1
|
Aparecida Santos L, de Castro Dutra J, Picoli Marinho E, Cosme Cotta Malaquias L, Nascimento Gomes B, Caravita Grisolia J, Andrade Dias N, Burger E. Celecoxib exhibits antifungal effect against Paracoccidioides brasiliensis both directly and indirectly by activating neutrophil responses. Int Immunopharmacol 2024; 138:112606. [PMID: 38963980 DOI: 10.1016/j.intimp.2024.112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Celecoxib, an anti-inflammatory drug, combined therapies using antimicrobials and immune modulator drugs are being studied. OBJECTIVE To assess whether Celecoxib has direct in vitro antifungal effect against the Paracoccidioides brasiliensis, the causative agent of Paracoccidioidomycosis-(PCM) and also if it improves the in vivo activity of neutrophils-(PMN) in an experimental murine subcutaneous-(air pouch) model of the disease. METHODS The antifungal activity of Celecoxib(6 mg/mL) on P. brasiliensis-(Pb18) was evaluated using the microdilution technique. Splenocytes co-cultured with Pb18 and treated with Celecoxib(6 mg/mL) were co-cultured for 24, 48 and 72-hours. Swiss mice were inoculated with Pb18 and treated with Celecoxib(6 mg/kg) in the subcutaneous air pouch. Neutrophils were collected from the air pouch. Mitochondrial activity, reactive oxygen production, catalase, peroxidase, cytokines and chemokines, nitrogen species, total protein, microbicidal activity of PMNs and viable Pb18 cells numbers were analyzed. RESULTS Celecoxib had no cytotoxic effect on splenocytes co-cultured with Pb18, but had a marked direct antifungal effect, inhibiting fungal growth both in vitro and in vivo. Celecoxib interaction with immune system cells in the air pouch, it leads to activation of PMNs, as confirmed by several parameters (mitochondrial activity, reactive oxygen species, peroxidase, KC and IL-6 increase, killing constant and phagocytosis). Celecoxib was able to reduce IL-4, IL-10 and IL-12 cytokine production. The number of recovered viable Pb18 decreased dramatically. CONCLUSIONS This is the first report of the direct antifungal activity of Celecoxib against P. brasiliensis. The use of Celecoxib opens a new possibility for future treatment of PCM.
Collapse
Affiliation(s)
- Lauana Aparecida Santos
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Julia de Castro Dutra
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Enrico Picoli Marinho
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Luiz Cosme Cotta Malaquias
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Bruno Nascimento Gomes
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Julianne Caravita Grisolia
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Nayara Andrade Dias
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL. Alfenas, MG - Brazil CEP - 37130-001, Brazil.
| |
Collapse
|
2
|
Khongpraphan S, Ekchariyawat P, Sanongkiet S, Luangjindarat C, Sirisinha S, Ponpuak M, Midoeng P, Pudla M, Utaisincharoen P. Differentiation in pyroptosis induction by Burkholderia pseudomallei and Burkholderia thailandensis in primary human monocytes, a possible cause of sepsis in acute melioidosis patients. PLoS Negl Trop Dis 2024; 18:e0012368. [PMID: 39042701 PMCID: PMC11296640 DOI: 10.1371/journal.pntd.0012368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/02/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Melioidosis caused by Burkholderia pseudomallei is an infectious disease with a high mortality rate. In acute melioidosis, sepsis is a major cause of death among patients. Once the bacterium enters the bloodstream, immune system dysregulation ensues, leading to cytokine storms. In contrast to B. pseudomallei, a closely related but non-virulent strain B. thailandensis has rarely been reported to cause cytokine storms or death in patients. However, the mechanisms in which the virulent B. pseudomallei causes sepsis are not fully elucidated. It is well-documented that monocytes play an essential role in cytokine production in the bloodstream. The present study, therefore, determined whether there is a difference in the innate immune response to B. pseudomallei and B. thailandensis during infection of primary human monocytes and THP-1 monocytic cells by investigating pyroptosis, an inflammatory death pathway known to play a pivotal role in sepsis. Our results showed that although both bacterial species exhibited a similar ability to invade human monocytes, only B. pseudomallei can significantly increase the release of cytosolic enzyme lactate dehydrogenase (LDH) as well as the increases in caspase-1 and gasdermin D activations in both cell types. The results were consistent with the significant increase in IL-1β and IL-18 production, key cytokines involved in pyroptosis. Interestingly, there was no significant difference in other cytokine secretion, such as IL-1RA, IL-10, IL-12p70, IL-15, IL-8, and IL-23 in cells infected by both bacterial species. Furthermore, we also demonstrated that ROS production played a crucial role in controlling pyroptosis activation during B. pseudomallei infection in primary human monocytes. These findings suggested that pyroptosis induced by B. pseudomallei in the human monocytes may contribute to the pathogenesis of sepsis in acute melioidosis patients.
Collapse
Affiliation(s)
| | - Peeraya Ekchariyawat
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Sucharat Sanongkiet
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | | | - Stitaya Sirisinha
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panuwat Midoeng
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | - Matsayapan Pudla
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Pongsak Utaisincharoen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
3
|
de Figueiredo AMB, dos Santos JC, Kischkel B, Ardiansyah E, Oosting M, Guimarães Matos G, Barreto Neves Oliveira I, van de Veerdonk F, Netea MG, Soares CMDA, Ribeiro-Dias F, Joosten LAB. Genome-Wide Association Study Reveals CLEC7A and PROM1 as Potential Regulators of Paracoccidioides brasiliensis-Induction of Cytokine Production in Peripheral Blood Mononuclear Cells. J Fungi (Basel) 2023; 9:jof9040428. [PMID: 37108883 PMCID: PMC10144159 DOI: 10.3390/jof9040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by fungi of the genus Paracoccidioides and the different clinical forms of the disease are associated with the host immune responses. Quantitative trait loci mapping analysis was performed to assess genetic variants associated with mononuclear-cells-derived cytokines induced by P. brasiliensis on 158 individuals. We identified the rs11053595 SNP, which is present in the CLEC7A gene (encodes the Dectin-1 receptor) and the rs62290169 SNP located in the PROM1 gene (encodes CD133) associated with the production of IL-1β and IL-22, respectively. Functionally, the blockade of the dectin-1 receptor abolished the IL-1β production in P. brasiliensis-stimulated PBMCs. Moreover, the rs62290169-GG genotype was associated with higher frequency of CD38+ Th1 cells in PBMCs cultured with P. brasiliensis yeasts. Therefore, our research indicates that the CLEC7A and PROM1 genes are important for the cytokine response induced by P. brasiliensis and may influence the Paracoccidioidomycosis disease outcome.
Collapse
|
4
|
Zhang P, Zhu H. Cytokines in Thyroid-Associated Ophthalmopathy. J Immunol Res 2022; 2022:2528046. [PMID: 36419958 PMCID: PMC9678454 DOI: 10.1155/2022/2528046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 09/07/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), also known as thyroid eye disease (TED) or Graves' orbitopathy (GO), is a complex autoimmune condition causing visual impairment, disfigurement, and harm to patients' physical and mental health. The pathogenesis of TAO has not been fully elucidated, and the mainstream view is that coantigens shared by the thyroid and orbit trigger remodeling of extraocular muscles and orbital connective tissues through an inflammatory response. In recent years, cytokines and the immune responses they mediate have been crucial in disease progression, and currently, common evidence has shown that drugs targeting cytokines, such as tocilizumab, infliximab, and adalimumab, may be novel targets for therapy. In this review, we summarize the research development of different cytokines in TAO pathogenesis in the hope of discovering new therapeutic targets.
Collapse
Affiliation(s)
- Pengbo Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
5
|
Navarro MV, de Barros YN, Segura WD, Chaves AFA, Jannuzzi GP, Ferreira KS, Xander P, Batista WL. The Role of Dimorphism Regulating Histidine Kinase (Drk1) in the Pathogenic Fungus Paracoccidioides brasiliensis Cell Wall. J Fungi (Basel) 2021; 7:jof7121014. [PMID: 34946996 PMCID: PMC8707131 DOI: 10.3390/jof7121014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Dimorphic fungi of the Paracoccidioides genus are the causative agents of paracoccidioidomycosis (PCM), an endemic disease in Latin America with a high incidence in Brazil. This pathogen presents as infective mycelium at 25 °C in the soil, reverting to its pathogenic form when inhaled by the mammalian host (37 °C). Among these dimorphic fungal species, dimorphism regulating histidine kinase (Drk1) plays an essential role in the morphological transition. These kinases are present in bacteria and fungi but absent in mammalian cells and are important virulence and cellular survival regulators. Hence, the purpose of this study was to investigate the role of PbDrk1 in the cell wall modulation of P. brasiliensis. We observed that PbDrk1 participates in fungal resistance to different cell wall-disturbing agents by reducing viability after treatment with iDrk1. To verify the role of PbDRK1 in cell wall morphogenesis, qPCR results showed that samples previously exposed to iDrk1 presented higher expression levels of several genes related to cell wall modulation. One of them was FKS1, a β-glucan synthase that showed a 3.6-fold increase. Furthermore, confocal microscopy analysis and flow cytometry showed higher β-glucan exposure on the cell surface of P. brasiliensis after incubation with iDrk1. Accordingly, through phagocytosis assays, a significantly higher phagocytic index was observed in yeasts treated with iDrk1 than the control group, demonstrating the role of PbDrk1 in cell wall modulation, which then becomes a relevant target to be investigated. In parallel, the immune response profile showed increased levels of proinflammatory cytokines. Finally, our data strongly suggest that PbDrk1 modulates cell wall component expression, among which we can identify β-glucan. Understanding this signalling pathway may be of great value for identifying targets of antifungal molecular activity since HKs are not present in mammals.
Collapse
Affiliation(s)
- Marina Valente Navarro
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-062, Brazil;
| | - Yasmin Nascimento de Barros
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Wilson Dias Segura
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | | | - Grasielle Pereira Jannuzzi
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Karen Spadari Ferreira
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Patrícia Xander
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
| | - Wagner Luiz Batista
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04023-062, Brazil;
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, Brazil; (Y.N.d.B.); (W.D.S.); (K.S.F.); (P.X.)
- Correspondence: ; Tel.: +55-11-3319-3594; Fax: +55-11-3319-3300
| |
Collapse
|
6
|
Griffiths JS, Camilli G, Kotowicz NK, Ho J, Richardson JP, Naglik JR. Role for IL-1 Family Cytokines in Fungal Infections. Front Microbiol 2021; 12:633047. [PMID: 33643264 PMCID: PMC7902786 DOI: 10.3389/fmicb.2021.633047] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Fungal pathogens kill approximately 1.5 million individuals per year and represent a severe disease burden worldwide. It is estimated over 150 million people have serious fungal disease such as recurrent mucosal infections or life-threatening systemic infections. Disease can ensue from commensal fungi or new infection and involves different fungal morphologies and the expression of virulence factors. Therefore, anti-fungal immunity is complex and requires coordination between multiple facets of the immune system. IL-1 family cytokines are associated with acute and chronic inflammation and are essential for the innate response to infection. Recent research indicates IL-1 cytokines play a key role mediating immunity against different fungal infections. During mucosal disease, IL-1R and IL-36R are required for neutrophil recruitment and protective Th17 responses, but function through different mechanisms. During systemic disease, IL-18 drives protective Th1 responses, while IL-33 promotes Th2 and suppresses Th1 immunity. The IL-1 family represents an attractive anti-fungal immunotherapy target. There is a need for novel anti-fungal therapeutics, as current therapies are ineffective, toxic and encounter resistance, and no anti-fungal vaccine exists. Furthering our understanding of the IL-1 family cytokines and their complex role during fungal infection may aid the development of novel therapies. As such, this review will discuss the role for IL-1 family cytokines in fungal infections.
Collapse
Affiliation(s)
- James S Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Giorgio Camilli
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Natalia K Kotowicz
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jemima Ho
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Burger E. Paracoccidioidomycosis Protective Immunity. J Fungi (Basel) 2021; 7:jof7020137. [PMID: 33668671 PMCID: PMC7918802 DOI: 10.3390/jof7020137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022] Open
Abstract
Protective immunity against Paracoccidioides consists of a stepwise activation of numerous effector mechanisms that comprise many cellular and soluble components. At the initial phase of non-specific innate immunity, resistance against Paracoccidioides comes from phagocytic polymorphonuclear neutrophils, natural killer (NK) cells and monocytes, supplemented by soluble factors such as cytokines and complement system components. Invariant receptors (Toll-like receptors (TLRs), Dectins) which are present in cells of the immune system, detect patterns present in Paracoccidioides (but not in the host) informing the hosts cells that there is an infection in progress, and that the acquired immunity must be activated. The role of components involved in the innate immunity of paracoccidioidomycosis is herein presented. Humoral immunity, represented by specific antibodies which control the fungi in the blood and body fluids, and its role in paracoccidioidomycosis (which was previously considered controversial) is also discussed. The protective mechanisms (involving various components) of cellular immunity are also discussed, covering topics such as: lysis by activated macrophages and cytotoxic T lymphocytes, the participation of lytic products, and the role of cytokines secreted by T helper lymphocytes in increasing the efficiency of Paracoccidioides, lysis.
Collapse
Affiliation(s)
- Eva Burger
- Department of Microbiology and Immunology, Universidade Federal de Alfenas, Alfenas 37130-001, Brazil
| |
Collapse
|
8
|
Chauhan P, Nair A, Patidar A, Dandapat J, Sarkar A, Saha B. A primer on cytokines. Cytokine 2021; 145:155458. [PMID: 33581983 DOI: 10.1016/j.cyto.2021.155458] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Cytokines are pleiotropic polypeptides that control the development of and responses mediated by immune cells. Cytokine classification predominantly relies on [1] the target receptor(s), [2] the primary structural features of the extracellular domains of their receptors, and [3] their receptor composition. Functionally, cytokines are either pro-inflammatory or anti-inflammatory, hematopoietic colony-stimulating factors, developmental and would healing maintaining immune homeostasis. When the balance in C can form complex networks amongst themselves that may affect the homeostasis and diseases. Cytokines can affect resistance and susceptibility for many diseases and their availability in the host cytokine production and interaction is disturbed, immunopathogenesis sets in. Therefore, cytokine-targeting bispecific, and chimeric antibodies form a significant mode of immnuo-therapeutics Although the field has grown deep and wide, many areas of cytokine biology remain unknown. Here, we have reviewed these cytokines along with the organization, signaling, and functions through respective cytokine-receptor-families. Being part of the special issue on the Role of Cytokines in Leishmaniasis, this review is intended to be used as an organized primer on cytokines and not a resource for detailed discussion- for which a two-volume Handbook of cytokines is available- on each of the cytokines. Priming the readers on cytokines, we next brief the role of cytokines in Leishmaniasis. In the brief, we do not provide an account of each of the involved cytokines known to date, instead, we offer a temporal relationship between the cytokines and the progress of the infection towards the alternate outcomes- healing or non-healing- of the infection.
Collapse
Affiliation(s)
- Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Ashok Patidar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Jagneshwar Dandapat
- P.G. Department of Biotechnology, Utkal University, Bhubaneswar 751004, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar 751024, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; Trident Academy of Creative Technology, Bhubaneswar 751024, India; Department of Allied Health Sciences, BLDE (Deemed University), Vijayapura 562135, India.
| |
Collapse
|
9
|
Methods in isolation and characterization of bovine monocytes and macrophages. Methods 2020; 186:22-41. [PMID: 32622986 DOI: 10.1016/j.ymeth.2020.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Monocytes and macrophages belong to the mononuclear phagocyte system and play important roles in both physiological and pathological processes. The cells belonging to the monocyte/macrophage system are structurally and functionally heterogeneous. Several subsets of monocytes have been previously identified in mammalian blood, generating different subpopulations of macrophages in tissues. Although their distribution and phenotype are similar to their human counterpart, bovine monocytes and macrophages feature differences in both functions and purification procedures. The specific roles that monocytes and macrophages fulfil in several important diseases of bovine species, including among the others tuberculosis and paratuberculosis, brucellosis or the disease related to peripartum, remain still partially elusive. The purpose of this review is to discuss the current knowledge of bovine monocytes and macrophages. We will describe methods for their purification and characterization of their major functions, including chemotaxis, phagocytosis and killing, oxidative burst, apoptosis and necrosis. An overview of the flow cytometry and morphological procedures, including cytology, histology and immunohistochemistry, that are currently utilized to describe monocyte and macrophage main populations and functions is presented as well.
Collapse
|
10
|
Almizraq RJ, Kipkeu BJ, Acker JP. Platelet vesicles are potent inflammatory mediators in red blood cell products and washing reduces the inflammatory phenotype. Transfusion 2019; 60:378-390. [PMID: 31756004 DOI: 10.1111/trf.15590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Studies suggest that washing red cell concentrates (RCCs) to remove soluble mediators and/or inflammatory components, such as extracellular vesicles (EVs), may lead to better clinical outcomes. This study tested the hypothesis that non-red blood cell (RBC) generated vesicles in RCC are potent inflammatory mediators in vitro and washing RCCs can reduce these vesicles and subsequently decrease the inflammatory activity of RCCs. STUDY DESIGN AND METHODS Sixteen RCCs were pooled and split into four groups based on pre-wash storage time (Day 2 or 14; n = 4/group). Each group was tested 24 hours and 7 days post-wash. Characteristics of RBCs and EVs, cytokines released by monocytes, and expression of human umbilical vein endothelial cells (HUVECs) adhesion molecules were assessed. RESULTS All RCCs meet quality standards for hemolysis, hematocrit, and hemoglobin. Washing did not remove residual platelets from RCCs but led to a significant reduction in platelet-EV count regardless of the group. Supernatant of RCCs washed on Day 14 and stored for 24 hours had significantly lower concentrations of RBC-EVs and white blood cell EVs compared to unwashed controls. Supernatant of unwashed RCCs showed higher production of inflammatory cytokines/chemokines MCP-1, IL-8, and TNF-α, and heightened expression of HUVEC VCAM-1, which were significantly reduced by washing. Spiking washed RCC supernatants with platelet-EVs showed significant increase in IL-8, MCP-1, VCAM-1, and E-selection in groups washed on Day 14. CONCLUSIONS Platelet-EVs in RCCs are associated with pro-inflammatory activity. As washing significantly reduced RCC immunomodulatory activity, implementation of this process may improve transfusion outcomes.
Collapse
Affiliation(s)
- Ruqayyah J Almizraq
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Betty J Kipkeu
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason P Acker
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.,Centre for Innovation, Canadian Blood Services, Edmonton, Alberta, Canada
| |
Collapse
|
11
|
Alves ABRM, David MA, de Castro LF, da Silva RM, Longhi LNA, Blotta MHDSL, Mamoni RL. Differential production of interleukin-1 family cytokines (IL-1β, IL-18, IL-33 and IL-37) in patients with paracoccidioidomycosis: correlation with clinical form and antifungal therapy. Med Mycol 2017; 56:332-343. [DOI: 10.1093/mmy/myx050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
Affiliation(s)
| | - Murilo Amato David
- Department of Morphology and Basic Pathology, Faculty of Medicine of Jundiaí (FMJ), Jundiaí, SP, Brazil
| | - Lívia Furquim de Castro
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rosiane Maria da Silva
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Larissa Nara Alegrini Longhi
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Ronei Luciano Mamoni
- Department of Morphology and Basic Pathology, Faculty of Medicine of Jundiaí (FMJ), Jundiaí, SP, Brazil
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
12
|
Feriotti C, de Araújo EF, Loures FV, da Costa TA, Galdino NADL, Zamboni DS, Calich VLG. NOD-Like Receptor P3 Inflammasome Controls Protective Th1/Th17 Immunity against Pulmonary Paracoccidioidomycosis. Front Immunol 2017; 8:786. [PMID: 28740491 PMCID: PMC5502381 DOI: 10.3389/fimmu.2017.00786] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/21/2017] [Indexed: 12/18/2022] Open
Abstract
The NOD-like receptor P3 (NLRP3) inflammasome is an intracellular multimeric complex that triggers the activation of inflammatory caspases and the maturation of IL-1β and IL-18, important cytokines for the innate immune response against pathogens. The functional NLRP3 inflammasome complex consists of NLRP3, the adaptor protein apoptosis-associated speck-like protein, and caspase-1. Various molecular mechanisms were associated with NLRP3 activation including the presence of extracellular ATP, recognized by the cell surface P2X7 receptor (P2X7R). Several pattern recognition receptors on innate immune cells recognize Paracoccidioides brasiliensis components resulting in diverse responses that influence adaptive immunity and disease outcome. However, the role of NLRP3 inflammasome was scantily investigated in pulmonary paracoccidioidomycosis (PCM), leading us to use an intratracheal (i.t.) model of infection to study the influence of this receptor in anti-fungal immunity and severity of infection. For in vivo studies, C57BL/6 mice deficient for several NLRP3 inflammasome components (Nlrp3−/−, Casp1/11−/−, Asc−/−) as well as deficient for ATP receptor (P2x7r−/−) were infected via i.t. with P. brasiliensis and several parameters of immunity and disease severity analyzed at the acute and chronic periods of infection. Pulmonary PCM was more severe in Nlrp3−/−, Casp1/11−/−, Asc−/−, and P2x7r−/− mice as demonstrated by the increased fungal burdens, mortality rates and tissue pathology developed. The more severe disease developed by NLRP3, ASC, and Caspase-1/11 deficient mice was associated with decreased production of IL-1β and IL-18 and reduced inflammatory reactions mediated by PMN leukocytes and activated CD4+ and CD8+ T cells. The decreased T cell immunity was concomitant with increased expansion of CD4+CD25+Foxp3 regulatory T (Treg) cells. Characterization of intracellular cytokines showed a persistent reduction of CD4+ and CD8+ T cells expressing IFN-γ and IL-17 whereas those producing IL-4 and TGF-β appeared in increased frequencies. Histopathological studies showed that all deficient mouse strains developed more severe lesions containing elevated numbers of budding yeast cells resulting in increased mortality rates. Altogether, these findings led us to conclude that the activation of the NLRP3 inflammasome has a crucial role in the immunoprotection against pulmonary PCM by promoting the expansion of Th1/Th17 immunity and reducing the suppressive control mediated by Treg cells.
Collapse
Affiliation(s)
- Claudia Feriotti
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Dario Simões Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
13
|
Fernandes FF, de Oliveira LL, Landgraf TN, Peron G, Costa MV, Coelho-Castelo AAM, Bonato VLD, Roque-Barreira MC, Panunto-Castelo A. Detrimental Effect of Fungal 60-kDa Heat Shock Protein on Experimental Paracoccidioides brasiliensis Infection. PLoS One 2016; 11:e0162486. [PMID: 27598463 PMCID: PMC5012565 DOI: 10.1371/journal.pone.0162486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/07/2016] [Indexed: 11/18/2022] Open
Abstract
The genus Paracoccidioides comprises species of dimorphic fungi that cause paracoccidioidomycosis (PCM), a systemic disease prevalent in Latin America. Here, we investigated whether administration of native 60-kDa heat shock protein of P. brasiliensis (nPbHsp60) or its recombinant counterpart (rPbHsp60) affected the course of experimental PCM. Mice were subcutaneously injected with nPbHsp60 or rPbHsp60 emulsified in complete’s Freund Adjuvant (CFA) at three weeks after intravenous injection of P. brasiliensis yeasts. Infected control mice were injected with CFA or isotonic saline solution alone. Thirty days after the nPbHsp60 or rPbHsp60 administration, mice showed remarkably increased fungal load, tissue inflammation, and granulomas in the lungs, liver, and spleen compared with control mice. Further, rPbHsp60 treatment (i) decreased the known protective effect of CFA against PCM and (ii) increased the concentrations of IL-17, TNF-α, IL-12, IFN-γ, IL-4, IL-10, and TGF-β in the lungs. Together, our results indicated that PbHsp60 induced a harmful immune response, exacerbated inflammation, and promoted fungal dissemination. Therefore, we propose that PbHsp60 contributes to the fungal pathogenesis.
Collapse
Affiliation(s)
- Fabrício Freitas Fernandes
- Department of Cellular and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Taise Natali Landgraf
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriela Peron
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Marcelo Vieira Costa
- Department of Biology, Ribeirão Preto Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Arlete A. M. Coelho-Castelo
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Vânia L. D. Bonato
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria-Cristina Roque-Barreira
- Department of Cellular and Molecular Biology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ademilson Panunto-Castelo
- Department of Biology, Ribeirão Preto Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
14
|
do Prado Gomes Pedreira R, de Carli ML, Beijo LA, Nonogaki S, Pereira AAC, Junior NVR, Sperandio FF, Hanemann JAC. Oral Paracoccidioidomycosis Granulomas are Predominantly Populated by CD163+ Multinucleated Giant Cells. Mycopathologia 2016; 181:709-16. [PMID: 27236303 DOI: 10.1007/s11046-016-0016-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/03/2016] [Indexed: 01/29/2023]
Abstract
Multinucleated giant cells (MGC) are considered to be a hallmark of granulomatous inflammation; thus, they may play an essential role in the host response against pathogens, particularly Paracoccidioides brasiliensis. This study characterizes the MGC found in oral paracoccidioidomycosis and assesses the correlation of MGC with the amount of fungi within oral tissues. Twenty-six cases were included. They were classified as loose or dense granulomas, and the total MGC, including foreign-body and Langhans giant cells, besides the total and intracellular fungi, were taken into consideration. CD163 immunoexpression was performed, and CD163+ multinucleated giant cells were also quantified. Dense granulomas revealed more foreign-body type and total giant cells than loose granulomas (P < 0.05). Total giant cells showed a positive linear correlation with the CD163+ cells (P = 0.003; r = 0.56) and intracellular fungi quantification (P = 0.045; r = 0.40). Oral paracoccidioidomycosis lesions contain MGC that mainly belong to a CD163+ phenotype, also showing both Langhans and foreign-body arrangements. Additionally, the higher the presence of MGC, the higher the amount of phagocytized fungi.
Collapse
Affiliation(s)
- Renato do Prado Gomes Pedreira
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-000, Brazil
| | - Marina Lara de Carli
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-000, Brazil
| | - Luiz Alberto Beijo
- Institute of Exact Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-000, Brazil
| | - Suely Nonogaki
- Pathology Center, Adolfo Lutz Institute, Av. Dr. Arnaldo, 355 Cerqueira César, São Paulo, SP, 01246-902, Brazil
| | - Alessandro Antônio Costa Pereira
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-000, Brazil
| | - Noé Vital Ribeiro Junior
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-000, Brazil
| | - Felipe Fornias Sperandio
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-000, Brazil
| | - João Adolfo Costa Hanemann
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG, 37130-000, Brazil.
| |
Collapse
|
15
|
The Effects of Paracoccidioides brasiliensis Infection on GM-CSF- and M-CSF-Induced Mouse Bone Marrow-Derived Macrophage from Resistant and Susceptible Mice Strains. Mediators Inflamm 2015; 2015:605450. [PMID: 26543326 PMCID: PMC4620243 DOI: 10.1155/2015/605450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/14/2022] Open
Abstract
Considering the importance of macrophages as the first line of defense against fungal infection and the different roles played by the two M1- and M2-like polarized macrophages, we decided to evaluate the effects of Paracoccidioides brasiliensis infection on GM-CSF- and M-CSF-induced bone marrow-derived macrophages (BMM) from the A/J and B10.A mouse strains, an established model of resistance/susceptibility to PCM, respectively. Upon differentiation, the generated GM- or M-BMMs were characterized by morphological analyses, gene expression profiles, and cytokines production. Our main results demonstrate that GM-BMMs derived from A/J and B.10 produced high levels of pro- and anti-inflammatory cytokines that may contribute to generate an unbalanced early immune response. In accordance with the literature, the B10.A susceptible mice lineage has an innate tendency to polarize into M1-like phenotype, whereas the opposite phenotype occurs in A/J resistance mice. In this context, our data support that susceptibility and resistance are strongly correlated with M1 and M2 polarization, respectively.
Collapse
|
16
|
Siqueira IM, Fraga CLF, Amaral AC, Souza ACO, Jerônimo MS, Correa JR, Magalhães KG, Inácio CA, Ribeiro AM, Burguel PH, Felipe MS, Tavares AH, Bocca AL. Distinct patterns of yeast cell morphology and host responses induced by representative strains of Paracoccidioides brasiliensis (Pb18) and Paracoccidioides lutzii (Pb01). Med Mycol 2015; 54:177-88. [PMID: 26384386 DOI: 10.1093/mmy/myv072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/07/2015] [Indexed: 11/14/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis, widespread in Latin America. PCM is a granulomatous disease characterized by a polymorphism of lesions depending on the pathogen's virulence, the immune status of the host and its genetic susceptibility. The thermodimorphic fungus Paracoccidioides brasiliensis was considered the only etiologic agent of PCM, yet recent works have shown significant genetic diversity among different strains of P. brasiliensis. Therefore, it has been proposed for a new species within the Paracoccidioides genus, named Paracoccidioides lutzii. To better understand the fungus-host interactions elicited by strains Pb01 and Pb18 as key representatives of P. lutzii and P. brasiliensis, respectively, we carried out studies to investigate differences in morphology, induced immune response, virulence and pathology between these two Paracoccidioides species. Our results demonstrate distinct patterns of host-parasite interaction and pathology caused by Pb18 and Pb01. These results open up new fronts for NEW: clinical studies, which may result in significant consequences for the diagnosis and treatment of PCM. Considering that our results cannot be extended to all strains of both species, more studies about the virulence among Paracoccioides must be explored in the future.
Collapse
Affiliation(s)
- Isaque Medeiros Siqueira
- Molecular Pathology Post-Graduate Program, Faculty of Medicine, University of Brasília, D.F., Brazil
| | | | - André Correa Amaral
- Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás
| | - Ana Camila Oliveira Souza
- Molecular Pathology Post-Graduate Program, Faculty of Medicine, University of Brasília, D.F., Brazil
| | - Márcio Souza Jerônimo
- Molecular Pathology Post-Graduate Program, Faculty of Medicine, University of Brasília, D.F., Brazil
| | | | | | - Carlos Antônio Inácio
- Biology Institute, Department of Entomology and Plant Pathology, Federal Rural University of Rio de Janeiro
| | | | - Pedro Henrique Burguel
- Molecular Pathology Post-Graduate Program, Faculty of Medicine, University of Brasília, D.F., Brazil
| | - Maria Sueli Felipe
- Biology Institute, University of Brasília, D.F., Brazil Genomic Science and Biotechnology Post-Graduate Program, Catholic University of Brasília, D.F., Brazil
| | | | | |
Collapse
|
17
|
de Carli ML, Miyazawa M, Nonogaki S, Shirata NK, Oliveira DT, Pereira AAC, Hanemann JAC. M2 macrophages and inflammatory cells in oral lesions of chronic paracoccidioidomycosis. J Oral Pathol Med 2015; 45:141-7. [PMID: 26041558 DOI: 10.1111/jop.12333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Paracoccidioidomycosis (PCM) is a systemic fungal infection caused by Paracoccidioides brasiliensis (Pb) and associated with deficient cellular immune response, which is modulated by inflammatory cells, mainly macrophages, and cytokines. Recently, the comprehension of the macrophage polarization mediated by Th1 and Th2 cytokines has contributed to elucidate the immune response that takes part in some diseases. Thus, the aim of this study was to assess the presence of Th1- and Th2-immune response and also Pb counting in oral lesions of chronic PCM. METHODS Forty-eight cases of chronic PCM oral lesions were included. All cases were classified as loose or dense granulomas. S100 protein, IL-1β, IL-6, TNF-α, CD163 and CD68 immunoexpressions, and Pb localization were evaluated. The fungi present in the tissue were quantified by anti-Pb antibody. RESULTS Most patients were white men with mean age of 47 years old and showed higher incidence of multiple lesions. Loose granulomas were predominant and exhibited a great amount of M2 macrophages, which were visualized with anti-CD163 antibody. The expression for CD163 and CD68 was similar (P = 0.05), highlighting the predominance of M2 macrophages in PCM. IL-1β, IL-6, and TNF-α immunoexpression did not significantly change with CD163, CD68, and S100 protein. The number of fungi was significantly higher in cases with intense IL-1β immunoexpression (P = 0.003). CONCLUSIONS M2-activated macrophages were the majority among inflammatory cells in chronic PCM, characterizing the action of a Th2-immune response. Nevertheless, Th1 cytokines were also found; mainly IL-1β, which was associated with fungi counting in oral lesions.
Collapse
Affiliation(s)
- Marina Lara de Carli
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Marta Miyazawa
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Suely Nonogaki
- Pathology Center, Adolfo Lutz Institute, São Paulo, São Paulo, Brazil
| | | | - Denise Tostes Oliveira
- Department of Stomatology- Area of Pathology, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - João Adolfo Costa Hanemann
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
18
|
de Araújo MS, Alves PM, de Lima LMB, da Silva MF, de Lima Pereira SA, Rodrigues V, Rodrigues DBR. Evaluation of in situ expression of effector and regulatory cytokines, TLR, galectins and matrix metalloproteinases in oral manifestations of paracoccidioidomycosis. Immunobiology 2014; 220:154-63. [PMID: 25204704 DOI: 10.1016/j.imbio.2014.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/06/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although the pathophysiology of paracoccidioidomycosis (PCM) is not completely understood, the study of immune response against fungus has provided insight into understanding the natural course of the disease and its clinical manifestations, hence contributing to the development of preventive measures and treatment proposals. The aim of this study was to evaluate the histopathological and immunological aspects involved in the role of different effector and regulatory responses, as well as the correlation between the TLRs, Galectins, Matrix Metalloproteinases and cytoplasmic proteases of mast cells in this infection. METHODS Sixteen biopsy specimens with oral lesions of chronic PCM, as well as 13 sections of normal oral mucosa were analyzed. Histopathological and immunological aspects involved in the role of different effector and regulatory responses were evaluated. Indirect immunohistochemistry was performed for IL-17, IL-10, IL-4, TGF-β, FoxP3, Gal-1, Gal-3, Gal-9, TLR-2, TLR-4, MMP-3 and MMP-9, as well as for chymase and tryptase for mast cells identification. Fibrosis was quantified using Picrosirius. RESULTS There was a significant increase in the area of fibrosis and in the number of cells expressing IL-10, IL-4, IL-17, FoxP3, Gal-3, TLR-2, MMP3 and MMP9 in patients with PCM in comparison with patients in the group control. There was no difference in the expression of TGF-β, TLR-4, Gal-1 or Gal-9. Mast cells number was found to be significantly lower in oral chronic PCM when compared to control samples after quantification of mast cells and expression of chymase and tryptase. PCM granulomas were classified to the morphological aspects in organized ou non-organized. Expression of IL-4 in non-organized granulomas was significantly higher. CONCLUSION The proteins studied herein appear to play an important role in the development and maintenance of oral lesions of PCM, as well as in the processes of development and progression of lesions caused by the fungus and by the immune response associated with the infection.
Collapse
Affiliation(s)
- Marcelo Sivieri de Araújo
- Laboratory of Biopathology and Molecular Biology, University of Uberaba (UNIUBE), Uberaba, MG, Brazil; Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | | | | | | | - Sanívia Aparecida de Lima Pereira
- Laboratory of Biopathology and Molecular Biology, University of Uberaba (UNIUBE), Uberaba, MG, Brazil; Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | | | - Denise Bertulucci Rocha Rodrigues
- Laboratory of Biopathology and Molecular Biology, University of Uberaba (UNIUBE), Uberaba, MG, Brazil; Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil.
| |
Collapse
|
19
|
Tavares AH, Magalhães KG, Almeida RDN, Correa R, Burgel PH, Bocca AL. NLRP3 inflammasome activation by Paracoccidioides brasiliensis. PLoS Negl Trop Dis 2013; 7:e2595. [PMID: 24340123 PMCID: PMC3855149 DOI: 10.1371/journal.pntd.0002595] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/31/2013] [Indexed: 12/11/2022] Open
Abstract
Paracoccidioides brasiliensis is the etiologic agent of paracoccidioidomycosis (PCM), the most prevalent systemic mycosis that is geographically confined to Latin America. The pro-inflammatory cytokine IL-1β that is mainly derived from the activation of the cytoplasmic multiprotein complex inflammasome is an essential host factor against opportunistic fungal infections; however, its role in infection with a primary fungal pathogen, such as P. brasiliensis, is not well understood. In this study, we found that murine bone marrow-derived dendritic cells responded to P. brasiliensis yeast cells infection by releasing IL-1β in a spleen tyrosine kinase (Syk), caspase-1 and NOD-like receptor (NLR) family member NLRP3 dependent manner. In addition, P. brasiliensis-induced NLRP3 inflammasome activation was dependent on potassium (K+) efflux, reactive oxygen species production, phagolysosomal acidification and cathepsin B release. Finally, using mice lacking the IL-1 receptor, we demonstrated that IL-1β signaling has an important role in killing P. brasiliensis by murine macrophages. Altogether, our results demonstrate that the NLRP3 inflammasome senses and responds to P. brasiliensis yeast cells infection and plays an important role in host defense against this fungus. Paracoccidioidomycosis is a systemic disease that has an important mortality and morbidity impact in Latin America. It mainly affects rural workers of Argentina, Colombia, Venezuela and Brazil. Upon host infection, one of the most important aspects that contribute to the disease outcome is the initial interaction of the Paracoccidioides brasiliensis fungus with the phagocytic cells and the induction of the inflammatory process. Among several inflammatory mediators, the cytokine interleukin-1β is of pivotal importance in this complex process. Here, we demonstrate that P. brasiliensis is sensed by the NLRP3 inflammasome, a cytoplasmatic multiprotein complex that lead to the processing and secretion of IL-1β. In addition, we described the intracellular perturbations that may be associated with NLRP3 activation such as potassium efflux, production of reactive oxygen species, and lysosomal damage. Finally, our work provides evidence for the protective role of IL-1β during fungal infection of murine macrophages.
Collapse
Affiliation(s)
- Aldo Henrique Tavares
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
- Laboratorio de Imunologia Aplicada, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
- * E-mail: .
| | - Kelly Grace Magalhães
- Laboratorio de Imunologia e Inflamação, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
| | - Raquel Das Neves Almeida
- Laboratorio de Imunologia e Inflamação, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
| | - Rafael Correa
- Laboratorio de Imunologia e Inflamação, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
| | - Pedro Henrique Burgel
- Laboratorio de Imunologia Aplicada, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
| | - Anamélia Lorenzetti Bocca
- Laboratorio de Imunologia Aplicada, Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Distrito Federal, Brasil
| |
Collapse
|
20
|
Santos PC, Santos DA, Ribeiro LS, Fagundes CT, de Paula TP, Avila TV, Baltazar LDM, Madeira MM, Cruz RDC, Dias ACF, Machado FS, Teixeira MM, Cisalpino PS, Souza DG. The pivotal role of 5-lipoxygenase-derived LTB4 in controlling pulmonary paracoccidioidomycosis. PLoS Negl Trop Dis 2013; 7:e2390. [PMID: 23991239 PMCID: PMC3749973 DOI: 10.1371/journal.pntd.0002390] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/17/2013] [Indexed: 01/30/2023] Open
Abstract
Leukotrienes (LTs) produced from arachidonic acid by the action of 5-lipoxygenase (5-LO) are classical mediators of inflammatory responses. However, studies published in the literature regarding these mediators are contradictory and it remains uncertain whether these lipid mediators play a role in host defense against the fungal pathogen Paracoccidioides brasiliensis. To determine the involvement of LTs in the host response to pulmonary infection, wild-type and LT-deficient mice by targeted disruption of the 5-lipoxygenase gene (knockout mice) were studied following intratracheal challenge with P. brasiliensis yeasts. The results showed that infection is uniformly fatal in 5-LO-deficient mice and the mechanisms that account for this phenotype are an exacerbated lung injury and higher fungal pulmonary burden. Genetic ablation or pharmacological inhibition of LTs resulted in lower phagocytosis and fungicidal activity of macrophages in vitro, suggesting that deficiency in fungal clearance seems to be secondary to the absence of activation in 5-LO(-/-) macrophages. Exogenous LTB4 restored phagocytosis and fungicidal activity of 5-LO(-/-) macrophages. Moreover, P. brasiliensis killing promoted by LTB4 was dependent on nitric oxide (NO) production by macrophages. Taken together, these results reveal a fundamental role for 5-LO-derived LTB4 in the protective response to P. brasiliensis infection and identify relevant mechanisms for the control of fungal infection during the early stages of the host immune response.
Collapse
Affiliation(s)
- Patrícia Campi Santos
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Daniel Assis Santos
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Lucas Secchim Ribeiro
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Caio Tavares Fagundes
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Inflammation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Talles Prosperi de Paula
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Thiago Vinícius Avila
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Ludmila de Matos Baltazar
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Mila Moreira Madeira
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Rosana de Carvalho Cruz
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Ana Carolina Fialho Dias
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Fabiana Simão Machado
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Patrícia Silva Cisalpino
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Danielle G. Souza
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
21
|
Duell BL, Tan CK, Carey AJ, Wu F, Cripps AW, Ulett GC. Recent insights into microbial triggers of interleukin-10 production in the host and the impact on infectious disease pathogenesis. ACTA ACUST UNITED AC 2012; 64:295-313. [PMID: 22268692 DOI: 10.1111/j.1574-695x.2012.00931.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/17/2012] [Accepted: 01/17/2012] [Indexed: 02/06/2023]
Abstract
Since its initial description as a Th2-cytokine antagonistic to interferon-alpha and granulocyte-macrophage colony-stimulating factor, many studies have shown various anti-inflammatory actions of interleukin-10 (IL-10), and its role in infection as a key regulator of innate immunity. Studies have shown that IL-10 induced in response to microorganisms and their products plays a central role in shaping pathogenesis. IL-10 appears to function as both sword and shield in the response to varied groups of microorganisms in its capacity to mediate protective immunity against some organisms but increase susceptibility to other infections. The nature of IL-10 as a pleiotropic modulator of host responses to microorganisms is explained, in part, by its potent and varied effects on different immune effector cells which influence antimicrobial activity. A new understanding of how microorganisms trigger IL-10 responses is emerging, along with recent discoveries of how IL-10 produced during disease might be harnessed for better protective or therapeutic strategies. In this review, we summarize studies from the past 5 years that have reported the induction of IL-10 by different classes of pathogenic microorganisms, including protozoa, nematodes, fungi, viruses and bacteria and discuss the impact of this induction on the persistence and/or clearance of microorganisms in the host.
Collapse
Affiliation(s)
- Benjamin L Duell
- School of Medical Sciences, Centre for Medicine and Oral Health, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Fortes MRP, Miot HA, Kurokawa CS, Marques MEA, Marques SA. Immunology of paracoccidioidomycosis. An Bras Dermatol 2012; 86:516-24. [PMID: 21738969 DOI: 10.1590/s0365-05962011000300014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Indexed: 11/22/2022] Open
Abstract
Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America, among immunecompetent patients. It's caused by the dimorphic fungus Paracoccidioiddes brasiliensis. Investigations regarding its immunopathogenesis are very important in the understanding of aspects related to natural history, as the protective immunity, and the relationship between host and parasite; also favoring the knowledge about clinical patterns and the elaboration of therapeutic strategies. The disease clinical polymorphism depends, at least, of the immune response profile according to the tissue and blood released citokynes, resulting in tissue damage.
Collapse
|
23
|
Nakaira-Takahagi E, Golim MA, Bannwart CF, Puccia R, Peraçoli MTS. Interactions between TLR2, TLR4, and mannose receptors with gp43 from Paracoccidioides brasiliensis induce cytokine production by human monocytes. Med Mycol 2011; 49:694-703. [PMID: 21417682 DOI: 10.3109/13693786.2011.565485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The glycoprotein gp43 is an immunodominant antigen secreted by Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis. The present study evaluated whether gp43 can interact with toll-like (TLR2, TLR4) and mannose (MR) receptors on the surface of human monocytes, and how that affects their expression and cytokine production. Monocytes were incubated with or without monoclonal antibodies anti-TLR2, anti-TLR4, or anti-MR, individually or in combination, prior to the addition of gp43. The gp43 binding to monocyte surface, as well as expression of TLR2, TLR4, and MRs were analyzed by flow cytometry, while production of TNF-α and IL-10 was monitored by ELISA. The results suggested that gp43 binds to TLR2, TLR4, and MR receptors, with TLR2 and MR having the strongest effect. All three receptors influenced the production of IL-10, while TNF-α production was associated with expression of TLR4 and MR. The modulatory effect of gp43 was demonstrated by high levels of TLR4 expression associated with increased production of TNF-α after 4 h of culture. Alternatively, high levels of TLR2 expression, and elevated production of IL-10, were detected after 18 h. We showed that interaction between gp43 and monocytes may affect the innate immune response by modulating the expression of the pattern recognition receptors TLR2, TLR4 and MR, as well as production of pro- and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Erika Nakaira-Takahagi
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
24
|
Bannwart CF, Martins RAR, Nakaira-Takahashi É, Dias-Melício LA, Soares ÂMVC, Peraçoli MTS. Interleukin-15 augments oxidative metabolism and fungicidal activity of human monocytes against Paracoccidioides brasiliensis. Mem Inst Oswaldo Cruz 2010; 105:866-72. [DOI: 10.1590/s0074-02762010000700005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 06/15/2010] [Indexed: 11/22/2022] Open
|
25
|
Bugelski PJ, Achuthanandam R, Capocasale RJ, Treacy G, Bouman-Thio E. Monoclonal antibody-induced cytokine-release syndrome. Expert Rev Clin Immunol 2010; 5:499-521. [PMID: 20477639 DOI: 10.1586/eci.09.31] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monoclonal antibodies (mAbs) are widely used in anti-inflammatory and tumor therapy. Although effective, mAbs can cause a variety of adverse effects. An important toxicity seen with a few mAbs is cytokine-release syndrome (CRS). These mAbs include: alemtuzumab, muromonab-CD3, rituximab, tosituzumab, CP-870,893, LO-CD2a/BTI-322 and TGN1412. By contrast, over 30 mAbs used clinically are not associated with CRS. In this review, the clinical aspects of CRS, the mAbs associated with CRS, the cytokines involved and putative mechanisms mediating cytokine release will be discussed. This will be followed by a discussion of the poor predictive value of studies in animals and the prospects for creating in vitro screens. Finally, approaches to decreasing the probability of CRS, decreasing the severity or treating CRS, should it occur, will be described.
Collapse
Affiliation(s)
- Peter J Bugelski
- Toxicology and Investigational Pharmacology, Centocor R&D, R-4-2, 145 King of Prussia Road, Radnor, PA 19087, USA.
| | | | | | | | | |
Collapse
|
26
|
Bannwart CF, Nakaira-Takahagi E, Golim MA, de Medeiros LTL, Romão M, Weel IC, Serrão Peraçoli MT. Downregulation of nuclear factor-kappa B (NF-κB) pathway by silibinin in human monocytes challenged with Paracoccidioides brasiliensis. Life Sci 2010; 86:880-6. [DOI: 10.1016/j.lfs.2010.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/01/2010] [Accepted: 04/02/2010] [Indexed: 10/19/2022]
|
27
|
Moreira AP, Dias-Melicio LA, Soares AMVC. Interleukin-10 but not Transforming Growth Factor beta inhibits murine activated macrophages Paracoccidioides brasiliensis killing: effect on H2O2 and NO production. Cell Immunol 2010; 263:196-203. [PMID: 20417928 DOI: 10.1016/j.cellimm.2010.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/01/2010] [Accepted: 03/30/2010] [Indexed: 01/27/2023]
Abstract
Paracoccidioidomycosis is caused by the thermally dimorphic fungus Paracoccidioides brasiliensis (P. brasiliensis). Most often, this mycosis runs as a chronic progressive course affecting preferentially the lungs. In vitro fungicidal activity against a high virulent strain of P. brasiliensis by murine peritoneal macrophages preactivated with IFN-gamma or TNF-alpha is high and correlates with increased NO and H2O2 production. Within this context, the purpose of this work was to study the role of suppressor cytokines, such as IL-10 and TGF-beta, in this process. Incubation of either IFN-gamma or TNF-alpha with IL-10 inhibits fungicidal activity of these cells. However, TGF-beta had no effect on fungicidal activity of IFN-gamma or TNF-alpha-activated macrophages. The suppression of fungicidal activity by IL-10 correlated with the inhibition of NO and H2O2 production supporting the involvement of these metabolites in P. brasiliensis killing. These results suggest that IL-10 production in vivo could represent an evasion mechanism of the fungus to avoid host immune response.
Collapse
Affiliation(s)
- Ana Paula Moreira
- UNESP-Univ Estadual Paulista, Instituto de Biociências-Campus Botucatu, Departamento de Microbiologia e Imunologia, CEP 18618-000, SP, Brazil
| | | | | |
Collapse
|
28
|
Huang LF, Yao YM, Dong N, Yu Y, He LX, Sheng ZY. Association between regulatory T cell activity and sepsis and outcome of severely burned patients: a prospective, observational study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R3. [PMID: 20064232 PMCID: PMC2875505 DOI: 10.1186/cc8232] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/02/2009] [Accepted: 01/11/2010] [Indexed: 12/16/2022]
Abstract
Introduction To investigate the significance of changes in regulatory T cells (Tregs) activity and its relationship with sepsis, as well as outcome of patients with major burns. Methods The periphery blood samples of 106 patients were collected on post-burn days 1, 3, 7, 14, and 21. Tregs were isolated and their phenotypes (cytotoxic T-lymphocyte-associated antigen 4 and forkhead/winged helix transcription factor p3) were analyzed by flow cytometry, and the contents of cytokines (interleukin-10 and transforming growth factor-β1) released into supernatants by Tregs were also determined by enzyme-linked immunosorbent assay kits. Gene expressions of cytokines were assessed by real-time quantitative polymerase chain reaction. Results Expressions of Tregs phenotypes and gene/protein expression of cytokines were all elevated after burn, and there were obvious differences among patients with various burn sizes. They were also higher in septic patients than those without sepsis. Among septic patients, the expressions of Tregs phenotypes and the levels of cytokines were markedly lower in the survival group than those in patients with fatal outcome. Conclusions Severe burn injury per se could lead to the changes in Tregs activities. Elevated levels of cytokines produced by Tregs and activation markers on Tregs surface might play an important role in the pathogenesis of sepsis and mortality in burned patients.
Collapse
Affiliation(s)
- Li-Feng Huang
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, 51 Fu-cheng Road, Haidian District, Beijing 100048, PR China.
| | | | | | | | | | | |
Collapse
|
29
|
Alves CC, Azevedo AL, Rodrigues MF, Machado RP, Souza MA, Machado MA, Teixeira HC, Ferreira AP. Cellular and humoral immune responses during intrathoracic paracoccidioidomycosis in BALB/c mice. Comp Immunol Microbiol Infect Dis 2009; 32:513-25. [DOI: 10.1016/j.cimid.2008.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|
30
|
Liebers V, Stubel H, Düser M, Brüning T, Raulf-Heimsoth M. Standardization of whole blood assay for determination of pyrogenic activity in organic dust samples. Int J Hyg Environ Health 2009; 212:547-56. [PMID: 19395310 DOI: 10.1016/j.ijheh.2009.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/11/2009] [Accepted: 03/14/2009] [Indexed: 10/20/2022]
Abstract
To characterize bioaerosol exposure at workplaces standardized methods are necessary. Activity of endotoxin, one component of organic dust, can be quantified with the Limulus-Amoebocyte Lysat test (LAL test). Further information with respect to pyrogenic activity of the organic dust can be achieved by measuring cytokine release of human blood after stimulation with the dust or its extract (whole blood assay). The aim of our study was the standardization of the whole blood assay (WBA) while using cryo-preserved human blood (Qualis Laboratorium) and to compare the outcome of the different cytokines determined by incubation of the blood cells with extracts from dust samples collected at various workplaces. Cytokine release (IL-1 beta, IL-6, IL-8, TNF-alpha, MCP-1) was measured by ELISA after stimulation of fresh blood from ten donors as well as cryo-preserved human blood. In both cases blood was stimulated with E. coli endotoxin as well as with 30 dust filter extracts from various workplaces. All dust filter extracts were investigated in the WBA using cryo-preserved blood as well as with LAL test. E. coli endotoxin stimulated the release of IL-1 beta, IL-6, IL-8, TNF-alpha and MCP-1 in a dose-dependent manner in fresh as well as cryo-preserved human whole blood. 200 pg/ml E. coli endotoxin induced maximal cytokine release in cryo-preserved blood (mean value for IL-1 beta 2509+/-418 pg/ml; n=13 experiments) whereas fresh blood of single donors reached a maximum release when stimulated with 50 ng/ml endotoxin (mean value of ten donors 1125+/-553 pg/ml IL-1beta). Using cryo-preserved blood the coefficient of variation (CV) regarding the interassay variability was below 21% for all cytokines measured. Regarding 26 dust sample extracts correlation coefficient r2 for LAL test and WBA was between 0.90 and 0.93 (Pearson) for IL-1 beta, IL-6, IL-8 and TNF-alpha whereas correlation for MCP-1 was lower (r(2)=0.59). Two dust sample extracts which showed similar reactivity patterns in LAL test as well as in WBA with respect to IL-1 beta, IL-6, IL-8 and TNF-alpha could be differentiated by measuring MCP-1. In conclusion, cryo-preserved blood pools are suitable to standardize WBA. Combination of different outcome variables like IL-1 beta and MCP-1 improve the characterization from the inflammatory potency of workplace related dust samples.
Collapse
Affiliation(s)
- Verena Liebers
- BGFA-Research Institute of Occupational Medicine of German Social Accident; Insurance, Ruhr-University Bochum, Germany.
| | | | | | | | | |
Collapse
|
31
|
Brazowski E, Dotan I, Tulchinsky H, Filip I, Eisenthal A. Galectin-3 expression in pouchitis in patients with ulcerative colitis who underwent ileal pouch-anal anastomosis (IPAA). Pathol Res Pract 2009; 205:551-8. [PMID: 19278794 DOI: 10.1016/j.prp.2009.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 12/25/2008] [Accepted: 02/02/2009] [Indexed: 01/10/2023]
Abstract
Galectin-3, an endogenous pleiotropic beta-galactoside-binding protein, which is expressed by various malignant and normal cells, regulates many biological and pathological processes, including inflammation. In the present study, we tested a possible correlation between the severity of pouchitis in patients with ulcerative colitis who underwent ileal pouch-anal anastomosis (IPAA) and the presence of galectin-3(+) macrophages in pouch mucosa. Paraffin-embedded pouch biopsies from patients with normal pouch function or chronic and recurrent acute pouchitis were immunohistostained with galectin-3, CD68, and smooth muscle actin (SMA) antibodies. Microscopic examination was performed in a blinded fashion. There was a significant decrease in the staining index of galectin-3 in the subepithelial macrophages in patients with chronic pouchitis (0.53, P=0.001; n=12) or recurrent acute pouchitis (0.43, P=0.008; n=10) when compared to patients with no clinical manifestations of pouchitis (0.63, n=12). No significant differences were noted in the lamina propria of small intestine biopsies from the same patients (from 0.63 to 0.68, P=0.24). Galectin-3 staining was restricted to CD68(+) macrophages and not present in myofibroblasts. Clinical manifestation of pouchitis is inversely correlated with galectin-3 expression in the pouches' subepithelial lamina propria macrophages.
Collapse
Affiliation(s)
- Eli Brazowski
- Department of Pathology, Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Pathology Institute, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
32
|
Siqueira KZ, Campos Soares ÂMVD, Dias-Melicio LA, Calvi SA, Peraçoli MTS. Interleukin-6 treatment enhances human monocyte permissiveness forParacoccidioides brasiliensisgrowth by modulating cytokine production. Med Mycol 2009; 47:259-67. [DOI: 10.1080/13693780802244204] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
33
|
Acorci MJ, Dias-Melicio LA, Golim MA, Bordon-Graciani AP, Peraçoli MTS, Soares AMVC. Inhibition of human neutrophil apoptosis by Paracoccidioides brasiliensis: role of interleukin-8. Scand J Immunol 2008; 69:73-9. [PMID: 19144080 DOI: 10.1111/j.1365-3083.2008.02199.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidiodes brasiliensis that presents a wide spectrum of clinical manifestations. Because of the great number of neutrophils polymorphonuclear neutrophils (PMN) found in the P. brasiliensis granuloma, studies have been done to evaluate the role of these cells during the development of the infection. This fungus is found intracellularly in PMN and monocytes/macrophages, suggesting that it is capable of evading damage and surviving inside these cells. Thus, in the present study, we investigated whether P. brasiliensis can prolong the lifetime of PMN, and if this process would be related with IL-8 levels. PMN apoptosis and intracellular levels of IL-8 were analysed by flow cytometry and culture supernatants IL-8 levels were evaluated by enzyme-linked immunosorbent assay. We found that coincubation with P. brasiliensis yeast cells results in an inhibition of PMN apoptosis, which was associated with increase in IL-8 production by these cells. Cocultures treatment with monoclonal antibody anti-IL-8 reversed the inhibitory effect of P. brasiliensis on PMN apoptosis, besides to increase spontaneous apoptosis of these cells. These data show that, in contrast to other microbial pathogens that drive phagocytes into apoptosis to escape killing, P. brasiliensis can extend the lifetime of normal human PMN by inducing autocrine IL-8 production.
Collapse
Affiliation(s)
- M J Acorci
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University, Botucatu, SP, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Lee SK, Min KS, Kim Y, Jeong GS, Lee SH, Lee HJ, Lee SI, Kim YS, Lee YM, Park SJ, Seo SW, Lee SK, Kim EC. Mechanical stress activates proinflammatory cytokines and antioxidant defense enzymes in human dental pulp cells. J Endod 2008; 34:1364-1369. [PMID: 18928848 DOI: 10.1016/j.joen.2008.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/13/2008] [Accepted: 08/17/2008] [Indexed: 10/21/2022]
Abstract
This study was conducted to investigate the effects of mechanical stress, particularly cyclic strain, on proinflammatory cytokines as well as antioxidant properties and their interactions with cellular defense systems in human dental pulp (HDP) cells. Exposure of HDP cells to mechanical strain induced inflammatory cytokines such as interleukin-1 beta, tumor necrosis factor-alpha, and interleukin-6, as well as antioxidant genes such as heme oxygenase-1, superoxide dismutases, reduced nicotinamide adenine dinucleotide phosphate quinone oxidoreductase-1, and glutathione peroxidases. In addition, treatment with N-acetylcysteine, indomethacin, and heme oxygenase-1 inhibitors blocked reactive oxygen species production, antioxidant response element (ARE) gene expression, and Nrf2 accumulation that occurred in response to mechanical stress. These data demonstrate that mechanical strain activates inflammatory cytokines and oxidative stress, which then act in concert to induce the Nrf2-/ARE-mediated antioxidant enzymes. Therefore, we suggest that the activation of a compensatory adaptation or defense antioxidant system might represent a novel mechanism for protecting HDP cells against mechanical stress.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea; Sun-Kyung Lee and Kyung-San Min contributed equally to this work
| | - Kyung-San Min
- Department of Conservative Dentistry, College of Dentistry, Wonkwang University, Iksan, Republic of Korea; Sun-Kyung Lee and Kyung-San Min contributed equally to this work
| | - Youngho- Kim
- Department of Biochemistry, College of Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Gil-Saeng Jeong
- Institute for Radiological Imaging Science, College of Oriental Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Seung-Hoon Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Hwa-Jeong Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Sang-Im Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Young-Suk Kim
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Young-Man Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Sung-Joo Park
- Department of Herbology, College of Oriental Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Sang-Wan Seo
- Department of Herbology, College of Oriental Medicine, Wonkwang University, Iksan, Republic of Korea
| | - Suk-Keun Lee
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Kangnung National University, Kangnung, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea.
| |
Collapse
|
35
|
do Nascimento MPP, de Campos Soares AMV, Dias-Melicio LA, Parise-Fortes MR, Martins RAR, Nakaira ET, Peraçoli MTS. Fungicidal activity of human monocyte-derived multinucleated giant cells induced in vitro by Paracoccidioides brasiliensis antigen. Mycopathologia 2008; 166:25-33. [DOI: 10.1007/s11046-007-9051-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
|
36
|
Silva SS, Tavares AHFP, Passos-Silva DG, Fachin AL, Teixeira SMR, Soares CMA, Carvalho MJA, Bocca AL, Silva-Pereira I, Passos GAS, Felipe MSS. Transcriptional response of murine macrophages upon infection with opsonized Paracoccidioides brasiliensis yeast cells. Microbes Infect 2007; 10:12-20. [PMID: 18096424 DOI: 10.1016/j.micinf.2007.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/22/2007] [Accepted: 09/25/2007] [Indexed: 11/29/2022]
Abstract
Paracoccidioides brasiliensis is the etiologic agent of the Paracoccidioidomycosis the most common systemic mycosis in Latin America. Little is known about the regulation of genes involved in the innate immune host response to P. brasiliensis. We therefore examined the kinetic profile of gene expression of peritoneal macrophage infected with P. brasiliensis. Total RNA from macrophages at 6, 24 and 48h was extracted, hybridized onto nylon membranes and analyzed. An increase in the transcription of a number of pro-inflammatory molecules encoding membrane proteins, metalloproteases, involved in adhesion and phagocytosis, are described. We observed also the differential expression of genes whose products may cause apoptotic events induced at 24h. In addition, considering the simultaneous analyses of differential gene expression for the pathogen reported before by our group, at six hours post infection, we propose a model at molecular level for the P. brasiliensis-macrophage early interaction. In this regard, P. brasiliensis regulates genes specially related to stress and macrophages, at the same time point, up-regulate genes related to inflammation and phagocytosis, probably as an effort to counteract infection by the fungus.
Collapse
Affiliation(s)
- Simoneide S Silva
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|