B, and mfa153-based on gene sequence. Although strain D83T3 is classified as mfa170A, like ATCC 33277, it expresses a 73 kDa Mfa1. This study aimed to investigate D83T3's unique functional properties to improve mfa1 genotyping. METHODS The fimA-deficient ATCC 33277 strain (JI-1) was used as a reference. Mfa1 polymerization and localization were analyzed using immunoblotting. N-terminal processing was evaluated by Edman degradation. Fimbrial morphology was examined using transmission electron microscopy. The region downstream of mfa1 was sequenced. Mfa2 expression and the presence of Mfa3-5, putative tip proteins in the fimbriae, were confirmed by immunoblotting. RESULTS The 73 kDa Mfa1 polymer was predominantly detected in D83T3's culture supernatant. Cleavage was confirmed at the gingipain recognition site. Mfa1 fimbriae in D83T3 were longer than those in JI-1. An IS5 transposase insertion was observed between mfa1 and mfa2 at D83T3. Mfa2 expression was reduced in D83T3 cells, and Mfa3-5 was absent from the fimbriae. CONCLUSIONS D83T3 is a transposon insertion variant that releases abnormally long Mfa1 fimbriae extracellularly due to mfa2 inactivation. Our study's findings offer new insights, and analysis of the mfa1-mfa2 gene structure can complement mfa1 genotyping for the classification of P. gingivalis.
Collapse
Affiliation(s)
- Naoyoshi Miwa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan; Department of Pediatric dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Miyuna Fujimoto
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan; Department of Pediatric dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Kotaro Sakae
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Tomohiko Iwase
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Makoto Hirohata
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshikazu Naiki
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Kiyoshi Nishikawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Hiroyuki Nawa
- Department of Pediatric dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| |
Collapse
|
2
|
Ghods S, Moradali MF, Duryea D, Walker AR, Davey ME. Growth of Porphyromonas gingivalis on human serum albumin triggers programmed cell death. J Oral Microbiol 2022; 15:2161182. [PMID: 36570975 PMCID: PMC9788703 DOI: 10.1080/20002297.2022.2161182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims Gingival crevicular fluid (GCF) constitutes the primary growth substrate for Porphyromonas gingivalis in vivo. The goal of this work was to evaluate the growth of different strains of P. gingivalis on human serum albumin (HSA), a major constituent of GCF. Methods Growth of five different strains of P. gingivalis in the HSA medium was examined and, surprisingly, three of the strains underwent autolysis within 24 h. Comparative transcriptomic analysis was used to identify genes involved in autolysis. Results Two highly related reference strains (W50 and W83) differed dramatically in their survival when grown on HSA. Strain W83 grew fast and lysed within 24 h, while W50 survived for an additional 20 h. Differential gene expression analysis led us to a gene cluster containing enzymes involved in arginine metabolism and a gene predicted to be lytic murein transglycosylase, which are known to play a role in autolysis. Deletion of this gene (PG0139) resulted in a mutant that did not lyse, and complementation restored the HSA lysis phenotype, indicating that this enzyme plays a central role in the autolysis of P. gingivalis. Conclusions P. gingivalis undergoes autolysis when provided with HSA as a substrate for growth.
Collapse
Affiliation(s)
| | | | | | | | - Mary E. Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA,CONTACT Mary E. Davey The Forsyth Institute, Cambridge, MA02142, USA
| |
Collapse
|
3
|
Porphyromonas gingivalis resistance and virulence: An integrated functional network analysis. Gene 2022; 839:146734. [PMID: 35835406 DOI: 10.1016/j.gene.2022.146734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The gram-negative bacteria Porphyromonas gingivalis (PG) is the most prevalent cause of periodontal diseases and multidrug-resistant (MDR) infections. Periodontitis and MDR infections are severe due to PG's ability to efflux antimicrobial and virulence factors. This gives rise to colonisation, biofilm development, evasion, and modulation of the host defence system. Despite extensive studies on the MDR efflux pump in other pathogens, little is known about the efflux pump and its association with the virulence factor in PG. Prolonged infection of PG leads to complete loss of teeth and other systemic diseases. This necessitates the development of new therapeutic interventions to prevent and control MDR. OBJECTIVE The study aims to identify the most indispensable proteins that regulate both resistance and virulence in PG, which could therefore be used as a target to fight against the MDR threat to antibiotics. METHODS We have adopted a hierarchical network-based approach to construct a protein interaction network. Firstly, individual networks of four major efflux pump proteins and two virulence regulatory proteins were constructed, followed by integrating them into one. The relationship between proteins was investigated using a combination of centrality scores, k-core network decomposition, and functional annotation, to computationally identify the indispensable proteins. RESULTS Our study identified four topologically significant genes, PG_0538, PG_0539, PG_0285, and PG_1797, as potential pharmacological targets. PG_0539 and PG_1797 were identified to have significant associations between the efflux pump and virulence genes. This type of underpinning research may help in narrowing the drug spectrum used for treating periodontal diseases, and may also be exploited to look into antibiotic resistance and pathogenicity in bacteria other than PG.
Collapse
|
4
|
Okabe T, Kamiya Y, Kikuchi T, Goto H, Umemura M, Suzuki Y, Sugita Y, Naiki Y, Hasegawa Y, Hayashi JI, Kawamura S, Sawada N, Takayanagi Y, Fujimura T, Higuchi N, Mitani A. Porphyromonas gingivalis Components/Secretions Synergistically Enhance Pneumonia Caused by Streptococcus pneumoniae in Mice. Int J Mol Sci 2021; 22:12704. [PMID: 34884507 PMCID: PMC8657795 DOI: 10.3390/ijms222312704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae is an important causative organism of respiratory tract infections. Although periodontal bacteria have been shown to influence respiratory infections such as aspiration pneumonia, the synergistic effect of S. pneumoniae and Porphyromonas gingivalis, a periodontopathic bacterium, on pneumococcal infections is unclear. To investigate whether P. gingivalis accelerates pneumococcal infections, we tested the effects of inoculating P. gingivalis culture supernatant (PgSup) into S. pneumoniae-infected mice. Mice were intratracheally injected with S. pneumoniae and PgSup to induce pneumonia, and lung histopathological sections and the absolute number and frequency of neutrophils and macrophages in the lung were analyzed. Proinflammatory cytokine/chemokine expression was examined by qPCR and ELISA. Inflammatory cell infiltration was observed in S. pneumoniae-infected mice and S. pnemoniae and PgSup mixed-infected mice, and mixed-infected mice showed more pronounced inflammation in lung. The ratios of monocytes/macrophages and neutrophils were not significantly different between the lungs of S. pneumoniae-infected mice and those of mixed-infected mice. PgSup synergistically increased TNF-α expression/production and IL-17 production compared with S. pneumoniae infection alone. We demonstrated that PgSup enhanced inflammation in pneumonia caused by S. pneumoniae, suggesting that virulence factors produced by P. gingivalis are involved in the exacerbation of respiratory tract infections such as aspiration pneumonia.
Collapse
Affiliation(s)
- Teppei Okabe
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.O.); (T.K.); (H.G.); (Y.S.); (J.H.); (S.K.); (N.S.); (Y.T.); (T.F.); (A.M.)
| | - Yosuke Kamiya
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.O.); (T.K.); (H.G.); (Y.S.); (J.H.); (S.K.); (N.S.); (Y.T.); (T.F.); (A.M.)
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.O.); (T.K.); (H.G.); (Y.S.); (J.H.); (S.K.); (N.S.); (Y.T.); (T.F.); (A.M.)
| | - Hisashi Goto
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.O.); (T.K.); (H.G.); (Y.S.); (J.H.); (S.K.); (N.S.); (Y.T.); (T.F.); (A.M.)
| | - Masayuki Umemura
- Molecular Microbiology Group, Department of Tropical Infectious Diseases, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Nishihara 903-0213, Japan;
| | - Yuki Suzuki
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.O.); (T.K.); (H.G.); (Y.S.); (J.H.); (S.K.); (N.S.); (Y.T.); (T.F.); (A.M.)
| | - Yoshihiko Sugita
- Department of Oral Pathology and Forensic Odontology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan;
| | - Yoshikazu Naiki
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (Y.N.); (Y.H.)
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (Y.N.); (Y.H.)
| | - Jun-ichiro Hayashi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.O.); (T.K.); (H.G.); (Y.S.); (J.H.); (S.K.); (N.S.); (Y.T.); (T.F.); (A.M.)
| | - Shotaro Kawamura
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.O.); (T.K.); (H.G.); (Y.S.); (J.H.); (S.K.); (N.S.); (Y.T.); (T.F.); (A.M.)
| | - Noritaka Sawada
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.O.); (T.K.); (H.G.); (Y.S.); (J.H.); (S.K.); (N.S.); (Y.T.); (T.F.); (A.M.)
| | - Yuhei Takayanagi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.O.); (T.K.); (H.G.); (Y.S.); (J.H.); (S.K.); (N.S.); (Y.T.); (T.F.); (A.M.)
| | - Takeki Fujimura
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.O.); (T.K.); (H.G.); (Y.S.); (J.H.); (S.K.); (N.S.); (Y.T.); (T.F.); (A.M.)
| | - Naoya Higuchi
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan;
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan; (T.O.); (T.K.); (H.G.); (Y.S.); (J.H.); (S.K.); (N.S.); (Y.T.); (T.F.); (A.M.)
| |
Collapse
|
5
|
Yang D, Jiang C, Ning B, Kong W, Shi Y. The PorX/PorY system is a virulence factor of Porphyromonas gingivalis and mediates the activation of the type IX secretion system. J Biol Chem 2021; 296:100574. [PMID: 33757767 PMCID: PMC8050853 DOI: 10.1016/j.jbc.2021.100574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
PorX/PorY is a two-component system (TCS) of Porphyromonas gingivalis that governs transcription of numerous genes including those encoding a type IX secretion system (T9SS) for gingipain secretion and heme accumulation. Here, an in vitro analysis showed that the response regulator PorX specifically bound to two regions in the promoter of porT, a known PorX-regulated T9SS gene, thus demonstrating that PorX/PorY can directly regulate specific target genes. A truncated PorX protein containing the N-terminal receiver and effector domains retained a wild-type ability in both transcription regulation and heme accumulation, ruling out the role of the C-terminal ALP domain in gene regulation. The PorX/PorY system was the only TCS essential for heme accumulation and concomitantly responded to hemin to stimulate transcription of several known PorX-dependent genes in a concentration-dependent manner. We found that PorX/PorY activated the sigH gene, which encodes a sigma factor known for P. gingivalis adaptation to hydrogen peroxide (H2O2). Consistently, both ΔporX and ΔsigH mutants were susceptible to H2O2, suggesting a PorX/PorY-σH regulatory cascade to confer resistance to oxidative stress. Furthermore, the ΔporX mutant became susceptible to high hemin levels that could induce oxidative stress. Therefore, a possible reason why hemin activates PorX/PorY is to confer resistance to hemin-induced oxidative stress. We also demonstrated that PorX/PorY was essential for P. gingivalis virulence because the ΔporX mutant was avirulent in a mouse model. Specifically, this TCS was required for the repression of proinflammatory cytokines secreted by dendritic cells and T cells in the P. gingivalis–infected mice.
Collapse
Affiliation(s)
- Dezhi Yang
- The School of Life Sciences, Arizona State University, Tempe, Arizona, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona, USA
| | - Chizhou Jiang
- The School of Life Sciences, Arizona State University, Tempe, Arizona, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona, USA
| | - Bo Ning
- The Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Wei Kong
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona, USA.
| | - Yixin Shi
- The School of Life Sciences, Arizona State University, Tempe, Arizona, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
6
|
Yao K, Cai JY, Zhao L, Wu YF, Zhao ZH, Shen DN. Research progress on two-component signal transduction systems in Porphyromonas gingivalis. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2021; 39:88-93. [PMID: 33723942 DOI: 10.7518/hxkq.2021.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Porphyromonas gingivalis (P. gingivalis), a Gram-negative oral anaerobe, is considered to be a major pathogenic agent involved in the onset and progression of chronic periodontitis. P. gingivalis must be able to perceive and respond to the complicated changes in host to survive the environmental challenges, in which the two-component signal transduction systems (TCSs) play critical roles by connecting input signals to cellular physiological output. Canonical TCS consists of a sensor histidine kinase and a cognate response regulator that functions via a phosphorylation cascade. In this review, the roles of TCSs in P. gingivalis were demonstrated by illustrating the target genes and modulation modes, which may help elucidate the underlying mechanisms in future studies.
Collapse
Affiliation(s)
- Ke Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing-Yi Cai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-Fei Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhi-He Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dao-Nan Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Liu H, Huang L, Cai Y, Bikker FJ, Wei X, Mei Deng D. A novel gingipain regulatory gene in Porphyromonas gingivalis mediates host cell detachment and inhibition of wound closure. Microbiologyopen 2020; 9:e1128. [PMID: 33047890 PMCID: PMC7755767 DOI: 10.1002/mbo3.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 11/09/2022] Open
Abstract
The black pigmentation-related genes in Porphyromonas gingivalis are primarily involved in regulating gingipain functions. In this study, we identified a pigmentation-related gene, designated as pgn_0361. To characterize the role of pgn_0361 in regulating P. gingivalis-mediated epithelial cell detachment and inhibition of wound closure, PgΔ0361, an isogenic pgn_0361-defective mutant strain, and PgΔ0361C, a complementation strain, were constructed using P. gingivalis ATCC 33277. The gingipain and hemagglutination activities, as well as biofilm formation, were examined in all three strains. The effect of P. gingivalis strains on epithelial cell detachment was investigated using the HO-1-N-1 and Ca9-22 epithelial cell lines. The inhibition of wound closure by heat-killed P. gingivalis cells and culture supernatant was analyzed using an in vitro wound closure assay. Compared to the wild-type strain, the PgΔ0361 strain did not exhibit gingipain or hemagglutination activity but exhibited enhanced biofilm formation. Additionally, the PgΔ0361 strain exhibited attenuated ability to detach the epithelial cells and to inhibit wound closure in vitro. Contrastingly, the culture supernatant of PgΔ0361 exhibited high gingipain activity and strong inhibition of wound closure. The characteristics of PgΔ0361C and wild-type strains were comparable. In conclusion, the pgn_0361 gene is involved in regulating gingipains. The PGN_0361-defective strain exhibited reduced virulence in terms of epithelial cell detachment and inhibition of wound closure. The culture supernatant of the mutant strain highly inhibited wound closure, which may be due to high gingipain activity.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Huang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Yanling Cai
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Dong Mei Deng
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
8
|
Śmiga M, Stępień P, Olczak M, Olczak T. PgFur participates differentially in expression of virulence factors in more virulent A7436 and less virulent ATCC 33277 Porphyromonas gingivalis strains. BMC Microbiol 2019; 19:127. [PMID: 31185896 PMCID: PMC6558696 DOI: 10.1186/s12866-019-1511-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
Background Porphyromonas gingivalis is considered a keystone pathogen responsible for chronic periodontitis. Although several virulence factors produced by this bacterium are quite well characterized, very little is known about regulatory mechanisms that allow different strains of P. gingivalis to efficiently survive in the hostile environment of the oral cavity, a typical habitat characterized by low iron and heme concentrations. The aim of this study was to characterize P. gingivalis Fur homolog (PgFur) in terms of its role in production of virulence factors in more (A7436) and less (ATCC 33277) virulent strains. Results Expression of a pgfur depends on the growth phase and iron/heme concentration. To better understand the role played by the PgFur protein in P. gingivalis virulence under low- and high-iron/heme conditions, a pgfur-deficient ATCC 33277 strain (TO16) was constructed and its phenotype compared with that of a pgfur A7436-derived mutant strain (TO6). In contrast to the TO6 strain, the TO16 strain did not differ in the growth rate and hemolytic activity compared with the ATCC 33277 strain. However, both mutant strains were more sensitive to oxidative stress and they demonstrated changes in the production of lysine- (Kgp) and arginine-specific (Rgp) gingipains. In contrast to the wild-type strains, TO6 and TO16 mutant strains produced larger amounts of HmuY protein under high iron/heme conditions. We also demonstrated differences in production of glycoconjugates between the A7436 and ATCC 33277 strains and we found evidence that PgFur protein might regulate glycosylation process. Moreover, we revealed that PgFur protein plays a role in interactions with other periodontopathogens and is important for P. gingivalis infection of THP-1-derived macrophages and survival inside the cells. Deletion of the pgfur gene influences expression of many transcription factors, including two not yet characterized transcription factors from the Crp/Fnr family. We also observed lower expression of the CRISPR/Cas genes. Conclusions We show here for the first time that inactivation of the pgfur gene exerts a different influence on the phenotype of the A7436 and ATCC 33277 strains. Our findings further support the hypothesis that PgFur regulates expression of genes encoding surface virulence factors and/or genes involved in their maturation. Electronic supplementary material The online version of this article (10.1186/s12866-019-1511-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A St, 50-383, Wrocław, Poland
| | - Paulina Stępień
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A St, 50-383, Wrocław, Poland
| | - Mariusz Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A St, 50-383, Wrocław, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14A St, 50-383, Wrocław, Poland.
| |
Collapse
|
9
|
Naito M, Tominaga T, Shoji M, Nakayama K. PGN_0297 is an essential component of the type IX secretion system (T9SS) in Porphyromonas gingivalis: Tn-seq analysis for exhaustive identification of T9SS-related genes. Microbiol Immunol 2019; 63:11-20. [PMID: 30599082 PMCID: PMC6590471 DOI: 10.1111/1348-0421.12665] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
Abstract
The type IX secretion system (T9SS) was originally discovered in Porphyromonas gingivalis, one of the pathogenic bacteria associated with periodontal disease and is now known to be present in many members of the phylum Bacteroidetes. The T9SS secretes a number of potent virulence factors, including the highly hydrolytic proteases called gingipains, across the outer membrane in P. gingivalis. To understand the entire machinery of T9SS, an exhaustive search for T9SS‐related genes in P. gingivalis using the mariner family transposon (Tn) and Tn‐seq analysis was performed. Seven hundred and two Tn insertion sites in Tn mutants with no colony pigmentation that is associated with Lys‐gingipain (Kgp) defectiveness were determined, and it was found that the Tn was inserted in the kgp gene and 54 T9SS‐related candidate genes. Thirty‐three out of the 54 genes were already known as T9SS‐related genes. Furthermore, deletion mutant analysis of the remaining 21 genes revealed that they were not related to the T9SS. The 33 T9SS‐related genes include a gene for PGN_0297, which was found to be associated with the T9SS components PorK and PorN. A PGN_0297 gene deletion mutant was constructed, and it was found that the mutant showed no colony pigmentation, hemagglutination or gingipain activities, indicating that PGN_0297 was an essential component of the T9SS. The 33 genes did not include the six genes (gppX, omp17, porY, rfa, sigP and wzx) that were also reported as T9SS‐related genes. gppX deletion and insertion mutants were constructed, and it was found that they did not show deficiency in the T9SS.
Collapse
Affiliation(s)
- Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8588, Japan
| | - Takashi Tominaga
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8588, Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8588, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8588, Japan
| |
Collapse
|
10
|
Miller DP, Lamont RJ. Signaling Systems in Oral Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:27-43. [PMID: 31732932 DOI: 10.1007/978-3-030-28524-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The supra- and subgingival plaque biofilm communities of plaque are composed of hundreds of different microbes. These communities are spatially and temporally structured, largely due to cell-cell communications that coordinate synergistic interactions, and intracellular signaling systems to sense changes in the surrounding environment. Homeostasis is maintained through metabolic communication, mutualistic cross-feeding, and cross-respiration. These nutritional symbioses can reciprocally influence the local microenvironments by altering the pH and by detoxifying oxidative compounds. Signal transduction mechanisms include two-component systems, tyrosine phosphorelays, quorum sensing systems, and cyclic nucleotide secondary messengers. Signaling converges on transcriptional programs and can result in synergistic or antagonistic interbacterial interactions that sculpt community development. The sum of all these interactions can be a well-organized polymicrobial community that remains in homeostasis with the host, or a dysbiotic community that provokes pathogenic responses in the host.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| |
Collapse
|
11
|
Mattos-Graner RO, Duncan MJ. Two-component signal transduction systems in oral bacteria. J Oral Microbiol 2017; 9:1400858. [PMID: 29209465 PMCID: PMC5706477 DOI: 10.1080/20002297.2017.1400858] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/01/2017] [Indexed: 01/03/2023] Open
Abstract
We present an overview of how members of the oral microbiota respond to their environment by regulating gene expression through two-component signal transduction systems (TCSs) to support conditions compatible with homeostasis in oral biofilms or drive the equilibrium toward dysbiosis in response to environmental changes. Using studies on the sub-gingival Gram-negative anaerobe Porphyromonas gingivalis and Gram-positive streptococci as examples, we focus on the molecular mechanisms involved in activation of TCS and species specificities of TCS regulons.
Collapse
Affiliation(s)
- Renata O. Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas – UNICAMP, São Paulo, Brazil
| | - Margaret J. Duncan
- Department of Oral Medicine, Infection and Immunity, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
12
|
Glew MD, Veith PD, Chen D, Gorasia DG, Peng B, Reynolds EC. PorV is an Outer Membrane Shuttle Protein for the Type IX Secretion System. Sci Rep 2017; 7:8790. [PMID: 28821836 PMCID: PMC5562754 DOI: 10.1038/s41598-017-09412-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/24/2017] [Indexed: 01/20/2023] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen associated with chronic periodontitis. Major virulence factors named gingipains (cysteine proteinases, RgpA, RgpB and Kgp) are secreted via the Type IX Secretion System (T9SS). These, together with approximately 30 other proteins, are secreted to the cell surface and anchored to the outer membrane by covalent modification to anionic lipopolysaccharide (A-LPS) via the novel Gram negative sortase, PorU. PorU is localised on the cell surface and cleaves the C-terminal domain signal (CTD) of T9SS substrates and conjugates their new C-termini to A-LPS. A 440 kDa-attachment complex was identified in the wild-type (WT) comprising of PorU:PorV:PorQ:PorZ. In mutant strains, sub-complexes comprising PorU:PorV or PorQ:PorZ were also identified at smaller native sizes suggesting that PorU and PorZ are anchored to the cell surface via interaction with the PorV and PorQ outer membrane proteins, respectively. Analysis of porU mutants and a CTD cleavage mutant revealed accumulation of immature T9SS substrates in a PorV-bound form. Quantitative label-free proteomics of WT whole cell lysates estimated that the proportion of secretion channels:attachment complexes:free PorV:T9SS substrates was 1:6:110:2000 supporting a role for PorV as a shuttle protein delivering secreted proteins to the attachment complex for CTD signal cleavage and A-LPS modification.
Collapse
Affiliation(s)
- Michelle D Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Dina Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Dhana G Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Ben Peng
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
13
|
Degradation of cyclic diguanosine monophosphate by a hybrid two-component protein protects Azoarcus sp. strain CIB from toluene toxicity. Proc Natl Acad Sci U S A 2016; 113:13174-13179. [PMID: 27799551 DOI: 10.1073/pnas.1615981113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger that controls diverse functions in bacteria, including transitions from planktonic to biofilm lifestyles, virulence, motility, and cell cycle. Here we describe TolR, a hybrid two-component system (HTCS), from the β-proteobacterium Azoarcus sp. strain CIB that degrades c-di-GMP in response to aromatic hydrocarbons, including toluene. This response protects cells from toluene toxicity during anaerobic growth. Whereas wild-type cells tolerated a sudden exposure to a toxic concentration of toluene, a tolR mutant strain or a strain overexpressing a diguanylate cyclase gene lost viability upon toluene shock. TolR comprises an N-terminal aromatic hydrocarbon-sensing Per-Arnt-Sim (PAS) domain, followed by an autokinase domain, a response regulator domain, and a C-terminal c-di-GMP phosphodiesterase (PDE) domain. Autophosphorylation of TolR in response to toluene exposure initiated an intramolecular phosphotransfer to the response regulator domain that resulted in c-di-GMP degradation. The TolR protein was engineered as a functional sensor histidine kinase (TolRSK) and an independent response regulator (TolRRR). This classic two-component system (CTCS) operated less efficiently than TolR, suggesting that TolR was evolved as a HTCS to optimize signal transduction. Our results suggest that TolR enables Azoarcus sp. CIB to adapt to toxic aromatic hydrocarbons under anaerobic conditions by modulating cellular levels of c-di-GMP. This is an additional role for c-di-GMP in bacterial physiology.
Collapse
|
14
|
Izumigawa M, Hasegawa Y, Ikai R, Horie T, Inomata M, Into T, Kitai N, Yoshimura F, Murakami Y. Separation of novel phosphoproteins of Porphyromonas gingivalis using phosphate-affinity chromatography. Microbiol Immunol 2016; 60:702-707. [PMID: 27663267 DOI: 10.1111/1348-0421.12441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022]
Abstract
Phosphorylation of serine, threonine and tyrosine is a central mechanism for regulating the structure and function of proteins in both eukaryotes and prokaryotes. However, the action of phosphorylated proteins present in Porphyromonas gingivalis, a major periodontopathogen, is not fully understood. Here, six novel phosphoproteins that possess metabolic activities were identified, namely PGN_0004, PGN_0375, PGN_0500, PGN_0724, PGN_0733 and PGN_0880, having been separated by phosphate-affinity chromatography. The identified proteins were detectable by immunoblotting specific to phosphorylated Ser (P-Ser), P-Thr, and/or P-Tyr. These results imply that novel phosphorylated proteins might play an important role for regulation of metabolism in P. gingivalis.
Collapse
Affiliation(s)
- Masashi Izumigawa
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Aichi, Japan.
| | - Ryota Ikai
- Department of Community Oral Health, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Toshi Horie
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Megumi Inomata
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Takeshi Into
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Noriyuki Kitai
- Department of Orthodontic, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Aichi, Japan
| | - Yukitaka Murakami
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| |
Collapse
|
15
|
Hasegawa Y, Iijima Y, Persson K, Nagano K, Yoshida Y, Lamont RJ, Kikuchi T, Mitani A, Yoshimura F. Role of Mfa5 in Expression of Mfa1 Fimbriae in Porphyromonas gingivalis. J Dent Res 2016; 95:1291-7. [PMID: 27323953 DOI: 10.1177/0022034516655083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fimbriae are protein-based filamentous appendages that protrude from the bacterial cell surface and facilitate host adhesion. Two types of fimbriae, FimA and Mfa1, of the periodontal pathogen Porphyromonas gingivalis are responsible for adherence to other bacteria and to host cells in the oral cavity. Both fimbrial forms are composed of 5 proteins, but there is limited information about their polymerization mechanisms. Here, the authors evaluated the function of Mfa5, one of the Mfa1 fimbrial accessory proteins. Using mfa5 gene disruption and complementation studies, the authors revealed that Mfa5 affects the incorporation of other accessory proteins, Mfa3 and Mfa4, into fibers and the expression of fimbriae on the cell surface. Mfa5 is predicted to have a C-terminal domain (CTD) that uses the type IX secretion system (T9SS), which is limited to this organism and related Bacteroidetes species, for translocation across the outer membrane. To determine the relationship between the putative Mfa5 CTD and the T9SS, mutants were constructed with in-frame deletion of the CTD and deletion of porU, a C-terminal signal peptidase linked to T9SS-mediated secretion. The ∆CTD-expressing strain presented a similar phenotype to the mfa5 disruption mutant with reduced expression of fimbriae lacking all accessory proteins. The ∆porU mutants and the ∆CTD-expressing strain showed intracellular accumulation of Mfa5. These results indicate that Mfa5 function requires T9SS-mediated translocation across the outer membrane, which is dependent on the CTD, and subsequent incorporation into fibers. These findings suggest the presence of a novel polymerization mechanism of the P. gingivalis fimbriae.
Collapse
Affiliation(s)
- Y Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Y Iijima
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - K Persson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - K Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Y Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - R J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - T Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - A Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - F Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| |
Collapse
|
16
|
Kadowaki T, Yukitake H, Naito M, Sato K, Kikuchi Y, Kondo Y, Shoji M, Nakayama K. A two-component system regulates gene expression of the type IX secretion component proteins via an ECF sigma factor. Sci Rep 2016; 6:23288. [PMID: 26996145 PMCID: PMC4800418 DOI: 10.1038/srep23288] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/03/2016] [Indexed: 12/19/2022] Open
Abstract
The periodontopathogen Porphyromonas gingivalis secretes potent pathogenic proteases, gingipains, via the type IX secretion system (T9SS). This system comprises at least 11 components; however, the regulatory mechanism of their expression has not yet been elucidated. Here, we found that the PorY (PGN_2001)-PorX (PGN_1019)-SigP (PGN_0274) cascade is involved in the regulation of T9SS. Surface plasmon resonance (SPR) analysis revealed a direct interaction between a recombinant PorY (rPorY) and a recombinant PorX (rPorX). rPorY autophosphorylated and transferred a phosphoryl group to rPorX in the presence of Mn2+. These results demonstrate that PorX and PorY act as a response regulator and a histidine kinase, respectively, of a two component system (TCS), although they are separately encoded on the chromosome. T9SS component-encoding genes were down-regulated in a mutant deficient in a putative extracytoplasmic function (ECF) sigma factor, PGN_0274 (SigP), similar to the porX mutant. Electrophoretic gel shift assays showed that rSigP bound to the putative promoter regions of T9SS component-encoding genes. The SigP protein was lacking in the porX mutant. Co-immunoprecipitation and SPR analysis revealed the direct interaction between SigP and PorX. Together, these results indicate that the PorXY TCS regulates T9SS-mediated protein secretion via the SigP ECF sigma factor.
Collapse
Affiliation(s)
- Tomoko Kadowaki
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan.,Division of Frontier Life Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Hideharu Yukitake
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Mariko Naito
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Keiko Sato
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Yoshio Kondo
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan.,Department of Pediatric Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| |
Collapse
|
17
|
Shoji M, Nakayama K. Glycobiology of the oral pathogen Porphyromonas gingivalis and related species. Microb Pathog 2015; 94:35-41. [PMID: 26456570 DOI: 10.1016/j.micpath.2015.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
Until recently, glycoproteins had only been described in eukaryotes. However, advances in detection methods and genome analyses have allowed the discovery of N-linked or O-linked glycoproteins, similar to those found in eukaryotes, in some bacterial species. These prokaryotic glycoproteins play roles in adhesion, solubility, formation of protein complexes, protection from protein degradation, and changes in antigenicity. Periodontal pathogen Porphyromonas gingivalis secretes virulence proteins via the type IX secretion system, some of which localize on the cell surface by binding to lipopolysaccharide (LPS). These virulence proteins have a conserved C-terminal domain (CTD) region, which is used as a secretion signal. However, it is still uncertain how the secreted proteins on the cell surface bind to LPS. In this review, we discuss the synthesis of P. gingivalis O polysaccharide, which plays a role in anchoring the CTD protein on the cell surface, and recent discoveries of glycoproteins in P. gingivalis as well as other species in the phylum Bacteroidetes.
Collapse
Affiliation(s)
- Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan.
| |
Collapse
|
18
|
Ikai R, Hasegawa Y, Izumigawa M, Nagano K, Yoshida Y, Kitai N, Lamont RJ, Yoshimura F, Murakami Y. Mfa4, an Accessory Protein of Mfa1 Fimbriae, Modulates Fimbrial Biogenesis, Cell Auto-Aggregation, and Biofilm Formation in Porphyromonas gingivalis. PLoS One 2015; 10:e0139454. [PMID: 26437277 PMCID: PMC4593637 DOI: 10.1371/journal.pone.0139454] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/13/2015] [Indexed: 12/23/2022] Open
Abstract
Porphyromonas gingivalis, a gram-negative obligate anaerobic bacterium, is considered to be a key pathogen in periodontal disease. The bacterium expresses Mfa1 fimbriae, which are composed of polymers of Mfa1. The minor accessory components Mfa3, Mfa4, and Mfa5 are incorporated into these fimbriae. In this study, we characterized Mfa4 using genetically modified strains. Deficiency in the mfa4 gene decreased, but did not eliminate, expression of Mfa1 fimbriae. However, Mfa3 and Mfa5 were not incorporated because of defects in posttranslational processing and leakage into the culture supernatant, respectively. Furthermore, the mfa4-deficient mutant had an increased tendency to auto-aggregate and form biofilms, reminiscent of a mutant completely lacking Mfa1. Notably, complementation of mfa4 restored expression of structurally intact and functional Mfa1 fimbriae. Taken together, these results indicate that the accessory proteins Mfa3, Mfa4, and Mfa5 are necessary for assembly of Mfa1 fimbriae and regulation of auto-aggregation and biofilm formation of P. gingivalis. In addition, we found that Mfa3 and Mfa4 are processed to maturity by the same RgpA/B protease that processes Mfa1 subunits prior to polymerization.
Collapse
Affiliation(s)
- Ryota Ikai
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Orthodontics, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Yoshiaki Hasegawa
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
- * E-mail:
| | - Masashi Izumigawa
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
- Department of Orthodontics, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Noriyuki Kitai
- Department of Orthodontics, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States of America
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Yukitaka Murakami
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| |
Collapse
|
19
|
Murakami Y, Masuda T, Imai M, Iwami J, Nakamura H, Noguchi T, Yoshimura F. Analysis of Major Virulence Factors inPorphyromonas gingivalisunder Various Culture Temperatures Using Specific Antibodies. Microbiol Immunol 2013; 48:561-9. [PMID: 15322335 DOI: 10.1111/j.1348-0421.2004.tb03552.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Porphyromonas gingivalis is implicated in the occurrence of adult periodontitis. We have previously identified major outer membrane proteins from P. gingivalis, which include representative virulence factors such as gingipains, a 75 kDa major protein, RagA, RagB, and putative porin. Fimbriae, another important virulence factor, exist on the cell surface. In this study, we identified major supernatant proteins. They were fimbrilin, the 75 kDa major protein, gingipains and their adhesin domains. Microscopic examination showed that supernatant proteins formed vesicle-like and fimbrial structures. To learn more about the character of this bacterium, we examined effects of growth temperature on localization and expression of these virulence factors. In general, localization of major virulence factors did not change at the various growth temperatures used. Most of the 75 kDa major protein, RagA, RagB, and putative porin were found in the envelope fraction, not in cell-free culture supernatant. Gingipains were found in both the envelope fraction and supernatant. More than 80% of fimbriae were associated with cells, less than 20% migrated to the supernatant. Most fimbriae existed in the whole cell lysate, although there was a small amount in the envelope fraction. When the growth temperature was increased, expression of fimbriae, gingipains, the 75 kDa major protein, RagA, and RagB decreased. However, temperature had almost no effect on expression of putative porin. The tendency for expression of major virulence factors to decrease at higher temperatures may enable P. gingivalis to survive under hostile conditions.
Collapse
Affiliation(s)
- Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Reyes L, Eiler-McManis E, Rodrigues PH, Chadda AS, Wallet SM, Bélanger M, Barrett AG, Alvarez S, Akin D, Dunn WA, Progulske-Fox A. Deletion of lipoprotein PG0717 in Porphyromonas gingivalis W83 reduces gingipain activity and alters trafficking in and response by host cells. PLoS One 2013; 8:e74230. [PMID: 24069284 PMCID: PMC3772042 DOI: 10.1371/journal.pone.0074230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/29/2013] [Indexed: 01/10/2023] Open
Abstract
P. gingivalis (Pg), a causative agent of chronic generalized periodontitis, has been implicated in promoting cardiovascular disease. Expression of lipoprotein gene PG0717 of Pg strain W83 was found to be transiently upregulated during invasion of human coronary artery endothelial cells (HCAEC), suggesting this protein may be involved in virulence. We characterized the virulence phenotype of a PG0717 deletion mutant of pg W83. There were no differences in the ability of W83Δ717 to adhere and invade HCAEC. However, the increased proportion of internalized W83 at 24 hours post-inoculation was not observed with W83∆717. Deletion of PG0717 also impaired the ability of W83 to usurp the autophagic pathway in HCAEC and to induce autophagy in Saos-2 sarcoma cells. HCAEC infected with W83Δ717 also secreted significantly greater amounts of MCP-1, IL-8, IL-6, GM-CSF, and soluble ICAM-1, VCAM-1, and E-selectin when compared to W83. Further characterization of W83Δ717 revealed that neither capsule nor lipid A structure was affected by deletion of PG0717. Interestingly, the activity of both arginine (Rgp) and lysine (Kgp) gingipains was reduced in whole-cell extracts and culture supernatant of W83Δ717. RT-PCR revealed a corresponding decrease in transcription of rgpB but not rgpA or kgp. Quantitative proteome studies of the two strains revealed that both RgpA and RgpB, along with putative virulence factors peptidylarginine deiminase and Clp protease were significantly decreased in the W83Δ717. Our results suggest that PG0717 has pleiotropic effects on W83 that affect microbial induced manipulation of host responses important for microbial clearance and infection control.
Collapse
Affiliation(s)
- Leticia Reyes
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Eileen Eiler-McManis
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Paulo H. Rodrigues
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Amandeep S. Chadda
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Myriam Bélanger
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Amanda G. Barrett
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Sophie Alvarez
- Donald Danforth Plant Science Center, proteomics & mass spectrometry Core, St. Louis, Missouri, United States of America
| | - Debra Akin
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - William A. Dunn
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ann Progulske-Fox
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| |
Collapse
|
21
|
Scott JC, Klein BA, Duran-Pinedo A, Hu L, Duncan MJ. A two-component system regulates hemin acquisition in Porphyromonas gingivalis. PLoS One 2013; 8:e73351. [PMID: 24039921 PMCID: PMC3764172 DOI: 10.1371/journal.pone.0073351] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/17/2013] [Indexed: 01/19/2023] Open
Abstract
Porphyromonas gingivalis is a Gram-negative oral anaerobe associated with infection of the periodontia. The organism has a small number of two-component signal transduction systems, and after comparing genome sequences of strains W83 and ATCC 33277 we discovered that the latter was mutant in histidine kinase (PGN_0752), while the cognate response regulator (PGN_0753) remained intact. Microarray-based transcriptional profiling and ChIP-seq assays were carried out with an ATCC 33277 transconjugant containing the functional histidine kinase from strain W83 (PG0719). The data showed that the regulon of this signal transduction system contained genes that were involved in hemin acquisition, including gingipains, at least three transport systems, as well as being self-regulated. Direct regulation by the response regulator was confirmed by electrophoretic mobility shift assays. In addition, the system appears to be activated by hemin and the regulator acts as both an activator and repressor.
Collapse
Affiliation(s)
- Jodie C. Scott
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Brian A. Klein
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, Massachusetts, United States of America
| | - Ana Duran-Pinedo
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Linden Hu
- Division of Geographic Medicine and Infectious Disease, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Margaret J. Duncan
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| |
Collapse
|
22
|
Muthiah AS, Aruni W, Robles AG, Dou Y, Roy F, Fletcher HM. In Porphyromonas gingivalis VimF is involved in gingipain maturation through the transfer of galactose. PLoS One 2013; 8:e63367. [PMID: 23717416 PMCID: PMC3663753 DOI: 10.1371/journal.pone.0063367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/31/2013] [Indexed: 12/18/2022] Open
Abstract
Previously, we have reported that gingipain activity in Porphyromonas gingivalis, the major causative agent in adult periodontitis, is post-translationally regulated by the unique Vim proteins including VimF, a putative glycosyltransferase. To further characterize VimF, an isogenic mutant defective in this gene in a different P. gingivalis genetic background was evaluated. In addition, the recombinant VimF protein was used to further confirm its glycosyltransferase function. The vimF-defective mutant (FLL476) in the P. gingivalis ATCC 33277 genetic background showed a phenotype similar to that of the vimF-defective mutant (FLL95) in the P. gingivalis W83 genetic background. While hemagglutination was not detected and autoaggregation was reduced, biofilm formation was increased in FLL476. HeLa cells incubated with P. gingivalis FLL95 and FLL476 showed a 45% decrease in their invasive capacity. Antibodies raised against the recombinant VimF protein in E. coli immunoreacted only with the deglycosylated native VimF protein from P. gingivalis. In vitro glycosyltransferase activity for rVimF was observed using UDP-galactose and N-acetylglucosamine as donor and acceptor substrates, respectively. In the presence of rVimF and UDP-galactose, a 60 kDa protein from the extracellular fraction of FLL95 which was identified by mass spectrometry as Rgp gingipain, immunoreacted with the glycan specific mAb 1B5 antibody. Taken together, these results suggest the VimF glycoprotein is a galactosyltransferase that may be specific for gingipain glycosylation. Moreover, galatose is vital for the growing glycan chain.
Collapse
Affiliation(s)
- Arun S. Muthiah
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Wilson Aruni
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Antonette G. Robles
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Francis Roy
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Aruni AW, Robles A, Fletcher HM. VimA mediates multiple functions that control virulence in Porphyromonas gingivalis. Mol Oral Microbiol 2012; 28:167-80. [PMID: 23279905 DOI: 10.1111/omi.12017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2012] [Indexed: 12/31/2022]
Abstract
Porphyromonas gingivalis, a black-pigmented, gram-negative anaerobe, is an important etiological agent of periodontal disease. Its ability to survive in the periodontal pocket and orchestrate the microbial/host activities that can lead to disease suggest that P. gingivalis possesses a complex regulatory network involving transcriptional and post-transcriptional mechanisms. The vimA (virulence modulating) gene is part of the 6.15-kb bcp-recA-vimA-vimE-vimF-aroG locus and plays a role in oxidative stress resistance. In addition to the glycosylation and anchorage of several surface proteins including the gingipains, VimA can also modulate sialylation, acetyl coenzyme A transfer, lipid A and its associated proteins and may be involved in protein sorting and transport. In this review, we examine the multifunctional role of VimA and discuss its possible involvement in a major regulatory network important for survival and virulence regulation in P. gingivalis. It is postulated that the multifunction of VimA is modulated via a post-translational mechanism involving acetylation.
Collapse
Affiliation(s)
- A W Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | | | | |
Collapse
|
24
|
Hirano T, Beck DAC, Wright CJ, Demuth DR, Hackett M, Lamont RJ. Regulon controlled by the GppX hybrid two component system in Porphyromonas gingivalis. Mol Oral Microbiol 2012. [PMID: 23194602 DOI: 10.1111/omi.12007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The periodontal pathogen Porphyromonas gingivalis experiences a number of environmental conditions in the oral cavity, and must monitor and respond to a variety of environmental cues. However, the organism possesses only five full two-component systems, one of which is the hybrid system GppX. To investigate the regulon controlled by GppX we performed RNA-Seq on a ΔGppX mutant. Fifty-three genes were upregulated and 37 genes were downregulated in the ΔGppX mutant. Pathway analyses revealed no systemic function for GppX under nutrient-replete conditions; however, over 40% of the differentially abundant genes were annotated as encoding hypothetical proteins indicating a novel role for GppX. Abundance of small RNA was, in general, not affected by the absence of GppX. To further define the role of GppX with respect to regulation of a hypothetical protein observed with the greatest significant relative abundance change relative to a wild-type control, PGN_0151, we constructed a series of strains in which the ΔgppX mutation was complemented with a GppX protein containing specific domain and phosphotransfer mutations. The transmembrane domains, the DNA-binding domain and the phosphotransfer residues were all required for regulation of PGN_0151. In addition, binding of GppX to the PGN_0151 promoter regions was confirmed by an electrophoretic mobility shift assay. Both the ΔGppX mutant and a ΔPGN_0151 mutant were deficient in monospecies biofilm formation, suggesting a role for the GppX-PGN_0151 regulon in colonization and survival of the organism.
Collapse
Affiliation(s)
- T Hirano
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, KY, USA
| | | | | | | | | | | |
Collapse
|
25
|
Osbourne D, Aruni AW, Dou Y, Perry C, Boskovic DS, Roy F, Fletcher HM. VimA-dependent modulation of the secretome in Porphyromonas gingivalis. Mol Oral Microbiol 2012; 27:420-35. [PMID: 23134608 DOI: 10.1111/j.2041-1014.2012.00661.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The VimA protein of Porphyromonas gingivalis is a multifunctional protein involved in cell surface biogenesis. To further determine if its acetyl coenzyme A (acetyl-CoA) transfer and putative sorting functions can affect the secretome, its role in peptidoglycan biogenesis and effects on the extracellular proteins of P. gingivalis FLL92, a vimA-defective mutant, were evaluated. There were structural and compositional differences in the peptidoglycan of P. gingivalis FLL92 compared with the wild-type strain. Sixty-eight proteins were present only in the extracellular fraction of FLL92. Fifteen proteins present in the extracellular fraction of the parent strain were missing in the vimA-defective mutant. These proteins had protein sorting characteristics that included a C-terminal motif with a common consensus Gly-Gly-CTERM pattern and a polar tail consisting of aromatic amino acid residues. These observations suggest that the VimA protein is likely involved in peptidoglycan synthesis, and corroborates our previous report, which suggests a role in protein sorting.
Collapse
Affiliation(s)
- D Osbourne
- Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Ishiguro I, Saiki K, Konishi K. Analysis of Porphyromonas gingivalis PG27 by deletion and intragenic suppressor mutation analyses. Mol Oral Microbiol 2011; 26:321-35. [DOI: 10.1111/j.2041-1014.2011.00620.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Niwa D, Nishikawa K, Nakamura H. A hybrid two-component system of Tannerella forsythia affects autoaggregation and post-translational modification of surface proteins. FEMS Microbiol Lett 2011; 318:189-96. [PMID: 21385202 DOI: 10.1111/j.1574-6968.2011.02256.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tannerella forsythia is a Gram-negative oral anaerobe closely associated with both periodontal and periapical diseases. The ORF TF0022 of strain ATCC 43037 encodes a hybrid two-component system consisting of an N-terminal histidine kinase and a C-terminal response regulator. Disruption of the TF0022 locus enhanced autoaggregation of the broth-cultured cells. Comparative proteome analyses revealed that two S-layer proteins in the TF0022 mutant exhibited decreased apparent masses by denaturing gel electrophoresis, suggesting a deficiency in post-translational modification. Furthermore, the mutant decreased the production of a glycosyltransferase encoded by TF1061 that is located in a putative glycosylation-related gene cluster. Quantitative real-time PCR revealed reduced transcription of TF1061 and the associated genes in the TF0022 mutant. These results indicate that TF0022 upregulates the expression of the glycosylation-related genes and suggest modulation of the autoaggregation of T. forsythia cells by a possible post-translational modification of cell-surface components.
Collapse
Affiliation(s)
- Daisuke Niwa
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Chikusa-ku, Nagoya, Japan
| | | | | |
Collapse
|
28
|
Saito T, Inagaki S, Sakurai K, Okuda K, Ishihara K. Exposure of P. gingivalis to noradrenaline reduces bacterial growth and elevates ArgX protease activity. Arch Oral Biol 2011; 56:244-50. [DOI: 10.1016/j.archoralbio.2010.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 10/18/2022]
|
29
|
Vanterpool E, Aruni AW, Roy F, Fletcher HM. regT can modulate gingipain activity and response to oxidative stress in Porphyromonas gingivalis. MICROBIOLOGY-SGM 2010; 156:3065-3072. [PMID: 20595264 PMCID: PMC3068696 DOI: 10.1099/mic.0.038315-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recombinant VimA protein can interact with the gingipains and several other proteins that may play a role in its biogenesis in Porphyromonas gingivalis. In silico analysis of PG2096, a hypothetical protein that was shown to interact with VimA, suggests that it may have environmental stress resistance properties. To further evaluate the role(s) of PG2096, the predicted open reading frame was PCR amplified from P. gingivalis W83 and insertionally inactivated using the ermF-ermAM antibiotic-resistance cassette. One randomly chosen PG2096-defective mutant created by allelic exchange and designated FLL205 was further characterized. Under normal growth conditions at 37 °C, Arg-X and Lys-X gingipain activities in FLL205 were reduced by approximately 35 % and 21 %, respectively, compared to the wild-type strain. However, during prolonged growth at an elevated temperature of 42 °C, Arg-X activity was increased by more than 40 % in FLL205 in comparison to the wild-type strain. In addition, the PG2096-defective mutant was more resistant to oxidative stress when treated with 0.25 mM hydrogen peroxide. Taken together these results suggest that the PG2096 gene, designated regT (regulator of gingipain activity at elevated temperatures), may be involved in regulating gingipain activity at elevated temperatures and be important in oxidative stress resistance in P. gingivalis.
Collapse
Affiliation(s)
- E Vanterpool
- Department of Biological Sciences, Oakwood University, Huntsville, AL 35896, USA
| | - A Wilson Aruni
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - F Roy
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - H M Fletcher
- Department of Basic Sciences, Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
30
|
Lamont RJ. Controlling Porphyromonas gingivalis requires Vim. MICROBIOLOGY-SGM 2010; 156:1907-1908. [PMID: 20466766 DOI: 10.1099/mic.0.041251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Richard J Lamont
- Department of Oral Biology, University of Florida, Gainesville, FL 32607, USA
| |
Collapse
|
31
|
FimR and FimS: biofilm formation and gene expression in Porphyromonas gingivalis. J Bacteriol 2010; 192:1332-43. [PMID: 20061484 DOI: 10.1128/jb.01211-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Porphyromonas gingivalis is a late-colonizing bacterium of the subgingival dental plaque biofilm associated with periodontitis. Two P. gingivalis genes, fimR and fimS, are predicted to encode a two-component signal transduction system comprising a response regulator (FimR) and a sensor histidine kinase (FimS). In this study, we show that fimS and fimR, although contiguous on the genome, are not part of an operon. We inactivated fimR and fimS in both the afimbriated strain W50 and the fimbriated strain ATCC 33277 and demonstrated that both mutants formed significantly less biofilm than their respective wild-type strains. Quantitative reverse transcription-real-time PCR showed that expression of fimbriation genes was reduced in both the fimS and fimR mutants of strain ATCC 33277. The mutations had no effect, in either strain, on the P. gingivalis growth rate or on the response to hydrogen peroxide or growth at pH 9, at 41 degrees C, or at low hemin availability. Transcriptome analysis using DNA microarrays revealed that inactivation of fimS resulted in the differential expression of 10% of the P. gingivalis genome (>1.5-fold; P < 0.05). Notably genes encoding seven different transcriptional regulators, including the fimR gene and three extracytoplasmic sigma factor genes, were differentially expressed in the fimS mutant.
Collapse
|
32
|
Kikuchi Y, Ohara N, Ueda O, Hirai K, Shibata Y, Nakayama K, Fujimura S. Porphyromonas gingivalis mutant defective in a putative extracytoplasmic function sigma factor shows a mutator phenotype. ACTA ACUST UNITED AC 2009; 24:377-83. [PMID: 19702950 DOI: 10.1111/j.1399-302x.2009.00526.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Porphyromonas gingivalis is implicated as a major pathogen in the development and progression of chronic periodontitis. P. gingivalis must possess the ability to tolerate stress signals outside the cytoplasmic membrane by transcriptional activation of genes encoding proteins involved in defense or repair processes. Some bacteria utilize a distinct subfamily of sigma factors to regulate extracytoplasmic function (hence termed the ECF subfamily). METHODS To elucidate their role in P. gingivalis, a chromosomal mutant carrying a disruption of an ECF sigma factor PG1318-encoding gene was constructed. Hemagglutination and proteolytic activities were measured in the PG1318-defective mutant. Reverse transcription-polymerase chain reaction (RT-PCR) analysis and southern blot analysis were used to assess transcription of kgp in the PG1318-defective mutant. Frequency of spontaneous mutation that conferred resistance to l-trifluoromethionine was measured in the PG1318-defective mutant. RESULTS The PG1318-defective mutant formed non-pigmented colonies on blood agar plates at a relatively high frequency. Arginine-specific and lysine-specific proteinase activities of the non-pigmented variants were remarkably decreased compared with those of the parent strain and the pigmented variants. RT-PCR analysis showed that kgp was not transcribed in some non-pigmented variants and southern blot analysis revealed that there was a deletion in their kgp region. Frequency of mutation conferring resistance to l-trifluoromethionine was significantly higher in the PG1318-defective mutant than in the wild-type. CONCLUSION These results suggest that PG1318 plays a role in the regulation of mutation frequency in the bacterium.
Collapse
Affiliation(s)
- Y Kikuchi
- Department of Oral Microbiology, Matsumoto Dental University, Shiojiri, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Hasegawa Y, Iwami J, Sato K, Park Y, Nishikawa K, Atsumi T, Moriguchi K, Murakami Y, Lamont RJ, Nakamura H, Ohno N, Yoshimura F. Anchoring and length regulation of Porphyromonas gingivalis Mfa1 fimbriae by the downstream gene product Mfa2. MICROBIOLOGY (READING, ENGLAND) 2009; 155:3333-3347. [PMID: 19589838 PMCID: PMC2810400 DOI: 10.1099/mic.0.028928-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/22/2009] [Accepted: 07/03/2009] [Indexed: 11/18/2022]
Abstract
Porphyromonas gingivalis, a causative agent of periodontitis, has at least two types of thin, single-stranded fimbriae, termed FimA and Mfa1 (according to the names of major subunits), which can be discriminated by filament length and by the size of their major fimbrilin subunits. FimA fimbriae are long filaments that are easily detached from cells, whereas Mfa1 fimbriae are short filaments that are tightly bound to cells. However, a P. gingivalis ATCC 33277-derived mutant deficient in mfa2, a gene downstream of mfa1, produced long filaments (10 times longer than those of the parent), easily detached from the cell surface, similar to FimA fimbriae. Longer Mfa1 fimbriae contributed to stronger autoaggregation of bacterial cells. Complementation of the mutant with the wild-type mfa2 allele in trans restored the parental phenotype. Mfa2 is present in the outer membrane of P. gingivalis, but does not co-purify with the Mfa1 fimbriae. However, co-immunoprecipitation demonstrated that Mfa2 and Mfa1 are associated with each other in whole P. gingivalis cells. Furthermore, immunogold microscopy, including double labelling, confirmed that Mfa2 was located on the cell surface and likely associated with Mfa1 fimbriae. Mfa2 may therefore play a role as an anchor for the Mfa1 fimbriae and also as a regulator of Mfa1 filament length. Two additional downstream genes (pgn0289 and pgn0290) are co-transcribed with mfa1 (pgn0287) and mfa2 (pgn0288), and proteins derived from pgn0289, pgn0290 and pgn0291 appear to be accessory fimbrial components.
Collapse
Affiliation(s)
- Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Jun Iwami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
- Department of Endodontology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Keiko Sato
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Yoonsuk Park
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | - Kiyoshi Nishikawa
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Tatsuo Atsumi
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
- Department of Medical Technology, Gifu University of Medical Science, Seki, Gifu 501-3892, Japan
| | - Keiichi Moriguchi
- Department of Anatomy, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Richard J. Lamont
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, USA
| | - Hiroshi Nakamura
- Department of Endodontology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Norikazu Ohno
- Department of Anatomy, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
34
|
Iwami J, Murakami Y, Nagano K, Nakamura H, Yoshimura F. Further evidence that major outer membrane proteins homologous to OmpA in Porphyromonas gingivalis stabilize bacterial cells. ACTA ACUST UNITED AC 2008; 22:356-60. [PMID: 17803635 DOI: 10.1111/j.1399-302x.2007.00363.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Porphyromonas gingivalis is one of the most important bacteria in the progression of chronic periodontal disease. We hypothesized that the major outer membrane proteins Pgm6/7, which are homologous to the OmpA protein in Escherichia coli, might contribute to the stabilization of the cell surface. In this study, the effects of Pgm6/7 on the cell surface were examined morphologically. METHODS Deletion mutants of Pgm6/7 (Delta694, Delta695 and Delta695-694) were constructed using the polymerase chain reaction-based overlap extension method. Wild-type ATCC 33277 and Pgm6/7 mutants were grown under anaerobic conditions. Whole cells and thin sections of fixed cells were stained and examined by transmission electron microscopy. RESULTS Compared with the wild-type, numerous vesicles released from cells were observed in each deletion mutant. The outer membrane appeared wavy and irregular. Increased numbers of vesicles were confirmed after their preparation from the culture supernatant. Total gingipain activity in vesicles was increased five- to 10-fold in the deletion mutants. CONCLUSION This report provides further evidence that Pgm6/7 proteins in P. gingivalis play an important role in the maintenance of bacterial outer membrane integrity.
Collapse
Affiliation(s)
- J Iwami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi, Japan
| | | | | | | | | |
Collapse
|
35
|
Nishiyama SI, Murakami Y, Nagata H, Shizukuishi S, Kawagishi I, Yoshimura F. Involvement of minor components associated with the FimA fimbriae of Porphyromonas gingivalis in adhesive functions. MICROBIOLOGY-SGM 2007; 153:1916-1925. [PMID: 17526848 DOI: 10.1099/mic.0.2006/005561-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The FimA fimbriae of Porphyromonas gingivalis, the causative agent of periodontitis, have been implicated in various aspects of pathogenicity, such as colonization, adhesion and aggregation. In this study, the four open reading frames (ORF1, ORF2, ORF3 and ORF4) downstream of the fimbrilin gene (fimA) in strain ATCC 33277 were examined. ORF2, ORF3 and ORF4 were demonstrated to encode minor components of the fimbriae and were therefore renamed fimC, fimD and fimE, respectively. Immunoblotting analyses revealed that inactivation of either fimC or fimD by an ermF-ermAM insertion, but not inactivation of ORF1, was accompanied by concomitant loss of the products from the downstream genes, raising the possibility that fimC, fimD and fimE constitute a transcription unit. The fimE mutant produced FimC and FimD, but fimbriae purified from it contained neither protein, suggesting that FimE is required for the assembly of FimC and FimD onto the fimbrilin (FimA) fibre. The fimC, fimD and fimE mutants lost autoaggregation abilities. Fimbriae purified from these three mutants showed attenuated binding activities to glyceraldehyde-3-phosphate dehydrogenase of Streptococcus oralis and to two extracellular matrix proteins, fibronectin and type I collagen. These results suggest that FimE, as well as FimC and FimD, play critical roles in the adhesive activities of the mature FimA fimbriae in P. gingivalis.
Collapse
Affiliation(s)
- So-Ichiro Nishiyama
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Hideki Nagata
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Shizukuishi
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ikuro Kawagishi
- Department of Biological Science, Graduate School of Science and Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
36
|
Wu J, Lin X, Xie H. Porphyromonas gingivalis short fimbriae are regulated by a FimS/FimR two-component system. FEMS Microbiol Lett 2007; 271:214-21. [PMID: 17451448 PMCID: PMC1974823 DOI: 10.1111/j.1574-6968.2007.00722.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Porphyromonas gingivalis possesses two distinct fimbriae. The long (FimA) fimbriae have been extensively studied. Expression of the fimA gene is tightly controlled by a two-component system (FimS/FimR) through a cascade regulation. The short (Mfa1) fimbriae are less understood. The authors have recently demonstrated that both fimbriae are required for formation of P. gingivalis biofilms. Here, the novel finding that FimR, a member of the two-component regulatory system, is a transcriptional activator of the mfa1 gene is promoted. Unlike the regulatory mechanism of FimA by FimR, this regulation of the mfa1 gene is accomplished by FimR directly binding to the promoter region of mfa1.
Collapse
Affiliation(s)
- Jie Wu
- School of Dentistry, Meharry Medical College, Nashville, TN, USA
| | | | | |
Collapse
|
37
|
Tsukuba T, Yamamoto S, Yanagawa M, Okamoto K, Okamoto Y, Nakayama KI, Kadowaki T, Yamamoto K. Cathepsin E-deficient mice show increased susceptibility to bacterial infection associated with the decreased expression of multiple cell surface Toll-like receptors. J Biochem 2006; 140:57-66. [PMID: 16877769 DOI: 10.1093/jb/mvj132] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cathepsin E, an intracellular aspartic proteinase, is predominantly localized in the endosomal compartments of immune system cells. In the present study, we investigated the role of cathepsin E in immune defense systems against bacterial infection. Cathepsin E-deficient (CatE(-/-)) mice showed dramatically increased susceptibility to infection with both the Gram-positive bacterium Staphyrococcus aureus, and the Gram-negative bacterium Porphyromonas gingivalis when compared with syngeneic wild-type mice, most likely due to impaired regulation of bacterial elimination. Peritoneal macrophages from CatE(-/-) mice showed significantly impaired tumor necrosis factor-alpha and IL-6 production in response to S. aureus and decreased bactericidal activities toward this bacterium. Moreover, the cell surface levels of Toll-like receptor-2 (TLR2) and TLR4, which recognize specific components of Gram-positive and -negative bacteria, respectively, were decreased in CatE(-/-) macrophages, despite no significant difference in the total cellular expression levels of these receptors between the wild-type and CatE(-/-) macrophages, implying trafficking defects in these surface receptors in the latter. These results indicate an essential role of cathepsin E in immune defense against invading microorganisms, most probably due to regulation of the cell surface expression of TLR family members required for innate immune responses.
Collapse
Affiliation(s)
- Takayuki Tsukuba
- Departments of Pharmacology, Pediatric Dentistry, and Fixed Prosthodontics, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582
| | | | | | | | | | | | | | | |
Collapse
|
38
|
James CE, Hasegawa Y, Park Y, Yeung V, Tribble GD, Kuboniwa M, Demuth DR, Lamont RJ. LuxS involvement in the regulation of genes coding for hemin and iron acquisition systems in Porphyromonas gingivalis. Infect Immun 2006; 74:3834-44. [PMID: 16790755 PMCID: PMC1489751 DOI: 10.1128/iai.01768-05] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The periodontal pathogen Porphyromonas gingivalis employs a variety of mechanisms for the uptake of hemin and inorganic iron. Previous work demonstrated that hemin uptake in P. gingivalis may be controlled by LuxS-mediated signaling. In the present study, the expression of genes involved in hemin and iron uptake was determined in parent and luxS mutant strains by quantitative real-time reverse transcription-PCR. Compared to the parental strain, the luxS mutant showed reduced levels of transcription of genes coding for the TonB-linked hemin binding protein Tlr and the lysine-specific protease Kgp, which can degrade host heme-containing proteins. In contrast, there was up-regulation of the genes for another TonB-linked hemin binding protein, HmuR; a hemin binding lipoprotein, FetB; a Fe(2+) ion transport protein, FeoB1; and the iron storage protein ferritin. Differential expression of these genes in the luxS mutant was maximal in early-exponential phase, which corresponded with peak expression of luxS and AI-2 signal activity. Complementation of the luxS mutation with wild-type luxS in trans rescued expression of hmuR. Mutation of the GppX two-component signal transduction pathway caused an increase in expression of luxS along with tlr and lower levels of message for hmuR. Moreover, expression of hmuR was repressed, and expression of tlr stimulated, when the luxS mutant was incubated with AI-2 partially purified from the culture supernatant of wild-type cells. A phenotypic outcome of the altered expression of genes involved in hemin uptake was impairment of growth of the luxS mutant in hemin-depleted medium. The results demonstrate a role of LuxS/AI-2 in the regulation of hemin and iron acquisition pathways in P. gingivalis and reveal a novel control pathway for luxS expression.
Collapse
Affiliation(s)
- Chloe E James
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Matsushita K, Imamura T, Tancharoen S, Tatsuyama S, Tomikawa M, Travis J, Potempa J, Torii M, Maruyama I. Selective inhibition of Porphyromonas gingivalis growth by a factor Xa inhibitor, DX-9065a. J Periodontal Res 2006; 41:171-6. [PMID: 16677284 DOI: 10.1111/j.1600-0765.2005.00854.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Porphyromonas gingivalis is a causative bacterium of adult periodontitis. However, there is no drug specific for P. gingivalis and for its virulence factor. OBJECTIVES The objective of this study was to examine the effects of a new selective inhibitor of activated factor X, DX-9065a, on growth of Porphyromonas gingivalis and other periodontopathic bacteria. METHODS We incubated P. gingivalis and other periodontopathic bacteria in the presence or absence of DX-9065a and examined the effect of DX-9065a on bacterial growth and trypsin-like activity in its cultures. We also examined the effects of DX9065a on amidolytic activity of purified trypsin-like proteinases (gingipains RgpA and RgpB), from P. gingivalis and on trypsin-like activity in gingival crevicular fluids from patients with adult periodontitis. RESULTS DX-9065a selectively inhibited the growth of P. gingivalis and Prevotella intermedia, and its effect on P. gingivalis was bactericidal. Trypsin-like proteinase activity was detected in P. gingivalis, and the activity was strongly inhibited by DX-9065a. DX-9065a even inhibited amidolytic activity of RgpA and RgpB from P. gingivalis. Furthermore, trypsin-like proteinase activity in gingival crevicular fluids was strongly inhibited by DX-9065a. CONCLUSIONS DX-9065a inhibits P. gingivalis growth in part through to its ability to inhibit the trypsin-like proteinase activity in P. gingivalis and may be useful for a new drug for treatment of adult periodontitis.
Collapse
Affiliation(s)
- Kenji Matsushita
- Department of Oral Disease Research, National Institute for Longevity Science, Aichi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Masuda T, Murakami Y, Noguchi T, Yoshimura F. Effects of various growth conditions in a chemostat on expression of virulence factors in Porphyromonas gingivalis. Appl Environ Microbiol 2006; 72:3458-67. [PMID: 16672491 PMCID: PMC1472382 DOI: 10.1128/aem.72.5.3458-3467.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, one of the gram-negative organisms associated with periodontal disease, possesses potential virulence factors, including fimbriae, proteases, and major outer membrane proteins (OMPs). In this study, P. gingivalis ATCC 33277 was cultured in a chemostat under hemin excess and presumably peptide-limiting conditions to better understand the mechanisms of expression of the virulence factors upon environmental changes. At higher growth rates, the amounts of FimA and the 75-kDa protein, forming long and short fimbriae, respectively, increased significantly, whereas gingipains decreased in amount and activity. In a nutrient-limited medium, lesser amounts of the above two fimbrial proteins were observed, whereas clear differences were not found in the amounts of gingipains. In addition, two-dimensional electrophoresis revealed that proteins in cells were generally fewer in number during nutrient-limited growth. Under aeration, a considerable reduction in gingipain activity was found, whereas several proteins associated with intact cells significantly increased. However, the expression of major OMPs, such as RagA, RagB, and the OmpA-like proteins, was almost constant under all conditions tested. These results suggest that P. gingivalis may actively control expression of several virulence factors to survive in the widely fluctuating oral environment.
Collapse
Affiliation(s)
- Takashi Masuda
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | | | | | | |
Collapse
|
41
|
Vanterpool E, Roy F, Fletcher HM. Inactivation of vimF, a putative glycosyltransferase gene downstream of vimE, alters glycosylation and activation of the gingipains in Porphyromonas gingivalis W83. Infect Immun 2005; 73:3971-82. [PMID: 15972484 PMCID: PMC1168568 DOI: 10.1128/iai.73.7.3971-3982.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation/activation of the Porphyromonas gingivalis gingipains is poorly understood. A 1.2-kb open reading frame, a putative glycosyltransferase, downstream of vimE, was cloned, insertionally inactivated using the ermF-ermAM antibiotic resistance cassette, and used to create a defective mutant by allelic exchange. In contrast to the wild-type W83 strain, this mutant, designated P. gingivalis FLL95, was nonpigmented and nonhemolytic when plated on Brucella blood agar. Arginine- and lysine-specific gingipain activities were reduced by approximately 97% and 96%, respectively, relative to that of the parent strain. These activities were unaffected by the growth phase, in contrast to the vimA-defective mutant P. gingivalis FLL92. Expression of the rgpA, rgpB, and kgp gingipain genes was unaffected in P. gingivalis FLL95 in comparison to the wild-type strain. In nonactive gingipain extracellular protein fractions, multiple high-molecular-weight proteins immunoreacted with gingipain-specific antibodies. The specific gingipain-associated sugar moiety recognized by monoclonal antibody 1B5 was absent in FLL95. Taken together, these results suggest that the vimE downstream gene, designated vimF (virulence modulating gene F), which is a putative glycosyltransferase group 1, is involved in the regulation of the major virulence factors of P. gingivalis.
Collapse
Affiliation(s)
- Elaine Vanterpool
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA.
| | | | | |
Collapse
|
42
|
Vanterpool E, Roy F, Sandberg L, Fletcher HM. Altered gingipain maturation in vimA- and vimE-defective isogenic mutants of Porphyromonas gingivalis. Infect Immun 2005; 73:1357-66. [PMID: 15731033 PMCID: PMC1064936 DOI: 10.1128/iai.73.3.1357-1366.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that gingipain activity in Porphyromonas gingivalis is modulated by the unique vimA and vimE genes. To determine if these genes had a similar phenotypic effect on protease maturation and activation, isogenic mutants defective in those genes were further characterized. Western blot analyses with antigingipain antibodies showed RgpA-, RgpB-, and Kgp-immunoreactive bands in membrane fractions as well as the culture supernatant of both P. gingivalis W83 and FLL93, the vimE-defective mutant. In contrast, the membrane of P. gingivalis FLL92, the vimA-defective mutant, demonstrated immunoreactivity only with RgpB antibodies. With mass spectrometry or Western blots, full-length RgpA and RgpB were identified from extracellular fractions. In similar extracellular fractions from P. gingivalis FLL92 and FLL93, purified RgpB activated only arginine-specific activity. In addition, the lipopolysaccharide profiles of the vimA and vimE mutants were truncated in comparison to that of W83. While glycosylated proteins were detected in the membrane and extracellular fractions from the vimA- and vimE-defective mutants, a monoclonal antibody (1B5) that reacts with specific sugar moieties of the P. gingivalis cell surface polysaccharide and membrane-associated Rgp gingipain showed no immunoreactivity with these fractions. Taken together, these results indicate a possible defect in sugar biogenesis in both the vimA- and vimE-defective mutants. These modulating genes play a role in the secretion, processing, and/or anchorage of gingipains on the cell surface.
Collapse
Affiliation(s)
- Elaine Vanterpool
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA.
| | | | | | | |
Collapse
|
43
|
Olczak T, Simpson W, Liu X, Genco CA. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev 2005; 29:119-44. [PMID: 15652979 DOI: 10.1016/j.femsre.2004.09.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 06/18/2004] [Accepted: 09/02/2004] [Indexed: 11/26/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with the initiation and progression of adult periodontal disease. Iron is utilized by this pathogen in the form of heme and has been shown to play an essential role in its growth and virulence. Recently, considerable attention has been given to the characterization of various secreted and surface-associated proteins of P. gingivalis and their contribution to virulence. In particular, the properties of proteins involved in the uptake of iron and heme have been extensively studied. Unlike other Gram-negative bacteria, P. gingivalis does not produce siderophores. Instead it employs specific outer membrane receptors, proteases (particularly gingipains), and lipoproteins to acquire iron/heme. In this review, we will focus on the diverse mechanisms of iron and heme acquisition in P. gingivalis. Specific proteins involved in iron and heme capture will be described. In addition, we will discuss new genes for iron/heme utilization identified by nucleotide sequencing of the P. gingivalis W83 genome. Putative iron- and heme-responsive gene regulation in P. gingivalis will be discussed. We will also examine the significance of heme/hemoglobin acquisition for the virulence of this pathogen.
Collapse
Affiliation(s)
- Teresa Olczak
- Institute of Biochemistry and Molecular Biology, Laboratory of Biochemistry, Wroclaw University, Tamka 2, 50-137 Wroclaw, Poland.
| | | | | | | |
Collapse
|
44
|
Liu X, Sroka A, Potempa J, Genco CA. Coordinate expression of the Porphyromonas gingivalis lysine-specific gingipain proteinase, Kgp, arginine-specific gingipain proteinase, RgpA, and the heme/hemoglobin receptor, HmuR. Biol Chem 2004; 385:1049-57. [PMID: 15576325 DOI: 10.1515/bc.2004.136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractHeme utilization inPorphyromonas gingivalisrequires the participation of an outer membrane hemin/hemoglobin receptor, HmuR, the lysine-specific gingipain proteinase (Kgp) and arginine-specific gingipain proteinase (Rgp). In this study, the expression ofhmuR,kgpandrgpAgenes in response to growth with different heme sources was examined by reverse transcription-polymerase chain reaction and enzyme-linked immunoassay. Coordinate regulation ofhmuR,kgpandrgpAgene expression was evaluated through utilization ofP. gingivalis hmuRandkgpmutants or by selective inactivation of proteinases with Kgp- and Rgp-specific inhibitors. We observed that expression of thekgpandrgpAgenes was not tightly regulated by heme, but rather by the growth phase. In contrast, expression of thehmuRgene was negatively regulated by heme, while growth ofP. gingivaliswith human serum resulted in increasedhmuRexpression. AP. gingivalis kgpisogenic mutant demonstrated significantly increasedhmuRgene expression, and inactivation of Kgp and Rgp activity by specific inhibitors up-regulatedhmuRgene transcription. Moreover, inactivation of Kgp up-regulatedrgpAtranscription. Finally, aP. gingivalis hmuRmutant exhibited repressedkgpgene expression and lysine-specific proteinase activity. Collectively, these results indicate thatkgp,rgpAandhmuRgene transcription is coordinately regulated and may facilitate greater efficiency of heme utilization inP. gingivalis.
Collapse
Affiliation(s)
- Xinyan Liu
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
45
|
Vanterpool E, Roy F, Fletcher HM. The vimE gene downstream of vimA is independently expressed and is involved in modulating proteolytic activity in Porphyromonas gingivalis W83. Infect Immun 2004; 72:5555-64. [PMID: 15385452 PMCID: PMC517529 DOI: 10.1128/iai.72.10.5555-5564.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation/activation of the Porphyromonas gingivalis gingipains is poorly understood. A unique 1.3-kb open reading frame downstream of the bcp-recA-vimA transcriptional unit was cloned, insertionally inactivated with the ermF-ermAM antibiotic resistance cassette, and used to create a defective mutant by allelic exchange. In contrast to the wild-type W83 strain, the growth rate of the mutant strain (designated FLL93) was reduced, and when plated on Brucella blood agar it was nonpigmented and nonhemolytic. Arginine- and lysine-specific gingipain activities were reduced by approximately 90 and 85%, respectively, relative to activities of the parent strain. These activities were unaffected by the culture's growth phase, in contrast to the vimA-defective mutant P. gingivalis FLL92, which has increased proteolytic activity in stationary phase. Expression of the rgpA, rgpB, and kgp gingipain genes was unaltered in P. gingivalis FLL93 compared to that of the wild-type strain. Further, in extracellular protein fractions a 64-kDa band was identified that was immunoreactive with the RgpB-specific proenzyme antibodies. Active-site labeling with dansyl-glutamyl-glycyl-arginyl chloromethyl ketone or immunoblot analysis showed no detectable protein band representing the gingipain catalytic domain. In vitro protease activity could be slightly induced by a urea denaturation-renaturation cycle in an extracellular protein fraction, in contrast to the vimA-defective mutant P. gingivalis FLL92. Expression of flanking genes, including recA, vimA, and Pg0792, was unaltered by the mutation. Taken together, these results suggest that the vimA downstream gene, designated vimE (for virulence-modulating gene E), is involved in the regulation of protease activity in P. gingivalis.
Collapse
Affiliation(s)
- Elaine Vanterpool
- Department of Biochemistry and Microbiology, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | |
Collapse
|