1
|
Zlobin N, Taranov V. Plant eIF4E isoforms as factors of susceptibility and resistance to potyviruses. FRONTIERS IN PLANT SCIENCE 2023; 14:1041868. [PMID: 36844044 PMCID: PMC9950400 DOI: 10.3389/fpls.2023.1041868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Potyviruses are the largest group of plant-infecting RNA viruses that affect a wide range of crop plants. Plant resistance genes against potyviruses are often recessive and encode translation initiation factors eIF4E. The inability of potyviruses to use plant eIF4E factors leads to the development of resistance through a loss-of-susceptibility mechanism. Plants have a small family of eIF4E genes that encode several isoforms with distinct but overlapping functions in cell metabolism. Potyviruses use distinct eIF4E isoforms as susceptibility factors in different plants. The role of different members of the plant eIF4E family in the interaction with a given potyvirus could differ drastically. An interplay exists between different members of the eIF4E family in the context of plant-potyvirus interactions, allowing different eIF4E isoforms to modulate each other's availability as susceptibility factors for the virus. In this review, possible molecular mechanisms underlying this interaction are discussed, and approaches to identify the eIF4E isoform that plays a major role in the plant-potyvirus interaction are suggested. The final section of the review discusses how knowledge about the interaction between different eIF4E isoforms can be used to develop plants with durable resistance to potyviruses.
Collapse
|
2
|
Mourenets L, Pushin A, Timerbaev V, Khmelnitskaya T, Gribkov E, Andreev N, Dolgov S. Effect of Gene Silencing of Translation Initiation Factors eIF(iso)4G and eIF(iso)4E on Sour Cherry Rootstock Resistance to Sharka Disease. Int J Mol Sci 2022; 24:ijms24010360. [PMID: 36613806 PMCID: PMC9820581 DOI: 10.3390/ijms24010360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Sharka disease, caused by the Plum pox virus (PPV), is one of the most harmful, quarantine viral diseases that affect stone fruit crops. The absence of natural resistance to the virus in stone fruits has become a decisive factor for the use of genetic transformation methods to obtain stable forms. The eIF(iso)4G and eIF(iso)4E genes encode translation initiation factors used in the PPV life cycle. In the presented study, the effect of silencing these genes using the RNA interference method on the resistance of sour cherry rootstock 146-2 plants (Prunus pumila L. x Prunus tomentosa Thunb) to the sharka disease was studied. Two vectors have been created for the genetic transformation of plants, with self-complementary sequences of the eIF(iso)4G and eIF(iso)4E gene fragments. The hairpin expression cassette contains a strong promoter of the peach ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) gene, as well as an intron and terminator of the same gene. We used the pMF1 vector containing recombinase R and a codA-nptII gene which makes it possible to obtain intragenic marker-free plants. A successful genetic transformation was carried out by the AGL0 strain of A. tumefaciens. Whole leaves of shoots cultivated in vitro were used as a source of explants. Eight independent transgenic lines of rootstock 146-2 were obtained in experiments (sixlines with a hairpin to the eIF(iso)4G gene and two lines with a hairpin to the eIF(iso)4E gene). Their status was confirmed by the PCR and Southern blotting. The obtained plants were acclimatized in a greenhouse. The silencing of the eIF(iso)4G and eIF(iso)4E genes in transgenic plants was confirmed by the quantitative PCR. The presence of specific small interfering (si) RNAs was confirmed by the method of Northern blotting. Plants of all transgenic rootstock lines were infected with PPV by the method of grafting with infected buds. Resistance to the PPV infection of the obtained transgenic plants was carried out by using an enzyme immunoassay. The ELISA results showed that silencing the eIF(iso)4G gene did not lead to increased resistance while silencing the eIF(iso)4E factor gene led to increased resistance to the PPV, and the one line's plants showed no signs of infection for two years after infecting. The work demonstrates a (promising) approach in which the creation of stone cultures resistant to the plum pox virus can be achieved by suppressing the genes of translation initiation factors in clonal rootstocks.
Collapse
Affiliation(s)
- Lilia Mourenets
- The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Nikita Botanical Gardens — National Scientific Centre, Russian Academy of Sciences, 298648 Yalta, Russia
| | - Alexander Pushin
- The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, 127550 Moscow, Russia
| | - Vadim Timerbaev
- The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Nikita Botanical Gardens — National Scientific Centre, Russian Academy of Sciences, 298648 Yalta, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, 127550 Moscow, Russia
| | - Tatyana Khmelnitskaya
- The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Eduard Gribkov
- Biological Institute, The National Research Tomsk State University, 634050 Tomsk, Russia
| | - Nikita Andreev
- Biological Institute, The National Research Tomsk State University, 634050 Tomsk, Russia
| | - Sergey Dolgov
- The Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia
- Nikita Botanical Gardens — National Scientific Centre, Russian Academy of Sciences, 298648 Yalta, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, 127550 Moscow, Russia
- Correspondence: ; Tel.: +7-4-96-773-1779
| |
Collapse
|
3
|
Genome-Wide Identification and Expression Analysis of eIF Family Genes from Brassica rapa in Response to TuMV Resistance. PLANTS 2022; 11:plants11172248. [PMID: 36079630 PMCID: PMC9460045 DOI: 10.3390/plants11172248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
Brassica rapa is one of the most important leafy vegetables worldwide, and has a long history of cultivation. However, it has not been possible to completely control the damage of turnip mosaic virus (TuMV), a serious virus in B. rapa, to production. In this study, the genome-wide identification and expression detection of eIF family genes from B. rapa in response to TuMV resistance were analyzed, including the identification of eIF family genes, chromosomal distribution, three-dimensional (3D) structure and sequence logo analyses, and the expression characterization as well as differential metabolite analysis of eIF family genes in resistant/susceptible lines, which may further prove the whole-genome tripling (WGT) event in B. rapa evolution and provide evidence for the functional redundancy and functional loss of multicopy eIF genes in evolution. A qRT-PCR analysis revealed that the relative expressions of eIF genes in a susceptible line (80461) were higher than those in a resistant line (80124), which may prove that, when TuMV infects host plants, the eIF genes can combine with the virus mRNA 5′ end cap structure and promote the initiation of virus mRNA translation in the susceptible B. rapa line. In addition, the metabolite substances were detected, the differences in metabolites between disease-resistant and disease-susceptible plants were mainly manifested by altered compounds such as flavonoids, jasmonic acid, salicylic acid, ketones, esters, etc., which inferred that the different metabolite regulations of eIF family genes and reveal the resistance mechanisms of eIF genes against TuMV in brassica crops. This study may lay a new theoretical foundation for revealing eIF family gene resistance to TuMV in B. rapa, as well as advancing our understanding of virus–host interactions.
Collapse
|
4
|
Ferik F, Ates D, Ercisli S, Erdogan A, Orhan E, Tanyolac MB. Genome-wide association links candidate genes to fruit firmness, fruit flesh color, flowering time, and soluble solid content in apricot (Prunus armeniaca L.). Mol Biol Rep 2021; 49:5283-5291. [PMID: 34741707 DOI: 10.1007/s11033-021-06856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Apricots originated from China, Central Asia and the Near East and arrived in Anatolia, and particularly in their second homeland of Malatya province in Turkey. Apricots are outstanding summer fruits, with their beautiful attractive color, delicious sweet taste, aroma and high vitamin and mineral content. METHODS AND RESULTS In the current study, a total of 259 apricots genotypes from different geographical origins in Turkey were used. Significant variations were detected in fruit firmness (FF), fruit flesh color (FFC), flowering time (FT), and soluble solid content (SSC). A total of 11,532 SNPs based on DArT were developed and used in the analyses of population structure and association mapping (AM). According to the STRUCTURE (v.2.2) analysis, the apricot genotypes were divided into three groups. The mixed linear model with Q and K matrixes were used to detect the associations between the SNPs and four traits. A total of 131 SNPs were associated with FF, FFC and SSC. No SNP marker was detected associated with FT. CONCLUSION The results demonstrated that AM had high potential of revealing the markers associated with economically important traits in apricot. The SNPs identified in the study can be used in future breeding programs for marker-assisted selection in apricot.
Collapse
Affiliation(s)
- Filiz Ferik
- Engineering Faculty, Department of Bioengineering, Ege University, Bornova, 35040, Izmir, Turkey
| | - Duygu Ates
- Engineering Faculty, Department of Bioengineering, Ege University, Bornova, 35040, Izmir, Turkey
| | - Sezai Ercisli
- Agriculture Faculty, Department of Horticulture, Ataturk University, Yakutiye, 25030, Erzurum, Turkey
| | - Abdullah Erdogan
- Institute for Apricot Research of Malatya, 44090, Malatya, Turkey
| | - Emine Orhan
- Agriculture Faculty, Department of Horticulture, Ataturk University, Yakutiye, 25030, Erzurum, Turkey
| | | |
Collapse
|
5
|
Li G, Zhang S, Li F, Zhang H, Zhang S, Zhao J, Sun R. Variability in the Viral Protein Linked to the Genome of Turnip Mosaic Virus Influences Interactions with eIF(iso)4Es in Brassica rapa. THE PLANT PATHOLOGY JOURNAL 2021; 37:47-56. [PMID: 33551696 PMCID: PMC7847760 DOI: 10.5423/ppj.oa.07.2020.0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Plants protect against viruses through passive and active resistance mechanisms, and in most cases characterized thus far, natural recessive resistance to potyviruses has been mapped to mutations in the eukaryotic initiation factor eIF4E or eIF(iso)4E genes. Five eIF4E copies and three eIF(iso)4E copies were detected in Brassica rapa. The eIF4E and eIF(iso)4E genes could interact with turnip mosaic virus (TuMV) viral protein linked to the genome (VPg) to initiate virus translation. From the yeast two-hybrid system (Y2H) and bimolecular fluorescence complementation (BiFC) assays, the TuMV-CHN2/CHN3 VPgs could not interact with BraA.eIF4E.a/c or BraA.eIF(iso)4E.c, but they could interact with BraA.eIF(iso)4E.a in B. rapa. Further analysis indicated that the amino acid substitution L186F (nt T556C) in TuMV-UK1 VPg was important for the interaction networks between the TuMV VPg and eIF(iso)4E proteins. An interaction model of the BraA. eIF(iso)4E protein with TuMV VPg was constructed to infer the effect of the significant amino acids on the interaction of TuMV VPgs-eIF(iso)4Es, particularly whether the L186F in TuMV-UK1 VPg could change the structure of the TuMV-UK1 VPg protein, which may terminate the interaction of the BraA.eIF(iso)4E and TuMV VPg protein. This study provides new insights into the interactions between plant viruses and translation initiation factors to reveal the working of key amino acids.
Collapse
Affiliation(s)
- Guoliang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 0008, China
| | - Shifan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 0008, China
| | - Fei Li
- State Key Laboratory of North China Crop Improvement and Regulation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 0008, China
| | - Hui Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 0008, China
| | - Shujiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 0008, China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Department of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Rifei Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 0008, China
| |
Collapse
|
6
|
Kumar A, Saripalli G, Jan I, Kumar K, Sharma PK, Balyan HS, Gupta PK. Meta-QTL analysis and identification of candidate genes for drought tolerance in bread wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1713-1725. [PMID: 32801498 PMCID: PMC7415061 DOI: 10.1007/s12298-020-00847-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 05/18/2023]
Abstract
Meta-QTL (MQTL) analysis for drought tolerance was undertaken in bread wheat to identify consensus and robust MQTLs using 340 known QTLs from 11 earlier studies; 13 MQTLs located on 6 chromosomes (1D, 3B, 5A, 6D, 7A and 7D) were identified, with maximum of 4 MQTLs on chromosome 5A. Mean confidence intervals for MQTLs were much narrower (mean, 6.01 cM; range 2.07-19.46 cM), relative to those in original QTLs (mean, 13.6 cM; range, 1.0-119.1 cM). Two MQTLs, namely MQTL4 and MQTL12, were major MQTLs with potential for use in marker-assisting breeding. As many as 228 candidate genes (CGs) were also identified using 6 of the 13 MQTLs. In-silico expression analysis of these 228 CGs allowed identification of 14 important CGs, with + 3 to - 8 fold change in expression under drought (relative to normal conditions) in a tolerant cv. named TAM107. These CGs encoded proteins belonging to the following families: NAD-dependent epimerase/dehydratase, protein kinase, NAD(P)-binding domain protein, heat shock protein 70 (Hsp70), glycosyltransferase 2-like, etc. Important MQTLs and CGs identified in the present study should prove useful for future molecular breeding and for the study of molecular basis of drought tolerance in cereals in general and wheat in particular.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| | - Irfat Jan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| | - Kuldeep Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| | - P. K. Sharma
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| | - H. S. Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| | - P. K. Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, 250004 India
| |
Collapse
|
7
|
Sidorova T, Mikhailov R, Pushin A, Miroshnichenko D, Dolgov S. Agrobacterium-Mediated Transformation of Russian Commercial Plum cv. "Startovaya" ( Prunus domestica L.) With Virus-Derived Hairpin RNA Construct Confers Durable Resistance to PPV Infection in Mature Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:286. [PMID: 30915093 PMCID: PMC6423057 DOI: 10.3389/fpls.2019.00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/20/2019] [Indexed: 05/19/2023]
Abstract
In modern horticulture Plum pox virus (PPV) imposes serious threats to commercial plantations of a wide range of fruit species belonging to genera Prunus. Given the lack of natural genetic resources, which display reliable resistance to PPV infection, there has been considerable interest in using genetic engineering methods for targeted genome modification of stone fruit trees to control Sharka disease caused by PPV. Among the many virus defense mechanisms, RNA interference is shown to be the most promising transgenic disease-control strategy in plant biotechnology. The present study describes the production of transgenic PPV resistant European plum "Startovaya" (P. domestica L.) through the Agrobacterium-mediated transformation of in vitro leaf explants. Due to organogenesis from leaves, the established protocol allows the genetic engineering of the plum genome without losing clonal fidelity of original cultivar. Seven independent transgenic plum lines containing the self-complementary fragments of PPV-CP gene sequence separated by a PDK intron were generated using hpt as a selective gene and uidA as a reporter gene. The transformation was verified through the histochemical staining for β-glucuronidase activity, PCR amplification of appropriate vector products from isolated genomic DNA and Southern blot analysis of hairpin PPV-CP gene fragments. To clarify the virus resistance, plum buds infected by PPV-M strain were grafted onto 1-year-old transgenic plants, which further were grown into mature trees in the greenhouse. As evaluated by RT-PCR, DAS-ELISA, Western blot, ImmunoStrip test, and visual observations, GM plum trees remained uninfected over 9 years. Infected branches that developed from grafted buds displayed obvious symptoms of Sharka disease over the years and maintained the high level of virus accumulation, whereby host transgenic trees had been constantly challenged with the pathogen. Since the virus was unable to spread to transgenic tissues, the stable expression of PPV-derived gene construct encoding intron-spliced hairpin RNAs provided a highly effective protection of plum trees against permanent viral infection. At the same time, this observation indicates the lack of the systemic spread of resistance from GM tissues to an infected plum graft even after years of joint growth.
Collapse
Affiliation(s)
- Tatiana Sidorova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Puschino, Russia
- Nikita Botanical Gardens – National Scientific Centre, Russian Academy of Sciences, Yalta, Russia
| | - Roman Mikhailov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Puschino, Russia
| | - Alexander Pushin
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Puschino, Russia
- Nikita Botanical Gardens – National Scientific Centre, Russian Academy of Sciences, Yalta, Russia
| | - Dmitry Miroshnichenko
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Puschino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
| | - Sergey Dolgov
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Puschino, Russia
- Nikita Botanical Gardens – National Scientific Centre, Russian Academy of Sciences, Yalta, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
8
|
Potential impact of genome editing in world agriculture. Emerg Top Life Sci 2017; 1:117-133. [PMID: 33525764 DOI: 10.1042/etls20170010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 12/26/2022]
Abstract
Changeable biotic and abiotic stress factors that affect crop growth and productivity, alongside a drive to reduce the unintended consequences of plant protection products, will demand highly adaptive farm management practices as well as access to continually improved seed varieties. The former is limited mainly by cost and, in theory, could be implemented in relatively short time frames. The latter is fundamentally a longer-term activity where genome editing can play a major role. The first targets for genome editing will inevitably be loss-of-function alleles, because these are straightforward to generate. In addition, they are likely to focus on traits under simple genetic control and where the results of modification are already well understood from null alleles in existing gene pools or other knockout or silencing approaches such as induced mutations or RNA interference. In the longer term, genome editing will underpin more fundamental changes in agricultural performance and food quality, and ultimately will merge with the tools and philosophies of synthetic biology to underpin and enable new cellular systems, processes and organisms completely. The genetic changes required for simple allele edits or knockout phenotypes are synonymous with those found naturally in conventional breeding material and should be regulated as such. The more radical possibilities in the longer term will need societal engagement along with appropriate safety and ethical oversight.
Collapse
|
9
|
Badenes ML, Fernández I Martí A, Ríos G, Rubio-Cabetas MJ. Application of Genomic Technologies to the Breeding of Trees. Front Genet 2016; 7:198. [PMID: 27895664 PMCID: PMC5109026 DOI: 10.3389/fgene.2016.00198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022] Open
Abstract
The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species.
Collapse
Affiliation(s)
- Maria L Badenes
- Instituto Valenciano de Investigaciones Agrarias Valencia, Spain
| | - Angel Fernández I Martí
- Hortofruticulture Department, Agrifood Research and Technology Centre of AragonZaragoza, Spain; Genome Center, University of California, Davis, Davis, CAUSA
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias Valencia, Spain
| | - María J Rubio-Cabetas
- Hortofruticulture Department, Agrifood Research and Technology Centre of Aragon Zaragoza, Spain
| |
Collapse
|
10
|
Decroocq S, Cornille A, Tricon D, Babayeva S, Chague A, Eyquard JP, Karychev R, Dolgikh S, Kostritsyna T, Liu S, Liu W, Geng W, Liao K, Asma BM, Akparov Z, Giraud T, Decroocq V. New insights into the history of domesticated and wild apricots and its contribution to Plum pox virus resistance. Mol Ecol 2016; 25:4712-29. [PMID: 27480465 DOI: 10.1111/mec.13772] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 12/01/2022]
Abstract
Studying domesticated species and their wild relatives allows understanding of the mechanisms of population divergence and adaptation, and identifying valuable genetic resources. Apricot is an important fruit in the Northern hemisphere, where it is threatened by the Plum pox virus (PPV), causing the sharka disease. The histories of apricot domestication and of its resistance to sharka are however still poorly understood. We used 18 microsatellite markers to genotype a collection of 230 wild trees from Central Asia and 142 cultivated apricots as representatives of the worldwide cultivated apricot germplasm; we also performed experimental PPV inoculation tests. The genetic markers revealed highest levels of diversity in Central Asian and Chinese wild and cultivated apricots, confirming an origin in this region. In cultivated apricots, Chinese accessions were differentiated from more Western accessions, while cultivated apricots were differentiated from wild apricots. An approximate Bayesian approach indicated that apricots likely underwent two independent domestication events, with bottlenecks, from the same wild population. Central Asian native apricots exhibited genetic subdivision and high frequency of resistance to sharka. Altogether, our results contribute to the understanding of the domestication history of cultivated apricot and point to valuable genetic diversity in the extant genetic resources of wild apricots.
Collapse
Affiliation(s)
- Stéphane Decroocq
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Amandine Cornille
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for life Laboratory, Uppsala University, Uppsala, Sweden
| | - David Tricon
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Sevda Babayeva
- Genetic Resources Institute of ANAS, Azadlig ave. 155, AZ1106, Baku, Azerbaijan
| | - Aurélie Chague
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Jean-Philippe Eyquard
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France
| | - Raul Karychev
- Kazakh Research Institute of Horticulture and Viticulture, 238-a Gagarin Avenue, 480060, Almaty, Kazakhstan
| | - Svetlana Dolgikh
- Kazakh Research Institute of Horticulture and Viticulture, 238-a Gagarin Avenue, 480060, Almaty, Kazakhstan
| | - Tatiana Kostritsyna
- Botanical Garden of National Academy of Sciences, Akhunbaeva street 1a, 720064, Bishkek, Kyrgyzstan
| | - Shuo Liu
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France.,Liaoning Institute of Pomology, Tiedong Street, Xiongyue Town, Bayuquan District, Yingkou City, Liaoning, 115009, China
| | - Weisheng Liu
- Liaoning Institute of Pomology, Tiedong Street, Xiongyue Town, Bayuquan District, Yingkou City, Liaoning, 115009, China
| | - Wenjuan Geng
- College of Horticulture & Forestry Sciences, Xinjiang Agricultural University, 311 NongDaDong Road, 830052, Urumqi City, Xinjiang, China
| | - Kang Liao
- College of Horticulture & Forestry Sciences, Xinjiang Agricultural University, 311 NongDaDong Road, 830052, Urumqi City, Xinjiang, China
| | - Bayram M Asma
- Department of Horticulture, Inonu University, Malatya, 44210, Turkey
| | - Zeynal Akparov
- Genetic Resources Institute of ANAS, Azadlig ave. 155, AZ1106, Baku, Azerbaijan
| | - Tatiana Giraud
- Ecologie Systematique Evolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France.
| | - Véronique Decroocq
- UMR 1332 BFP, Equipe de virologie, INRA, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France. .,UMR 1332 BFP, CS20032, Université de Bordeaux, 33882, Villenave d'Ornon, France.
| |
Collapse
|
11
|
Gürcan K, Teber S, Ercisli S, Yilmaz KU. Genotyping by Sequencing (GBS) in Apricots and Genetic Diversity Assessment with GBS-Derived Single-Nucleotide Polymorphisms (SNPs). Biochem Genet 2016; 54:854-885. [PMID: 27465591 DOI: 10.1007/s10528-016-9762-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/20/2016] [Indexed: 11/27/2022]
Abstract
Genotyping by sequencing (GBS), which is a highly promising technique for molecular breeding, has been implemented in apricots, including Turkish, European, and Plum Pox Virus-resistant accessions. DNA samples were digested with the ApeKI restriction enzyme to construct a genome-complexity-reduced 90-plex GBS library. After filtering the raw sequences, approximately 28 G of clean data were generated, and 17,842 high-quality single-nucleotide polymorphism (SNP) loci were discovered. A total of 561 SNP loci with 0 or 1 missing reads for the 90 accessions produced 1162 markers that were used for the cluster and population structure analysis of the same collection. The results of the SNP analysis indicated that the relation of the European accessions with the western Turkish apricots was accurately positioned. The resistant accessions from different sources were clustered together, confirming the previous finding that SEO/Harlayne-type resistance probably originated from the same source. The Malatya accessions produce most of the world's dried apricots and are likely to be a genetically distinct group. Simple sequence repeat (SSR) and self-incompatibly (SI) locus characterization of the accessions was also included. SI genotyping supported the SNP findings, demonstrating both the reliability of SNP genotyping and the usefulness of SI genotyping for understanding the history of apricot breeding. The SSR genotyping revealed a characterization similar to that of SNP genotyping with a slightly lower resolution in the dendrogram. In conclusion, the GBS approach was validated in apricots, with the discovery of a large number of SNPs, and was demonstrated to be reliable by fingerprinting the accessions in a more informative manner.
Collapse
Affiliation(s)
- Kahraman Gürcan
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Turkey.
- Department of Agricultural Biotechnology, Erciyes University, Kayseri, Turkey.
| | - Saffet Teber
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Turkey
- Department of Agricultural Biotechnology, Erciyes University, Kayseri, Turkey
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
12
|
Mariette S, Wong Jun Tai F, Roch G, Barre A, Chague A, Decroocq S, Groppi A, Laizet Y, Lambert P, Tricon D, Nikolski M, Audergon JM, Abbott AG, Decroocq V. Genome-wide association links candidate genes to resistance to Plum Pox Virus in apricot (Prunus armeniaca). THE NEW PHYTOLOGIST 2016; 209:773-84. [PMID: 26356603 DOI: 10.1111/nph.13627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/26/2015] [Indexed: 05/06/2023]
Abstract
In fruit tree species, many important traits have been characterized genetically by using single-family descent mapping in progenies segregating for the traits. However, most mapped loci have not been sufficiently resolved to the individual genes due to insufficient progeny sizes for high resolution mapping and the previous lack of whole-genome sequence resources of the study species. To address this problem for Plum Pox Virus (PPV) candidate resistance gene identification in Prunus species, we implemented a genome-wide association (GWA) approach in apricot. This study exploited the broad genetic diversity of the apricot (Prunus armeniaca) germplasm containing resistance to PPV, next-generation sequence-based genotyping, and the high-quality peach (Prunus persica) genome reference sequence for single nucleotide polymorphism (SNP) identification. The results of this GWA study validated previously reported PPV resistance quantitative trait loci (QTL) intervals, highlighted other potential resistance loci, and resolved each to a limited set of candidate genes for further study. This work substantiates the association genetics approach for resolution of QTL to candidate genes in apricot and suggests that this approach could simplify identification of other candidate genes for other marked trait intervals in this germplasm.
Collapse
Affiliation(s)
- Stéphanie Mariette
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
- UMR 1202 BIOGECO, INRA, F-33610, Cestas, France
- UMR 1202 BIOGECO, Université de Bordeaux, F-33400, Talence, France
| | - Fabienne Wong Jun Tai
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
- Bordeaux Bioinformatics Center CBiB, Université de Bordeaux, 351 cours de la Libération, F-33405, Talence, France
| | - Guillaume Roch
- UR1052 GAFL, Domaine Saint Maurice, INRA, CS60094, F-84143, Montfavet, France
- CEP INNOVATION, INRA, 23 rue Jean Baldassini, F-69364, LYON Cedex 7, France
| | - Aurélien Barre
- Bordeaux Bioinformatics Center CBiB, Université de Bordeaux, 351 cours de la Libération, F-33405, Talence, France
| | - Aurélie Chague
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
| | - Stéphane Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
| | - Alexis Groppi
- Bordeaux Bioinformatics Center CBiB, Université de Bordeaux, 351 cours de la Libération, F-33405, Talence, France
| | - Yec'han Laizet
- UMR 1202 BIOGECO, INRA, F-33610, Cestas, France
- UMR 1202 BIOGECO, Université de Bordeaux, F-33400, Talence, France
| | - Patrick Lambert
- UR1052 GAFL, Domaine Saint Maurice, INRA, CS60094, F-84143, Montfavet, France
| | - David Tricon
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
| | - Macha Nikolski
- Bordeaux Bioinformatics Center CBiB, Université de Bordeaux, 351 cours de la Libération, F-33405, Talence, France
| | - Jean-Marc Audergon
- UR1052 GAFL, Domaine Saint Maurice, INRA, CS60094, F-84143, Montfavet, France
| | - Albert G Abbott
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
- University of Kentucky, 106 T. P. Cooper Hall, Lexington, KY, 40546-0073, USA
| | - Véronique Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Université de Bordeaux, CS20032, F-33882, Villenave d'Ornon, France
| |
Collapse
|
13
|
Iwata H, Minamikawa MF, Kajiya-Kanegae H, Ishimori M, Hayashi T. Genomics-assisted breeding in fruit trees. BREEDING SCIENCE 2016; 66:100-15. [PMID: 27069395 PMCID: PMC4780794 DOI: 10.1270/jsbbs.66.100] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/12/2016] [Indexed: 05/03/2023]
Abstract
Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.
Collapse
Affiliation(s)
- Hiroyoshi Iwata
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo,
1-1-1 Yayoi, Bunkyo, Tokyo 113-8657,
Japan
- Corresponding author (e-mail: )
| | - Mai F. Minamikawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo,
1-1-1 Yayoi, Bunkyo, Tokyo 113-8657,
Japan
| | - Hiromi Kajiya-Kanegae
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo,
1-1-1 Yayoi, Bunkyo, Tokyo 113-8657,
Japan
| | - Motoyuki Ishimori
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo,
1-1-1 Yayoi, Bunkyo, Tokyo 113-8657,
Japan
| | - Takeshi Hayashi
- Agroinfomatics Division, NARO Agricultural Research Center (NARC),
3-1-1 Kannondai, Tsukuba, Ibaraki 305-8666,
Japan
| |
Collapse
|
14
|
Rubio M, Ballester AR, Olivares PM, Castro de Moura M, Dicenta F, Martínez-Gómez P. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.). PLoS One 2015; 10:e0144670. [PMID: 26658051 PMCID: PMC4684361 DOI: 10.1371/journal.pone.0144670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, “Rojo Pasión” and “Z506-7”, resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance.
Collapse
Affiliation(s)
- Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Ana Rosa Ballester
- Department of Food Science, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustín Escardino 7, 46980 Paterna (Valencia) Spain
| | - Pedro Manuel Olivares
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Manuel Castro de Moura
- aScidea Computational Biology Solutions, S.L. Parc de Reserca UAB, Edifici Eureka. 08193 Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Federico Dicenta
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
- * E-mail:
| |
Collapse
|
15
|
Plant Translation Factors and Virus Resistance. Viruses 2015; 7:3392-419. [PMID: 26114476 PMCID: PMC4517107 DOI: 10.3390/v7072778] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023] Open
Abstract
Plant viruses recruit cellular translation factors not only to translate their viral RNAs but also to regulate their replication and potentiate their local and systemic movement. Because of the virus dependence on cellular translation factors, it is perhaps not surprising that many natural plant recessive resistance genes have been mapped to mutations of translation initiation factors eIF4E and eIF4G or their isoforms, eIFiso4E and eIFiso4G. The partial functional redundancy of these isoforms allows specific mutation or knock-down of one isoform to provide virus resistance without hindering the general health of the plant. New possible targets for antiviral strategies have also been identified following the characterization of other plant translation factors (eIF4A-like helicases, eIF3, eEF1A and eEF1B) that specifically interact with viral RNAs and proteins and regulate various aspects of the infection cycle. Emerging evidence that translation repression operates as an alternative antiviral RNA silencing mechanism is also discussed. Understanding the mechanisms that control the development of natural viral resistance and the emergence of virulent isolates in response to these plant defense responses will provide the basis for the selection of new sources of resistance and for the intelligent design of engineered resistance that is broad-spectrum and durable.
Collapse
|
16
|
Ilardi V, Tavazza M. Biotechnological strategies and tools for Plum pox virus resistance: trans-, intra-, cis-genesis, and beyond. FRONTIERS IN PLANT SCIENCE 2015; 6:379. [PMID: 26106397 PMCID: PMC4458569 DOI: 10.3389/fpls.2015.00379] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/12/2015] [Indexed: 05/19/2023]
Abstract
Plum pox virus (PPV) is the etiological agent of sharka, the most devastating and economically important viral disease affecting Prunus species. It is widespread in most stone fruits producing countries even though eradication and quarantine programs are in place. The development of resistant cultivars and rootstocks remains the most ecologically and economically suitable approach to achieve long-term control of sharka disease. However, the few PPV resistance genetic resources found in Prunus germplasm along with some intrinsic biological features of stone fruit trees pose limits for efficient and fast breeding programs. This review focuses on an array of biotechnological strategies and tools, which have been used, or may be exploited to confer PPV resistance. A considerable number of scientific studies clearly indicate that robust and predictable resistance can be achieved by transforming plant species with constructs encoding intron-spliced hairpin RNAs homologous to conserved regions of the PPV genome. In addition, we discuss how recent advances in our understanding of PPV biology can be profitably exploited to develop viral interference strategies. In particular, genetic manipulation of host genes by which PPV accomplishes its infection cycle already permits the creation of intragenic resistant plants. Finally, we review the emerging genome editing technologies based on ZFN, TALEN and CRISPR/Cas9 engineered nucleases and how the knockout of host susceptibility genes will open up next generation of PPV resistant plants.
Collapse
Affiliation(s)
- Vincenza Ilardi
- Centro di Ricerca per la Patologia Vegetale, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Mario Tavazza
- UTAGRI Centro Ricerche Casaccia, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile, Rome, Italy
| |
Collapse
|
17
|
Abstract
Many different systemic pathogens, including viruses, affect pome and stone fruits causing diseases with adverse effects in orchards worldwide. The significance of diseases caused by these pathogens on tree health and fruit shape and quality has resulted in the imposition of control measures both nationally and internationally. Control measures depend on the identification of diseases and their etiological agents. Diagnosis is the most important aspect of controlling fruit plant viruses. Early detection of viruses in fruit trees or in the propagative material is a prerequisite for their control and to guarantee a sustainable agriculture. Many quarantine programs are in place to reduce spread of viruses among countries during international exchange of germplasm. All these phytosanitary measures are overseen by governments based on agreements produced by international organizations. Also certification schemes applied to fruit trees allow the production of planting material of known variety and plant health status for local growers by controlling the propagation of pathogen-tested mother plants. They ensure to obtain propagative material not only free of "quarantine" organisms under the national legislation but also of important "nonquarantine" pathogens. The control of insect vectors plays an important role in the systemic diseases management, but it must be used together with other control measures as eradication of infected plants and use of certified propagation material. Apart from the control of the virus vector and the use of virus-free material, the development of virus-resistant cultivars appears to be the most effective approach to achieve control of plant viruses, especially for perennial crops that are more exposed to infection during their long life span. The use of resistant or tolerant cultivars and/or rootstocks could be potentially the most important aspect of virus disease management, especially in areas in which virus infections are endemic. The conventional breeding for virus-tolerant or resistant fruit tree cultivars using available germplasm is a long-term strategy, and the development and production of these cultivars may take decades, if successful. Genetic engineering allows the introduction of specific DNA sequences offering the opportunity to obtain existing fruit tree cultivars improved for the desired resistance trait. Unfortunately, genetic transformation of pome and stone fruits is still limited to few commercial genotypes. Research carried out and the new emerging biotechnological approaches to obtain fruit tree plants resistant or tolerant to viruses are discussed.
Collapse
|
18
|
García JA, Glasa M, Cambra M, Candresse T. Plum pox virus and sharka: a model potyvirus and a major disease. MOLECULAR PLANT PATHOLOGY 2014; 15:226-41. [PMID: 24102673 PMCID: PMC6638681 DOI: 10.1111/mpp.12083] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
TAXONOMIC RELATIONSHIPS Plum pox virus (PPV) is a member of the genus Potyvirus in the family Potyviridae. PPV diversity is structured into at least eight monophyletic strains. GEOGRAPHICAL DISTRIBUTION First discovered in Bulgaria, PPV is nowadays present in most of continental Europe (with an endemic status in many central and southern European countries) and has progressively spread to many countries on other continents. GENOMIC STRUCTURE Typical of potyviruses, the PPV genome is a positive-sense single-stranded RNA (ssRNA), with a protein linked to its 5' end and a 3'-terminal poly A tail. It is encapsidated by a single type of capsid protein (CP) in flexuous rod particles and is translated into a large polyprotein which is proteolytically processed in at least 10 final products: P1, HCPro, P3, 6K1, CI, 6K2, VPg, NIapro, NIb and CP. In addition, P3N-PIPO is predicted to be produced by a translational frameshift. PATHOGENICITY FEATURES PPV causes sharka, the most damaging viral disease of stone fruit trees. It also infects wild and ornamental Prunus trees and has a large experimental host range in herbaceous species. PPV spreads over long distances by uncontrolled movement of plant material, and many species of aphid transmit the virus locally in a nonpersistent manner. SOURCES OF RESISTANCE A few natural sources of resistance to PPV have been found so far in Prunus species, which are being used in classical breeding programmes. Different genetic engineering approaches are being used to generate resistance to PPV, and a transgenic plum, 'HoneySweet', transformed with the viral CP gene, has demonstrated high resistance to PPV in field tests in several countries and has obtained regulatory approval in the USA.
Collapse
Affiliation(s)
- Juan Antonio García
- Departmento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
19
|
Scherm H, Thomas CS, Garrett KA, Olsen JM. Meta-analysis and other approaches for synthesizing structured and unstructured data in plant pathology. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:453-76. [PMID: 25001455 DOI: 10.1146/annurev-phyto-102313-050214] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The term data deluge is used widely to describe the rapidly accelerating growth of information in the technical literature, in scientific databases, and in informal sources such as the Internet and social media. The massive volume and increased complexity of information challenge traditional methods of data analysis but at the same time provide unprecedented opportunities to test hypotheses or uncover new relationships via mining of existing databases and literature. In this review, we discuss analytical approaches that are beginning to be applied to help synthesize the vast amount of information generated by the data deluge and thus accelerate the pace of discovery in plant pathology. We begin with a review of meta-analysis as an established approach for summarizing standardized (structured) data across the literature. We then turn to examples of synthesizing more complex, unstructured data sets through a range of data-mining approaches, including the incorporation of 'omics data in epidemiological analyses. We conclude with a discussion of methodologies for leveraging information contained in novel, open-source data sets through web crawling, text mining, and social media analytics, primarily in the context of digital disease surveillance. Rapidly evolving computational resources provide platforms for integrating large and complex data sets, motivating research that will draw on new types and scales of information to address big questions.
Collapse
Affiliation(s)
- H Scherm
- Department of Plant Pathology, University of Georgia, Athens, Georgia 30602;
| | | | | | | |
Collapse
|
20
|
Zuriaga E, Soriano JM, Zhebentyayeva T, Romero C, Dardick C, Cañizares J, Badenes ML. Genomic analysis reveals MATH gene(s) as candidate(s) for Plum pox virus (PPV) resistance in apricot (Prunus armeniaca L.). MOLECULAR PLANT PATHOLOGY 2013; 14:663-77. [PMID: 23672686 PMCID: PMC6638718 DOI: 10.1111/mpp.12037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sharka disease, caused by Plum pox virus (PPV), is the most important viral disease affecting Prunus species. A major PPV resistance locus (PPVres) has been mapped to the upper part of apricot (Prunus armeniaca) linkage group 1. In this study, a physical map of the PPVres locus in the PPV-resistant cultivar 'Goldrich' was constructed. Bacterial artificial chromosome (BAC) clones belonging to the resistant haplotype contig were sequenced using 454/GS-FLX Titanium technology. Concurrently, the whole genome of seven apricot varieties (three PPV-resistant and four PPV-susceptible) and two PPV-susceptible apricot relatives (P. sibirica var. davidiana and P. mume) were obtained using the Illumina-HiSeq2000 platform. Single nucleotide polymorphisms (SNPs) within the mapped interval, recorded from alignments against the peach genome, allowed us to narrow down the PPVres locus to a region of ∼196 kb. Searches for polymorphisms linked in coupling with the resistance led to the identification of 68 variants within 23 predicted transcripts according to peach genome annotation. Candidate resistance genes were ranked combining data from variant calling and predicted functions inferred from sequence homology. Together, the results suggest that members of a cluster of meprin and TRAF-C homology domain (MATHd)-containing proteins are the most likely candidate genes for PPV resistance in apricot. Interestingly, MATHd proteins are hypothesized to control long-distance movement (LDM) of potyviruses in Arabidopsis, and restriction for LDM is also a major component of PPV resistance in apricot. Although the PPV resistance gene(s) remains to be unambiguously identified, these results pave the way to the determination of the underlying mechanism and to the development of more accurate breeding strategies.
Collapse
Affiliation(s)
- Elena Zuriaga
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Apartado Oficial, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Hamon C, Coyne CJ, McGee RJ, Lesné A, Esnault R, Mangin P, Hervé M, Le Goff I, Deniot G, Roux-Duparque M, Morin G, McPhee KE, Delourme R, Baranger A, Pilet-Nayel ML. QTL meta-analysis provides a comprehensive view of loci controlling partial resistance to Aphanomyces euteiches in four sources of resistance in pea. BMC PLANT BIOLOGY 2013; 13:45. [PMID: 23497245 PMCID: PMC3680057 DOI: 10.1186/1471-2229-13-45] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/04/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND Development of durable plant genetic resistance to pathogens through strategies of QTL pyramiding and diversification requires in depth knowledge of polygenic resistance within the available germplasm. Polygenic partial resistance to Aphanomyces root rot, caused by Aphanomyces euteiches, one of the most damaging pathogens of pea worldwide, was previously dissected in individual mapping populations. However, there are no data available regarding the diversity of the resistance QTL across a broader collection of pea germplasm. In this study, we performed a meta-analysis of Aphanomyces root rot resistance QTL in the four main sources of resistance in pea and compared their genomic localization with genes/QTL controlling morphological or phenological traits and with putative candidate genes. RESULTS Meta-analysis, conducted using 244 individual QTL reported previously in three mapping populations (Puget x 90-2079, Baccara x PI180693 and Baccara x 552) and in a fourth mapping population in this study (DSP x 90-2131), resulted in the identification of 27 meta-QTL for resistance to A. euteiches. Confidence intervals of meta-QTL were, on average, reduced four-fold compared to mean confidence intervals of individual QTL. Eleven consistent meta-QTL, which highlight seven highly consistent genomic regions, were identified. Few meta-QTL specificities were observed among mapping populations, suggesting that sources of resistance are not independent. Seven resistance meta-QTL, including six of the highly consistent genomic regions, co-localized with six of the meta-QTL identified in this study for earliness and plant height and with three morphological genes (Af, A, R). Alleles contributing to the resistance were often associated with undesirable alleles for dry pea breeding. Candidate genes underlying six main meta-QTL regions were identified using colinearity between the pea and Medicago truncatula genomes. CONCLUSIONS QTL meta-analysis provided an overview of the moderately low diversity of loci controlling partial resistance to A. euteiches in four main sources of resistance in pea. Seven highly consistent genomic regions with potential use in marker-assisted-selection were identified. Confidence intervals at several main QTL regions were reduced and co-segregation among resistance and morphological/phenological alleles was identified. Further work will be required to identify the best combinations of QTL for durably increasing partial resistance to A. euteiches.
Collapse
Affiliation(s)
- Céline Hamon
- INRA, UMR1349 IGEPP, Le Rheu F-35653, France
- Current address: Vegenov-BBV, Penn ar Prat, Saint Pol de Léon, 29250, France
| | - Clarice J Coyne
- USDA, ARS, Western Regional Plant Introduction Station, Washington State University, Pullman, WA, 99164-6402, USA
| | - Rebecca J McGee
- USDA, ARS, Grain Legume Genetics and Physiology Research Unit, Pullman, WA, 99164-6434, USA
| | | | | | - Pierre Mangin
- INRA, Domaine Expérimental d’Epoisses, UE0115, Bretenières, F-21110, France
| | - Marie Hervé
- INRA, UMR1349 IGEPP, Le Rheu F-35653, France
- Current address: HM CLAUSE, 1 chemin ronzières, La Bohalle, 49800, France
| | - Isabelle Le Goff
- INRA, UMR1349 IGEPP, Le Rheu F-35653, France
- Current address: INRA, UMR1301 IBSV Interactions Biotiques en Santé Végétale, 400 route des Chappes, Sophia Antipolis Cedex, 06903, France
| | | | - Martine Roux-Duparque
- GSP, Domaine Brunehaut, Estrées-Mons, 80200, France
- Current address: Chambre d'Agriculture de l'Aisne, 1 rue René Blondelle, Laon Cedex, 02007, France
| | | | - Kevin E McPhee
- Department 7670, North Dakota State University, 370G Loftsgard Hall, Fargo, ND, 58108-6050, USA
| | | | | | | |
Collapse
|
22
|
Wang X, Kohalmi SE, Svircev A, Wang A, Sanfaçon H, Tian L. Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum. PLoS One 2013; 8:e50627. [PMID: 23382802 PMCID: PMC3557289 DOI: 10.1371/journal.pone.0050627] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/23/2012] [Indexed: 01/29/2023] Open
Abstract
Plum pox virus (PPV) causes the most economically-devastating viral disease in Prunus species. Unfortunately, few natural resistance genes are available for the control of PPV. Recessive resistance to some potyviruses is associated with mutations of eukaryotic translation initiation factor 4E (eIF4E) or its isoform eIF(iso)4E. In this study, we used an RNA silencing approach to manipulate the expression of eIF4E and eIF(iso)4E towards the development of PPV resistance in Prunus species. The eIF4E and eIF(iso)4E genes were cloned from plum (Prunus domestica L.). The sequence identity between plum eIF4E and eIF(iso)4E coding sequences is 60.4% at the nucleotide level and 52.1% at the amino acid level. Quantitative real-time RT-PCR analysis showed that these two genes have a similar expression pattern in different tissues. Transgenes allowing the production of hairpin RNAs of plum eIF4E or eIF(iso)4E were introduced into plum via Agrobacterium-mediated transformation. Gene expression analysis confirmed specific reduced expression of eIF4E or eIF(iso)4E in the transgenic lines and this was associated with the accumulation of siRNAs. Transgenic plants were challenged with PPV-D strain and resistance was evaluated by measuring the concentration of viral RNA. Eighty-two percent of the eIF(iso)4E silenced transgenic plants were resistant to PPV, while eIF4E silenced transgenic plants did not show PPV resistance. Physical interaction between PPV-VPg and plum eIF(iso)4E was confirmed. In contrast, no PPV-VPg/eIF4E interaction was observed. These results indicate that eIF(iso)4E is involved in PPV infection in plum, and that silencing of eIF(iso)4E expression can lead to PPV resistance in Prunus species.
Collapse
Affiliation(s)
- Xinhua Wang
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Susanne E. Kohalmi
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Antonet Svircev
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Hélène Sanfaçon
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Lining Tian
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
23
|
Pagny G, Paulstephenraj PS, Poque S, Sicard O, Cosson P, Eyquard JP, Caballero M, Chague A, Gourdon G, Negrel L, Candresse T, Mariette S, Decroocq V. Family-based linkage and association mapping reveals novel genes affecting Plum pox virus infection in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 196:873-886. [PMID: 22943366 DOI: 10.1111/j.1469-8137.2012.04289.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/21/2012] [Indexed: 05/03/2023]
Abstract
Sharka is a devastating viral disease caused by the Plum pox virus (PPV) in stone fruit trees and few sources of resistance are known in its natural hosts. Since any knowledge gained from Arabidopsis on plant virus susceptibility factors is likely to be transferable to crop species, Arabidopsis's natural variation was searched for host factors essential for PPV infection. To locate regions of the genome associated with susceptibility to PPV, linkage analysis was performed on six biparental populations as well as on multiparental lines. To refine quantitative trait locus (QTL) mapping, a genome-wide association analysis was carried out using 147 Arabidopsis accessions. Evidence was found for linkage on chromosomes 1, 3 and 5 with restriction of PPV long-distance movement. The most relevant signals occurred within a region at the bottom of chromosome 3, which comprises seven RTM3-like TRAF domain-containing genes. Since the resistance mechanism analyzed here is recessive and the rtm3 knockout mutant is susceptible to PPV infection, it suggests that other gene(s) present in the small identified region encompassing RTM3 are necessary for PPV long-distance movement. In consequence, we report here the occurrence of host factor(s) that are indispensable for virus long-distance movement.
Collapse
Affiliation(s)
- Gaëlle Pagny
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | | | - Sylvain Poque
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Ophélie Sicard
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Patrick Cosson
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Jean-Philippe Eyquard
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Mélodie Caballero
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Aurélie Chague
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Germain Gourdon
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Lise Negrel
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Thierry Candresse
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Stéphanie Mariette
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Véronique Decroocq
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| |
Collapse
|
24
|
Vera Ruiz EM, Soriano JM, Romero C, Zhebentyayeva T, Terol J, Zuriaga E, Llácer G, Abbott AG, Badenes ML. Narrowing down the apricot Plum pox virus resistance locus and comparative analysis with the peach genome syntenic region. MOLECULAR PLANT PATHOLOGY 2011; 12:535-47. [PMID: 21722293 PMCID: PMC6640391 DOI: 10.1111/j.1364-3703.2010.00691.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sharka disease, caused by the Plum pox virus (PPV), is one of the main limiting factors for stone fruit crops worldwide. Only a few resistance sources have been found in apricot (Prunus armeniaca L.), and most studies have located a major PPV resistance locus (PPVres) on linkage group 1 (LG1). However, the mapping accuracy was not sufficiently reliable and PPVres was predicted within a low confidence interval. In this study, we have constructed two high-density simple sequence repeat (SSR) improved maps with 0.70 and 0.68 markers/cm, corresponding to LG1 of 'Lito' and 'Goldrich' PPV-resistant cultivars, respectively. Using these maps, and excluding genotype-phenotype incongruent individuals, a new binary trait locus (BTL) analysis for PPV resistance was performed, narrowing down the PPVres support intervals to 7.3 and 5.9 cm in 'Lito' and 'Goldrich', respectively. Subsequently, 71 overlapping oligonucleotides (overgo) probes were hybridized against an apricot bacterial artificial chromosome (BAC) library, identifying 870 single BACs from which 340 were anchored onto a map region of approximately 30-40 cm encompassing PPVres. Partial BAC contigs assigned to the two allelic haplotypes (resistant/susceptible) of the PPVres locus were built by high-information content fingerprinting (HICF). In addition, a total of 300 BAC-derived sequences were obtained, and 257 showed significant homology with the peach genome scaffold_1 corresponding to LG1. According to the peach syntenic genome sequence, PPVres was predicted within a region of 2.16 Mb in which a few candidate resistance genes were identified.
Collapse
Affiliation(s)
- Elsa María Vera Ruiz
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Apartado Oficial, Moncada, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Danan S, Veyrieras JB, Lefebvre V. Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC PLANT BIOLOGY 2011; 11:16. [PMID: 21247437 PMCID: PMC3037844 DOI: 10.1186/1471-2229-11-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 01/19/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND Integrating QTL results from independent experiments performed on related species helps to survey the genetic diversity of loci/alleles underlying complex traits, and to highlight potential targets for breeding or QTL cloning. Potato (Solanum tuberosum L.) late blight resistance has been thoroughly studied, generating mapping data for many Rpi-genes (R-genes to Phytophthora infestans) and QTLs (quantitative trait loci). Moreover, late blight resistance was often associated with plant maturity. To get insight into the genomic organization of late blight resistance loci as compared to maturity QTLs, a QTL meta-analysis was performed for both traits. RESULTS Nineteen QTL publications for late blight resistance were considered, seven of them reported maturity QTLs. Twenty-one QTL maps and eight reference maps were compiled to construct a 2,141-marker consensus map on which QTLs were projected and clustered into meta-QTLs. The whole-genome QTL meta-analysis reduced by six-fold late blight resistance QTLs (by clustering 144 QTLs into 24 meta-QTLs), by ca. five-fold maturity QTLs (by clustering 42 QTLs into eight meta-QTLs), and by ca. two-fold QTL confidence interval mean. Late blight resistance meta-QTLs were observed on every chromosome and maturity meta-QTLs on only six chromosomes. CONCLUSIONS Meta-analysis helped to refine the genomic regions of interest frequently described, and provided the closest flanking markers. Meta-QTLs of late blight resistance and maturity juxtaposed along chromosomes IV, V and VIII, and overlapped on chromosomes VI and XI. The distribution of late blight resistance meta-QTLs is significantly independent from those of Rpi-genes, resistance gene analogs and defence-related loci. The anchorage of meta-QTLs to the potato genome sequence, recently publicly released, will especially improve the candidate gene selection to determine the genes underlying meta-QTLs. All mapping data are available from the Sol Genomics Network (SGN) database.
Collapse
Affiliation(s)
- Sarah Danan
- Institut National de la Recherche Agronomique (INRA), UR 1052 Génétique et Amélioration des Fruits et Légumes (GAFL), BP94, 84140 Montfavet, France
| | - Jean-Baptiste Veyrieras
- Institut National de la Recherche Agronomique (INRA-UPS-INA PG-CNRS), UMR 320 Génétique Végétale, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | - Véronique Lefebvre
- Institut National de la Recherche Agronomique (INRA), UR 1052 Génétique et Amélioration des Fruits et Légumes (GAFL), BP94, 84140 Montfavet, France
| |
Collapse
|
26
|
Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A. Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:996-1007. [PMID: 20977657 DOI: 10.1111/j.1744-7909.2010.00967.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A major objective of quantitative trait locus (QTL) studies is to find genes/markers that can be used in breeding programs via marker assisted selection (MAS). We surveyed the QTLs for yield and yield-related traits and their genomic distributions in common wheat (Triticum aestivum L.) in the available published reports. We then carried out a meta-QTL (MQTL) analysis to identify the major and consistent QTLs for these traits. In total, 55 MQTLs were identified, of which 12 significant MQTLs were located on wheat chromosomes 1A, 1B, 2A, 2D, 3B, 4A, 4B, 4D and 5A. Our study showed that the genetic control of yield and its components in common wheat involved the important genes such as Rht and Vrn. Furthermore, several significant MQTLs were found in the chromosomal regions corresponding to several rice genomic locations containing important QTLs for yield related traits. Our results demonstrate that meta-QTL analysis is a powerful tool for confirming the major and stable QTLs and refining their chromosomal positions in common wheat, which may be useful for improving the MAS efficiency of yield related traits.
Collapse
Affiliation(s)
- Li-Yi Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Truntzler M, Barrière Y, Sawkins MC, Lespinasse D, Betran J, Charcosset A, Moreau L. Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1465-82. [PMID: 20658277 DOI: 10.1007/s00122-010-1402-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 07/05/2010] [Indexed: 05/17/2023]
Abstract
A meta-analysis of quantitative trait loci (QTL) associated with plant digestibility and cell wall composition in maize was carried out using results from 11 different mapping experiments. Statistical methods implemented in "MetaQTL" software were used to build a consensus map, project QTL positions and perform meta-analysis. Fifty-nine QTL for traits associated with digestibility and 150 QTL for traits associated with cell wall composition were included in the analysis. We identified 26 and 42 metaQTL for digestibility and cell wall composition traits, respectively. Fifteen metaQTL with confidence interval (CI) smaller than 10 cM were identified. As expected from trait correlations, 42% of metaQTL for digestibility displayed overlapping CIs with metaQTL for cell wall composition traits. Coincidences were particularly strong on chromosomes 1 and 3. In a second step, 356 genes selected from the MAIZEWALL database as candidates for the cell wall biosynthesis pathway were positioned on our consensus map. Colocalizations between candidate genes and metaQTL positions appeared globally significant based on χ(2) tests. This study contributed in identifying key chromosomal regions involved in silage quality and potentially associated genes for most of these regions. These genes deserve further investigation, in particular through association mapping.
Collapse
Affiliation(s)
- M Truntzler
- INRA, UMR de Genetique Vegetale INRA/Univ. Paris XI/CNRS/INA PG, Paris, France.
| | | | | | | | | | | | | |
Collapse
|