Harada S, Monde K, Tanaka Y, Kimura T, Maeda Y, Yusa K. Neutralizing antibodies decrease the envelope fluidity of HIV-1.
Virology 2008;
370:142-50. [PMID:
17900650 DOI:
10.1016/j.virol.2007.08.021]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/06/2007] [Accepted: 08/17/2007] [Indexed: 11/28/2022]
Abstract
For successful penetration of HIV-1, the formation of a fusion pore may be required in order to accumulate critical numbers of fusion-activated gp41 with the help of fluidization of the plasma membrane and viral envelope. An increase in temperature to 40 degrees C after viral adsorption at 25 degrees C enhanced the infectivity by 1.4-fold. The enhanced infectivity was inhibited by an anti-CXCR4 peptide, T140, and anti-V3 monoclonal antibodies (0.5beta and 694/98-D) by post-attachment neutralization, but not by non-neutralizing antibodies (670-30D and 246-D) specific for the C5 of gp120 and cluster I of gp41, respectively. Anti-HLA-II and an anti-HTLV-I gp46 antibody, LAT27, neutralized the molecule-carrying HIV-1(C-2(MT-2)). The anti-V3 antibodies suppressed the fluidity of the HIV-1(C-2) envelope, whereas the non-neutralizing antibodies did not. The anti-HLA-II antibody decreased the envelope fluidity of HIV-1(C-2(MT-2)), but not that of HIV-1(C-2). Therefore, fluidity suppression by these antibodies represents an important neutralization mechanism, in addition to inhibition of viral attachment.
Collapse