1
|
Wang Z, Qiao X, Chen Y, Peng N, Niu C, Wang Y, Li C, Hu Z, Zhang C, Cheng C. SVIP reduces IGFBP-2 expression and inhibits glioblastoma progression via stabilizing PTEN. Cell Death Discov 2024; 10:362. [PMID: 39138166 PMCID: PMC11322382 DOI: 10.1038/s41420-024-02130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Glioblastoma (GBM) presents significant challenges due to its invasive nature and genetic heterogeneity. In this study, we investigated the impact of Small VCP/P97-Interacting Protein (SVIP) on GBM progression. Our results revealed elevated expression of Insulin-like Growth Factor Binding Protein 2 (IGFBP-2) and STIP1 homology and U-box containing protein 1 (STUB1), coupled with reduced SVIP levels in GBM samples. Notably, high IGFBP-2 expression correlated with poor prognosis. Mechanistically, SVIP competitively inhibited STUB1, selectively binding to VCP/p97, thereby reducing PTEN degradation. This SVIP-mediated regulation exerted influence on the PTEN/PI3K/AKT/mTOR pathway, leading to the suppression of GBM progression. Co-localization experiments demonstrated that SVIP hindered PTEN ubiquitination and degradation by outcompeting STUB1 for VCP/p97 binding. Moreover, SVIP overexpression resulted in reduced activation of AKT/mTOR signaling and facilitated autophagy. In vivo experiments using a GBM xenograft model substantiated the tumor-suppressive effects of SVIP, evident by suppressed tumor growth, decreased IGFBP-2 expression, and improved survival rates. Collectively, our findings underscore the functional significance of SVIP in GBM progression. By inhibiting STUB1 and stabilizing PTEN, SVIP modulates the expression of IGFBP-2 and attenuates the activation of the PI3K/AKT/mTOR pathway, thereby emerging as a promising therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Xiaolong Qiao
- Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Yinan Chen
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Nan Peng
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chaoshi Niu
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yang Wang
- Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Cong Li
- Dalian Medical University, Dalian, Liaoning, 116000, China.
| | - Zengchun Hu
- Department of Neurosurgery, 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116023, China.
| | - Caihua Zhang
- Dalian Medical University, Dalian, Liaoning, 116000, China.
| | - Chuandong Cheng
- Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
2
|
Le Clorennec C, Subramonian D, Huo Y, Zage PE. UBE4B interacts with the ITCH E3 ubiquitin ligase to induce Ku70 and c-FLIPL polyubiquitination and enhanced neuroblastoma apoptosis. Cell Death Dis 2023; 14:739. [PMID: 37957138 PMCID: PMC10643674 DOI: 10.1038/s41419-023-06252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Expression of the UBE4B ubiquitin ligase is strongly associated with neuroblastoma patient outcomes, but the functional roles of UBE4B in neuroblastoma pathogenesis are not known. We evaluated interactions of UBE4B with the E3 ubiquitin ligase ITCH/AIP4 and the effects of UBE4B expression on Ku70 and c-FLIPL ubiquitination and proteasomal degradation by co-immunoprecipitation and Western blots. We also evaluated the role of UBE4B in apoptosis induced by histone deacetylase (HDAC) inhibition using Western blots. UBE4B binding to ITCH was mediated by WW domains in the ITCH protein. ITCH activation led to ITCH-UBE4B complex formation and recruitment of Ku70 and c-FLIPL via ITCH WW domains, followed by Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination and proteasomal degradation. HDAC inhibition induced Ku70 acetylation, leading to release of c-FLIPL and Bax from Ku70, increased Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination via the ITCH-UBE4B complex, and induction of apoptosis. UBE4B depletion led to reduced polyubiquitination and increased levels of Ku70 and c-FLIPL and to reduced apoptosis induced by HDAC inhibition via stabilization of c-FLIPL and Ku70 and inhibition of caspase 8 activation. Our results have identified novel interactions and novel targets for UBE4B ubiquitin ligase activity and a direct role for the ITCH-UBE4B complex in responses of neuroblastoma cells to HDAC inhibition, suggesting that the ITCH-UBE4B complex plays a critical role in responses of neuroblastoma to therapy and identifying a potential mechanism underlying the association of UBE4B expression with neuroblastoma patient outcomes.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Divya Subramonian
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA.
- Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
3
|
Bieder A, Chandrasekar G, Wason A, Erkelenz S, Gopalakrishnan J, Kere J, Tapia-Páez I. Genetic and protein interaction studies between the ciliary dyslexia candidate genes DYX1C1 and DCDC2. BMC Mol Cell Biol 2023; 24:20. [PMID: 37237337 DOI: 10.1186/s12860-023-00483-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND DYX1C1 (DNAAF4) and DCDC2 are two of the most replicated dyslexia candidate genes in genetic studies. They both have demonstrated roles in neuronal migration, in cilia growth and function and they both are cytoskeletal interactors. In addition, they both have been characterized as ciliopathy genes. However, their exact molecular functions are still incompletely described. Based on these known roles, we asked whether DYX1C1 and DCDC2 interact on the genetic and the protein level. RESULTS Here, we report the physical protein-protein interaction of DYX1C1 and DCDC2 as well as their respective interactions with the centrosomal protein CPAP (CENPJ) on exogenous and endogenous levels in different cell models including brain organoids. In addition, we show a synergistic genetic interaction between dyx1c1 and dcdc2b in zebrafish exacerbating the ciliary phenotype. Finally, we show a mutual effect on transcriptional regulation among DYX1C1 and DCDC2 in a cellular model. CONCLUSIONS In summary, we describe the physical and functional interaction between the two genes DYX1C1 and DCDC2. These results contribute to the growing understanding of the molecular roles of DYX1C1 and DCDC2 and set the stage for future functional studies.
Collapse
Affiliation(s)
- Andrea Bieder
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Arpit Wason
- Center for Molecular Medicine, Institute for Biochemistry I of the University of Cologne, Cologne, Germany
| | - Steffen Erkelenz
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Molecular Neurology Research Program, University of Helsinki, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Isabel Tapia-Páez
- Department of Medicine, Solna, Karolinska Institutet, Solnavägen 30, SE-171 76, Solna, Sweden.
| |
Collapse
|
4
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfill well-defined roles in protein folding and conformational stability via ATP-dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23, and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone-mediated folding process. However, chaperones are also involved in proteasomal and lysosomal degradation of client proteins. Like folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C-terminal Hsp70-binding protein (CHIP/STUB1). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome and autophagosome-lysosome systems. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Abantika Chakraborty
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
5
|
Rai S, Tapadia MG. Hsc70-4 aggravates PolyQ-mediated neurodegeneration by modulating NF-κB mediated immune response in Drosophila. Front Mol Neurosci 2022; 15:857257. [PMID: 36425218 PMCID: PMC9678916 DOI: 10.3389/fnmol.2022.857257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/11/2022] [Indexed: 10/06/2023] Open
Abstract
Huntington's disease occurs when the stretch of CAG repeats in exon 1 of the huntingtin (htt) gene crosses the permissible limit, causing the mutated protein (mHtt) to form insoluble aggregates or inclusion bodies. These aggregates are non-typically associated with various essential proteins in the cells, thus disrupting cellular homeostasis. The cells try to bring back normalcy by synthesizing evolutionary conserved cellular chaperones, and Hsp70 is one of the families of heat shock proteins that has a significant part in this, which comprises of heat-inducible and cognate forms. Here, we demonstrate that the heat shock cognate (Hsc70) isoform, Hsc70-4/HSPA8, has a distinct role in polyglutamate (PolyQ)-mediated pathogenicity, and its expression is enhanced in the polyQ conditions in Drosophila. Downregulation of hsc70-4 rescues PolyQ pathogenicity with a notable improvement in the ommatidia arrangement and near-normal restoration of optic neurons leading to improvement in phototaxis response. Reduced hsc70-4 also attenuates the augmented immune response by decreasing the expression of NF-κB and the antimicrobial peptides, along with that JNK overactivation is also restored. These lead to the rescue of the photoreceptor cells, indicating a decrease in the caspase activity, thus reverting the PolyQ pathogenicity. At the molecular level, we show the interaction between Hsc70-4, Polyglutamine aggregates, and NF-κB, which may be responsible for the dysregulation of signaling molecules in polyQ conditions. Thus, the present data provides a functional link between Hsc70-4 and NF-κB under polyQ conditions.
Collapse
Affiliation(s)
| | - Madhu G. Tapadia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Bouron A, Fauvarque MO. Genome-wide analysis of genes encoding core components of the ubiquitin system during cerebral cortex development. Mol Brain 2022; 15:72. [PMID: 35974412 PMCID: PMC9380329 DOI: 10.1186/s13041-022-00958-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Ubiquitination involves three types of enzymes (E1, E2, and E3) that sequentially attach ubiquitin (Ub) to target proteins. This posttranslational modification controls key cellular processes, such as the degradation, endocytosis, subcellular localization and activity of proteins. Ubiquitination, which can be reversed by deubiquitinating enzymes (DUBs), plays important roles during brain development. Furthermore, deregulation of the Ub system is linked to the pathogenesis of various diseases, including neurodegenerative disorders. We used a publicly available RNA-seq database to perform an extensive genome-wide gene expression analysis of the core components of the ubiquitination machinery, covering Ub genes as well as E1, E2, E3 and DUB genes. The ubiquitination network was governed by only Uba1 and Ube2m, the predominant E1 and E2 genes, respectively; their expression was positively regulated during cortical formation. The principal genes encoding HECT (homologous to the E6-AP carboxyl terminus), RBR (RING-in-between-RING), and RING (really interesting new gene) E3 Ub ligases were also highly regulated. Pja1, Dtx3 (RING ligases) and Stub1 (U-box RING) were the most highly expressed E3 Ub ligase genes and displayed distinct developmental expression patterns. Moreover, more than 80 DUB genes were expressed during corticogenesis, with two prominent genes, Uch-l1 and Usp22, showing highly upregulated expression. Several components of the Ub system overexpressed in cancers were also highly expressed in the cerebral cortex under conditions not related to tumour formation or progression. Altogether, this work provides an in-depth overview of transcriptomic changes during embryonic formation of the cerebral cortex. The data also offer new insight into the characterization of the Ub system and may contribute to a better understanding of its involvement in the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Alexandre Bouron
- Université Grenoble Alpes, Inserm, CEA, UMR 1292, 38000, Grenoble, France. .,Genetics and Chemogenomics Lab, Building C3, CEA, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France.
| | | |
Collapse
|
7
|
Kaida A, Iwakuma T. Regulation of p53 and Cancer Signaling by Heat Shock Protein 40/J-Domain Protein Family Members. Int J Mol Sci 2021; 22:13527. [PMID: 34948322 PMCID: PMC8706882 DOI: 10.3390/ijms222413527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones that assist diverse cellular activities including protein folding, intracellular transportation, assembly or disassembly of protein complexes, and stabilization or degradation of misfolded or aggregated proteins. HSP40, also known as J-domain proteins (JDPs), is the largest family with over fifty members and contains highly conserved J domains responsible for binding to HSP70 and stimulation of the ATPase activity as a co-chaperone. Tumor suppressor p53 (p53), the most frequently mutated gene in human cancers, is one of the proteins that functionally interact with HSP40/JDPs. The majority of p53 mutations are missense mutations, resulting in acquirement of unexpected oncogenic activities, referred to as gain of function (GOF), in addition to loss of the tumor suppressive function. Moreover, stability and levels of wild-type p53 (wtp53) and mutant p53 (mutp53) are crucial for their tumor suppressive and oncogenic activities, respectively. However, the regulatory mechanisms of wtp53 and mutp53 are not fully understood. Accumulating reports demonstrate regulation of wtp53 and mutp53 levels and/or activities by HSP40/JDPs. Here, we summarize updated knowledge related to the link of HSP40/JDPs with p53 and cancer signaling to improve our understanding of the regulation of tumor suppressive wtp53 and oncogenic mutp53 GOF activities.
Collapse
Affiliation(s)
- Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| |
Collapse
|
8
|
Dean ME, Johnson JL. Human Hsp90 cochaperones: perspectives on tissue-specific expression and identification of cochaperones with similar in vivo functions. Cell Stress Chaperones 2021; 26:3-13. [PMID: 33037995 PMCID: PMC7736379 DOI: 10.1007/s12192-020-01167-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The Hsp90 molecular chaperone is required for the function of hundreds of different cellular proteins. Hsp90 and a cohort of interacting proteins called cochaperones interact with clients in an ATP-dependent cycle. Cochaperone functions include targeting clients to Hsp90, regulating Hsp90 ATPase activity, and/or promoting Hsp90 conformational changes as it progresses through the cycle. Over the last 20 years, the list of cochaperones identified in human cells has grown from the initial six identified in complex with steroid hormone receptors and protein kinases to about fifty different cochaperones found in Hsp90-client complexes. These cochaperones may be placed into three groups based on shared Hsp90 interaction domains. Available evidence indicates that cochaperones vary in client specificity, abundance, and tissue distribution. Many of the cochaperones have critical roles in regulation of cancer and neurodegeneration. A more limited set of cochaperones have cellular functions that may be limited to tissues such as muscle and testis. It is likely that a small set of cochaperones are part of the core Hsp90 machinery required for the folding of a wide range of clients. The presence of more selective cochaperones may allow greater control of Hsp90 activities across different tissues or during development.
Collapse
Affiliation(s)
- Marissa E Dean
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA.
- Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
9
|
Solcia E, Necchi V, Sommi P, Ricci V. Proteasome-Rich PaCS as an Oncofetal UPS Structure Handling Cytosolic Polyubiquitinated Proteins. In Vivo Occurrence, in Vitro Induction, and Biological Role. Int J Mol Sci 2018; 19:ijms19092767. [PMID: 30223470 PMCID: PMC6164709 DOI: 10.3390/ijms19092767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/11/2018] [Indexed: 11/16/2022] Open
Abstract
In this article, we outline and discuss available information on the cellular site and mechanism of proteasome interaction with cytosolic polyubiquitinated proteins and heat-shock molecules. The particulate cytoplasmic structure (PaCS) formed by barrel-like particles, closely reproducing in vivo the high-resolution structure of 26S proteasome as isolated in vitro, has been detected in a variety of fetal and neoplastic cells, from living tissue or cultured cell lines. Specific trophic factors and interleukins were found to induce PaCS during in vitro differentiation of dendritic, natural killer (NK), or megakaryoblastic cells, apparently through activation of the MAPK-ERK pathway. Direct interaction of CagA bacterial oncoprotein with proteasome was shown inside the PaCSs of a Helicobacter pylori-infected gastric epithelium, a finding suggesting a role for PaCS in CagA-mediated gastric carcinogenesis. PaCS dissolution and autophagy were seen after withdrawal of inducing factors. PaCS-filled cell blebs and ectosomes were found in some cells and may represent a potential intercellular discharge and transport system of polyubiquitinated antigenic proteins. PaCS differs substantially from the inclusion bodies, sequestosomes, and aggresomes reported in proteinopathies like Huntington or Parkinson diseases, which usually lack PaCS. The latter seems more linked to conditions of increased cell proliferation/differentiation, implying an increased functional demand to the ubiquitin–proteasome system.
Collapse
Affiliation(s)
- Enrico Solcia
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
- Pathologic Anatomy Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Vittorio Necchi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
- Centro Grandi Strumenti, University of Pavia, 27100 Pavia, Italy.
| | - Patrizia Sommi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Vittorio Ricci
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
10
|
Ubiquitin Proteasome pathway proteins as potential drug targets in parasite Trypanosoma cruzi. Sci Rep 2018; 8:8399. [PMID: 29849031 PMCID: PMC5976635 DOI: 10.1038/s41598-018-26532-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Trypanosomiasis infects more than 21 million people and claims approximately 2 million lives annually. Due to the development of resistance against currently available anti-trypanosomal drugs, there is a growing need for specific inhibitors and novel drug targets. Of late, the proteins from the Ubiquitin Proteasome Pathway (UPP): ubiquitin ligases and deubiquitinase have received attention as potential drug targets in other parasites from the apicomplexan family. The completion of Trypanosoma cruzi (Tc) genome sequencing in 2005 and subsequent availability of database resources like TriTrypDB has provided a platform for the systematic study of the proteome of this parasite. Here, we present the first comprehensive survey of the UPP enzymes, their homologs and other associated proteins in trypanosomes and the UPPs from T. cruzi were explored in detail. After extensive computational analyses using various bioinformatics tools, we have identified 269 putative UPP proteins in the T. cruzi proteome along with their homologs in other Trypanosoma species. Characterization of T. cruzi proteome was done based on their predicted subcellular localization, domain architecture and overall expression profiles. Specifically, unique domain architectures of the enzymes and the UPP players expressed exclusively in the amastigote stage provide a rationale for designing inhibitors against parasite UPP proteins.
Collapse
|
11
|
Ji ZY, Sha YW, Ding L, Li P. Genetic factors contributing to human primary ciliary dyskinesia and male infertility. Asian J Androl 2018; 19:515-520. [PMID: 27270341 PMCID: PMC5566842 DOI: 10.4103/1008-682x.181227] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal-recessive disorder resulting from the loss of normal ciliary function. Symptoms include neonatal respiratory distress, chronic sinusitis, bronchiectasis, situs inversus, and infertility. However, only 15 PCD-associated genes have been identified to cause male infertility to date. Owing to the genetic heterogeneity of PCD, comprehensive molecular genetic testing is not considered the standard of care. Here, we provide an update of the progress on the identification of genetic factors related to PCD associated with male infertility, summarizing the underlying molecular mechanisms, and discuss the clinical implications of these findings. Further research in this field will impact the diagnostic strategy for male infertility, enabling clinicians to provide patients with informed genetic counseling, and help to adopt the best course of treatment for developing directly targeted personalized medicine.
Collapse
Affiliation(s)
- Zhi-Yong Ji
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| | - Yan-Wei Sha
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| | - Lu Ding
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| | - Ping Li
- The Center for Reproductive Medicine, Xiamen Maternity and Child Care Hospital, No. 10 Zhenhai Road, Xiamen, China
| |
Collapse
|
12
|
Joshi V, Amanullah A, Upadhyay A, Mishra R, Kumar A, Mishra A. A Decade of Boon or Burden: What Has the CHIP Ever Done for Cellular Protein Quality Control Mechanism Implicated in Neurodegeneration and Aging? Front Mol Neurosci 2016; 9:93. [PMID: 27757073 PMCID: PMC5047891 DOI: 10.3389/fnmol.2016.00093] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/20/2016] [Indexed: 01/13/2023] Open
Abstract
Cells regularly synthesize new proteins to replace old and abnormal proteins for normal cellular functions. Two significant protein quality control pathways inside the cellular milieu are ubiquitin proteasome system (UPS) and autophagy. Autophagy is known for bulk clearance of cytoplasmic aggregated proteins, whereas the specificity of protein degradation by UPS comes from E3 ubiquitin ligases. Few E3 ubiquitin ligases, like C-terminus of Hsc70-interacting protein (CHIP) not only take part in protein quality control pathways, but also plays a key regulatory role in other cellular processes like signaling, development, DNA damage repair, immunity and aging. CHIP targets misfolded proteins for their degradation through proteasome, as well as autophagy; simultaneously, with the help of chaperones, it also regulates folding attempts for misfolded proteins. The broad range of CHIP substrates and their associations with multiple pathologies make it a key molecule to work upon and focus for future therapeutic interventions. E3 ubiquitin ligase CHIP interacts and degrades many protein inclusions formed in neurodegenerative diseases. The presence of CHIP at various nodes of cellular protein-protein interaction network presents this molecule as a potential candidate for further research. In this review, we have explored a wide range of functionality of CHIP inside cells by a detailed presentation of its co-chaperone, E3 and E4 enzyme like functions, with central focus on its protein quality control roles in neurodegenerative diseases. We have also raised many unexplored but expected fundamental questions regarding CHIP functions, which generate hopes for its future applications in research, as well as drug discovery.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| | - Amit Kumar
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore Madhya Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur Rajasthan, India
| |
Collapse
|
13
|
Shi S, Gao Q, Zeng J, Liu X, Pu Q, Liu G, Zhang H, Yang X, Zhu L. N-terminal domains of ARC1 are essential for interaction with the N-terminal region of Exo70A1 in transducing self-incompatibility of Brassica oleracea. Acta Biochim Biophys Sin (Shanghai) 2016; 48:777-87. [PMID: 27590064 DOI: 10.1093/abbs/gmw075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/11/2016] [Indexed: 12/28/2022] Open
Abstract
Self-incompatibility (SI) is an important mating system to prevent inbreeding and promote outcrossing. ARC1 and Exo70A1 function as the downstream targets of the S-locus receptor kinase and play conservative roles in Brassica SI signaling. Based on the sequence homology, Exo70A1 is divided into four subdomains: leucine zipper (Leu(128)-Leu(149)), hypervariable region (Ser(172)-Leu(197)), SUMO modification motif (Glu(260)-Ile(275)), and pfamExo70 domain (His(271)-Phe(627)). ARC1 contains four domains as follows: leucine zipper (Leu(116)-Leu(137)), coiled-coil domain (Thr(210)-Val(236)), U-box (Asp(282)-Trp(347)) motif, and ARM (Ala(415)-Thr(611)) domain. Bioinformatics analysis, yeast two-hybrid screening and pull-down assays show that leucine zipper and coiled-coil motifs of ARC1116-236 are required for the interaction with Exo70A1, while the addition of ARM motif results in loss of the interaction with Exo70A1. Meanwhile, the N-terminal of Exo70A1 without any domains shows a weak interaction with ARC1, and the level of LacZ expression increases with addition of leucine zipper and reaches the maximum value with hypervariable region and SUMO modification motif, indicating that hypervariable region and SUMO modification motif of Exo70A1172-275 is mainly responsible for the binding with ARC1, whereas pfamExo70 domain has little affinity for ARC1. Lys(181) located in the Exo70A1 hypervariable region may be the ubiquitination site mediating the interaction between ARC1 and Exo70A1. Therefore, both the leucine zipper with coiled-coil structure of ARC1116-236, and the hypervariable region and SUMO modification motif of Exo70A1172-275 are the core interaction domains between ARC1 and Exo70A1. Any factors affecting these core domains would be the regulators of ARC1 mediating ubiquitin degradation in self-incompatible system.
Collapse
Affiliation(s)
- Songmei Shi
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China Laboratory of Plant Biochemistry and Molecular Biology, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Qiguo Gao
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Jing Zeng
- Laboratory of Plant Biochemistry and Molecular Biology, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaohuan Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Quanming Pu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Guixi Liu
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Hecui Zhang
- Laboratory of Plant Biochemistry and Molecular Biology, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaohong Yang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Liquan Zhu
- Laboratory of Plant Biochemistry and Molecular Biology, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Mozzi A, Forni D, Clerici M, Pozzoli U, Mascheretti S, Guerini FR, Riva S, Bresolin N, Cagliani R, Sironi M. The evolutionary history of genes involved in spoken and written language: beyond FOXP2. Sci Rep 2016; 6:22157. [PMID: 26912479 PMCID: PMC4766443 DOI: 10.1038/srep22157] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Humans possess a communication system based on spoken and written language. Other animals can learn vocalization by imitation, but this is not equivalent to human language. Many genes were described to be implicated in language impairment (LI) and developmental dyslexia (DD), but their evolutionary history has not been thoroughly analyzed. Herein we analyzed the evolution of ten genes involved in DD and LI. Results show that the evolutionary history of LI genes for mammals and aves was comparable in vocal-learner species and non-learners. For the human lineage, several sites showing evidence of positive selection were identified in KIAA0319 and were already present in Neanderthals and Denisovans, suggesting that any phenotypic change they entailed was shared with archaic hominins. Conversely, in FOXP2, ROBO1, ROBO2, and CNTNAP2 non-coding changes rose to high frequency after the separation from archaic hominins. These variants are promising candidates for association studies in LI and DD.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20100 Milan, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | | | - Stefania Riva
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Nereo Bresolin
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
- Dino Ferrari Centre, Department of Physiopathology and Transplantation, University of Milan, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Italy
| |
Collapse
|
15
|
Abstract
Protein homeostasis relies on a balance between protein folding and protein degradation. Molecular chaperones like Hsp70 and Hsp90 fulfil well-defined roles in protein folding and conformational stability via ATP dependent reaction cycles. These folding cycles are controlled by associations with a cohort of non-client protein co-chaperones, such as Hop, p23 and Aha1. Pro-folding co-chaperones facilitate the transit of the client protein through the chaperone mediated folding process. However, chaperones are also involved in ubiquitin-mediated proteasomal degradation of client proteins. Similar to folding complexes, the ability of chaperones to mediate protein degradation is regulated by co-chaperones, such as the C terminal Hsp70 binding protein (CHIP). CHIP binds to Hsp70 and Hsp90 chaperones through its tetratricopeptide repeat (TPR) domain and functions as an E3 ubiquitin ligase using a modified RING finger domain (U-box). This unique combination of domains effectively allows CHIP to network chaperone complexes to the ubiquitin-proteasome system. This chapter reviews the current understanding of CHIP as a co-chaperone that switches Hsp70/Hsp90 chaperone complexes from protein folding to protein degradation.
Collapse
Affiliation(s)
- Adrienne L Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, 6140, Grahamstown, South Africa,
| |
Collapse
|
16
|
Schiene-Fischer C. Multidomain Peptidyl Prolyl cis/trans Isomerases. Biochim Biophys Acta Gen Subj 2014; 1850:2005-16. [PMID: 25445709 DOI: 10.1016/j.bbagen.2014.11.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Peptidyl prolyl cis/trans isomerases (PPIases) assist the folding and restructuring of client proteins by catalysis of the slow rotational motion of peptide bonds preceding a proline residue. Catalysis is performed by relatively small, distinct protein domains of 10 to 18kDa for all PPIase families. PPIases are involved in a wide variety of physiological and pathophysiological processes like signal transduction, cell differentiation, apoptosis as well as viral, bacterial and parasitic infection. SCOPE OF REVIEW There are multidomain PPIases consisting of one to up to four catalytic domains of the respective PPIase family supplemented by N- or C-terminal extensions. This review examines the biochemical and functional properties of the members of the PPIase class of enzymes which contain additional protein domains with defined biochemical functions. MAJOR CONCLUSIONS The versatile domain architecture of multidomain PPIases is important for the control of enzyme specificity and organelle-specific targeting, the establishment of molecular connections and hence the coordination of PPIase functions across the cellular network. GENERAL SIGNIFICANCE Accessory domains covalently linked to a PPIase domain supply an additional layer of control to the catalysis of prolyl isomerization in specific client proteins. Understanding these control mechanisms will provide new insights into the physiological mode of action of the multidomain PPIases and their ability to form therapeutic targets. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Cordelia Schiene-Fischer
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany.
| |
Collapse
|
17
|
Timsit YE, Negishi M. Coordinated regulation of nuclear receptor CAR by CCRP/DNAJC7, HSP70 and the ubiquitin-proteasome system. PLoS One 2014; 9:e96092. [PMID: 24789201 PMCID: PMC4008524 DOI: 10.1371/journal.pone.0096092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 04/03/2014] [Indexed: 01/14/2023] Open
Abstract
The constitutive active/androstane receptor (CAR) plays an important role as a coordinate transcription factor in the regulation of various hepatic metabolic pathways for chemicals such as drugs, glucose, fatty acids, bilirubin, and bile acids. Currently, it is known that in its inactive state, CAR is retained in the cytoplasm in a protein complex with HSP90 and the tetratricopeptide repeat protein cytosoplasmic CAR retention protein (CCRP). Upon activation by phenobarbital (PB) or the PB-like inducer 1,4-bis[2-(3,5-dichloropyridyloxy)]-benzene (TCPOBOP), CAR translocates into the nucleus. We have identified two new components to the cytoplasmic regulation of CAR: ubiquitin-dependent degradation of CCRP and protein-protein interaction with HSP70. Treatment with the proteasome inhibitor MG132 (5 µM) causes CAR to accumulate in the cytoplasm of transfected HepG2 cells. In the presence of MG132, TCPOBOP increases CCRP ubiquitination in HepG2 cells co-expressing CAR, while CAR ubiquitination was not detected. MG132 treatment of HepG2 also attenuated of TCPOBOP-induced CAR transcriptional activation on reporter constructs which contain CAR-binding DNA elements derived from the human CYP2B6 gene. The elevation of cytoplasmic CAR protein with MG132 correlated with an increase of HSP70, and to a lesser extent HSP60. Both CCRP and CAR were found to interact with endogenous HSP70 in HepG2 cells by immunoprecipitation analysis. Induction of HSP70 levels by heat shock also increased cytoplasmic CAR levels, similar to the effect of MG132. Lastly, heat shock attenuated TCPOBOP-induced CAR transcriptional activation, also similar to the effect of MG132. Collectively, these data suggest that ubiquitin-proteasomal regulation of CCRP and HSP70 are important contributors to the regulation of cytoplasmic CAR levels, and hence the ability of CAR to respond to PB or PB-like inducers.
Collapse
Affiliation(s)
- Yoav E. Timsit
- The Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Masahiko Negishi
- The Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that is crucial for the stability and function of many proteins essential for cell survival. Many oncogenes, including tyrosine kinases, transcription factors, and cell-cycle regulatory proteins, are client proteins of HSP90. Inhibition of HSP90 causes client protein degradation via the ubiquitin-proteasome pathway, and is a mechanism that might simultaneously downregulate several redundant pathways crucial for cell viability and tumour development. HSP90 inhibitors are currently being developed as anticancer agents, and have shown early promising results in molecularly defined subgroups of solid tumours (eg, ALK-rearranged non-small-cell lung cancer and HER2-amplified breast cancer) and some haematological malignancies (eg, multiple myeloma). Here, we review the current status of HSP90 inhibitors in clinical development, including geldanamycin derivatives, resorcinol derivatives, purine analogues, and other synthetic inhibitors. We also discuss novel strategies and future perspectives on how to optimise the therapeutic potential of this exciting new class of drugs.
Collapse
|
19
|
Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW, Tamayo JV, Shook B, Cantino M, Schwartz D, Jahnke C, Olbrich H, Werner C, Raidt J, Pennekamp P, Abouhamed M, Hjeij R, Köhler G, Griese M, Li Y, Lemke K, Klena N, Liu X, Gabriel G, Tobita K, Jaspers M, Morgan LC, Shapiro AJ, Letteboer SJ, Mans DA, Carson JL, Leigh MW, Wolf WE, Chen S, Lucas JS, Onoufriadis A, Plagnol V, Schmidts M, Boldt K, UK10K, Roepman R, Zariwala M, Lo CW, Mitchison HM, Knowles MR, Burdine RD, LoTurco JJ, Omran H. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet 2013; 45:995-1003. [PMID: 23872636 PMCID: PMC4000444 DOI: 10.1038/ng.2707] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/24/2013] [Indexed: 11/08/2022]
Abstract
DYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2-4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.T2A start-codon mutation recovered from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also caused laterality and ciliary motility defects. In humans, we identified recessive loss-of-function DYX1C1 mutations in 12 individuals with PCD. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans showed disruptions of outer and inner dynein arms (ODAs and IDAs, respectively). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA and IDA assembly factor DNAAF2 (KTU). Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).
Collapse
Affiliation(s)
- Aarti Tarkar
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - Niki T. Loges
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | | | - Richard Francis
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Gerard W. Dougherty
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Joel V. Tamayo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Brett Shook
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - Marie Cantino
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - Daniel Schwartz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - Charlotte Jahnke
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Heike Olbrich
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Claudius Werner
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Johanna Raidt
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Petra Pennekamp
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Marouan Abouhamed
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Rim Hjeij
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| | - Gabriele Köhler
- Department of Pathology, University Hospital Muenster, 48149 Muenster, Germany
| | - Matthias Griese
- Dr. von Haunersches Children‘s Hospital, Ludwig Maximilian University, 80337 Munich, Germany
| | - You Li
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Kristi Lemke
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Nikolas Klena
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - George Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Kimimasa Tobita
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Martine Jaspers
- University Hospital Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Lucy C. Morgan
- Department of Respiratory Medicine, Concord Hospital, Concord 2139, Australia
| | - Adam J. Shapiro
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Stef J.F. Letteboer
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dorus A. Mans
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Johnny L. Carson
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Margaret W. Leigh
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Whitney E. Wolf
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Serafine Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jane S. Lucas
- Primary Ciliary Dyskinesia Centre, NIHR Southampton Respiratory Biomedical Research Unit, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO17 1BJ, UK
| | - Alexandros Onoufriadis
- Molecular Medicine Unit, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Vincent Plagnol
- University College London, Genetics Institute, London, WC1E 6BT, UK
| | - Miriam Schmidts
- Molecular Medicine Unit, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Karsten Boldt
- Institute for Ophthalmic Research, Division of Experimental Ophthalmology and Medical Proteome Center, University of Tuebingen, D-72076 Tuebingen, Germany
| | | | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Maimoona Zariwala
- Department of Pathology & Laboratory Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201
| | - Hannah M. Mitchison
- Molecular Medicine Unit, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Michael R. Knowles
- Department of Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Joseph J. LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | - Heymut Omran
- Department of Pediatrics, University Hospital Muenster, 48149 Muenster; Germany
| |
Collapse
|
20
|
Matsumura Y, Sakai J, Skach WR. Endoplasmic reticulum protein quality control is determined by cooperative interactions between Hsp/c70 protein and the CHIP E3 ligase. J Biol Chem 2013; 288:31069-79. [PMID: 23990462 DOI: 10.1074/jbc.m113.479345] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | | | | |
Collapse
|
21
|
Müller WEG, Schröder HC, Markl JS, Grebenjuk VA, Korzhev M, Steffen R, Wang X. Cryptochrome in sponges: a key molecule linking photoreception with phototransduction. J Histochem Cytochem 2013; 61:814-32. [PMID: 23920109 DOI: 10.1369/0022155413502652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sponges (phylum: Porifera) react to external light or mechanical signals with contractile or metabolic reactions and are devoid of any nervous or muscular system. Furthermore, elements of a photoreception/phototransduction system exist in those animals. Recently, a cryptochrome-based photoreceptor system has been discovered in the demosponge. The assumption that in sponges the siliceous skeleton acts as a substitution for the lack of a nervous system and allows light signals to be transmitted through its glass fiber network is supported by the findings that the first spicules are efficient light waveguides and the second sponges have the enzymatic machinery for the generation of light. Now, we have identified/cloned in Suberites domuncula two additional potential molecules of the sponge cryptochrome photoreception system, the guanine nucleotide-binding protein β subunit, related to β-transducin, and the nitric oxide synthase (NOS)-interacting protein. Cryptochrome and NOSIP are light-inducible genes. The studies show that the NOS inhibitor L-NMMA impairs both morphogenesis and motility of the cells. Finally, we report that the function of primmorphs to produce reactive nitrogen species can be abolished by a NOS inhibitor. We propose that the sponge cryptochrome-based photoreception system, through which photon signals are converted into radicals, is coupled to the NOS apparatus.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany (WEGM,HCS,JSM,VAG,MK,RS,XW)
| | | | | | | | | | | | | |
Collapse
|
22
|
Adler WT, Platt MP, Mehlhorn AJ, Haight JL, Currier TA, Etchegaray MA, Galaburda AM, Rosen GD. Position of neocortical neurons transfected at different gestational ages with shRNA targeted against candidate dyslexia susceptibility genes. PLoS One 2013; 8:e65179. [PMID: 23724130 PMCID: PMC3665803 DOI: 10.1371/journal.pone.0065179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/24/2013] [Indexed: 01/12/2023] Open
Abstract
Developmental dyslexia is a language learning disorder that affects approximately 4–10% of the population. A number of candidate dyslexia susceptibility genes have been identified, including DCDC2 and KIAA0319 on Chromosome (Chr) 6p22.2 and DYX1C1 on Chr 15q21. Embryonic knockdown of the function of homologs of these genes in rat neocortical projection cell progenitors by in utero electroporation of plasmids encoding small hairpin RNA (shRNA) revealed that all three genes disrupted neuronal migration to the neocortex. Specifically, this disruption would result in heterotopia formation (Dyx1c1 and Kiaa0319) and/or overmigration past their expected laminar location (Dyx1c1 and Dcdc2). In these experiments, neurons normally destined for the upper neocortical laminæ were transfected on embryonic day (E) 15.5, and we designed experiments to test whether these migration phenotypes were the result of targeting a specific type of projection neuron. We transfected litters with Dcdc2 shRNA, Dyx1c1 shRNA, Kiaa0319 shRNA, or fluorescent protein (as a control) at each of three gestational ages (E14.5, E15.5, or E16.5). Pups were allowed to come to term, and their brains were examined at 3 weeks of age for the position of transfected cells. We found that age of transfection did not affect the percentage of unmigrated neurons—transfection with Kiaa0319 shRNA resulted in heterotopia formation at all three ages. Overmigration of neurons transfected with Dcdc2 shRNA, while present following transfections at the later ages, did not occur following E14.5 transfections. These results are considered in light of the known functions of each of these candidate dyslexia susceptibility genes.
Collapse
Affiliation(s)
- William T. Adler
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Maryann P. Platt
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Alison J. Mehlhorn
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Joshua L. Haight
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Timothy A. Currier
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Mikel A. Etchegaray
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Albert M. Galaburda
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Glenn D. Rosen
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
LoTurco JJ, Tarkar A. DYX1C1 placed in a molecular context. Biol Psychiatry 2013; 73:497-8. [PMID: 23438632 DOI: 10.1016/j.biopsych.2013.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 11/16/2022]
Affiliation(s)
- Joseph J LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA.
| | | |
Collapse
|
24
|
Tammimies K, Vitezic M, Matsson H, Le Guyader S, Bürglin TR, Ohman T, Strömblad S, Daub CO, Nyman TA, Kere J, Tapia-Páez I. Molecular networks of DYX1C1 gene show connection to neuronal migration genes and cytoskeletal proteins. Biol Psychiatry 2013; 73:583-90. [PMID: 23036959 DOI: 10.1016/j.biopsych.2012.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND The dyslexia susceptibility 1 candidate 1 (DYX1C1) gene has recently been associated with dyslexia and reading scores in several population samples. The DYX1C1 has also been shown to affect neuronal migration and modulate estrogen receptor signaling. METHODS We have analyzed the molecular networks of DYX1C1 by gene expression and protein interaction profiling in a human neuroblastoma cell line. RESULTS We find that DYX1C1 can modulate the expression of nervous system development and neuronal migration genes such as RELN and associate with a number of cytoskeletal proteins. We also show by live cell imaging that DYX1C1 regulates cell migration of the human neuroblastoma cell line dependent on its tetratricopeptide repeat and DYX1 protein domains. The DYX1 domain is a novel highly conserved domain identified in this study by multiple sequence alignment of DYX1C1 proteins recovered from a wide range of eukaryotic species. CONCLUSIONS Our results contribute to the hypothesis that dyslexia has a developmental neurobiological basis by linking DYX1C1 with many genes involved in neuronal migration disorders.
Collapse
Affiliation(s)
- Kristiina Tammimies
- Center for Biosciences, Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
A connected set of genes associated with programmed cell death implicated in controlling the hypersensitive response in maize. Genetics 2012; 193:609-20. [PMID: 23222653 DOI: 10.1534/genetics.112.147595] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rp1-D21 is a maize auto-active resistance gene conferring a spontaneous hypersensitive response (HR) of variable severity depending on genetic background. We report an association mapping strategy based on the Mutant Assisted Gene Identification and Characterization approach to identify naturally occurring allelic variants associated with phenotypic variation in HR. Each member of a collection of 231 diverse inbred lines of maize constituting a high-resolution association mapping panel were crossed to a parental stock heterozygous for Rp1-D21, and the segregating F(1) generation testcrosses were evaluated for phenotypes associated with lesion severity for 2 years at two locations. A genome-wide scan for associations with HR was conducted with 47,445 SNPs using a linear mixed model that controlled for spurious associations due to population structure. Since the ability to identify candidate genes and the resolution of association mapping are highly influenced by linkage disequilibrium (LD), we examined the extent of genome-wide LD. On average, marker pairs separated by >10 kbp had an r(2) value of <0.1. Genomic regions surrounding SNPs significantly associated with HR traits were locally saturated with additional SNP markers to establish local LD structure and precisely identify candidate genes. Six significantly associated SNPs at five loci were detected. At each locus, the associated SNP was located within or immediately adjacent to candidate causative genes predicted to play significant roles in the control of programmed cell death and especially in ubiquitin pathway-related processes.
Collapse
|
26
|
Imamura S, Yabu T, Yamashita M. Protective role of cell division cycle 48 (CDC48) protein against neurodegeneration via ubiquitin-proteasome system dysfunction during zebrafish development. J Biol Chem 2012; 287:23047-56. [PMID: 22549779 DOI: 10.1074/jbc.m111.332882] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell division cycle 48 (CDC48), a ubiquitin-dependent molecular chaperone, is thought to mediate a variety of degradative and regulatory processes and maintain cellular homoeostasis. To investigate the protective function of CDC48 against accumulated ubiquitinated proteins during neurodevelopment, we developed an in vivo bioassay technique that detects expression and accumulation of fluorescent proteins with a polyubiquitination signal at the N terminus. When we introduced CDC48 antisense morpholino oligonucleotides into zebrafish embryos, the morphant embryos were lethal and showed defects in neuronal outgrowth and neurodegeneration, and polyubiquitinated fluorescent proteins accumulated in the inner plexiform and ganglion cell layers, as well as the diencephalon and mesencephalon, indicating that the degradation of polyubiquitinated proteins by the ubiquitin-proteasome system was blocked. These abnormal phenotypes in the morphant were rescued by CDC48 or human valosin-containing protein overexpression. Therefore, the protective function of CDC48 is essential for neurodevelopment.
Collapse
Affiliation(s)
- Shintaro Imamura
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Yokohama, Kanagawa 236-8648, Japan
| | | | | |
Collapse
|
27
|
Zhang XL, Lu YS, Jian JC, Wu ZH. Cloning and expression analysis of recombination activating genes (RAG1/2) in red snapper (Lutjanus sanguineus). FISH & SHELLFISH IMMUNOLOGY 2012; 32:534-543. [PMID: 22266137 DOI: 10.1016/j.fsi.2012.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
Recombination activating genes (RAG1 and RAG2), involved in the V(D)J recombination of immunoglobulin and T-cell receptor genes play a crucial role in the adaptive immune response in vertebrates. The expression of these genes was required for the proper development and maturity of lymphocytes so that they can be used as useful markers to evaluate the development of lymphoid organ. In this paper, the cDNA of RAG1 and RAG2 in red snapper, Lutjanus sanguineus were cloned by homological cloning and rapid amplification of cDNA ends (RACE) methods. Results showed the full length of RAG1 cDNA was 3944 bp, containing a 5' untranslated region (UTR) of 200 bp, a 3'-UTR of 561 bp and an open reading frame of 3183 bp encoding 1060 amino acids. Three important structural motifs, a RING/U-box domain, a RING/FYVE/PHD-type domain and a RAG Nonamer-binding domain were detected in the deduced amino acid sequence of RAG1 by InterProScan analysis. The full length of RAG2 cDNA was 2200 bp, consisting of a 141 bp 5'-UTR, a 457 bp 3'-UTR and an open reading frame of 1602 bp encoding 533 amino acids. Two important structural motifs, a Galactose oxidase/kelch, beta-propeller domain and a kelch-type beta-propeller domain were detected in the deduced amino acid sequence of RAG2 by InterProScan analysis. BLAST analysis revealed that the RAG1 and RAG2 in red snapper shared a high homology with other known RAG1 and RAG2 genes, while the greatest degree of identity was observed with Hippoglossus hippoglossus RAG1 at 82% and Takifugu rubripes RAG2 at 87%, respectively. The differential expressions of RAG1 and RAG2 in various tissues of red snapper were analyzed by fluorescent quantitative real-time PCR. The overall expression pattern of the two genes was quite similar. In healthy red snappers, the RAGs transcripts were mainly detected in thymus, following head kidney, spleen, intestine, liver and brain. After vaccinated with inactivated Vibrio alginolyticus 48 h later, the RAGs mRNA expression was significantly up-regulated in all studied tissues of red snapper. A clear time-dependent expression pattern of RAG1 and RAG2 after immunization and the expression reached the highest level at 48 h in thymus, 60 h in head kidney and spleen, respectively. These findings indicated that RAG1 and RAG2 could play an important role in the immune response to bacteria in red snapper.
Collapse
Affiliation(s)
- X L Zhang
- College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China
| | | | | | | |
Collapse
|
28
|
Tammimies K, Tapia-Páez I, Rüegg J, Rosin G, Kere J, Gustafsson JÅ, Nalvarte I. The rs3743205 SNP is important for the regulation of the dyslexia candidate gene DYX1C1 by estrogen receptor β and DNA methylation. Mol Endocrinol 2012; 26:619-29. [PMID: 22383464 DOI: 10.1210/me.2011-1376] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Estrogen is involved in numerous physiological processes such as growth, differentiation, and function of the male and female reproductive tissues. In the developing brain, estrogen signaling has been linked to cognitive functions, such as learning and memory; however, the molecular mechanisms underlying this phenomenon are poorly understood. We have previously shown a link between developmental dyslexia and estrogen signaling, when we studied the functional interactions between the dyslexia candidate protein DYX1C1 and the estrogen receptors α (ERα) and β (ERβ). Here, we investigate the 17β-estradiol (E2)-dependent regulation of dyslexia susceptibility 1 candidate 1 (DYX1C1) expression. We demonstrate that ERβ, not ERα, binds to a transcriptionally active cis-regulatory region upstream of DYX1C1 transcriptional start site and that DYX1C1 expression is enhanced by E2 in a neuroblastoma cell line. This regulation is dependent on transcription factor II-I and liganded ERβ recruitment to this region. In addition, we describe that a single nucleotide polymorphism previously shown to be associated with dyslexia and located in the cis-regulatory region of DYX1C1 may alter the epigenetic and endocrine regulation of this gene. Our data provide important molecular insights into the relationship between developmental dyslexia susceptibility and estrogen signaling.
Collapse
Affiliation(s)
- Kristiina Tammimies
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14183 Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
29
|
Chen X, Burgoyne RD. Identification of common genetic modifiers of neurodegenerative diseases from an integrative analysis of diverse genetic screens in model organisms. BMC Genomics 2012; 13:71. [PMID: 22333271 PMCID: PMC3292922 DOI: 10.1186/1471-2164-13-71] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/14/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND An array of experimental models have been developed in the small model organisms C. elegans, S. cerevisiae and D. melanogaster for the study of various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and expanded polyglutamine diseases as exemplified by Huntington's disease (HD) and related ataxias. Genetic approaches to determine the nature of regulators of the disease phenotypes have ranged from small scale to essentially whole genome screens. The published data covers distinct models in all three organisms and one important question is the extent to which shared genetic factors can be uncovered that affect several or all disease models. Surprisingly it has appeared that there may be relatively little overlap and that many of the regulators may be organism or disease-specific. There is, however, a need for a fully integrated analysis of the available genetic data based on careful comparison of orthologues across the species to determine the real extent of overlap. RESULTS We carried out an integrated analysis using C. elegans as the baseline model organism since this is the most widely studied in this context. Combination of data from 28 published studies using small to large scale screens in all three small model organisms gave a total of 950 identifications of genetic regulators. Of these 624 were separate genes with orthologues in C. elegans. In addition, 34 of these genes, which all had human orthologues, were found to overlap across studies. Of the common genetic regulators some such as chaperones, ubiquitin-related enzymes (including the E3 ligase CHIP which directly links the two pathways) and histone deacetylases were involved in expected pathways whereas others such as the peroxisomal acyl CoA-oxidase suggest novel targets for neurodegenerative disease therapy CONCLUSIONS We identified a significant number of overlapping regulators of neurodegenerative disease models. Since the diseases have, as an underlying feature, protein aggregation phenotypes it was not surprising that some of the overlapping genes encode proteins involved in protein folding and protein degradation. Interestingly, however, some of the overlapping genes encode proteins that have not previously featured in targeted studies of neurodegeneration and this information will form a useful resource to be exploited in further studies of potential drug-targets.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cellular and Molecular Physiology, Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| | | |
Collapse
|
30
|
Proteasome and Neurodegeneratıve Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:397-414. [DOI: 10.1016/b978-0-12-397863-9.00011-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Kappo MA, Ab E, Hassem F, Atkinson RA, Faro A, Muleya V, Mulaudzi T, Poole JO, McKenzie JM, Chibi M, Moolman-Smook JC, Rees DJG, Pugh DJR. Solution structure of RING finger-like domain of retinoblastoma-binding protein-6 (RBBP6) suggests it functions as a U-box. J Biol Chem 2011; 287:7146-58. [PMID: 22130672 DOI: 10.1074/jbc.m110.217059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Retinoblastoma-binding protein-6 (RBBP6) plays a facilitating role, through its RING finger-like domain, in the ubiquitination of p53 by Hdm2 that is suggestive of E4-like activity. Although the presence of eight conserved cysteine residues makes it highly probable that the RING finger-like domain coordinates two zinc ions, analysis of the primary sequence suggests an alternative classification as a member of the U-box family, the members of which do not bind zinc ions. We show here that despite binding two zinc ions, the domain adopts a homodimeric structure highly similar to those of a number of U-boxes. Zinc ions could be replaced by cadmium ions without significantly disrupting the structure or the stability of the domain, although the rate of substitution was an order of magnitude slower than any previous measurement, suggesting that the structure is particularly stable, a conclusion supported by the high thermal stability of the domain. A hallmark of U-box-containing proteins is their association with chaperones, with which they cooperate in eliminating irretrievably unfolded proteins by tagging them for degradation by the proteasome. Using a yeast two-hybrid screen, we show that RBBP6 interacts with chaperones Hsp70 and Hsp40 through its N-terminal ubiquitin-like domain. Taken together with the structural similarities to U-box-containing proteins, our data suggest that RBBP6 plays a role in chaperone-mediated ubiquitination and possibly in protein quality control.
Collapse
Affiliation(s)
- Mautin A Kappo
- Biotechnology Department, University of the Western Cape, Bellville 7535, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abu-Farha M, Lanouette S, Elisma F, Tremblay V, Butson J, Figeys D, Couture JF. Proteomic analyses of the SMYD family interactomes identify HSP90 as a novel target for SMYD2. J Mol Cell Biol 2011; 3:301-8. [DOI: 10.1093/jmcb/mjr025] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
MDA-9/syntenin interacts with ubiquitin via a novel ubiquitin-binding motif. Mol Cell Biochem 2011; 352:163-72. [PMID: 21359963 DOI: 10.1007/s11010-011-0750-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
Ubiquitination appears to be involved in proteasome-dependent proteolysis and in the membrane trafficking system including endocytosis and exocytosis. In this study, we identified MDA-9/syntenin as a novel ubiquitin-binding protein by a yeast two-hybrid system using modified ubiquitin in which lysine 48 is substituted by arginine. It has been reported that MDA-9/syntenin is a membrane-associated protein and regulates a cellular process involving endocytosis and intracellular transport. We found that MDA-9/syntenin binds to ubiquitin by a non-covalent bond and is ubiquitinated covalently. MDA-9/syntenin has no ubiquitin-binding motifs that have so far been reported, suggesting that MDA-9/syntenin physically interacts with ubiquitin via a novel binding motif. MDA-9/syntenin is stable in the cell, suggesting that ubiquitin binding of MDA-9/syntenin or ubiquitination of MDA-9/syntenin is not related to proteolysis. Furthermore, we showed that overexpression of wild-type MDA-9/syntenin enhances formation of filopodia, whereas MDA-9/syntenin lacking the PDZ domain inhibits the formation of filopodia, suggesting that MDA-9/syntenin plays an important role via interaction with ubiquitin in the regulation of cancer metastasis and invasion.
Collapse
|
34
|
Chymkowitch P, Le May N, Charneau P, Compe E, Egly JM. The phosphorylation of the androgen receptor by TFIIH directs the ubiquitin/proteasome process. EMBO J 2010; 30:468-79. [PMID: 21157430 DOI: 10.1038/emboj.2010.337] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/22/2010] [Indexed: 11/09/2022] Open
Abstract
In response to hormonal stimuli, a cascade of hierarchical post-translational modifications of nuclear receptors are required for the correct expression of target genes. Here, we show that the transcription factor TFIIH, via its cdk7 kinase, phosphorylates the androgen receptor (AR) at position AR/S515. Strikingly, this phosphorylation is a key step for an accurate transactivation that includes the cyclic recruitment of the transcription machinery, the MDM2 E3 ligase, the subsequent ubiquitination of AR at the promoter of target genes and its degradation by the proteasome machinery. Impaired phosphorylation disrupts the transactivation, as observed in cells either overexpressing the non-phosphorylated AR/S515A, isolated from xeroderma pigmentosum patient (bearing a mutation in XPD subunit of TFIIH), or in which cdk7 kinase was silenced. Indeed, besides affecting the cyclic recruitment of the transcription machinery, the AR phosphorylation defect favourizes to the recruitment of the E3 ligase CHIP instead of MDM2, at the PSA promoter, that will further attract the proteasome machinery. These observations illustrate how the TFIIH phosphorylation might participate to the transactivation by regulating the nuclear receptors turnover.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, INSERM, Université de Strasbourg, Illkirch cedex, France
| | | | | | | | | |
Collapse
|
35
|
Shinada K, Tsukiyama T, Sho T, Okumura F, Asaka M, Hatakeyama S. RNF43 interacts with NEDL1 and regulates p53-mediated transcription. Biochem Biophys Res Commun 2010; 404:143-7. [PMID: 21108931 DOI: 10.1016/j.bbrc.2010.11.082] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
The ubiquitin-proteasomal system plays a crucial role in oncogenesis in colorectal tissues. Recent studies have shown that stability of β-catenin, which functions as an oncogene for colorectal cancer, is regulated by ubiquitin-mediated degradation. It has been reported that a putative E3 ubiquitin ligase, RNF43, is highly expressed in human colorectal carcinoma and that RNF43 promotes cell growth. However, the involvement of RNF43 in carcinogenesis has not been fully elucidated. In this study, we found by using yeast two-hybrid screening that RNF43 binds to NEDD-4-like ubiquitin-protein ligase-1 (NEDL1), which enhances pro-apoptotic activity by p53. In addition, we found that RNF43 also interacts with p53 and that RNF43 suppresses transcriptional activity of p53 in H1299 cells and attenuates apoptosis induced by ultraviolet irradiation. These findings suggest that RNF43 is associated with p53-mediated apoptosis in collaboration with NEDL1 in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Keisuke Shinada
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Background The patterns of emergence and diversification of the families of ubiquitin ligases provide insights about the evolution of the eukaryotic ubiquitination system. U-box ubiquitin ligases (UULs) are proteins characterized by containing a peculiar protein domain known as U box. In this study, the origin of the animal UUL genes is described. Results Phylogenetic and structural data indicate that six of the seven main UUL-encoding genes found in humans (UBE4A, UBE4B, UIP5, PRP19, CHIP and CYC4) were already present in the ancestor of all current metazoans and the seventh (WDSUB1) is found in placozoans, cnidarians and bilaterians. The fact that only 4 - 5 genes orthologous to the human ones are present in the choanoflagellate Monosiga brevicollis suggests that several animal-specific cooptions of the U box to generate new genes occurred. Significantly, Monosiga contains five additional UUL genes that are not present in animals. One of them is also present in distantly-related protozoans. Along animal evolution, losses of UUL-encoding genes are rare, except in nematodes, which lack three of them. These general patterns are highly congruent with those found for other two families (RBR, HECT) of ubiquitin ligases. Conclusions Finding that the patterns of emergence, diversification and loss of three unrelated families of ubiquitin ligases (RBR, HECT and U-box) are parallel indicates that there are underlying, linage-specific evolutionary forces shaping the complexity of the animal ubiquitin system.
Collapse
|
37
|
Benirschke RC, Thompson JR, Nominé Y, Wasielewski E, Juranić N, Macura S, Hatakeyama S, Nakayama KI, Botuyan MV, Mer G. Molecular basis for the association of human E4B U box ubiquitin ligase with E2-conjugating enzymes UbcH5c and Ubc4. Structure 2010; 18:955-65. [PMID: 20696396 PMCID: PMC3005147 DOI: 10.1016/j.str.2010.04.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/26/2010] [Accepted: 04/21/2010] [Indexed: 01/04/2023]
Abstract
Human E4B, also called UFD2a, is a U box-containing protein that functions as an E3 ubiquitin ligase and an E4 polyubiquitin chain elongation factor. E4B is thought to participate in the proteasomal degradation of misfolded or damaged proteins through association with chaperones. The U box domain is an anchor site for E2 ubiquitin-conjugating enzymes, but little is known of the binding mechanism. Using X-ray crystallography and NMR spectroscopy, we determined the structures of E4B U box free and bound to UbcH5c and Ubc4 E2s. Whereas previously characterized U box domains are homodimeric, we show that E4B U box is a monomer stabilized by a network of hydrogen bonds identified from scalar coupling measurements. These structural studies, complemented by calorimetry- and NMR-based binding assays, suggest an allosteric regulation of UbcH5c and Ubc4 by E4B U box and provide a molecular basis to understand how the ubiquitylation machinery involving E4B assembles.
Collapse
Affiliation(s)
- Robert C. Benirschke
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Biochemistry and Structural Biology Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - James R. Thompson
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yves Nominé
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Emeric Wasielewski
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Nenad Juranić
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Slobodan Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Kyushu University, Fukuoka 812-8582, Japan
| | - Maria Victoria Botuyan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
38
|
Abstract
The efficient management of misfolded protein aggregates is essential for cell viability and requires three interconnected pathways: the molecular chaperone machinery that assists protein folding, the proteasome pathway that degrades misfolded proteins, and the aggresomal pathway that sequesters and delivers toxic proteins aggregates to autophagy for clearance. Although autophagy is generally considered as non-selective degradative machinery, growing evidence supports the existence of a selective autophagy that specifically targets protein aggregates for clearance. This so-called "quality control autophagy" is established by specific ubiquitin E3 ligases, autophagic substrate ubiquitination, and specific ubiquitin binding proteins p62 and HDAC6. In this context, quality control autophagy is similar to the proteasome system and utilizes ubiquitin tags for substrate recognition and processing. Here I will discuss the recent progress towards understanding the molecular basis of this unique form of ubiquitin-dependent autophagy in protein aggregate clearance and its relevance to disease.
Collapse
Affiliation(s)
- Tso-Pang Yao
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
39
|
Gabel LA, Gibson CJ, Gruen JR, LoTurco JJ. Progress towards a cellular neurobiology of reading disability. Neurobiol Dis 2010; 38:173-80. [PMID: 19616627 PMCID: PMC2854314 DOI: 10.1016/j.nbd.2009.06.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 06/25/2009] [Accepted: 06/28/2009] [Indexed: 01/18/2023] Open
Abstract
Reading Disability (RD) is a significant impairment in reading accuracy, speed and/or comprehension despite adequate intelligence and educational opportunity. RD affects 5-12% of readers, has a well-established genetic risk, and is of unknown neurobiological cause or causes. In this review we discuss recent findings that revealed neuroanatomic anomalies in RD, studies that identified 3 candidate genes (KIAA0319, DYX1C1, and DCDC2), and compelling evidence that potentially link the function of candidate genes to the neuroanatomic anomalies. A hypothesis has emerged in which impaired neuronal migration is a cellular neurobiological antecedent to RD. We critically evaluate the evidence for this hypothesis, highlight missing evidence, and outline future research efforts that will be required to develop a more complete cellular neurobiology of RD.
Collapse
Affiliation(s)
- Lisa A Gabel
- Department of Psychology, Lafayette College, Easton, PA, USA
| | | | | | | |
Collapse
|
40
|
Lim SK, Kim JC, Moon CJ, Kim GY, Han HJ, Park SH. Formaldehyde induces apoptosis through decreased Prx 2 via p38 MAPK in lung epithelial cells. Toxicology 2010; 271:100-6. [PMID: 20347000 DOI: 10.1016/j.tox.2010.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 11/19/2022]
Abstract
Formaldehyde (FA) is an important substance that induces sick house syndrome and diseases, such as asthma and allergies. Oxidative stress is involved in the development of respiratory disease, and diverse antioxidants may protect respiratory tract cells from apoptosis. Peroxiredoxin is a pivotal endogenous antioxidant. In the present study, FA induced death in A549 cells, a lung epithelial cell line, in a dose-dependent manner. FA also increased lipid peroxide formation (LPO) in A549 cells, suggesting a role for oxidative stress. Additionally, FA decreased peroxiredoxin 2 (Prx 2) protein levels after a 24 or 48h exposure to FA. We also examined whether the FA-induced decrease in Prx 2 was associated with apoptosis. Prx 2 overexpression protected against FA-induced cell apoptosis but not necrosis. Prx 2 overexpression blocked FA-induced increase in Bax, a pro-apoptotic molecule, and a decrease in Bcl-2, an anti-apoptotic molecule. Prx 2 overexpression also protected against FA-induced activation of some special apoptosis-associated proteins [caspase-3, caspase-9, and polypeptide poly (ADP-ribose) polymerase (PARP)]. Furthermore, we examined the signaling molecules involved in the FA-induced decrease in Prx 2 expression. The FA-induced decrease in Prx 2 and increase in cell apoptosis was restored by treatment with SB203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by SP600125 [a c-jun-N-terminal kinase (JNK) inhibitor]. Also, FA-induced events were blocked by treatment with p38 siRNA, but not by scrambled siRNA. Indeed, FA increased p38 MAPK activation, suggesting a role for p38 MAPK in FA action. In conclusion, FA mediated apoptosis in lung epithelial cells by decreasing Prx 2 via p38 MAPK.
Collapse
Affiliation(s)
- Seul Ki Lim
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Yongbongdong 300 Bukgu, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | |
Collapse
|
41
|
Choi JS, Lee DH. CHIP promotes the degradation of mutant SOD1 by reducing its interaction with VCP and S6/S6′ subunits of 26S proteasome. Anim Cells Syst (Seoul) 2010. [DOI: 10.1080/19768351003765145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
42
|
Pratt WB, Morishima Y, Peng HM, Osawa Y. Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Exp Biol Med (Maywood) 2010; 235:278-89. [PMID: 20404045 PMCID: PMC3046050 DOI: 10.1258/ebm.2009.009250] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Hsp90/Hsp70-based chaperone machinery plays a well-established role in signaling protein function, trafficking and turnover. A number of recent observations also support the notion that Hsp90 and Hsp70 play key roles in the triage of damaged and aberrant proteins for degradation via the ubiquitin-proteasome pathway. In the mid-1990s, it was discovered that Hsp70 is required for ubiquitin-dependent degradation of short-lived and abnormal proteins, and it became clear that inhibition of Hsp90 uniformly leads to the proteasomal degradation of Hsp90 client proteins. Subsequently, CHIP and parkin were shown to be Hsp70-binding ubiquitin E3 ligases that direct ubiquitin-charged E2 enzymes to the Hsp70-bound client protein. Stabilization by Hsp90 reflects the interaction of the chaperone with the ligand binding cleft of the client protein. These hydrophobic clefts must be open to allow passage of ligands to binding sites in the protein interior, and they are inherent sites of conformational instability. Hsp90 stabilizes the open state of the cleft and prevents Hsp70-dependent ubiquitination. In the model we propose here, progressive oxidative events result in cleft opening as the initial step in protein unfolding, and as long as Hsp90 can interact to stabilize the cleft, it will buffer the effect of oxidative damage. When cleft opening is such that Hsp90 can no longer interact, Hsp70-dependent ubiquitination occurs. We summarize evidence that Hsp90 interacts very dynamically with a variety of proteins that are not classic Hsp90 clients, and we show that this dynamic cycling of Hsp90 with nitric oxide synthase protects against CHIP-mediated ubiquitination. Scientific interest to date has focused on stringent regulation of the classic client proteins, which have metastable clefts and are inherently short lived. But, the recognition that Hsp90 cycles dynamically with longer lived proteins with more stable clefts may permit extension of the triage model to the quality control of damaged proteins in general.
Collapse
Affiliation(s)
- William B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, 48109, USA
| | | | | | | |
Collapse
|
43
|
Clark CB, Rane MJ, Mehdi DE, Miller CJ, Sachleben LR, Gozal E. Role of oxidative stress in geldanamycin-induced cytotoxicity and disruption of Hsp90 signaling complex. Free Radic Biol Med 2009; 47:1440-9. [PMID: 19703551 PMCID: PMC2767391 DOI: 10.1016/j.freeradbiomed.2009.08.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 08/05/2009] [Accepted: 08/17/2009] [Indexed: 12/21/2022]
Abstract
Heat shock protein 90 (Hsp90) is a chaperone protein regulating PC-12 cell survival by binding and stabilizing Akt, Raf-1, and Cdc37. Hsp90 inhibitor geldanamycin (GA) cytotoxicity has been attributed to the disruption of Hsp90 binding, and the contribution of oxidative stress generated by its quinone group has not been studied in this context. Reactive oxygen species (ROS) and cell survival were assessed in PC-12 cells exposed to GA or menadione (MEN), and Akt, Raf-1, and Cdc37 expression and binding to Hsp90 were determined. GA disrupted Hsp90 binding and increased ROS production starting at 1 h, and cell death occurred at 6 h, inhibited by N-acetylcysteine (NAC) without preventing dissociation of proteins. At 24 h, NAC prevented cytotoxicity and Hsp90 complex disruption. However, MnTBAP antioxidant treatment failed to inhibit GA cytotoxicity, suggesting that NAC acts by restoring glutathione. In contrast, 24 h MEN treatment induced cytotoxicity without disrupting Hsp90 binding. GA and MEN decreased Hsp90-binding protein expression, and proteasomal inhibition prevented MEN-, but not GA-induced degradation. In conclusion, whereas MEN cytotoxicity is mediated by ROS and proteasomal degradation, GA-induced cytotoxicity requires ROS but induces Hsp90 complex dissociation and proteasome-independent protein degradation. These differences between MEN- and GA-induced cytotoxicity may allow more specific targeting of cancer cells.
Collapse
Affiliation(s)
- Christina B. Clark
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY
| | - Madhavi J. Rane
- Department of Medicine, University of Louisville, Louisville, KY
- Department of, Biochemistry & Molecular Biology, University of Louisville, Louisville, KY
| | - Delphine El Mehdi
- Department of Pediatrics, KCHRI, University of Louisville, Louisville, KY
| | - Cynthia J. Miller
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY
| | - Leroy R. Sachleben
- Department of Pediatrics, KCHRI, University of Louisville, Louisville, KY
| | - Evelyne Gozal
- Department of Pediatrics, KCHRI, University of Louisville, Louisville, KY
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY
| |
Collapse
|
44
|
Massinen S, Tammimies K, Tapia-Páez I, Matsson H, Hokkanen ME, Söderberg O, Landegren U, Castrén E, Gustafsson JA, Treuter E, Kere J. Functional interaction of DYX1C1 with estrogen receptors suggests involvement of hormonal pathways in dyslexia. Hum Mol Genet 2009; 18:2802-12. [PMID: 19423554 DOI: 10.1093/hmg/ddp215] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dyslexia, or specific reading disability, is the unexpected failure in learning to read and write when intelligence and senses are normal. One of the susceptibility genes, DYX1C1, has been implicated in neuronal migration, but little is known about its interactions and functions. As DYX1C1 was suggested to interact with the U-box protein CHIP (carboxy terminus of Hsc70-interacting protein), which also participates in the degradation of estrogen receptors alpha (ERalpha) and beta (ERbeta), we hypothesized that the effects of DYX1C1 might be at least in part mediated through the regulation of ERs. ERs have shown to be important in brain development and cognitive functions. Indeed, we show that DYX1C1 interacts with both ERs in the presence of 17beta-estradiol, as determined by co-localization, co-immunoprecipitation and proximity ligation assays. Protein levels of endogenous ERalpha or exogenous ERbeta were reduced upon over-expression of DYX1C1, resulting in decreased transcriptional responses to 17beta-estradiol. Furthermore, we detected in vivo complexes of DYX1C1 with ERalpha or ERbeta at endogenous levels along neurites of primary rat hippocampal neurons. Taken together, our data suggest that DYX1C1 is involved in the regulation of ERalpha and ERbeta, and may thus affect the brain development and regulate cognitive functions. These findings provide novel insights into the function of DYX1C1 and link neuronal migration and developmental dyslexia to the estrogen-signaling effects in the brain.
Collapse
Affiliation(s)
- Satu Massinen
- Department of Medical Genetics, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
BACKGROUND The 90-kDa heat-shock proteins (Hsp90) have rapidly evolved into promising therapeutic targets for the treatment of several diseases, including cancer and neurodegenerative diseases. Hsp90 is a molecular chaperone that aids in the conformational maturation of nascent polypeptides, as well as the rematuration of denatured proteins. DISCUSSION Many of the Hsp90-dependent client proteins are associated with cellular growth and survival and, consequently, inhibition of Hsp90 represents a promising approach for the treatment of cancer. Conversely, stimulation of heat-shock protein levels has potential therapeutic applications for the treatment of neurodegenerative diseases that result from misfolded and aggregated proteins. CONCLUSION Hsp90 modulation exhibits the potential to treat unrelated disease states, from cancer to neurodegenerative diseases, and, thus, to fold or not to fold, becomes a question of great value.
Collapse
Affiliation(s)
- Laura B Peterson
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott 4070, Lawrence, KA 66045-7563, USA.
| | | |
Collapse
|
46
|
Yee D, Goring DR. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1109-21. [PMID: 19196749 DOI: 10.1093/jxb/ern369] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ubiquitin-mediated proteolysis is an integral part of diverse cellular functions, and of the three enzymes involved in linking ubiquitin to protein targets, the E3 ubiquitin ligases are of particular interest as they confer substrate specificity during this process. The E3 ubiquitin ligases can be categorized based on mechanism of action and on the presence of specific domains such as RING, HECT, F-box, and U-box. In plants, the U-box family has undergone a large gene expansion that may be attributable to biological processes unique to the plant life cycle. For example, there are 64 predicted plant U-box (PUB) proteins in Arabidopsis, and the biological roles of many of these have yet to be determined. Research on PUB genes from several different plants has started to elucidate a range of functions for this family, from self-incompatibility and hormone responses to defence and abiotic stress responses. Expression profiling has also been used as a starting point to elucidate PUB function, and has uncovered a strong connection of PUB genes to various stress responses. Finally, some PUB proteins have been linked to receptor kinases as upstream activators, and downstream target substrates are also starting to emerge. The mechanisms of action range from the observation of mono-ubiquitination during non-proteolytic signalling to directed regulation of proteasomal components during stress responses, and cell death appears to be a theme underlying many PUB functions.
Collapse
Affiliation(s)
- Donna Yee
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
47
|
Morishima Y, Wang AM, Yu Z, Pratt WB, Osawa Y, Lieberman AP. CHIP deletion reveals functional redundancy of E3 ligases in promoting degradation of both signaling proteins and expanded glutamine proteins. Hum Mol Genet 2008; 17:3942-52. [PMID: 18784277 DOI: 10.1093/hmg/ddn296] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CHIP (carboxy terminus of Hsc70-interacting protein) an E3 ubiquitin ligase that binds to Hsp70 and Hsp90, promotes degradation of several Hsp90-regulated signaling proteins and disease-causing proteins containing expanded glutamine tracts. In polyglutamine disease models, CHIP has been considered a primary protection factor by promoting degradation of these misfolded proteins. Here, we show that two CHIP substrates, the glucocorticoid receptor (GR), a classic Hsp90-regulated signaling protein, and the expanded glutamine androgen receptor (AR112Q), are degraded at the same rate in CHIP(-/-) and CHIP(+/+) mouse embryonic fibroblasts after treatment with the Hsp90 inhibitor geldanamycin. CHIP(-/-) cytosol has the same ability as CHIP(+/+) cytosol to ubiquitinate purified neuronal nitric oxide synthase (nNOS), another established CHIP substrate. To determine whether other E3 ubiquitin ligases that bind to Hsp70 (Parkin) or Hsp90 (Mdm2) act on CHIP substrates, each E3 ligase was co-expressed with the GR, nNOS, AR112Q or Q78 ataxin-3. CHIP lowered the levels of all four proteins, Parkin acted on nNOS and Q78 ataxin-3 but not on the steroid receptors, and Mdm2 did not affect any of the co-expressed proteins. Moreover, both CHIP and Parkin co-localized to aggregates of the expanded glutamine AR formed in cell culture and in a knock-in mouse model of spinal and bulbar muscular atrophy. These observations establish that CHIP does not play an exclusive role in regulating the turnover of Hsp90 client signaling proteins or expanded glutamine tract proteins, and show that the Hsp70-dependent E3 ligase Parkin acts redundantly to CHIP on some substrates.
Collapse
Affiliation(s)
- Yoshihiro Morishima
- Department of Pharmacology, The University of Michigan Medical School, 3510 MSRB I, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
48
|
Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases. Biochem J 2008; 413:447-57. [PMID: 18393940 DOI: 10.1042/bj20071568] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp(266) in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis-trans isomerization of peptidyl-prolyl bonds and dissolving protein aggregates. In conclusion, both typical and atypical Arabidopsis U-box proteins were active E3s. The overlap in the E3/E2 selectivity suggests that in vivo specificity is not determined only by the E3-E2 interactions, but also by other parameters, e.g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins.
Collapse
|
49
|
Abstract
The ubiquitin-proteasome system degrades an enormous variety of proteins that contain specific degradation signals, or 'degrons'. Besides the degradation of regulatory proteins, almost every protein suffers from sporadic biosynthetic errors or misfolding. Such aberrant proteins can be recognized and rapidly degraded by cells. Structural and functional data on a handful of degrons allow several generalizations regarding their mechanism of action. We focus on different strategies of degron recognition by the ubiquitin system, and contrast regulatory degrons that are subject to signalling-dependent modification with those that are controlled by protein folding or assembly, as frequently occurs during protein quality control.
Collapse
Affiliation(s)
- Tommer Ravid
- Department of Biological Chemistry, Hebrew University of Jerusalem, Jerusalem, Israel.
| | | |
Collapse
|
50
|
Tapia-Páez I, Tammimies K, Massinen S, Roy AL, Kere J. The complex of TFII-I, PARP1, and SFPQ proteins regulates the DYX1C1 gene implicated in neuronal migration and dyslexia. FASEB J 2008; 22:3001-9. [PMID: 18445785 DOI: 10.1096/fj.07-104455] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DYX1C1 was first identified as a candidate gene for dyslexia susceptibility, and its role in controlling neuronal migration during embryogenesis and effect on learning in rodents have been verified. In contrast, genetic association studies have been ambiguous in replicating its effects on dyslexia. To better understand the regulation of DYX1C1 and the possible functional role of genetic variation in the promoter of DYX1C1, we selected three single-nucleotide polymorphisms (SNPs) with predicted functional consequences or suggested associations to dyslexia for detailed study. Electrophoretic mobility shift assays suggested the allele-specific binding of the transcription factors TFII-I (to rs3743205) and Sp1 (to rs16787 and rs12899331) that could be verified by competition assays. In addition, we purified a complex of protein factors binding to the previously suggested dyslexia-related SNP, -3G/A (rs3743205). Three proteins, TFII-I, PARP1, and SFPQ, were unambiguously identified by mass spectrometry and protein sequencing. Two SNPs, rs16787 and rs3743205, showed significant allelic differences in luciferase assays. Our results show that TFII-I, PARP1, and SFPQ proteins, each previously implicated in gene regulation, form a complex controlling transcription of DYX1C1. Furthermore, allelic differences in the promoter or 5' untranslated region of DYX1C1 may affect factor binding and thus regulation of the gene.
Collapse
Affiliation(s)
- Isabel Tapia-Páez
- Department of Biosciences and Nutrition, 141 57 Huddinge, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|