1
|
Chen B, Cheng Y, Wu H, Yao J. XAF1 overexpression inhibits the malignant progression and cisplatin resistance of NSCLC by activating endoplasmic reticulum stress. Mol Biol Rep 2024; 51:435. [PMID: 38520543 DOI: 10.1007/s11033-024-09347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND XIAP-associated factor 1 (XAF1) has been found to participate in the progression of multiple human cancers. Nevertheless, its role as well as the reaction mechanism in non-small cell lung cancer (NSCLC) still remains obscure. METHODS In this study, the protein expression of XAF1 in NSCLC cell lines was evaluated using western blot. With the employment of CCK-8 assay, EdU staining, wound healing and transwell, capabilities of NSCLC cells to proliferate, migrate and invade were assessed. Cell apoptotic level and cell cycle were resolved utilizing flow cytometry. Western blot was applied for the estimation of apoptosis- and endoplasmic reticulum (ER) stress-related proteins. RESULTS It was discovered that XAF1 expression was conspicuously reduced in NSCLC cell lines. XAF1 overexpression suppressed H1299 cell proliferative, invasive and migrative capabilities, but exhibited promotive effects on cell cycle arrest. Meanwhile, XAF1 overexpression inhibited cisplatin resistance in H1299 and H1299/DDP cells by promoting cell apoptosis and enhanced the expression levels of ER stress-related proteins CHOP, GRP78 and ATF4. What's more, 4-PBA treatment reversed the impacts of XAF1 overexpression on the proliferative, invasive, migrative and apoptotic capabilities of H1299 cells, as well as cell cycle and cisplatin resistance. CONCLUSION In conclusion, XAF1 overexpression impeded the advancement of NSCLC and repressed cisplatin resistance of NSCLC cells through inducing ER stress, which indicated that XAF1 might be a novel targeted-therapy for NSCLC.
Collapse
Affiliation(s)
- Bin Chen
- Department of Cardiothoracic Surgery, People's Hospital of Chizhou, Chizhou, 247000, China.
| | - Yuanjun Cheng
- Department of Cardiothoracic Surgery, People's Hospital of Chizhou, Chizhou, 247000, China
| | - Hanqing Wu
- Department of Cardiothoracic Surgery, People's Hospital of Chizhou, Chizhou, 247000, China
| | - Jie Yao
- Department of Cardiothoracic Surgery, People's Hospital of Chizhou, Chizhou, 247000, China.
| |
Collapse
|
2
|
Increased Expression of the RBPMS Splice Variants Inhibits Cell Proliferation in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:ijms232314742. [PMID: 36499073 PMCID: PMC9738375 DOI: 10.3390/ijms232314742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
RNA-Binding Protein with Multiple Splicing (RBPMS) is a member of family proteins that bind to nascent RNA transcripts and regulate their splicing, localization, and stability. Evidence indicates that RBPMS controls the activity of transcription factors associated with cell growth and proliferation, including AP-1 and Smads. Three major RBPMS protein splice variants (RBPMSA, RBPMSB, and RBPMSC) have been described in the literature. We previously reported that reduced RBPMS levels decreased the sensitivity of ovarian cancer cells to cisplatin treatment. However, little is known about the biological role of the RBPMS splice variants in ovarian cancer cells. We performed RT-PCR and Western blots and observed that both RBPMSA and RBPMSC are reduced at the mRNA and protein levels in cisplatin resistant as compared with cisplatin sensitive ovarian cancer cells. The mRNA and protein levels of RBPMSB were not detectable in any of the ovarian cancer cells tested. To better understand the biological role of each RBPMSA and RBPMSC, we transfected these two splice variants in the A2780CP20 and OVCAR3CIS cisplatin resistant ovarian cancer cells and performed cell proliferation, cell migration, and invasion assays. Compared with control clones, a significant reduction in the number of colonies, colony size, cell migration, and invasion was observed with RBPMSA and RBPMSC overexpressed cells. Moreover, A2780CP20-RBPMSA and A2780CP20-RBPMSC clones showed reduced senescence-associated β-galactosidase (β-Gal)-levels when compared with control clones. A2780CP20-RBPMSA clones were more sensitive to cisplatin treatment as compared with A2780CP20-RBPMSC clones. The A2780CP20-RBPMSA and A2780CP20-RBPMSC clones subcutaneously injected into athymic nude mice formed smaller tumors as compared with A2780CP20-EV control group. Additionally, immunohistochemical analysis showed lower proliferation (Ki67) and angiogenesis (CD31) staining in tissue sections of A2780CP20-RBPMSA and A2780CP20-RBPMSC tumors compared with controls. RNAseq studies revealed many common RNA transcripts altered in A2780CP20-RBPMSA and A2780CP20-RBPMSC clones. Unique RNA transcripts deregulated by each RBPMS variant were also observed. Kaplan-Meier (KM) plotter database information identified clinically relevant RBPMSA and RBPMSC downstream effectors. These studies suggest that increased levels of RBPMSA and RBPMSC reduce cell proliferation in ovarian cancer cells. However, only RBPMSA expression levels were associated with the sensitivity of ovarian cancer cells to cisplatin treatment.
Collapse
|
3
|
Lu C, Wang Y, Nie L, Chen L, Li M, Qing H, Li S, Wu S, Wang Z. Comprehensive analysis of cellular senescence-related genes in the prognosis, tumor microenvironment, and immunotherapy/chemotherapy of clear cell renal cell carcinoma. Front Immunol 2022; 13:934243. [PMID: 36189255 PMCID: PMC9523431 DOI: 10.3389/fimmu.2022.934243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background The transcriptome public database and advances in biological discoveries contributed to significant progresses in identifying the drivers of cancer progression. Cellular senescence (CS) is considered as a leading factor resulting in cancer development. The purpose of this study was to explore the significance of CS-related genes in the molecular classification and survival outcome of clear cell renal cell carcinoma (ccRCC). Methods CS-related genes were obtained from the CellAge database, and patients from TCGA-KIRC dataset and ICGC dataset were clustered by ConsesusClusterPlus. The characteristics of overall survival (OS), genomic variation, and tumor microenvironment (TME) of each cluster were analyzed. Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis was conducted to develop a CS-related risk model to score ccRCC patients and assess the risk scores in predicting patients’ response to immunotherapy and chemotherapy. A nomogram based on the risk model was established to improve the risk stratification of patients. Results CcRCC was divided into three molecular subtypes based on CS-related genes. The three molecular phenotypes showed different OS and clinical manifestations, mutation patterns, and TME states. Five genes were obtained from nine differentially expressed CS-related genes in the three molecular subtypes to develop a risk model. Patients with ccRCC were divided into high- and low-risk subgroups. The former showed an unfavorable OS, with a significantly higher genomic variation rate, TME score, and numerous immune checkpoint expressions when compared to the low-risk subgroup. Risk score reflected the response of patients to axitinib, bortezomib, sorafenib, sunitinib, and temsirolimus. Conclusions In general, CS-related genes divided ccRCC into three molecular subtypes with distinct OS, mutation patterns, and TME states. The risk model based on the five CS-related genes can predict the prognosis and therapeutic outcome of ccRCC patients, providing a theoretical basis for further study on the molecular mechanism of CS-related ccRCC.
Collapse
Affiliation(s)
- Caibao Lu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yiqin Wang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Nie
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liping Chen
- Department of Nephrology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Moqi Li
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huimin Qing
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Sisi Li
- Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuang Wu
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Zhe Wang, ; Shuang Wu,
| | - Zhe Wang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Zhe Wang, ; Shuang Wu,
| |
Collapse
|
4
|
刘 娟, 刘 星, 魏 宝, 刘 洁, 王 悦, 刘 辉. [Effect of stable overexpression of XAF1 gene on biological characteristics of ovarian cancer A2780 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:760-766. [PMID: 34134965 PMCID: PMC8214961 DOI: 10.12122/j.issn.1673-4254.2021.05.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct an ovarian cancer cell line stably overexpressing XAF1 gene and observe the effects of XAF1 gene overexpression on proliferation, apoptosis, cell cycle and sensitivity to paclitaxel of the cells. OBJECTIVE Ovarian cancer A2780 cells were transfected with the plasmids pcDNA3.1(+) or pcDNA3.1(+)-XAF1, and the cells stably Over expressing XAF1 (A2780/XAF1 cells) were screened using G418. Cell clone formation assay and CCK8 assay were used to evaluate the changes in proliferation and paclitaxel sensitivity of the transfected cells, and cell cycle and apoptosis of the cells were analyzed using flow cytometry. OBJECTIVE We successfully obtained A2780/XAF1 cells stably overexpressing XAF1, which exhibited no significant changes in cell morphology. Compared with the negative control cells (A2780/NC), A2780/XAF1 cells had lowered clone formation ability (P=0.0016) and attenuated proliferative activity on the first (P=0.009) and third (P=0.0035) days after cell adherence with also a significantly increased percentage of cells in G2-M phase (P < 0.001). A2780/XAF1 cells showed significantly higher apoptosis rates than A2780/NC cells in the absence of apoptotic stimulation, in serum-free culture or following paclitaxel induction (P < 0.001). The proliferative activity of A2780/XAF1 cells was significantly lower than that of A2780/NC cells after exposure to different paclitaxel concentrations (P < 0.001). The half inhibitory concentration of paclitaxel was significantly lower in A2780/XAF1 than in A2780/NC cells. OBJECTIVE Overexpression of XAF1 significantly inhibits the proliferation, induces cell cycle arrest, promotes apoptosis, and increases paclitaxel sensitivity in ovarian cancer cells.
Collapse
Affiliation(s)
- 娟 刘
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 星辰 刘
- 成都市第 六人民医院妇科,四川 成都 610051Department of Gynecology, The Sixth People's Hospital of Chengdu, Chengdu 610051
| | - 宝宝 魏
- 成都中医药大学附属医院妇科,四川 成都 610075Department of Gynecology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - 洁 刘
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 悦华 王
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 辉 刘
- 四川大学 华西第二医院妇产科,四川 成都 610041Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu 610041, China
- 四川大学 出生缺陷与相关妇儿疾病教育部重点实验室,四川 成都 610041Key Laboratory of Birth Defects and Related Gynecological Diseases of the Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Kumar S, Fairmichael C, Longley DB, Turkington RC. The Multiple Roles of the IAP Super-family in cancer. Pharmacol Ther 2020; 214:107610. [PMID: 32585232 DOI: 10.1016/j.pharmthera.2020.107610] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/16/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
The Inhibitor of Apoptosis proteins (IAPs) are a family of proteins that are mainly known for their anti-apoptotic activity and ability to directly bind and inhibit caspases. Recent research has however revealed that they have extensive roles in governing numerous other cellular processes. IAPs are known to modulate ubiquitin (Ub)-dependent signaling pathways through their E3 ligase activity and influence activation of nuclear factor κB (NF-κB). In this review, we discuss the involvement of IAPs in individual hallmarks of cancer and the current status of therapies targeting these critical proteins.
Collapse
Affiliation(s)
- Swati Kumar
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Ciaran Fairmichael
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Daniel B Longley
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom
| | - Richard C Turkington
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, United Kingdom.
| |
Collapse
|
6
|
Wu Q, Berglund AE, Wang D, MacAulay RJ, Mulé JJ, Etame AB. Paradoxical epigenetic regulation of XAF1 mediates plasticity towards adaptive resistance evolution in MGMT-methylated glioblastoma. Sci Rep 2019; 9:14072. [PMID: 31575897 PMCID: PMC6773736 DOI: 10.1038/s41598-019-50489-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Epigenetic regulation of O6-alkylguanine DNA alkyltransferase (MGMT) is surrogate of intrinsic resistance to temozolomide (TMZ). However, mechanisms associated with adaptive resistance evolution of glioblastoma (GBM) relative to MGMT methylation remain unclear. We hereby report a paradoxical yet translational epigenetic regulation of plasticity towards adaptive resistance in GBM. Based on an adaptive resistance model of GBM cells with differential MGMT methylation profiles, MGMT-hypermethylation enhanced genetic and phenotypic plasticity towards adaptive resistance to TMZ while MGMT hypomethylation limited plasticity. The resulting model-associated adaptive resistance gene signature negatively correlated with GBM patient survival. XAF1, a tumor suppressor protein, paradoxically emerged as a mediator of differential plasticities towards adaptive resistance to TMZ through epigenetic regulation. XAF1 promoted resistance both in-vitro and in-vivo. Furthermore, XAF1 expression negatively correlated with XAF1 promoter methylation status, and negatively correlate with GBM patient survival. Collectively, XAF1 appears to have a pradoxical yet translational role in GBM.
Collapse
Affiliation(s)
- Qiong Wu
- Departments of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Anders E Berglund
- Departments of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Dapeng Wang
- Departments of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Robert J MacAulay
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - James J Mulé
- Departments of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Arnold B Etame
- Departments of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
7
|
Jiang X, Zhang N, Yin L, Zhang WL, Han F, Liu WB, Chen HQ, Cao J, Liu JY. A commercial Roundup® formulation induced male germ cell apoptosis by promoting the expression of XAF1 in adult mice. Toxicol Lett 2018; 296:163-172. [PMID: 29908847 DOI: 10.1016/j.toxlet.2018.06.1067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 01/04/2023]
Abstract
Roundup® is extensively used for weed control worldwide. Residues of this compound may lead to side effects of the male reproductive system. However, the toxic effects and mechanisms of Roundup® of male germ cells remain unclear. We aimed to investigate the apoptosis-inducing effects of Roundup® on mouse male germ cells and explore the role of a novel tumor suppressor XAF1 (X-linked inhibitor of apoptosis-associated factor 1) involved in this process. We demonstrated that Roundup® can impair spermatogenesis, decrease sperm motility and concentration, and increase the sperm deformity rate in mice. In addition, excessive apoptosis of germ cells accompanied by the overexpression of XAF1 occurred after Roundup® exposure both in vitro and in vivo. Furthermore, the low expression of XIAP (X-linked inhibitor of apoptosis) induced by Roundup® was inversely correlated with XAF1. Moreover, the knockdown of XAF1 attenuated germ cell apoptosis, improved XIAP expression and inhibited the activation of its downstream target proteins, caspase-3 and PARP, after Roundup® exposure. Taken together, our data indicated that XAF1 plays an important role in Roundup®-induced male germ cell apoptosis. The present study suggested that Roundup® exposure has potential negative implications on male reproductive health in mammals.
Collapse
Affiliation(s)
- Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Ning Zhang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Wen-Long Zhang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, PR China.
| |
Collapse
|
8
|
Jiang X, Yin L, Zhang N, Han F, Liu WB, Zhang X, Chen HQ, Cao J, Liu JY. Bisphenol A induced male germ cell apoptosis via IFNβ-XAF1-XIAP pathway in adult mice. Toxicol Appl Pharmacol 2018; 355:247-256. [PMID: 30017639 DOI: 10.1016/j.taap.2018.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/06/2023]
|
9
|
Abstract
Inhibitor of apoptosis (IAP) family comprises a group of endogenous proteins that function as main regulators of caspase activity and cell death. They are considered the main culprits in evasion of apoptosis, which is a fundamental hallmark of carcinogenesis. Overexpression of IAP proteins has been documented in various solid and hematological malignancies, rendering them resistant to standard chemotherapeutics and radiation therapy and conferring poor prognosis. This observation has urged their exploitation as therapeutic targets in cancer with promising pre-clinical outcomes. This review describes the structural and functional features of IAP proteins to elucidate the mechanism of their anti-apoptotic activity. We also provide an update on patterns of IAP expression in different tumors, their impact on treatment response and prognosis, as well as the emerging investigational drugs targeting them. This aims at shedding the light on the advances in IAP targeting achieved to date, and encourage further development of clinically applicable therapeutic approaches.
Collapse
Affiliation(s)
- Mervat S Mohamed
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Chemistry, Biochemistry Speciality, Faculty of Science, Cairo University, Giza, Egypt.
- , Tabuk, Kingdom of Saudi Arabia.
| | - Mai K Bishr
- Department of Radiotherapy, Children's Cancer Hospital Egypt (CCHE), Cairo, Egypt
| | - Fahad M Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ayat G Ali
- Department of Biochemistry, El Sahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
10
|
Choo Z, Koh RYL, Wallis K, Koh TJW, Kuick CH, Sobrado V, Kenchappa RS, Loh AHP, Soh SY, Schlisio S, Chang KTE, Chen ZX. XAF1 promotes neuroblastoma tumor suppression and is required for KIF1Bβ-mediated apoptosis. Oncotarget 2018; 7:34229-39. [PMID: 27097110 PMCID: PMC5085151 DOI: 10.18632/oncotarget.8748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
Neuroblastoma is an aggressive, relapse-prone childhood tumor of the sympathetic nervous system. Current treatment modalities do not fully exploit the genetic basis between the different molecular subtypes and little is known about the targets discovered in recent mutational and genetic studies. Neuroblastomas with poor prognosis are often characterized by 1p36 deletion, containing the kinesin gene KIF1B. Its beta isoform, KIF1Bβ, is required for NGF withdrawal-dependent apoptosis, mediated by the induction of XIAP-associated Factor 1 (XAF1). Here, we showed that XAF1 low expression correlates with poor survival and disease status. KIF1Bβ deletion results in loss of XAF1 expression, suggesting that XAF1 is indeed a downstream target of KIF1Bβ. XAF1 silencing protects from NGF withdrawal and from KIF1Bβ-mediated apoptosis. Overexpression of XAF1 impairs tumor progression whereas knockdown of XAF1 promotes tumor growth, suggesting that XAF1 may be a candidate tumor suppressor in neuroblastoma and its associated pathway may be important for developing future interventions.
Collapse
Affiliation(s)
- Zhang'e Choo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, S117597, Singapore, Singapore
| | - Rachel Yu Lin Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, S117597, Singapore, Singapore
| | - Karin Wallis
- Ludwig Cancer Research (Stockholm), Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Timothy Jia Wei Koh
- School of Life Sciences and Technology, Ngee Ann Polytechnic, S599489, Singapore, Singapore
| | - Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, S299899, Singapore
| | - Veronica Sobrado
- Ludwig Cancer Research (Stockholm), Karolinska Institutet, SE-17177, Stockholm, Sweden
| | | | - Amos Hong Pheng Loh
- Department of Paediatric Surgery, KK Women's and Children's Hospital, S299899, Singapore, Singapore
| | - Shui Yen Soh
- Department of Paediatric Hematology/Oncology, KK Women's and Children's Hospital, S299899, Singapore, Singapore
| | - Susanne Schlisio
- Ludwig Cancer Research (Stockholm), Karolinska Institutet, SE-17177, Stockholm, Sweden.,Department of Microbiology and Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, S299899, Singapore
| | - Zhi Xiong Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, S117597, Singapore, Singapore
| |
Collapse
|
11
|
Höhn A, Krüger K, Skowron MA, Bormann S, Schumacher L, Schulz WA, Hoffmann MJ, Niegisch G, Fritz G. Distinct mechanisms contribute to acquired cisplatin resistance of urothelial carcinoma cells. Oncotarget 2018; 7:41320-41335. [PMID: 27191498 PMCID: PMC5173062 DOI: 10.18632/oncotarget.9321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/22/2016] [Indexed: 12/12/2022] Open
Abstract
Cisplatin (CisPt) is frequently used in the therapy of urothelial carcinoma (UC). Its therapeutic efficacy is limited by inherent or acquired drug resistance. Here, we comparatively investigated the CisPt-induced response of two different parental urothelial carcinoma cell lines (RT-112, J-82) with that of respective drug resistant variants (RT-112R, J-82R) obtained upon month-long CisPt selection. Parental RT-112 cells were ~2.5 fold more resistant to CisPt than J-82 cells and showed a different expression pattern of CisPt-related resistance factors. CisPt resistant RT-112R and J-82R variants revealed a 2–3-fold increased CisPt resistance as compared to their corresponding parental counterparts. Acquired CisPt resistance was accompanied by morphological alterations resembling epithelial mesenchymal transition (EMT). RT-112R cells revealed lower apoptotic frequency and more pronounced G2/M arrest following CisPt exposure than RT-112 cells, whereas no differences in death induction were observed between J-82 and J-82R cells. CisPt resistant J-82R cells however were characterized by a reduced formation of CisPt-induced DNA damage and related DNA damage response (DDR) as compared to J-82 cells. Such difference was not observed between RT-112R and RT-112 cells. J-82R cells showed an enhanced sensitivity to pharmacological inhibition of checkpoint kinase 1 (Chk1) and, moreover, could be re-sensitized to CisPt upon Chk1 inhibition. Based on the data we suggest that mechanisms of acquired CisPt resistance of individual UC cells are substantially different, with apoptosis- and DDR-related mechanisms being of particular relevance. Moreover, the findings indicate that targeting of Chk1 might be useful to overcome acquired CisPt resistance of certain subtypes of UC.
Collapse
Affiliation(s)
- Annika Höhn
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katharina Krüger
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Margaretha A Skowron
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Stefanie Bormann
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lena Schumacher
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Michèle J Hoffmann
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
12
|
Epigenetic silencing of XAF1 in high-grade gliomas is associated with IDH1 status and improved clinical outcome. Oncotarget 2017; 8:15071-15084. [PMID: 28122345 PMCID: PMC5362468 DOI: 10.18632/oncotarget.14748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/10/2017] [Indexed: 01/26/2023] Open
Abstract
XAF1 (X-linked inhibitor of apoptosis (XIAP)-associated factor 1) is a tumor suppressor that counteracts the anti-apoptotic effects of XIAP and can sensitize cells to cell death triggering events. XAF1 knockdown abrogated the temozolomide (TMZ)-induced G2-arrest and prevented TMZ-induced apoptosis in the glioblastoma (GB) cell line LN229. Promoter methylation of XAF1 was found to be inversely correlated with mRNA expression in GB cells. We analyzed XAF1 methylation in a panel of 16 GB cell lines and 80 patients with first-diagnosed WHO grade III/IV high-grade gliomas using methylation-sensitive high-resolution melt (MS-HRM) analysis. In those patients, XAF1 promoter methylation was strongly associated with enhanced progression free and overall survival. Interestingly, XAF1 promoter methylation was strictly correlated with the occurrence of IDH1 mutations, indicating a causal link to the IDH1 mutant phenotype. XAF1 methylation was observed in 18 grade III tumors all of which showed heterozygous mutations in the IDH1 gene. 17 harbored a mutation leading to an arginine > histidine (R132H) and one carried a mutation causing an arginine > glycine (R132G) substitution. Furthermore, six out of six recurrent and IDH1 mutated grade III tumors also showed XAF1 promoter methylation. The data demonstrate that XAF1 promoter methylation determined by MS-HRM is a robust and precise indicator of IDH1 mutations in grade III gliomas. It is useful for complementing the immunohistochemistry-based detection of mutant IDH, uncovering rare 2-HG-producing IDH1 and potentially IDH2 mutations. The MS-HRM-based detection of XAF1 methylation could therefore be a reliable tool in assisting the sub-classification of high-grade gliomas.
Collapse
|
13
|
Liao X, Huang K, Huang R, Liu X, Han C, Yu L, Yu T, Yang C, Wang X, Peng T. Genome-scale analysis to identify prognostic markers in patients with early-stage pancreatic ductal adenocarcinoma after pancreaticoduodenectomy. Onco Targets Ther 2017; 10:4493-4506. [PMID: 28979141 PMCID: PMC5602474 DOI: 10.2147/ott.s142557] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Molecular analysis is a promising source of clinically useful prognostic biomarkers. The aim of this investigation was to identify prognostic biomarkers for patients with early-stage pancreatic ductal adenocarcinoma (PDAC) after pancreaticoduodenectomy. METHODS An RNA sequencing dataset of PDAC was obtained from The Cancer Genome Atlas. Survival analysis and weighted gene co-expression network analysis were used to investigate the prognostic markers of early-stage PDAC after pancreaticoduodenectomy. RESULTS Using whole genome expression level screening, we identified 1,238 markers that were related to the prognosis of PDAC after pancreaticoduodenectomy, and identified 9 hub genes (ARHGAP30, HCLS1, CD96, FAM78A, ARHGAP15, SLA2, CD247, GVINP1, and IL16) using the weighted gene co-expression network analysis approach. We also constructed a signature comprising the 9 hub genes and weighted by the regression coefficient derived from a multivariate Cox proportional hazards regression model to divide patients into a high-risk group, with increased risk of death, and a low-risk group, with significantly improved overall survival (adjusted P=0.026, adjusted HR =0.513, 95% CI =0.285-0.924). The prognostic signature of the 9 genes demonstrated good performance for predicting 1-year overall survival (area under the respective receiver operating characteristic curves =0.641). CONCLUSION Our results have provided a new prospect for prognostic biomarkers of PDAC after pancreaticoduodenectomy, and may have a value in clinical application.
Collapse
Affiliation(s)
- Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University
| |
Collapse
|
14
|
Schluckebier L, Aran V, De Moraes J, Paiva H, Sternberg C, Ferreira CG. XAF1 expression levels in a non-small cell lung cancer cohort and its potential association with carcinogenesis. Oncol Rep 2017; 38:402-410. [PMID: 28560416 DOI: 10.3892/or.2017.5680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
The process of lung carcinogenesis is still not well understood and involves different levels of regulation of several genes. The search for molecular biomarkers, which can be applicable to clinical practice, has been the focus of various studies. XIAP-associated factor 1 (XAF1) was previously shown to be downregulated in many types of tumors, including squamous cell lung cancer. XAF1 is a pro-apoptotic protein and its restoration was found to sensitize cancer cells to apoptotic stimuli; however, the precise mechanism involved in the downregulation of XAF1 in tumors is unknown and promoter hypermethylation or heat-shock transcription factor 1 (HSF1) may be involved. Therefore, the aim of the present study was to evaluate the expression of XAF1 in tumors and adjacent non-tumor specimens from non-small cell lung cancer (NSCLC) patients, and its potential association with various factors including clinicopathological characteristics and other genes involved in NSCLC. Our results indicated that XAF1 expression was markedly altered in NSCLC tumor samples when compared to that found in normal lung tissues. Predominantly, XAF1 was downregulated in the tumors, except in never-smoker patients. In addition, XAF1 may also be important in the whole cell stress mechanism where the p53 status is crucial.
Collapse
Affiliation(s)
- Luciene Schluckebier
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Veronica Aran
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Joyce De Moraes
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Heitor Paiva
- Pathology Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Cinthya Sternberg
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Carlos Gil Ferreira
- Clinical Research Division, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Wang Y, Liu P, Wang X, Mao H. Role of X‑linked inhibitor of apoptosis‑associated factor‑1 in vasculogenic mimicry in ovarian cancer. Mol Med Rep 2017; 16:325-330. [PMID: 28534973 DOI: 10.3892/mmr.2017.6597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
Abstract
X-linked inhibitor of apoptosis‑associated factor 1 (XAF1) was identified as a novel X-linked inhibitor of apoptosis (XIAP) binding partner that may reverse the anti‑apoptotic effect of XIAP. Previous studies have revealed that XAF1 serves an important role in cancer angiogenesis. Vasculogenic mimicry (VM) describes the formation of fluid‑conducting channels by highly invasive and genetically dysregulated tumor cells. VM is critical for tumor blood supply and is associated with aggressive actions and metastasis. The aim of present study was to investigate the potential association between XAF1 expression with VM of ovarian cancer, and evaluate the role of XAF1 in tumor cell migration and invasion of SKOV3 cells. VM structure and XAF1 expression were detected in 94 tissue samples of advanced epithelial ovarian cancer (EOC). Invasion and migration of the SKOV3 human ovarian carcinoma cell line were identified by Transwell assay. It was revealed that the presence of VM was associated with high grade advanced ovarian cancer. Reduced XAF1 expression was significantly associated with presence of VM. Overexpression of XAF1 significantly reduced invasion and migration of SKOV3 cells, and inhibited vascular endothelial growth factor protein expression. Furthermore, vasculature was suppressed by overexpression of XAF1 in vivo in xenograft models. In conclusion, XAF1 expression was associated with VM in ovarian cancer, suggesting a potential role of XAF1 in the formation of VM in EOC. These findings may facilitate the development of novel therapeutic agents for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Peishu Liu
- Department of Obstetrics and Gynaecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xietong Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hongluan Mao
- Department of Obstetrics and Gynaecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
16
|
Iravani O, Bay BH, Yip GWC. Silencing HS6ST3 inhibits growth and progression of breast cancer cells through suppressing IGF1R and inducing XAF1. Exp Cell Res 2016; 350:380-389. [PMID: 28017727 DOI: 10.1016/j.yexcr.2016.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 01/06/2023]
Abstract
Heparan sulfate 6-O-sulfation is biologically edited by 6-O-sulfotransferases (HS6STs) within heparan sulfate chains. Three isoforms of HS6ST have been identified. These enzymes are found to be differentially expressed in a variety of tissues. Recently, several studies have shown that dysregulation of 6-O-sulfotransferases could be involved in tumorigenesis of several cancers. This study aimed to analyze the expression and function of HS6ST3 in breast cancer. HS6ST3 was found up-regulated in T47D, MCF7 and MDA-MB231 breast cancer cell lines. HS6ST3 was then silenced in T47D and MCF7 using siRNA. Silencing HS6ST3 diminished tumor cell growth, migration and invasion, but enhanced cell adhesion and apoptosis in breast cancer. Gene microarray analysis revealed that silencing HS6ST3 significantly changed the expression of IGF1R and XAF1 in breast cancer cells. Further functional studies showed that the cellular processes were mediated by IGF1R and XAF1 after silencing HS6ST3 in breast cancer cells. Together these results indicate that HS6ST3 might be involved in the tumorigenesis of breast cancer and it could be a promising target in breast cancer therapy.
Collapse
Affiliation(s)
- Omid Iravani
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - George Wai-Cheong Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
17
|
Lei Y, Zhang B, Zhang Y, Zhao Y, Sun J, Zhang X, Yang S. Lentivirus-mediated downregulation of MAT2B inhibits cell proliferation and induces apoptosis in melanoma. Int J Oncol 2016; 49:981-90. [PMID: 27573889 DOI: 10.3892/ijo.2016.3603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/31/2016] [Indexed: 11/06/2022] Open
Abstract
Malignant melanoma is the most lethal of skin cancers and its pathogenesis is complex and heterogeneous. The efficacy of conventional therapeutic regimens for melanoma remains limited. Thus, it is important to explore novel effective therapeutic targets in the treatment of melanoma. The MAT2B gene encodes for the regulatory subunit of methionine adenosyltransferase (MAT). Recent studies have suggested that MAT2B may have functional roles other than modulating catalytic activity of MAT. In order to identify the roles of MAT2B in the tumorigenesis of malignant melanoma, we compared MAT2B expression profile in melanoma tissues with that in benign nevus samples. We employed lentivirus-mediated RNAi to downregulate the expression of MAT2B in malignant melanoma cell lines (A375 and Mel-RM), and investigated the effects of MAT2B on cell growth, colony-formation ability and apoptosis in vitro, as well as tumor growth of a xenograft model in vivo. The expression levels of BCL2 and XAF1 proteins, which were closely related to tumor cell apoptosis, were analyzed by western blot analysis. Our data showed that MAT2B was elevated in both primary and metastatic melanoma tissues compared with benign nevus samples. Lentivirus-mediated downregulation of MAT2B suppressed cell growth, colony formation and induced apoptosis in A375 and Mel-RM cell lines in vitro, affected protein expression of BCL2 and XAF1, extended the transplanted tumor growth in vivo. These results indicated that MAT2B was critical in the proliferation of melanoma cells and tumorigenicity. It may be considered as a potential anti-melanoma therapeutic target.
Collapse
Affiliation(s)
- Yu Lei
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Bo Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Yaohua Zhang
- Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yuan Zhao
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jingying Sun
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Sen Yang
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
18
|
Salah FS, Ebbinghaus M, Muley VY, Zhou Z, Al-Saadi KRD, Pacyna-Gengelbach M, O'Sullivan GA, Betz H, König R, Wang ZQ, Bräuer R, Petersen I. Tumor suppression in mice lacking GABARAP, an Atg8/LC3 family member implicated in autophagy, is associated with alterations in cytokine secretion and cell death. Cell Death Dis 2016; 7:e2205. [PMID: 27124579 PMCID: PMC4855672 DOI: 10.1038/cddis.2016.93] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
GABARAP belongs to an evolutionary highly conserved gene family that has a fundamental role in autophagy. There is ample evidence for a crosstalk between autophagy and apoptosis as well as the immune response. However, the molecular details for these interactions are not fully characterized. Here, we report that the ablation of murine GABARAP, a member of the Atg8/LC3 family that is central to autophagosome formation, suppresses the incidence of tumor formation mediated by the carcinogen DMBA and results in an enhancement of the immune response through increased secretion of IL-1β, IL-6, IL-2 and IFN-γ from stimulated macrophages and lymphocytes. In contrast, TGF-β1 was significantly reduced in the serum of these knockout mice. Further, DMBA treatment of these GABARAP knockout mice reduced the cellularity of the spleen and the growth of mammary glands through the induction of apoptosis. Gene expression profiling of mammary glands revealed significantly elevated levels of Xaf1, an apoptotic inducer and tumor-suppressor gene, in knockout mice. Furthermore, DMBA treatment triggered the upregulation of pro-apoptotic (Bid, Apaf1, Bax), cell death (Tnfrsf10b, Ripk1) and cell cycle inhibitor (Cdkn1a, Cdkn2c) genes in the mammary glands. Finally, tumor growth of B16 melanoma cells after subcutaneous inoculation was inhibited in GABARAP-deficient mice. Together, these data provide strong evidence for the involvement of GABARAP in tumorigenesis in vivo by delaying cell death and its associated immune-related response.
Collapse
Affiliation(s)
- F S Salah
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany.,Iraqi Centre for Cancer and Medical Genetics Research, Al-Mustansiriya University, Baghdad, Iraq
| | - M Ebbinghaus
- Institute of Physiology 1, University Hospital - Friedrich Schiller University Jena, Teichgraben 8, Jena D-07743, Germany
| | - V Y Muley
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11, Jena D-07745, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, Jena D-07747, Germany
| | - Z Zhou
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena D-07745, Germany
| | - K R D Al-Saadi
- Iraqi Centre for Cancer and Medical Genetics Research, Al-Mustansiriya University, Baghdad, Iraq
| | - M Pacyna-Gengelbach
- Institute of Pathology, University Medicine Berlin, Campus Charité Mitte, Berlin D-10098, Germany
| | - G A O'Sullivan
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Deutschordenstrasse 46, Frankfurt D-60528, Germany
| | - H Betz
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Deutschordenstrasse 46, Frankfurt D-60528, Germany.,Max-Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg D-69120, Germany
| | - R König
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11, Jena D-07745, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, Jena D-07747, Germany
| | - Z-Q Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena D-07745, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Bachstrasse 18k, Jena D-07743, Germany
| | - R Bräuer
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany
| | - I Petersen
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany
| |
Collapse
|
19
|
PARK GABIN, PARK SANGHYUN, KIM DAEJIN, KIM YEONGSEOK, YOON SUNGHO, HUR DAEYOUNG. Berberine induces mitochondrial apoptosis of EBV-transformed B cells through p53-mediated regulation of XAF1 and GADD45α. Int J Oncol 2016; 49:411-21. [DOI: 10.3892/ijo.2016.3502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/06/2016] [Indexed: 11/06/2022] Open
|
20
|
Li K, Li X, Wu Z, Zheng L, Cui Y, Wang J, Huang Y, Yan Z. Adenovirus encoding XAF-1 and TNF‑α in the same open reading frame efficiently inhibits hepatocellular cancer cells. Mol Med Rep 2016; 13:5169-76. [PMID: 27121136 DOI: 10.3892/mmr.2016.5193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/03/2016] [Indexed: 11/06/2022] Open
Abstract
X‑linked inhibitor of apoptosis (XIAP)‑associated factor 1 (XAF‑1), a tumor suppressor, is downregulated in most human malignant tumors. However, the tumor suppressive role of XAF‑1 in hepatocellular carcinoma (HCC) and its therapeutic value require further elucidation. The present study examined the expression of XAF‑1 at the mRNA and protein level in the HCC and paired peritumor tissue specimens, as well as in HCC cell lines and a normal liver cell line. A recombinant adenovirus which co‑expressed XAF‑1 and TNF‑α was then constructed, and its effects on the proliferation and colony formation ability of the MHCC97H HCC cell line were assessed using apoptosis induction, flow cytometry, trypan blue staining assay and a clonogenic assay. The results demonstrated that the expression of XAF‑1 was significantly reduced in HCC tissues compared with that in their matched peritumor specimens, and a significant correlation with the tumor size, stage and tumor ‑ nodes ‑ metastasis stage was identified. The reduced levels of XAF‑1 were further confirmed the HCC cell lines MHCC97L, HepG2 and MHCC97H compared with those in the L02 normal liver cell line. The recombinant adenovirus Ad‑XAF‑1&TNF‑α, which co‑expressed XAF‑1 and TNF‑α, was shown to efficiently express the two proteins at the mRNA and protein level. Furthermore, infection with Ad‑XAF‑1&TNF‑α synergistically induced apoptosis, reduced the proliferation and colony formation ability of MHCC97L cells to a significantly greater extent than overexpression of XAF‑1 or TNF‑α individually. To the best of our knowledge, the present study was the first to construct an adenovirus which co‑expressed XAF‑1 and TNF‑α in the same open reading frame and expressed them proportionally. As Ad‑XAF‑1&TNF‑α inhibited HCC cells with enhanced efficiency, it may be applicable for the treatment of HCC.
Collapse
Affiliation(s)
- Kai Li
- Department of Hepatobiliary Surgery, Hepatobiliary Treatment Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xinhong Li
- Department of Medicine, First Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, Hepatobiliary Treatment Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liansheng Zheng
- Department of Surgical Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia 014030, P.R. China
| | - Yuqin Cui
- Department of Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia 014030, P.R. China
| | - Jun Wang
- Department of Pharmacy, Baotou Cancer Hospital, Baotou, Inner Mongolia 014030, P.R. China
| | - Yin Huang
- Department of Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia 014030, P.R. China
| | - Zhihong Yan
- Department of Oncology, Baotou Cancer Hospital, Baotou, Inner Mongolia 014030, P.R. China
| |
Collapse
|
21
|
Kewitz S, Kurch L, Volkmer I, Staege MS. Stimulation of the hypoxia pathway modulates chemotherapy resistance in Hodgkin's lymphoma cells. Tumour Biol 2015; 37:8229-37. [PMID: 26718211 DOI: 10.1007/s13277-015-4705-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/20/2015] [Indexed: 12/18/2022] Open
Abstract
Hodgkin's lymphoma (HL) is a malignant disease of the lymphatic system. The therapy has been improved during the last decades but there are still patients who cannot be cured, and the therapy is associated with several adverse late effects. Therefore, we asked which genes might be involved in the chemotherapy resistance of HL cells. We observed that HL cells became more resistant against cisplatin after treatment with cobalt chloride. Therefore, we analyzed which genes were differentially expressed between cells incubated in medium with or without cobalt chloride. We found several genes which were up- or downregulated in the presence of cobalt chloride and might be involved in the modulation of chemotherapy resistance. Cobalt chloride is a hypoxia-mimetic agent. Therefore, we tested chemo-resistance and gene expression of HL cells under hypoxic conditions and confirmed the results from the cobalt chloride experiments. Taken together, activation of the hypoxia pathway led to altered gene expression and drug resistance of HL cells. Differentially expressed genes might be interesting targets for the development of future treatment strategies against drug-resistant HL.
Collapse
Affiliation(s)
- Stefanie Kewitz
- Department of Pediatrics, Martin Luther University Halle-Wittenberg, Halle, 06097, Germany.
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University Giessen, Feulgenstr. 12, Giessen, 35392, Germany.
| | - Lars Kurch
- Department of Nuclear Medicine, University Hospital of Leipzig, Leipzig, 04109, Germany
| | - Ines Volkmer
- Department of Pediatrics, Martin Luther University Halle-Wittenberg, Halle, 06097, Germany
| | - Martin S Staege
- Department of Pediatrics, Martin Luther University Halle-Wittenberg, Halle, 06097, Germany
| |
Collapse
|
22
|
Victoria-Acosta G, Vazquez-Santillan K, Jimenez-Hernandez L, Muñoz-Galindo L, Maldonado V, Martinez-Ruiz GU, Melendez-Zajgla J. Epigenetic silencing of the XAF1 gene is mediated by the loss of CTCF binding. Sci Rep 2015; 5:14838. [PMID: 26443201 PMCID: PMC4595840 DOI: 10.1038/srep14838] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022] Open
Abstract
XAF1 is a tumour suppressor gene that compromises cell viability by modulating different cellular events such as mitosis, cell cycle progression and apoptosis. In cancer, the XAF1 gene is commonly silenced by CpG-dinucleotide hypermethylation of its promoter. DNA demethylating agents induce transcriptional reactivation of XAF1, sensitizing cancer cells to therapy. The molecular mechanisms that mediate promoter CpG methylation have not been previously studied. Here, we demonstrate that CTCF interacts with the XAF1 promoter in vivo in a methylation-sensitive manner. By transgene assays, we demonstrate that CTCF mediates the open-chromatin configuration of the XAF1 promoter, inhibiting both CpG-dinucleotide methylation and repressive histone posttranslational modifications. In addition, the absence of CTCF in the XAF1 promoter inhibits transcriptional activation induced by well-known apoptosis activators. We report for the first time that epigenetic silencing of the XAF1 gene is a consequence of the loss of CTCF binding.
Collapse
Affiliation(s)
- Georgina Victoria-Acosta
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, Mexico
| | | | - Luis Jimenez-Hernandez
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, México
| | - Laura Muñoz-Galindo
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, México
| | - Vilma Maldonado
- Epigenetics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, México
| | - Gustavo Ulises Martinez-Ruiz
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, Mexico.,Unit of Investigative Research on Oncological Disease, Children's Hospital of Mexico "Federico Gomez", Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Functional Cancer Genomics Laboratory, National Institute of Genomic Medicine, Mexico D.F., 14610, Mexico
| |
Collapse
|
23
|
Hatakeyama K, Yamakawa Y, Fukuda Y, Ohshima K, Wakabayashi-Nakao K, Sakura N, Tanizawa Y, Kinugasa Y, Yamaguchi K, Terashima M, Mochizuki T. A novel splice variant of XIAP-associated factor 1 (XAF1) is expressed in peripheral blood containing gastric cancer-derived circulating tumor cells. Gastric Cancer 2015; 18:751-61. [PMID: 25216542 DOI: 10.1007/s10120-014-0426-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND XIAP-associated factor 1 (XAF1) is ubiquitously expressed in normal tissues, but its suppression in cancer cells is strongly associated with tumor progression. Although downregulation of XAF1 is observed in tumors, its expression profile in the peripheral blood of cancer patients has not yet been investigated. Here, we identified a novel XAF1 splice variant in cancer cells and then investigated the expression level of this variant in peripheral blood containing gastric cancer-derived circulating tumor cells (CTCs). METHODS To identify splice variants, RT-PCR and DNA sequencing were performed in mRNAs extracted from many cancer cells. We then carried out quantitative RT-PCR to investigate expression in peripheral blood from all 96 gastric cancer patients and 22 healthy volunteers. RESULTS The XAF1 variant harbored a premature termination codon (PTC) and was differentially expressed in highly metastatic cancer cells versus the parental cells, and that nonsense-mediated mRNA decay (NMD) was suppressed in the variant-expressing cells. Furthermore, splice variants of XAF1 were upregulated in peripheral blood containing CTCs. In XAF1 variant-expressing patients, the expression levels of other NMD-targeted genes also increased, suggesting that the NMD pathway was suppressed in CTCs. CONCLUSIONS Our study identified a novel splice variant of XAF1 in cancer cells. This variant was regulated through the NMD pathway and accumulated in NMD-suppressed metastatic cancer cells and peripheral blood containing CTCs. The presence of XAF1 transcripts harboring the PTC in the peripheral blood may be useful as an indicator of NMD inhibition in CTCs.
Collapse
Affiliation(s)
- Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yushi Yamakawa
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, 1077 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yorikane Fukuda
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- G&G Science, Fukushima, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | | | - Naoki Sakura
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yutaka Tanizawa
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, 1077 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | - Yusuke Kinugasa
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| | - Masanori Terashima
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, 1077 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| |
Collapse
|
24
|
Tumor suppressor XAF1 induces apoptosis, inhibits angiogenesis and inhibits tumor growth in hepatocellular carcinoma. Oncotarget 2015; 5:5403-15. [PMID: 24980821 PMCID: PMC4170645 DOI: 10.18632/oncotarget.2114] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), a XIAP-binding protein, is a tumor suppressor gene. XAF1 was silent or expressed lowly in most human malignant tumors. However, the role of XAF1 in hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the effect of XAF1 on tumor growth and angiogenesis in hepatocellular cancer cells. Our results showed that XAF1 expression was lower in HCC cell lines SMMC-7721, Hep G2 and BEL-7404 and liver cancer tissues than that in paired non-cancer liver tissues. Adenovirus-mediated XAF1 expression (Ad5/F35-XAF1) significantly inhibited cell proliferation and induced apoptosis in HCC cells in dose- and time- dependent manners. Infection of Ad5/F35-XAF1 induced cleavage of caspase -3, -8, -9 and PARP in HCC cells. Furthermore, Ad5/F35-XAF1 treatment significantly suppressed tumor growth in a xenograft model of liver cancer cells. Western Blot and immunohistochemistry staining showed that Ad5/F35-XAF1 treatment suppressed expression of vascular endothelial growth factor (VEGF), which is associated with tumor angiogenesis, in cancer cells and xenograft tumor tissues. Moreover, Ad5/F35-XAF1 treatment prolonged the survival of tumor-bearing mice. Our results demonstrate that XAF1 inhibits tumor growth by inducing apoptosis and inhibiting tumor angiogenesis. XAF1 may be a promising target for liver cancer treatment.
Collapse
|
25
|
X-linked inhibitor of apoptosis-associated factor l (XAFl) enhances the sensitivity of colorectal cancer cells to cisplatin. Med Oncol 2014; 31:273. [PMID: 25367849 DOI: 10.1007/s12032-014-0273-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 09/26/2014] [Indexed: 01/05/2023]
Abstract
The purpose of present study was to investigate the roles of X-linked inhibitor of apoptosis-associated factor l (XAFl) in regulation apoptosis of colorectal cancer (CRC) cells after treatment with cisplatin (DDP). A total of ten paired cancerous and non-cancerous tissues were collected from patients with CRC after surgery. The levels of XAFl protein were detected by Western blot. Primary CRC cells were separated from cancer tissues, and its viability or apoptosis after treatment with DDP was determined with MTT or Annexin V/PI assays, respectively. Furthermore, we either up-regulated transfecting a XAF1 overexpression vector or down-regulated XAF1 by siRNA interference. And then, the XAF1 levels and its sensitivity to cisplatin were assessed. XAFl had a lower expression in the cancerous tissues from samples T1, T2 and T3 than their paired non-cancerous tissues N1, N2 and N3. However, the expression of XAF1 was not detected in samples T4 and N1. XAF1 levels in cancer tissues significantly decreased in comparison with normal tissues. Cell abilities of primary cells were significantly decreased in a dose-dependent manner, after treatment with a series concentrations of cisplatin (2, 5, 10 μg/mL) for 48 h. Although, after down-expression of XAFl by siRNA, cisplatin caused a significant decreases in apoptosis rates in CRC cells. The up-regulation of XAF1 distinctly increased apoptosis in CRC cells administered by cisplatin (P < 0.001). The XAFl could promoted apoptosis and enhanced chemotherapy sensitivity to cisplatin in CRC cells.
Collapse
|
26
|
He XY, Yuan YZ. Advances in pancreatic cancer research: Moving towards early detection. World J Gastroenterol 2014; 20:11241-11248. [PMID: 25170208 PMCID: PMC4145762 DOI: 10.3748/wjg.v20.i32.11241] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 03/02/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer. Substantial progress has been made in the understanding of the biology of pancreatic cancer, and advances in patient management have been significant. However, most patients (nearly 80%) who present with locally advanced or metastatic disease have an extremely poor prognosis. Survival is better for those with malignant disease localized to the pancreas, because surgical resection at present offers the only chance of cure. Therefore, the early detection of pancreatic cancer may benefit patients with PDAC. However, its low rate of incidence and the limitations of current screening strategies make early detection difficult. Recent advances in the understanding of the pathogenesis of PDAC suggest that it is possible to detect PDAC in early stages and even identify precursor lesions. The presence of new-onset diabetes mellitus in the early phase of pancreatic cancer may provide clues for its early diagnosis. Advances in the identification of novel circulating biomarkers including serological signatures, autoantibodies, epigenetic markers, circulating tumor cells and microRNAs suggest that they can be used as potential tools for the screening of precursors and early stage PDAC in the future. However, proper screening strategies based on effective screening methodologies need to be tested for clinical application.
Collapse
|
27
|
Gala MK, Mizukami Y, Le LP, Moriichi K, Austin T, Yamamoto M, Lauwers GY, Bardeesy N, Chung DC. Germline mutations in oncogene-induced senescence pathways are associated with multiple sessile serrated adenomas. Gastroenterology 2014; 146:520-9. [PMID: 24512911 PMCID: PMC3978775 DOI: 10.1053/j.gastro.2013.10.045] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Little is known about the genetic factors that contribute to the development of sessile serrated adenomas (SSAs). SSAs contain somatic mutations in BRAF or KRAS early in development. However, evidence from humans and mouse models indicates that these mutations result in oncogene-induced senescence (OIS) of intestinal crypt cells. Progression to serrated neoplasia requires cells to escape OIS via inactivation of tumor suppressor pathways. We investigated whether subjects with multiple SSAs carry germline loss-of function mutations (nonsense and splice site) in genes that regulate OIS: the p16-Rb and ATM-ATR DNA damage response pathways. METHODS Through a bioinformatic analysis of the literature, we identified a set of genes that function at the main nodes of the p16-Rb and ATM-ATR DNA damage response pathways. We performed whole-exome sequencing of 20 unrelated subjects with multiple SSAs; most had features of serrated polyposis. We compared sequences with those from 4300 subjects matched for ethnicity (controls). We also used an integrative genomics approach to identify additional genes involved in senescence mechanisms. RESULTS We identified mutations in genes that regulate senescence (ATM, PIF1, TELO2,XAF1, and RBL1) in 5 of 20 subjects with multiple SSAs (odds ratio, 3.0; 95% confidence interval, 0.9–8.9; P =.04). In 2 subjects,we found nonsense mutations in RNF43, indicating that it is also associated with multiple serrated polyps (odds ratio, 460; 95% confidence interval, 23.1–16,384; P = 6.8 x 10(-5)). In knockdown experiments with pancreatic duct cells exposed to UV light, RNF43 appeared to function as a regulator of ATMATRDNA damage response. CONCLUSIONS We associated germline loss-of-function variants in genes that regulate senescence pathways with the development of multiple SSAs.We identified RNF43 as a regulator of the DNA damage response and associated nonsense variants in this gene with a high risk of developing SSAs.
Collapse
Affiliation(s)
- Manish K. Gala
- Massachusetts General Hospital Department of Medicine, G.I. Unit and Harvard Medical School, Boston, MA
| | - Yusuke Mizukami
- Massachusetts General Hospital Department of Medicine, G.I. Unit and Harvard Medical School, Boston, MA,Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA,Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
| | - Long P. Le
- Massachusetts General Hospital Department of Pathology and Harvard Medical School, Boston, MA
| | - Kentaro Moriichi
- Massachusetts General Hospital Department of Medicine, G.I. Unit and Harvard Medical School, Boston, MA
| | - Thomas Austin
- Massachusetts General Hospital Department of Medicine, G.I. Unit and Harvard Medical School, Boston, MA
| | - Masayoshi Yamamoto
- Massachusetts General Hospital Department of Medicine, G.I. Unit and Harvard Medical School, Boston, MA
| | - Gregory Y. Lauwers
- Massachusetts General Hospital Department of Pathology and Harvard Medical School, Boston, MA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| | - Daniel C. Chung
- Massachusetts General Hospital Department of Medicine, G.I. Unit and Harvard Medical School, Boston, MA,Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Park GB, Kim YS, Kim D, Kim S, Lee HK, Cho DH, Lee WJ, Hur DY. Melphalan-induced apoptosis of EBV-transformed B cells through upregulation of TAp73 and XAF1 and nuclear import of XPA. THE JOURNAL OF IMMUNOLOGY 2013; 191:6281-91. [PMID: 24249729 DOI: 10.4049/jimmunol.1203442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Melphalan (Mel) is widely used to treat patients with hematologic cancer, including multiple myeloma, but its mechanism of action in EBV-transformed B cells is poorly described. In this study, we demonstrate a novel mechanism by which transcriptionally active p73 (TAp73) induces translocation of X-linked inhibitor of apoptosis protein-associated factor 1 (XAF1) and xeroderma pigmentosum group A (XPA) during apoptosis caused by Mel treatment. We observed that Mel induced significant generation of reactive oxygen species (ROS) and subsequent apoptosis, as well as an early phosphorylation of p38 MAPK that preceded expression of the mitochondria membrane potential disruption-related molecules and the cleavage of caspases. In particular, Mel led to upregulation of TAp73, XAF1, and Puma and induced XPA nuclear import and translocation of Bax into mitochondria. Mel-induced apoptosis was inhibited by pretreatment with the ROS scavenger 4-amino-2,4-pyrrolidine-dicarboxylic acid (APDC) and the p38 MAPK inhibitor SB203580. We supposed that ROS generation might be the first event in Mel-induced apoptosis, because APDC blocked the increase in ROS, p38 MAPK, and TAp73, but SB203580 did not block ROS generation. Moreover, Mel elicited activation of ATR, and APDC inhibited phosphorylation of ATR but not SB203580. APDC and SB203580 completely blocked XPA and Bax translocation. We conclude that Mel promotes TAp73-mediated XAF1 and Puma expression via ROS generation and ATR/p38 MAPK pathway activation, thereby triggering apoptosis. Our results provide evidence of a novel alternate regulatory mechanism of TAp73 and reveal that Mel may be a therapeutic drug for curing EBV-related malignancies.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
IAPs on the move: role of inhibitors of apoptosis proteins in cell migration. Cell Death Dis 2013; 4:e784. [PMID: 24008728 PMCID: PMC3789170 DOI: 10.1038/cddis.2013.311] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 01/06/2023]
Abstract
Inhibitors of Apoptosis Proteins (IAPs) are a class of highly conserved proteins predominantly known for the regulation of caspases and immune signaling. However, recent evidence suggests a crucial role for these molecules in the regulation of tumor cell shape and migration by controlling MAPK, NF-κB and Rho GTPases. IAPs directly control Rho GTPases, thus regulating cell shape and migration. For instance, XIAP and cIAP1 function as the direct E3 ubiquitin ligases of Rac1 and target it for proteasomal degradation. IAPs are differentially expressed in tumor cells and have been targeted by several cancer therapeutic drugs that are currently in clinical trials. Here, we summarize the current knowledge on the role of IAPs in the regulation of cell migration and discuss the possible implications of these observations in regulating tumor cell metastases.
Collapse
|
30
|
Lunardi A, Ala U, Epping MT, Salmena L, Clohessy JG, Webster KA, Wang G, Mazzucchelli R, Bianconi M, Stack EC, Lis R, Patnaik A, Cantley LC, Bubley G, Cordon-Cardo C, Gerald WL, Montironi R, Signoretti S, Loda M, Nardella C, Pandolfi PP. A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer. Nat Genet 2013; 45:747-55. [PMID: 23727860 PMCID: PMC3787876 DOI: 10.1038/ng.2650] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/01/2013] [Indexed: 12/14/2022]
Abstract
Here we report an integrated analysis that leverages data from treatment of genetic mouse models of prostate cancer along with clinical data from patients to elucidate new mechanisms of castration resistance. We show that castration counteracts tumor progression in a Pten-loss driven mouse model of prostate cancer through the induction of apoptosis and proliferation block. Conversely, this response is bypassed upon deletion of either Trp53 or Lrf together with Pten, leading to the development of castration resistant prostate cancer (CRPC). Mechanistically, the integrated acquisition of data from mouse models and patients identifies the expression patterns of XAF1-XIAP/SRD5A1 as a predictive and actionable signature for CRPC. Importantly, we show that combined inhibition of XIAP, SRD5A1, and AR pathways overcomes castration resistance. Thus, our co-clinical approach facilitates stratification of patients and the development of tailored and innovative therapeutic treatments.
Collapse
Affiliation(s)
- Andrea Lunardi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Park GB, Choi Y, Kim YS, Lee HK, Kim D, Hur DY. ROS and ERK1/2-mediated caspase-9 activation increases XAF1 expression in dexamethasone-induced apoptosis of EBV-transformed B cells. Int J Oncol 2013; 43:29-38. [PMID: 23685456 PMCID: PMC3742161 DOI: 10.3892/ijo.2013.1949] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/26/2013] [Indexed: 12/01/2022] Open
Abstract
Dexamethasone (Dex) inhibits the growth of diverse types of cancer cells and is utilized clinically for the therapy of hematological malignancies. In this study, we investigated the molecular mechanisms of Dex action in the apoptosis of Epstein-Barr virus (EBV)-transformed B cells. We showed that Dex inhibited the proliferation of EBV-transformed B cells and induced apoptosis by activating caspase-9, -3 and -8. While activation of caspase-9 was triggered as early as 2 h after Dex treatment, cleavage of caspase-8 was deferred and was found 8 h after the exposure. Dex-dependent activation of caspase-8 was blocked by the specific caspase-9 inhibitor, z-LEHD-fmk. Moreover, Dex significantly increased the expression of X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) and induced the translocation of XAF1 into the cytosol. Cytosolic XAF1 with Puma induced the translocation of Bax into mitochondria. Dex led to up-regulation of reactive oxygen species (ROS) generation and the phosphorylation of ERK1/2 after the exposure. We speculated that ROS generation might be the first event of Dex-induced apoptosis because ROS inhibitor NAC abrogated ROS production and ERK1/2 activation, but PD98059 did not block ROS production. NAC and PD98059 also suppressed the translocation of XAF1, Puma and Bax into mitochondria. These results demonstrated that Dex-mediated activation of caspase-9 via ROS generation and ERK1/2 pathway activation resulted in the activation of caspase-8 and the increment of XAF1, thereby induced apoptosis of EBV-transformed B cells. These findings suggest that Dex constitutes a probable therapy for EBV-associated hematological malignancies.
Collapse
Affiliation(s)
- Ga Bin Park
- Department of Anatomy and Research Center for Tumor Immunology, Inje University College of Medicine, Busan 614-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
32
|
Lin Y, Li W. Assessment of XAF1 as A Biomarker to Differentiate Hepatocellular Carcinoma from Nonneoplastic Liver Tissues. Chin J Cancer Res 2013; 24:201-6. [PMID: 23358741 DOI: 10.1007/s11670-012-0201-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/17/2011] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE XIAP-associated factor 1 (XAF1) expression has been shown to be related with apoptosis in hepatocellular carcinoma (HCC). However, the correlation of XAF1 expression with HCC tumor grade has not been intensively assessed. XIAP-associated factor-1 (XAF1) is an important apoptosis inducer in human HCC. The aim of this study is to determine the correlation between XAF1 expression and HCC histopathological grades. METHODS The mRNA levels of XAF1 in 24 paired HCC-nonneoplastic specimens were quantified by real-time reverse transcription PCR (RT-PCR). Protein levels of XAF1 in 110 paired HCC-noncancer tissues were investigated by immunostaining specimens on a tissue microarray (TMA). Correlations between XAF1 mRNA levels or protein expression and clinicopathological features were assessed by statistical analysis. RESULTS Both XAF1 mRNA and protein were significantly under-expressed in HCC tissues compared to their non-neoplastic counterparts. No significant relationship was found between XAF1 mRNA or protein expression and histological tumor grade. CONCLUSION All these data suggest that XAF1 is a potential biomarker for differentiating HCC with noncancerous tissues.
Collapse
Affiliation(s)
- Ying Lin
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | | |
Collapse
|
33
|
CHEN PING, ZHAO DESHOU, SUN YUNWEI, HUANG LIYA, ZHANG SHUXIAN, YUAN YAOZONG. Protein inhibitor of activated STAT-1 is downregulated in gastric cancer tissue and involved in cell metastasis. Oncol Rep 2012; 28:2149-55. [DOI: 10.3892/or.2012.2030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/28/2012] [Indexed: 11/06/2022] Open
|
34
|
Sajnani MR, Patel AK, Bhatt VD, Tripathi AK, Ahir VB, Shankar V, Shah S, Shah TM, Koringa PG, Jakhesara SJ, Joshi CG. Identification of novel transcripts deregulated in buccal cancer by RNA-seq. Gene 2012; 507:152-8. [PMID: 22846364 DOI: 10.1016/j.gene.2012.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/03/2012] [Accepted: 07/18/2012] [Indexed: 12/11/2022]
Abstract
The differential transcriptome analysis provides better understanding of molecular pathways leading to cancer, which in turn allows designing the effective strategies for diagnosis, therapeutic intervention and prediction of therapeutic outcome. This study describes the transcriptome analysis of buccal cancer and normal tissue by CLC Genomics Workbench from the data generated by Roche's 454 sequencing platform, which identified total of 1797 and 2655 genes uniquely expressed in normal and cancer tissues, respectively with 2466 genes expressed in both tissues. Among the genes expressed in both tissues, 1842 were up-regulated whereas 624 were down-regulated in cancer tissue. Besides transcripts known to be involved in cancer, this study led to the identification of novel transcripts, with significantly altered expression in buccal cancer tissue, providing potential targets for diagnosis and cancer therapeutics. The functional categorization by the KEGG pathway and gene ontology analysis revealed enrichment of differentially expressed transcripts to various pathways leading to cancer, including the p53 signaling pathway. Moreover, the gene ontology analysis unfolded suppression of transcripts involved in actin mediated cell contraction process. The down-regulation of four of these transcripts MYL1, ACTA1, TCAP and DESMIN in buccal cancer were further supported by quantitative PCR signifying its possible implication in the cancer progression.
Collapse
Affiliation(s)
- Manisha R Sajnani
- Department of Animal Biotechnology, College of Veterinary Science & Animal Husbandry, Anand Agricultural University, Anand-388 001, Gujarat, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
LaCasse EC. Pulling the plug on a cancer cell by eliminating XIAP with AEG35156. Cancer Lett 2012; 332:215-24. [PMID: 22776562 DOI: 10.1016/j.canlet.2012.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 06/28/2012] [Accepted: 06/30/2012] [Indexed: 12/22/2022]
Abstract
XIAP, the X-linked inhibitor of apoptosis, is the best example of an endogenous cellular suppressor of apoptosis. XIAP is effective because it directly limits the activity of several critical death-inducing caspases, notably caspase-3, -7 and -9, either by direct enzyme inhibition or through ubiquitin-mediated proteasomal degradation. Furthermore, XIAP acts simultaneously at several nodes in the apoptotic cascade, blocking both the intrinsic and extrinsic death pathways, and thereby preventing feed-forward amplification loops that would otherwise lead to cell death. XIAP over-expression, or increased activity, is associated with cancer progression, resistance to therapy and poor prognosis. Targeting XIAP gene expression by antisense oligonucleotides, or other approaches, demonstrates anti-cancer effects with XIAP down-regulation. These early preclinical studies led to the development of a clinical candidate mixed-backbone antisense oligonucleotide, AEG35156, against XIAP for the treatment of cancer. Published clinical results for the first-in-class and first-in-human trials of AEG35156 are summarized herein, including single agent and combination chemotherapy phase-I or -II trials for solid tumors, lymphoma, and acute myeloid leukemia. These trials demonstrate the safety of AEG35156, as well as some initial promising signs of anti-cancer activity.
Collapse
Affiliation(s)
- Eric C LaCasse
- Apoptosis Research Centre, CHEO RI2, Children's Hospital of Eastern Ontario, 401 Smyth Rd., Ottawa, ON, Canada K1H 8L1.
| |
Collapse
|
36
|
Wang Y, Mao H, Hao Q, Wang Y, Yang Y, Shen L, Huang S, Liu P. Association of expression of XIAP-associated factor 1 (XAF1) with clinicopathologic factors, overall survival, microvessel density and cisplatin-resistance in ovarian cancer. ACTA ACUST UNITED AC 2012; 178:36-42. [PMID: 22759793 DOI: 10.1016/j.regpep.2012.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 05/30/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022]
Abstract
XIAP-associated factor 1 (XAF1) was identified as a novel X-linked inhibitor of apoptosis (XIAP) binding partner that can reverse the anti-apoptotic effect of XIAP. XAF1 levels are greatly decreased in many cancer tissues and cell lines. The aim of this study was to investigate the expression of XAF1 and XIAP in advanced epithelial ovarian cancer and role of XAF1 in cisplatin resistance of ovarian cancer cells. Tissues from 94 patients with advanced epithelial ovarian cancer (EOC) and 30 ovarian cystadenomas were obtained. We analyzed the association of the immunohistochemical-determined expression of these two factors and clinicopathologic variables, overall survival, and angiogenesis. We established SKOV3 cells stably overexpressing XAF1 and explored the possible functions of XAF1 in ovarian cancer cells in vitro and in vivo. The protein expression of XAF1 was significantly lower and that of XIAP higher in malignant than nonmalignant tissues. Low XAF1 expression was associated with high-grade tumors and poor overall survival for patients. XAF1 expression was associated with microvessel density. Overexpression of XAF1 suppressed cell proliferation and enhanced SKOV3 cells sensitivity to cisplatin, as well as inhibited tumor growth and decreased MVD in vivo. Overexpression of XAF1 induced XIAP inactivation, caspase-3 activation and cytosolic expression of cytochrome c. These results suggested that XAF1 may be involved in ovarian cancer development and up-regulation of XAF1 may confer sensitivity of ovarian cancer cells to cisplatin-mediated apoptosis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adult
- Aged
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins
- Carcinoma, Ovarian Epithelial
- Caspase 3/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cisplatin/pharmacology
- Cystadenoma/metabolism
- Cystadenoma/pathology
- Drug Resistance, Neoplasm
- Female
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Kaplan-Meier Estimate
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Microvessels/pathology
- Middle Aged
- Neoplasm Grading
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Transplantation
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/mortality
- Neoplasms, Glandular and Epithelial/pathology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- Tumor Burden
- X-Linked Inhibitor of Apoptosis Protein/metabolism
Collapse
Affiliation(s)
- YunXia Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Wenhua Xi Road 107, Jinan 250012, Shandong Province, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ansari D, Rosendahl A, Elebro J, Andersson R. Systematic review of immunohistochemical biomarkers to identify prognostic subgroups of patients with pancreatic cancer. Br J Surg 2011; 98:1041-55. [PMID: 21644238 DOI: 10.1002/bjs.7574] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis. There is a need to identify prognostic subtypes of PDAC to predict clinical and therapeutic outcomes accurately, and define novel therapeutic targets. The purpose of this review was to provide a systematic summary and review of available data on immunohistochemical (IHC) prognostic and predictive markers in patients with PDAC. METHODS Relevant articles in English published between January 1990 and June 2010 were obtained from PubMed searches. Other articles identified from cross-checking references and additional sources were reviewed. The inclusion was limited to studies evaluating IHC markers in a multivariable setting. RESULTS Database searches identified 76 independent prognostic and predictive molecular markers implicated in pancreatic tumour growth, apoptosis, angiogenesis, invasion and resistance to chemotherapy. Of these, 11 markers (Ki-67, p27, p53, transforming growth factor β1, Bcl-2, survivin, vascular endothelial growth factor, cyclo-oxygenase 2, CD34, S100A4 and human equilibrative nucleoside transporter 1) provided independent prognostic or predictive information in two or more separate studies. CONCLUSION None of the molecular markers described can be recommended for routine clinical use as they were identified in small cohorts and there were inconsistencies between studies. Their prognostic and predictive values need to be validated further in prospective multicentre studies in larger patient populations. A panel of molecular markers may become useful in predicting individual patient outcome and directing novel types of intervention.
Collapse
Affiliation(s)
- D Ansari
- Department of Surgery, Lund University and Skåne University Hospital Lund, Lund, Sweden
| | | | | | | |
Collapse
|
38
|
Sun PH, Zhu LM, Qiao MM, Zhang YP, Jiang SH, Wu YL, Tu SP. The XAF1 tumor suppressor induces autophagic cell death via upregulation of Beclin-1 and inhibition of Akt pathway. Cancer Lett 2011; 310:170-80. [PMID: 21788101 DOI: 10.1016/j.canlet.2011.06.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/03/2011] [Accepted: 06/24/2011] [Indexed: 01/06/2023]
Abstract
Autophagy is designated as type II programmed cell death and may confer a tumor-suppressive function. Our previous studies have shown that XIAP-associated factor 1 (XAF1) induced apoptosis and inhibited tumor growth in gastric cancer cells. In this study, we investigated the effect of XAF1 on the induction of autophagy in gastric cancer cells. We found that adenovirus vector-mediated XAF1 (adeno-XAF1) expression markedly induced autophagy, upregulated the level of Beclin-1 and inhibited phospho-Akt and phospho-p70S6K in gastric cancer cells. The downregulation of Beclin 1 or 3-methyladenine treatment suppressed adeno-XAF1-induced autophagy, but significantly enhanced adeno-XAF1-induced apoptosis. A pan-caspase inhibitor prevented adeno-XAF1-induced apoptosis, but significantly increased adeno-XAF1-induced autophagy. Furthermore, adeno-XAF1 induced autophagy in xenograft tumor and inhibited tumor growth. Our results document that adeno-XAF1 induces autophagy through upregulation of Beclin 1 expression and inhibition of Akt/p70S6K pathway, and reveal a new mechanism of XAF1 tumor suppression.
Collapse
Affiliation(s)
- Ping Hu Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Chen P, Huang L, Sun Y, Yuan Y. Upregulation of PIAS1 protects against sodium taurocholate-induced severe acute pancreatitis associated with acute lung injury. Cytokine 2011; 54:305-14. [PMID: 21419645 DOI: 10.1016/j.cyto.2011.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/12/2011] [Accepted: 02/18/2011] [Indexed: 01/26/2023]
Abstract
The regulator of cytokine signaling known as protein inhibitor of activated STAT-1 (PIAS1) is increasingly understood to have diverse regulatory functions for inflammation, but its effect in inflammatory conditions such as severe acute pancreatitis (SAP) has not previously been reported. The aim of this study was to investigate the effect of upregulation of PIAS1 on SAP associated with acute lung injury (ALI), and its subsequent effect on disease severity. Sprague-Dawley rats were given an IV injection of adenovirus serotype 5 (Ad5)/F35-PIAS1, Ad5/F35-vector or saline before induction of SAP. The control group received only a sham operation. Lung and pancreas samples were harvested 16h after induction. The protein levels of PIAS1 in tissue were investigated. The severity of pancreatic injury was determined by a histological score of pancreatic injury, serum amylase, and pancreatic water content. The lung injury was evaluated by measurement of pulmonary microvascular permeability, lung myeloperoxidase activity and malondialdehyde levels. The survival rates of rats were also analyzed. The results found that in Ad5/F35-PIAS1 treated rats, serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 levels were decreased but showed no influence on the levels of IL-10, and the severity of pancreatic tissue injury was less compared with either untreated SAP or Ad5/F35-vector treated rats (P<0.01). The administration of Ad5/F35-PIAS1 in SAP-induced rats downregulated the activity of the signal transducer and activator of transcription-1 (STAT1) pathway and the expressions of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule (ICAM)-1 protein in lung. Thus, compared with the untreated SAP rats, the inflammatory response and the severity of ALI decreased, and the survival rates increased (P<0.01). These findings suggest that PIAS1 could augment anti-inflammatory activity by inhibiting STAT1, thus attenuating the severity of SAP associated with ALI.
Collapse
Affiliation(s)
- Ping Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | | | | | | |
Collapse
|
40
|
Fulda S. Targeting apoptosis signaling in pancreatic cancer. Cancers (Basel) 2011; 3:241-51. [PMID: 24212616 PMCID: PMC3756359 DOI: 10.3390/cancers3010241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 12/14/2022] Open
Abstract
The ability to escape apoptosis or programmed cell death is a hallmark of human cancers, for example pancreatic cancer. This can promote tumorigenesis, since too little cell death by apoptosis disturbs tissue homeostasis. Additionally, defective apoptosis signaling is the underlying cause of failure to respond to current treatment approaches, since therapy-mediated antitumor activity requires the intactness of apoptosis signaling pathways in cancer cells. Thus, the elucidation of defects in the regulation of apoptosis in pancreatic carcinoma can result in the identification of novel targets for therapeutic interference and for exploitation for cancer drug discovery.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528 Frankfurt, Germany.
| |
Collapse
|
41
|
The enigmatic roles of caspases in tumor development. Cancers (Basel) 2010; 2:1952-79. [PMID: 24281211 PMCID: PMC3840446 DOI: 10.3390/cancers2041952] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 12/25/2022] Open
Abstract
One function ascribed to apoptosis is the suicidal destruction of potentially harmful cells, such as cancerous cells. Hence, their growth depends on evasion of apoptosis, which is considered as one of the hallmarks of cancer. Apoptosis is ultimately carried out by the sequential activation of initiator and executioner caspases, which constitute a family of intracellular proteases involved in dismantling the cell in an ordered fashion. In cancer, therefore, one would anticipate caspases to be frequently rendered inactive, either by gene silencing or by somatic mutations. From clinical data, however, there is little evidence that caspase genes are impaired in cancer. Executioner caspases have only rarely been found mutated or silenced, and also initiator caspases are only affected in particular types of cancer. There is experimental evidence from transgenic mice that certain initiator caspases, such as caspase-8 and -2, might act as tumor suppressors. Loss of the initiator caspase of the intrinsic apoptotic pathway, caspase-9, however, did not promote cellular transformation. These data seem to question a general tumor-suppressive role of caspases. We discuss several possible ways how tumor cells might evade the need for alterations of caspase genes. First, alternative splicing in tumor cells might generate caspase variants that counteract apoptosis. Second, in tumor cells caspases might be kept in check by cellular caspase inhibitors such as c-FLIP or XIAP. Third, pathways upstream of caspase activation might be disrupted in tumor cells. Finally, caspase-independent cell death mechanisms might abrogate the selection pressure for caspase inactivation during tumor development. These scenarios, however, are hardly compatible with the considerable frequency of spontaneous apoptosis occurring in several cancer types. Therefore, alternative concepts might come into play, such as compensatory proliferation. Herein, apoptosis and/or non-apoptotic functions of caspases may even promote tumor development. Moreover, experimental evidence suggests that caspases might play non-apoptotic roles in processes that are crucial for tumorigenesis, such as cell proliferation, migration, or invasion. We thus propose a model wherein caspases are preserved in tumor cells due to their functional contributions to development and progression of tumors.
Collapse
|