1
|
Szabo-Hever A, Running KLD, Seneviratne S, Singh G, Zhang Z, Peters Haugrud AR, Maccaferri M, Tuberosa R, Friesen TL, Xu SS, Faris JD. Evaluation of Durum and Hard Red Spring Wheat Panels for Sensitivity to Necrotrophic Effectors Produced by Parastagonospora nodorum. PLANT DISEASE 2025; 109:851-861. [PMID: 39475585 DOI: 10.1094/pdis-05-24-0990-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Septoria nodorum blotch (SNB) is an important disease of both durum and hard red spring wheat (HRSW) worldwide. The disease is caused by the necrotrophic fungal pathogen Parastagonospora nodorum when compatible gene-for-gene interactions occur between pathogen-produced necrotrophic effectors (NEs) and corresponding host sensitivity genes. To date, nine sensitivity gene-NE interactions have been identified, but there is little information available regarding their overall frequency in durum and HRSW. Here, we infiltrated a global HRSW panel (HRSWP) and the Global Durum Panel (GDP) with P. nodorum NEs SnToxA, SnTox1, SnTox267, SnTox3, and SnTox5. Frequencies of sensitivity to SnTox1 and SnTox5 were higher in durum compared with HRSW and vice versa for SnTox267 and SnTox3. Strong associations for the known sensitivity loci Tsn1, Snn1, Snn2, Snn3, Snn5, and Snn7 along with potentially novel sensitivity loci on chromosome arms 7DS and 3BL, associated with SnToxA and SnTox267, respectively, were identified in the HRSWP. In the GDP, Snn1, Snn3, and Snn5 were identified along with novel loci associated with sensitivity to SnTox267 on chromosome arms 2AS, 2AL, and 6AS and with SnTox5 sensitivity on 2BS and 7BL. These results reveal additional NE sensitivity loci beyond those previously described, demonstrating a higher level of genetic complexity of the wheat-P. nodorum system than was previously thought. Knowledge regarding the prevalence and genomic locations of SNB susceptibility genes in HRSW and durum will prove useful for developing efficient breeding strategies and improving varieties for SNB resistance.
Collapse
Affiliation(s)
- Agnes Szabo-Hever
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, U.S.A
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, U.S.A
| | | | - Sudeshi Seneviratne
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Gurminder Singh
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Zengcui Zhang
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, U.S.A
| | - Amanda R Peters Haugrud
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, U.S.A
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Timothy L Friesen
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, U.S.A
| | - Steven S Xu
- Western Regional Research Center, USDA-Agricultural Research Service, Albany, CA 94710, U.S.A
| | - Justin D Faris
- Cereal Crops Improvement Research Unit, Edward T. Schafer Agricultural Research Center, USDA-Agricultural Research Service, Fargo, ND 58102, U.S.A
| |
Collapse
|
2
|
Dariva FD, Arman A, Morales M, Navasca H, Shah R, Atanda SA, Piche L, Worral H, Raymon G, McPhee K, Coyne C, Flores P, Ebert MK, Bandillo N. Identification of novel candidate genes for Ascochyta blight resistance in chickpea. Sci Rep 2024; 14:31415. [PMID: 39733039 PMCID: PMC11682179 DOI: 10.1038/s41598-024-83007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Ascochyta blight, caused by the necrotrophic fungus Ascochyta rabiei, is a major threat to chickpea production worldwide. Resistance genes with broad-spectrum protection against virulent A. rabiei strains are required to secure chickpea yield in the US Northern Great Plains. Here, we performed a genome-wide association (GWA) study to discover novel sources of genetic variation for Ascochyta blight resistance using a worldwide germplasm collection of 219 chickpea lines. Ascochyta blight resistance was evaluated at 3, 9, 11, 13, and 14 days post-inoculation. Multiple GWA models revealed eight quantitative trait nucleotides (QTNs) across timepoints mapped to chromosomes 1, 3, 4, 6, and 7. Of these eight QTNs, only CM001767.1_28299946 on Chr 4 had previously been reported. QTN CM001766.1_36967269 on Chr 3 explained up to 33% of the variation in disease severity and was mapped to an exonic region of the pentatricopeptide repeat-containing protein At4g02750-like gene (LOC101506608). This QTN was confirmed across all models and timepoints. A total of 153 candidate genes, including genes with roles in pathogen recognition and signaling, cell wall biosynthesis, oxidative burst, and regulation of DNA transcription, were observed surrounding QTN-targeted regions. Further gene expression analysis on the QTNs identified in this study will provide insights into defense-related genes that can be further incorporated into breeding of new chickpea cultivars to minimize fungicide applications required for successful chickpea production in the US Northern Great Plains.
Collapse
Affiliation(s)
| | - Amlan Arman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Mario Morales
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Harry Navasca
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Ramita Shah
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, 58102, USA
| | | | - Lisa Piche
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Hannah Worral
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Garrett Raymon
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Kevin McPhee
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Clarice Coyne
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Paulo Flores
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, 58102, USA
| | - Malaika K Ebert
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA.
| | - Nonoy Bandillo
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA.
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
3
|
Jones DAB, Rybak K, Hossain M, Bertazzoni S, Williams A, Tan KC, Phan HTT, Hane JK. Repeat-induced point mutations driving Parastagonospora nodorum genomic diversity are balanced by selection against non-synonymous mutations. Commun Biol 2024; 7:1614. [PMID: 39627497 PMCID: PMC11615325 DOI: 10.1038/s42003-024-07327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Parastagonospora nodorum is necrotrophic fungal pathogen of wheat with significant genomic resources. Population-level pangenome data for 173 isolates, of which 156 were from Western Australia (WA) and 17 were international, were examined for overall genomic diversity and effector gene content. A heterothallic core population occurred across all regions of WA, with asexually-reproducing clonal clusters in dryer northern regions. High potential for SNP diversity in the form of repeat-induced point mutation (RIP)-like transitions, was observed across the genome, suggesting widespread 'RIP-leakage' from transposon-rich repetitive sequences into non-repetitive regions. The strong potential for RIP-like mutations was balanced by negative selection against non-synonymous SNPs, that was observed within protein-coding regions. Protein isoform profiles of known effector loci (SnToxA, SnTox1, SnTox3, SnTox267, and SnTox5) indicated low-levels of non-synonymous and high-levels of silent RIP-like mutations. Effector predictions identified 186 candidate secreted predicted effector proteins (CSEPs), 69 of which had functional annotations and included confirmed effectors. Pangenome-based effector isoform profiles across WA were distinct from global isolates and were conserved relative to population structure, and may enable new approaches for monitoring crop disease pathotypes.
Collapse
Affiliation(s)
- Darcy A B Jones
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Kasia Rybak
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Mohitul Hossain
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Stefania Bertazzoni
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Angela Williams
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Kar-Chun Tan
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - Huyen T T Phan
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, WA, Australia.
| |
Collapse
|
4
|
Lhamo D, Sun Q, Friesen TL, Karmacharya A, Li X, Fiedler JD, Faris JD, Xia G, Luo M, Gu YQ, Liu Z, Xu SS. Association mapping of tan spot and septoria nodorum blotch resistance in cultivated emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:193. [PMID: 39073628 DOI: 10.1007/s00122-024-04700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
KEY MESSAGE A total of 65 SNPs associated with resistance to tan spot and septoria nodorum blotch were identified in a panel of 180 cultivated emmer accessions through association mapping Tan spot and septoria nodorum blotch (SNB) are foliar diseases caused by the respective fungal pathogens Pyrenophora tritici-repentis and Parastagonospora nodorum that affect global wheat production. To find new sources of resistance, we evaluated a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for reactions to four P. tritici-repentis isolates Pti2, 86-124, 331-9 and DW5, two P. nodorum isolate, Sn4 and Sn2000, and four necrotrophic effectors (NEs) produced by the pathogens. About 8-36% of the accessions exhibited resistance to the four P. tritici-repentis isolates, with five accessions demonstrating resistance to all isolates. For SNB, 64% accessions showed resistance to Sn4, 43% to Sn2000 and 36% to both isolates, with Spain (11% accessions) as the most common origin of resistance. To understand the genetic basis of resistance, association mapping was performed using SNP (single nucleotide polymorphism) markers generated by genotype-by-sequencing and the 9 K SNP Infinium array. A total of 46 SNPs were significantly associated with tan spot and 19 SNPs with SNB resistance or susceptibility. Six trait loci on chromosome arms 1BL, 3BL, 4AL (2), 6BL and 7AL conferred resistance to two or more isolates. Known NE sensitivity genes for disease development were undetected except Snn5 for Sn2000, suggesting novel genetic factors are controlling host-pathogen interaction in cultivated emmer. The emmer accessions with the highest levels of resistance to the six pathogen isolates (e.g., CItr 14133-1, PI 94634-1 and PI 377672) could serve as donors for tan spot and SNB resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Dhondup Lhamo
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA
| | - Qun Sun
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Timothy L Friesen
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Anil Karmacharya
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Jason D Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mingcheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yong-Qiang Gu
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA.
| | - Steven S Xu
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA.
| |
Collapse
|
5
|
Kariyawasam GK, Nelson AC, Williams SJ, Solomon PS, Faris JD, Friesen TL. The Necrotrophic Pathogen Parastagonospora nodorum Is a Master Manipulator of Wheat Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:764-773. [PMID: 37581456 DOI: 10.1094/mpmi-05-23-0067-irw] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Parastagonospora nodorum is a necrotrophic pathogen of wheat that is particularly destructive in major wheat-growing regions of the United States, northern Europe, Australia, and South America. P. nodorum secretes necrotrophic effectors that target wheat susceptibility genes to induce programmed cell death (PCD), resulting in increased colonization of host tissue and, ultimately, sporulation to complete its pathogenic life cycle. Intensive research over the last two decades has led to the functional characterization of five proteinaceous necrotrophic effectors, SnTox1, SnToxA, SnTox267, SnTox3, and SnTox5, and three wheat susceptibility genes, Tsn1, Snn1, and Snn3D-1. Functional characterization has revealed that these effectors, in addition to inducing PCD, have additional roles in pathogenesis, including chitin binding that results in protection from wheat chitinases, blocking defense response signaling, and facilitating plant colonization. There are still large gaps in our understanding of how this necrotrophic pathogen is successfully manipulating wheat defense to complete its life cycle. This review summarizes our current knowledge, identifies knowledge gaps, and provides a summary of well-developed tools and resources currently available to study the P. nodorum-wheat interaction, which has become a model for necrotrophic specialist interactions. Further functional characterization of the effectors involved in this interaction and work toward a complete understanding of how P. nodorum manipulates wheat defense will provide fundamental knowledge about this and other necrotrophic interactions. Additionally, a broader understanding of this interaction will contribute to the successful management of Septoria nodorum blotch disease on wheat. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Ashley C Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Justin D Faris
- Cereal Crops Research Unit, USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Cereal Crops Research Unit, USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| |
Collapse
|
6
|
Singh SK, Shree A, Verma S, Singh K, Kumar K, Srivastava V, Singh R, Saxena S, Singh AP, Pandey A, Verma PK. The nuclear effector ArPEC25 from the necrotrophic fungus Ascochyta rabiei targets the chickpea transcription factor CaβLIM1a and negatively modulates lignin biosynthesis, increasing host susceptibility. THE PLANT CELL 2023; 35:1134-1159. [PMID: 36585808 PMCID: PMC10015165 DOI: 10.1093/plcell/koac372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 05/29/2023]
Abstract
Fungal pathogens deploy a barrage of secreted effectors to subvert host immunity, often by evading, disrupting, or altering key components of transcription, defense signaling, and metabolic pathways. However, the underlying mechanisms of effectors and their host targets are largely unexplored in necrotrophic fungal pathogens. Here, we describe the effector protein Ascochyta rabiei PEXEL-like Effector Candidate 25 (ArPEC25), which is secreted by the necrotroph A. rabiei, the causal agent of Ascochyta blight disease in chickpea (Cicer arietinum), and is indispensable for virulence. After entering host cells, ArPEC25 localizes to the nucleus and targets the host LIM transcription factor CaβLIM1a. CaβLIM1a is a transcriptional regulator of CaPAL1, which encodes phenylalanine ammonia lyase (PAL), the regulatory, gatekeeping enzyme of the phenylpropanoid pathway. ArPEC25 inhibits the transactivation of CaβLIM1a by interfering with its DNA-binding ability, resulting in negative regulation of the phenylpropanoid pathway and decreased levels of intermediates of lignin biosynthesis, thereby suppressing lignin production. Our findings illustrate the role of fungal effectors in enhancing virulence by targeting a key defense pathway that leads to the biosynthesis of various secondary metabolites and antifungal compounds. This study provides a template for the study of less explored necrotrophic effectors and their host target functions.
Collapse
Affiliation(s)
- Shreenivas Kumar Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Shree
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sandhya Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kunal Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Kumar
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vikas Srivastava
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ritu Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Samiksha Saxena
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Agam Prasad Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ashutosh Pandey
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
7
|
Peters Haugrud AR, Zhang Z, Friesen TL, Faris JD. Genetics of resistance to septoria nodorum blotch in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3685-3707. [PMID: 35050394 DOI: 10.1007/s00122-022-04036-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 05/12/2023]
Abstract
Septoria nodorum blotch (SNB) is a foliar disease of wheat caused by the necrotrophic fungal pathogen Parastagonospora nodorum. Research over the last two decades has shown that the wheat-P. nodorum pathosystem mostly follows an inverse gene-for-gene model. The fungus produces necrotrophic effectors (NEs) that interact with specific host gene products encoded by dominant sensitivity (S) genes. When a compatible interaction occurs, a 'defense response' in the host leads to programmed cell death thereby provided dead/dying cells from which the pathogen, being a necrotroph, can acquire nutrients allowing it to grow and sporulate. To date, nine S gene-NE interactions have been characterized in this pathosystem. Five NE-encoding genes, SnTox1, SnTox3, SnToxA, SnTox5, and SnTox267, have been cloned along with three host S genes, Tsn1, Snn1, and Snn3-D1. Studies have shown that P. nodorum hijacks multiple and diverse host targets to cause disease. SNB resistance is often quantitative in nature because multiple compatible interactions usually occur concomitantly. NE gene expression plays a key role in disease severity, and the effect of each compatible interaction can vary depending on the other existing compatible interactions. Numerous SNB-resistance QTL have been identified in addition to the known S genes, and more research is needed to understand the nature of these resistance loci. Marker-assisted elimination of S genes through conventional breeding practices and disruption of S genes using gene editing techniques are both effective strategies for the development of SNB-resistant wheat cultivars, which will become necessary as the global demand for sustenance grows.
Collapse
Affiliation(s)
| | - Zengcui Zhang
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Timothy L Friesen
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA.
| |
Collapse
|
8
|
Liao CJ, Hailemariam S, Sharon A, Mengiste T. Pathogenic strategies and immune mechanisms to necrotrophs: Differences and similarities to biotrophs and hemibiotrophs. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102291. [PMID: 36063637 DOI: 10.1016/j.pbi.2022.102291] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Pathogenesis in plant diseases is complex comprising diverse pathogen virulence and plant immune mechanisms. These pathogens cause damaging plant diseases by deploying specialized and generic virulence strategies that are countered by intricate resistance mechanisms. The significant challenges that necrotrophs pose to crop production are predicted to increase with climate change. Immunity to biotrophs and hemibiotrophs is dominated by intracellular receptors that recognize specific effectors and activate resistance. These mechanisms play only minor roles in resistance to necrotrophs. Pathogen- or host-derived conserved pattern molecules trigger immune responses that broadly contribute to plant immunity. However, certain pathogen or host-derived immune elicitors are enriched by the virulence activities of necrotrophs. Different plant hormones modulate systemic resistance and cell death that have differential impacts on resistance to pathogens of different lifestyles. Knowledge of mechanisms that contribute to resistance to necrotrophs has expanded. Besides toxins and cell wall degrading enzymes that dominate the pathogenesis of necrotrophs, other effectors with subtle contributions are being identified.
Collapse
Affiliation(s)
- Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
9
|
Kariyawasam GK, Richards JK, Wyatt NA, Running KLD, Xu SS, Liu Z, Borowicz P, Faris JD, Friesen TL. The Parastagonospora nodorum necrotrophic effector SnTox5 targets the wheat gene Snn5 and facilitates entry into the leaf mesophyll. THE NEW PHYTOLOGIST 2022; 233:409-426. [PMID: 34231227 PMCID: PMC9291777 DOI: 10.1111/nph.17602] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/27/2021] [Indexed: 05/11/2023]
Abstract
Parastagonospora nodorum is an economically important necrotrophic fungal pathogen of wheat. Parastagonospora nodorum secretes necrotrophic effectors that target wheat susceptibility genes to induce programmed cell death (PCD). In this study, we cloned and functionally validated SnTox5 and characterized its role in pathogenesis. We used whole genome sequencing, genome-wide association study (GWAS) mapping, CRISPR-Cas9-based gene disruption, gain-of-function transformation, quantitative trait locus (QTL) analysis, haplotype and isoform analysis, protein modeling, quantitative PCR, and laser confocal microscopy to validate SnTox5 and functionally characterize SnTox5. SnTox5 is a mature 16.26 kDa protein with high structural similarity to SnTox3. Wild-type and mutant P. nodorum strains and wheat genotypes of SnTox5 and Snn5, respectively, were used to show that SnTox5 not only targets Snn5 to induce PCD but also facilitates the colonization of the mesophyll layer even in the absence of Snn5. Here we show that SnTox5 facilitates the efficient colonization of the mesophyll tissue and elicits PCD specific to host lines carrying Snn5. The homology to SnTox3 and the ability of SnTox5 to facilitate the colonizing of the mesophyll also suggest a role in the suppression of host defense before PCD induction.
Collapse
Affiliation(s)
| | - Jonathan K. Richards
- Department of Plant Pathology and Crop PhysiologyLouisiana State University – Agricultural CenterBaton RougeLA70803USA
| | - Nathan A. Wyatt
- Cereal Crops Research UnitUnited States Department of Agriculture‐Agricultural Research ServiceEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | | | - Steven S. Xu
- Cereal Crops Research UnitUnited States Department of Agriculture‐Agricultural Research ServiceEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Zhaohui Liu
- Department of Plant PathologyNorth Dakota State UniversityFargoND58102USA
| | - Pawel Borowicz
- Department of Animal SciencesNorth Dakota State UniversityFargoND58102USA
| | - Justin D. Faris
- Cereal Crops Research UnitUnited States Department of Agriculture‐Agricultural Research ServiceEdward T. Schafer Agricultural Research CenterFargoND58102USA
- Department of Plant ScienceNorth Dakota State UniversityFargoND58102USA
| | - Timothy L. Friesen
- Department of Plant PathologyNorth Dakota State UniversityFargoND58102USA
- Cereal Crops Research UnitUnited States Department of Agriculture‐Agricultural Research ServiceEdward T. Schafer Agricultural Research CenterFargoND58102USA
| |
Collapse
|
10
|
Richards JK, Kariyawasam GK, Seneviratne S, Wyatt NA, Xu SS, Liu Z, Faris JD, Friesen TL. A triple threat: the Parastagonospora nodorum SnTox267 effector exploits three distinct host genetic factors to cause disease in wheat. THE NEW PHYTOLOGIST 2022; 233:427-442. [PMID: 34227112 PMCID: PMC9292537 DOI: 10.1111/nph.17601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/27/2021] [Indexed: 05/21/2023]
Abstract
Parastagonospora nodorum is a fungal pathogen of wheat. As a necrotrophic specialist, it deploys effector proteins that target dominant host susceptibility genes to elicit programmed cell death (PCD). Here we identify and functionally validate the effector targeting the host susceptibility genes Snn2, Snn6 and Snn7. We utilized whole-genome sequencing, association mapping, gene-disrupted mutants, gain-of-function transformants, virulence assays, bioinformatics and quantitative PCR to characterize these interactions. A single proteinaceous effector, SnTox267, targeted Snn2, Snn6 and Snn7 to trigger PCD. Snn2 and Snn6 functioned cooperatively to trigger PCD in a light-dependent pathway, whereas Snn7-mediated PCD functioned in a light-independent pathway. Isolates harboring 20 SnTox267 protein isoforms quantitatively varied in virulence. The diversity and distribution of isoforms varied between populations, indicating adaptation to local selection pressures. SnTox267 deletion resulted in the upregulation of effector genes SnToxA, SnTox1 and SnTox3. We validated a novel effector operating in an inverse-gene-for-gene manner to target three genetically distinct host susceptibility genes and elicit PCD. The discovery of the complementary gene action of Snn2 and Snn6 indicates their potential function in a guard or decoy model. Additionally, differences in light dependency in the elicited pathways and upregulation of unlinked effectors sheds new light onto a complex fungal necrotroph-host interaction.
Collapse
Affiliation(s)
- Jonathan K. Richards
- Department of Plant Pathology and Crop PhysiologyLouisiana State University Agricultural CenterBaton RougeLA70803USA
| | | | | | - Nathan A. Wyatt
- Cereal Crops Research UnitEdward T. Schaffer Agricultural Research CenterUSDA‐ARSFargoND58102USA
| | - Steven S. Xu
- Department of Plant SciencesNorth Dakota State UniversityFargoND58102USA
- Cereal Crops Research UnitEdward T. Schaffer Agricultural Research CenterUSDA‐ARSFargoND58102USA
| | - Zhaohui Liu
- Department of Plant PathologyNorth Dakota State UniversityFargoND58102USA
| | - Justin D. Faris
- Department of Plant SciencesNorth Dakota State UniversityFargoND58102USA
- Cereal Crops Research UnitEdward T. Schaffer Agricultural Research CenterUSDA‐ARSFargoND58102USA
| | - Timothy L. Friesen
- Department of Plant PathologyNorth Dakota State UniversityFargoND58102USA
- Cereal Crops Research UnitEdward T. Schaffer Agricultural Research CenterUSDA‐ARSFargoND58102USA
| |
Collapse
|
11
|
John E, Jacques S, Phan HTT, Liu L, Pereira D, Croll D, Singh KB, Oliver RP, Tan KC. Variability in an effector gene promoter of a necrotrophic fungal pathogen dictates epistasis and effector-triggered susceptibility in wheat. PLoS Pathog 2022; 18:e1010149. [PMID: 34990464 PMCID: PMC8735624 DOI: 10.1371/journal.ppat.1010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022] Open
Abstract
The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in representative P. nodorum isolates from Australia and South Africa. The presence of PE401 removed the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 wheat varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both 'selfish' and 'altruistic' characteristics. This offers an insight into a complex NE-NE interaction that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Huyen T. T. Phan
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Lifang Liu
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| | - Danilo Pereira
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Karam B. Singh
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Floreat, Western Australia, Australia
| | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, Western Australia, Australia
- Curtin University, Bentley, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Katoch S, Sharma V, Sharma D, Salwan R, Rana SK. Biology and molecular interactions of Parastagonospora nodorum blotch of wheat. PLANTA 2021; 255:21. [PMID: 34914013 DOI: 10.1007/s00425-021-03796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Parastagonospora nodorum is one of the important necrotrophic pathogens of wheat which causes severe economical loss to crop yield. So far, a number of effectors of Parastagonospora nodorum origin and their target interacting genes on the host plant have been characterized. Since targeting effector-sensitive gene carefully can be helpful in breeding for resistance. Therefore, constant efforts are required to further characterize the effectors, their interacting genes, and underlying biochemical pathways. Furthermore, to develop effective counter-strategies against emerging diseases, continuous efforts are required to determine the qualitative resistance that demands to screen of diverse genotypes for host resistance. Stagonospora nodorum blotch also refers to as Stagonospora glume blotch and leaf is caused by Parastagonospora nodorum. The pathogen deploys necrotrophic effectors for the establishment and development on wheat plants. The necrotrophic effectors and their interaction with host receptors lead to the establishment of infection on leaves and extensive lesions formation which either results in host cell death or suppression/activation of host defence mechanisms. The wheat Stagonospora nodorum interaction involves a set of nine host gene-necrotrophic effector interactions. Out of these, Snn1-SnTox1, Tsn1-SnToxA and Snn-SnTox3 are one of the most studied interaction, due to its role in the suppression of reactive oxygen species production, regulating the cytokinin content through ethylene-dependent wayduring initial infection stage. Further, although the molecular basis is not fully unveiled, these effectors regulate the redox state and influence the ethylene biosynthesis in infected wheat plants. Here, we have discussed the biology of the wheat pathogen Parastagonospora nodorum, role of its necrotrophic effectors and their interacting sensitivity genes on the redox state, how they hijack the resistance mechanisms, hormonal regulated immunity and other signalling pathways in susceptible wheat plants. The information generated from effectors and their corresponding sensitivity genes and other biological processes could be utilized effectively for disease management strategies.
Collapse
Affiliation(s)
- Shabnam Katoch
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, 140413, Punjab, India.
| | - Devender Sharma
- Crop Improvement Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Richa Salwan
- College of Horticulture and Forestry, Neri, Dr YS Parmar University of Horticulture and Forestry, Solan, Hamirpur, 177 001, India
| | - S K Rana
- Department of Plant Pathology, CSK HPKV Palampur, Palampur, 176062, Himachal Pradesh, India
| |
Collapse
|
13
|
Outram MA, Sung YC, Yu D, Dagvadorj B, Rima SA, Jones DA, Ericsson DJ, Sperschneider J, Solomon PS, Kobe B, Williams SJ. The crystal structure of SnTox3 from the necrotrophic fungus Parastagonospora nodorum reveals a unique effector fold and provides insight into Snn3 recognition and pro-domain protease processing of fungal effectors. THE NEW PHYTOLOGIST 2021; 231:2282-2296. [PMID: 34053091 DOI: 10.1111/nph.17516] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/20/2021] [Indexed: 05/22/2023]
Abstract
Plant pathogens cause disease through secreted effector proteins, which act to promote infection. Typically, the sequences of effectors provide little functional information and further targeted experimentation is required. Here, we utilized a structure/function approach to study SnTox3, an effector from the necrotrophic fungal pathogen Parastagonospora nodorum, which causes cell death in wheat-lines carrying the sensitivity gene Snn3. We developed a workflow for the production of SnTox3 in a heterologous host that enabled crystal structure determination and functional studies. We show this approach can be successfully applied to study effectors from other pathogenic fungi. The β-barrel fold of SnTox3 is a novel fold among fungal effectors. Structure-guided mutagenesis enabled the identification of residues required for Snn3 recognition. SnTox3 is a pre-pro-protein, and the pro-domain of SnTox3 can be cleaved in vitro by the protease Kex2. Complementing this, an in silico study uncovered the prevalence of a conserved motif (LxxR) in an expanded set of putative pro-domain-containing fungal effectors, some of which can be cleaved by Kex2 in vitro. Our in vitro and in silico study suggests that Kex2-processed pro-domain (designated here as K2PP) effectors are common in fungi and this may have broad implications for the approaches used to study their functions.
Collapse
Affiliation(s)
- Megan A Outram
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yi-Chang Sung
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel Yu
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bayantes Dagvadorj
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Sharmin A Rima
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - David A Jones
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel J Ericsson
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Australian Synchrotron, Macromolecular Crystallography, Clayton, VIC, 3168, Australia
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 2601, Australia
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
14
|
Outram MA, Sung YC, Yu D, Dagvadorj B, Rima SA, Jones DA, Ericsson DJ, Sperschneider J, Solomon PS, Kobe B, Williams SJ. The crystal structure of SnTox3 from the necrotrophic fungus Parastagonospora nodorum reveals a unique effector fold and provides insight into Snn3 recognition and pro-domain protease processing of fungal effectors. THE NEW PHYTOLOGIST 2021; 231:2282-2296. [PMID: 34053091 DOI: 10.1101/2020.05.27.120113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/20/2021] [Indexed: 05/25/2023]
Abstract
Plant pathogens cause disease through secreted effector proteins, which act to promote infection. Typically, the sequences of effectors provide little functional information and further targeted experimentation is required. Here, we utilized a structure/function approach to study SnTox3, an effector from the necrotrophic fungal pathogen Parastagonospora nodorum, which causes cell death in wheat-lines carrying the sensitivity gene Snn3. We developed a workflow for the production of SnTox3 in a heterologous host that enabled crystal structure determination and functional studies. We show this approach can be successfully applied to study effectors from other pathogenic fungi. The β-barrel fold of SnTox3 is a novel fold among fungal effectors. Structure-guided mutagenesis enabled the identification of residues required for Snn3 recognition. SnTox3 is a pre-pro-protein, and the pro-domain of SnTox3 can be cleaved in vitro by the protease Kex2. Complementing this, an in silico study uncovered the prevalence of a conserved motif (LxxR) in an expanded set of putative pro-domain-containing fungal effectors, some of which can be cleaved by Kex2 in vitro. Our in vitro and in silico study suggests that Kex2-processed pro-domain (designated here as K2PP) effectors are common in fungi and this may have broad implications for the approaches used to study their functions.
Collapse
Affiliation(s)
- Megan A Outram
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yi-Chang Sung
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel Yu
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bayantes Dagvadorj
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Sharmin A Rima
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - David A Jones
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel J Ericsson
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- Australian Synchrotron, Macromolecular Crystallography, Clayton, VIC, 3168, Australia
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 2601, Australia
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
15
|
Friesen TL, Faris JD. Characterization of Effector-Target Interactions in Necrotrophic Pathosystems Reveals Trends and Variation in Host Manipulation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:77-98. [PMID: 33909478 DOI: 10.1146/annurev-phyto-120320-012807] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Great strides have been made in defining the details of the plant defense response involving biotrophic fungal and bacterial pathogens. The groundwork for the current model was laid by H.H. Flor and others who defined the gene-for-gene hypothesis, which is now known to involve effector-triggered immunity (ETI). PAMP-triggered immunity (PTI) is also a highly effective response to most pathogens because of the recognition of common pathogen molecules by pattern recognition receptors. In this article, we consider the three pathogens that make up the foliar disease complex of wheat, Zymoseptoria tritici, Pyrenophora tritici-repentis, and Parastagonospora nodorum, to review the means by which necrotrophic pathogens circumvent, or outright hijack, the ETI and PTI pathways to cause disease.
Collapse
Affiliation(s)
- Timothy L Friesen
- Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, North Dakota 58102, USA; ,
| | - Justin D Faris
- Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, North Dakota 58102, USA; ,
| |
Collapse
|
16
|
Veselova S, Nuzhnaya T, Burkhanova G, Rumyantsev S, Maksimov I. Reactive Oxygen Species in Host Plant Are Required for an Early Defense Response against Attack of Stagonospora nodorum Berk. Necrotrophic Effectors SnTox. PLANTS 2021; 10:plants10081586. [PMID: 34451631 PMCID: PMC8398409 DOI: 10.3390/plants10081586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 02/03/2023]
Abstract
Reactive oxygen species (ROS) play a central role in plant immune responses. The most important virulence factors of the Stagonospora nodorum Berk. are multiple fungal necrotrophic effectors (NEs) (SnTox) that affect the redox-status and cause necrosis and/or chlorosis in wheat lines possessing dominant susceptibility genes (Snn). However, the effect of NEs on ROS generation at the early stages of infection has not been studied. We studied the early stage of infection of various wheat genotypes with S nodorum isolates -Sn4VD, SnB, and Sn9MN, carrying a different set of NE genes. Our results indicate that all three NEs of SnToxA, SnTox1, SnTox3 significantly contributed to cause disease, and the virulence of the isolates depended on their differential expression in plants (Triticum aestivum L.). The Tsn1–SnToxA, Snn1–SnTox1and Snn3–SnTox3 interactions played an important role in inhibition ROS production at the initial stage of infection. The Snn3–SnTox3 inhibited ROS production in wheat by affecting NADPH-oxidases, peroxidases, superoxide dismutase and catalase. The Tsn1–SnToxA inhibited ROS production in wheat by affecting peroxidases and catalase. The Snn1–SnTox1 inhibited the production of ROS in wheat by mainly affecting a peroxidase. Collectively, these results show that the inverse gene-for gene interactions between effector of pathogen and product of host sensitivity gene suppress the host’s own PAMP-triggered immunity pathway, resulting in NE-triggered susceptibility (NETS). These results are fundamentally changing our understanding of the development of this economical important wheat disease.
Collapse
Affiliation(s)
- Svetlana Veselova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
- Correspondence:
| | - Tatyana Nuzhnaya
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Burkhanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
| | - Sergey Rumyantsev
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
| | - Igor Maksimov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.N.); (G.B.); (S.R.); (I.M.)
| |
Collapse
|
17
|
Francki MG, Walker E, McMullan CJ, Morris WG. Evaluation of Septoria Nodorum Blotch (SNB) Resistance in Glumes of Wheat ( Triticum aestivum L.) and the Genetic Relationship With Foliar Disease Response. Front Genet 2021; 12:681768. [PMID: 34267781 PMCID: PMC8276050 DOI: 10.3389/fgene.2021.681768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Septoria nodorum blotch (SNB) is a necrotrophic disease of wheat prominent in some parts of the world, including Western Australia (WA) causing significant losses in grain yield. The genetic mechanisms for resistance are complex involving multiple quantitative trait loci. In order to decipher comparable or independent regulation, this study identified the genetic control for glume compared to foliar resistance across four environments in WA against 37 different isolates. High proportion of the phenotypic variation across environments was contributed by genotype (84.0% for glume response and 82.7% for foliar response) with genotype-by-environment interactions accounting for a proportion of the variation for both glume and foliar response (14.7 and 16.2%, respectively). Despite high phenotypic correlation across environments, most of the eight and 14 QTL detected for glume and foliar resistance using genome wide association analysis (GWAS), respectively, were identified as environment-specific. QTL for glume and foliar resistance neither co-located nor were in LD in any particular environment indicating autonomous genetic mechanisms control SNB response in adult plants, regulated by independent biological mechanisms and influenced by significant genotype-by- environment interactions. Known Snn and Tsn loci and QTL were compared with 22 environment-specific QTL. None of the eight QTL for glume or the 14 for foliar response were co-located or in linkage disequilibrium with Snn and only one foliar QTL was in LD with Tsn loci on the physical map. Therefore, glume and foliar response to SNB in wheat is regulated by multiple environment-specific loci which function independently, with limited influence of known NE-Snn interactions for disease progression in Western Australian environments. Breeding for stable resistance would consequently rely on recurrent phenotypic selection to capture and retain favorable alleles for both glume and foliar resistance relevant to a particular environment.
Collapse
Affiliation(s)
- Michael G Francki
- Department of Primary Industries and Regional Development, South Perth, WA, Australia.,State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Esther Walker
- Department of Primary Industries and Regional Development, South Perth, WA, Australia.,State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | | | - W George Morris
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
18
|
Malvestiti MC, Immink RGH, Arens P, Quiroz Monnens T, van Kan JAL. Fire Blight Susceptibility in Lilium spp. Correlates to Sensitivity to Botrytis elliptica Secreted Cell Death Inducing Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:660337. [PMID: 34262577 PMCID: PMC8273286 DOI: 10.3389/fpls.2021.660337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Fire blight represents a widespread disease in Lilium spp. and is caused by the necrotrophic Ascomycete Botrytis elliptica. There are >100 Lilium species that fall into distinct phylogenetic groups and these have been used to generate the contemporary commercial genotypes. It is known among lily breeders and growers that different groups of lilies differ in susceptibility to fire blight, but the genetic basis and mechanisms of susceptibility to fire blight are unresolved. The aim of this study was to quantify differences in fire blight susceptibility between plant genotypes and differences in virulence between fungal isolates. To this end we inoculated, in four biological replicates over 2 years, a set of 12 B. elliptica isolates on a panel of 18 lily genotypes representing seven Lilium hybrid groups. A wide spectrum of variation in symptom severity was observed in different isolate-genotype combinations. There was a good correlation between the lesion diameters on leaves and flowers of the Lilium genotypes, although the flowers generally showed faster expanding lesions. It was earlier postulated that B. elliptica pathogenicity on lily is conferred by secreted proteins that induce programmed cell death in lily cells. We selected two aggressive isolates and one mild isolate and collected culture filtrate (CF) samples to compare the cell death inducing activity of their secreted compounds in lily. After leaf infiltration of the CFs, variation was observed in cell death responses between the diverse lilies. The severity of cell death responses upon infiltration of the fungal CF observed among the diverse Lilium hybrid groups correlated well to their fire blight susceptibility. These results support the hypothesis that susceptibility to fire blight in lily is mediated by their sensitivity to B. elliptica effector proteins in a quantitative manner. Cell death-inducing proteins may provide an attractive tool to predict fire blight susceptibility in lily breeding programs.
Collapse
Affiliation(s)
- Michele C. Malvestiti
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| | - Richard G. H. Immink
- Department of Bioscience, Wageningen University & Research, Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Paul Arens
- Department of Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Thomas Quiroz Monnens
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
19
|
AlTameemi R, Gill HS, Ali S, Ayana G, Halder J, Sidhu JS, Gill US, Turnipseed B, Hernandez JLG, Sehgal SK. Genome-wide association analysis permits characterization of Stagonospora nodorum blotch (SNB) resistance in hard winter wheat. Sci Rep 2021; 11:12570. [PMID: 34131169 PMCID: PMC8206080 DOI: 10.1038/s41598-021-91515-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
Stagonospora nodorum blotch (SNB) is an economically important wheat disease caused by the necrotrophic fungus Parastagonospora nodorum. SNB resistance in wheat is controlled by several quantitative trait loci (QTLs). Thus, identifying novel resistance/susceptibility QTLs is crucial for continuous improvement of the SNB resistance. Here, the hard winter wheat association mapping panel (HWWAMP) comprising accessions from breeding programs in the Great Plains region of the US, was evaluated for SNB resistance and necrotrophic effectors (NEs) sensitivity at the seedling stage. A genome-wide association study (GWAS) was performed to identify single‐nucleotide polymorphism (SNP) markers associated with SNB resistance and effectors sensitivity. We found seven significant associations for SNB resistance/susceptibility distributed over chromosomes 1B, 2AL, 2DS, 4AL, 5BL, 6BS, and 7AL. Two new QTLs for SNB resistance/susceptibility at the seedling stage were identified on chromosomes 6BS and 7AL, whereas five QTLs previously reported in diverse germplasms were validated. Allele stacking analysis at seven QTLs explained the additive and complex nature of SNB resistance. We identified accessions (‘Pioneer-2180’ and ‘Shocker’) with favorable alleles at five of the seven identified loci, exhibiting a high level of resistance against SNB. Further, GWAS for sensitivity to NEs uncovered significant associations for SnToxA and SnTox3, co-locating with previously identified host sensitivity genes (Tsn1 and Snn3). Candidate region analysis for SNB resistance revealed 35 genes of putative interest with plant defense response-related functions. The QTLs identified and validated in this study could be easily employed in breeding programs using the associated markers to enhance the SNB resistance in hard winter wheat.
Collapse
Affiliation(s)
- Rami AlTameemi
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Shaukat Ali
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Girma Ayana
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jagdeep S Sidhu
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Upinder S Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Brent Turnipseed
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jose L Gonzalez Hernandez
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
20
|
Shao D, Smith DL, Kabbage M, Roth MG. Effectors of Plant Necrotrophic Fungi. FRONTIERS IN PLANT SCIENCE 2021; 12:687713. [PMID: 34149788 PMCID: PMC8213389 DOI: 10.3389/fpls.2021.687713] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/03/2021] [Indexed: 05/20/2023]
Abstract
Plant diseases caused by necrotrophic fungal pathogens result in large economic losses in field crop production worldwide. Effectors are important players of plant-pathogen interaction and deployed by pathogens to facilitate plant colonization and nutrient acquisition. Compared to biotrophic and hemibiotrophic fungal pathogens, effector biology is poorly understood for necrotrophic fungal pathogens. Recent bioinformatics advances have accelerated the prediction and discovery of effectors from necrotrophic fungi, and their functional context is currently being clarified. In this review we examine effectors utilized by necrotrophic fungi and hemibiotrophic fungi in the latter stages of disease development, including plant cell death manipulation. We define "effectors" as secreted proteins and other molecules that affect plant physiology in ways that contribute to disease establishment and progression. Studying and understanding the mechanisms of necrotrophic effectors is critical for identifying avenues of genetic intervention that could lead to improved resistance to these pathogens in plants.
Collapse
Affiliation(s)
| | | | | | - Mitchell G. Roth
- Department of Plant Pathology, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
21
|
Downie RC, Lin M, Corsi B, Ficke A, Lillemo M, Oliver RP, Phan HTT, Tan KC, Cockram J. Septoria Nodorum Blotch of Wheat: Disease Management and Resistance Breeding in the Face of Shifting Disease Dynamics and a Changing Environment. PHYTOPATHOLOGY 2021; 111:906-920. [PMID: 33245254 DOI: 10.1094/phyto-07-20-0280-rvw] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The fungus Parastagonospora nodorum is a narrow host range necrotrophic fungal pathogen that causes Septoria nodorum blotch (SNB) of cereals, most notably wheat (Triticum aestivum). Although commonly observed on wheat seedlings, P. nodorum infection has the greatest effect on the adult crop. It results in leaf blotch, which limits photosynthesis and thus crop growth and yield. It can also affect the wheat ear, resulting in glume blotch, which directly affects grain quality. Reports of P. nodorum fungicide resistance, the increasing use of reduced tillage agronomic practices, and high evolutionary potential of the pathogen, combined with changes in climate and agricultural environments, mean that genetic resistance to SNB remains a high priority in many regions of wheat cultivation. In this review, we summarize current information on P. nodorum population structure and its implication for improved SNB management. We then review recent advances in the genetics of host resistance to P. nodorum and the necrotrophic effectors it secretes during infection, integrating the genomic positions of these genetic loci by using the recently released wheat reference genome assembly. Finally, we discuss the genetic and genomic tools now available for SNB resistance breeding and consider future opportunities and challenges in crop health management by using the wheat-P. nodorum interaction as a model.
Collapse
Affiliation(s)
- Rowena C Downie
- John Bingham Laboratory, NIAB, Cambridge, CB3 0LE, United Kingdom
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Min Lin
- Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - Beatrice Corsi
- John Bingham Laboratory, NIAB, Cambridge, CB3 0LE, United Kingdom
| | - Andrea Ficke
- Norwegian Institute for Bioeconomy Research, Ås NO-1432, Norway
| | - Morten Lillemo
- Norwegian University of Life Sciences, Ås NO-1432, Norway
| | | | - Huyen T T Phan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley 6102, Perth, WA, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley 6102, Perth, WA, Australia
| | - James Cockram
- John Bingham Laboratory, NIAB, Cambridge, CB3 0LE, United Kingdom
| |
Collapse
|
22
|
Li D, Walker E, Francki M. Genes Associated with Foliar Resistance to Septoria Nodorum Blotch of Hexaploid Wheat ( Triticum aestivum L.). Int J Mol Sci 2021; 22:ijms22115580. [PMID: 34070394 PMCID: PMC8197541 DOI: 10.3390/ijms22115580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 11/25/2022] Open
Abstract
The genetic control of host response to the fungal necrotrophic disease Septoria nodorum blotch (SNB) in bread wheat is complex, involving many minor genes. Quantitative trait loci (QTL) controlling SNB response were previously identified on chromosomes 1BS and 5BL. The aim of this study, therefore, was to align and compare the genetic map representing QTL interval on 1BS and 5BS with the reference sequence of wheat and identify resistance genes (R-genes) associated with SNB response. Alignment of QTL intervals identified significant genome rearrangements on 1BS between parents of the DH population EGA Blanco, Millewa and the reference sequence of Chinese Spring with subtle rearrangements on 5BL. Nevertheless, annotation of genomic intervals in the reference sequence were able to identify and map 13 and 12 R-genes on 1BS and 5BL, respectively. R-genes discriminated co-located QTL on 1BS into two distinct but linked loci. NRC1a and TFIID mapped in one QTL on 1BS whereas RGA and Snn1 mapped in the linked locus and all were associated with SNB resistance but in one environment only. Similarly, Tsn1 and WK35 were mapped in one QTL on 5BL with NETWORKED 1A and RGA genes mapped in the linked QTL interval. This study provided new insights on possible biochemical, cellular and molecular mechanisms responding to SNB infection in different environments and also addressed limitations of using the reference sequence to identify the full complement of functional R-genes in modern varieties.
Collapse
Affiliation(s)
- Dora Li
- State Agricultural Biotechnology Centre, Murdoch University, South St, Murdoch, WA 6150, Australia; (D.L.); (E.W.)
| | - Esther Walker
- State Agricultural Biotechnology Centre, Murdoch University, South St, Murdoch, WA 6150, Australia; (D.L.); (E.W.)
- Department of Primary Industries and Regional Development, 3 Baron Hay Ct, South Perth, WA 6151, Australia
| | - Michael Francki
- State Agricultural Biotechnology Centre, Murdoch University, South St, Murdoch, WA 6150, Australia; (D.L.); (E.W.)
- Department of Primary Industries and Regional Development, 3 Baron Hay Ct, South Perth, WA 6151, Australia
- Correspondence:
| |
Collapse
|
23
|
Bertazzoni S, Jones DAB, Phan HT, Tan KC, Hane JK. Chromosome-level genome assembly and manually-curated proteome of model necrotroph Parastagonospora nodorum Sn15 reveals a genome-wide trove of candidate effector homologs, and redundancy of virulence-related functions within an accessory chromosome. BMC Genomics 2021; 22:382. [PMID: 34034667 PMCID: PMC8146201 DOI: 10.1186/s12864-021-07699-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/11/2021] [Indexed: 11/19/2022] Open
Abstract
Background The fungus Parastagonospora nodorum causes septoria nodorum blotch (SNB) of wheat (Triticum aestivum) and is a model species for necrotrophic plant pathogens. The genome assembly of reference isolate Sn15 was first reported in 2007. P. nodorum infection is promoted by its production of proteinaceous necrotrophic effectors, three of which are characterised – ToxA, Tox1 and Tox3. Results A chromosome-scale genome assembly of P. nodorum Australian reference isolate Sn15, which combined long read sequencing, optical mapping and manual curation, produced 23 chromosomes with 21 chromosomes possessing both telomeres. New transcriptome data were combined with fungal-specific gene prediction techniques and manual curation to produce a high-quality predicted gene annotation dataset, which comprises 13,869 high confidence genes, and an additional 2534 lower confidence genes retained to assist pathogenicity effector discovery. Comparison to a panel of 31 internationally-sourced isolates identified multiple hotspots within the Sn15 genome for mutation or presence-absence variation, which was used to enhance subsequent effector prediction. Effector prediction resulted in 257 candidates, of which 98 higher-ranked candidates were selected for in-depth analysis and revealed a wealth of functions related to pathogenicity. Additionally, 11 out of the 98 candidates also exhibited orthology conservation patterns that suggested lateral gene transfer with other cereal-pathogenic fungal species. Analysis of the pan-genome indicated the smallest chromosome of 0.4 Mbp length to be an accessory chromosome (AC23). AC23 was notably absent from an avirulent isolate and is predominated by mutation hotspots with an increase in non-synonymous mutations relative to other chromosomes. Surprisingly, AC23 was deficient in effector candidates, but contained several predicted genes with redundant pathogenicity-related functions. Conclusions We present an updated series of genomic resources for P. nodorum Sn15 – an important reference isolate and model necrotroph – with a comprehensive survey of its predicted pathogenicity content. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07699-8.
Collapse
Affiliation(s)
| | - Darcy A B Jones
- Centre for Crop & Disease Management, Curtin University, Perth, Australia
| | - Huyen T Phan
- Centre for Crop & Disease Management, Curtin University, Perth, Australia.
| | - Kar-Chun Tan
- Centre for Crop & Disease Management, Curtin University, Perth, Australia.
| | - James K Hane
- Centre for Crop & Disease Management, Curtin University, Perth, Australia. .,Curtin Institute for Computation, Curtin University, Perth, Australia.
| |
Collapse
|
24
|
GWAS analysis reveals distinct pathogenicity profiles of Australian Parastagonospora nodorum isolates and identification of marker-trait-associations to septoria nodorum blotch. Sci Rep 2021; 11:10085. [PMID: 33980869 PMCID: PMC8115087 DOI: 10.1038/s41598-021-87829-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022] Open
Abstract
The fungus Parastagonospora nodorum is the causal agent of septoria nodorum leaf blotch (SNB) and glume blotch which are common in many wheat growing regions in the world. The disease is complex and could be explained by multiple interactions between necrotrophic effectors secreted by the pathogen and matching susceptibility genes in wheat. An Australian P. nodorum population was clustered into five groups with contrasting properties. This study was set to identify their pathogenicity profiles using a diverse wheat panel of 134 accessions which are insensitive to SnToxA and SnTox1 in both in vitro and in vivo conditions. SNB seedling resistance/susceptibility to five representative isolates from the five clusters, responses to crude culture-filtrates (CFs) of three isolates and sensitivity to SnTox3 semi-purified effector together with 11,455 SNP markers have been used for linkage disequilibrium (LD) and association analyses. While quantitative trait loci (QTL) on 1D, 2A, 2B, 4B, 5B, 6A, 6B, 7A, 7D chromosomes were consistently detected across isolates and conditions, distinct patterns and isolate specific QTL were also observed among these isolates. In this study, SnTox3–Snn3-B1 interaction for the first time in Australia and SnTox3–Snn3-D1 interaction for the first time in bread wheat were found active using wild-type isolates. These findings could be due to new SnTox3 haplotype/isoform and exotic CIMMYT/ICARDA and Vavilov germplasm used, respectively. This study could provide useful information for dissecting novel and different SNB disease components, helping to prioritise research targets and contributing valuable information on genetic loci/markers for marker-assisted selection in SNB resistance wheat breeding programme.
Collapse
|
25
|
Zhang Z, Running KLD, Seneviratne S, Peters Haugrud AR, Szabo-Hever A, Shi G, Brueggeman R, Xu SS, Friesen TL, Faris JD. A protein kinase-major sperm protein gene hijacked by a necrotrophic fungal pathogen triggers disease susceptibility in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:720-732. [PMID: 33576059 DOI: 10.1111/tpj.15194] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 05/12/2023]
Abstract
Septoria nodorum blotch (SNB), a disease caused by the necrotrophic fungal pathogen Parastagonospora nodorum, is a threat to wheat (Triticum aestivum) production worldwide. Multiple inverse gene-for-gene interactions involving the recognition of necrotrophic effectors (NEs) by wheat sensitivity genes play major roles in causing SNB. One interaction involves the wheat gene Snn3 and the P. nodorum NE SnTox3. Here, we used a map-based strategy to clone the Snn3-D1 gene from Aegilops tauschii, the D-genome progenitor of common wheat. Snn3-D1 contained protein kinase and major sperm protein domains, both of which were essential for function as confirmed by mutagenesis. As opposed to other characterized interactions in this pathosystem, a compatible Snn3-D1-SnTox3 interaction was light-independent, and Snn3-D1 transcriptional expression was downregulated by light and upregulated by darkness. Snn3-D1 likely emerged in Ae. tauschii due to an approximately 218-kb insertion that occurred along the west bank of the Caspian Sea. The identification of this new class of NE sensitivity genes combined with the previously cloned sensitivity genes demonstrates that P. nodorum can take advantage of diverse host targets to trigger SNB susceptibility in wheat.
Collapse
Affiliation(s)
- Zengcui Zhang
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, 58102, USA
| | | | - Sudeshi Seneviratne
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | | | - Agnes Szabo-Hever
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, 58102, USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Robert Brueggeman
- Department of Crop and Soil Science, Washington State University, Pullman, WA, 99164, USA
| | - Steven S Xu
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, 58102, USA
| | - Timothy L Friesen
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, 58102, USA
| | - Justin D Faris
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, 58102, USA
| |
Collapse
|
26
|
Lin M, Stadlmeier M, Mohler V, Tan KC, Ficke A, Cockram J, Lillemo M. Identification and cross-validation of genetic loci conferring resistance to Septoria nodorum blotch using a German multi-founder winter wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:125-142. [PMID: 33047219 PMCID: PMC7813717 DOI: 10.1007/s00122-020-03686-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/12/2020] [Indexed: 05/12/2023]
Abstract
We identified allelic variation at two major loci, QSnb.nmbu-2A.1 and QSnb.nmbu-5A.1, showing consistent and additive effects on SNB field resistance. Validation of QSnb.nmbu-2A.1 across genetic backgrounds further highlights its usefulness for marker-assisted selection. Septoria nodorum blotch (SNB) is a disease of wheat (Triticum aestivum and T. durum) caused by the necrotrophic fungal pathogen Parastagonospora nodorum. SNB resistance is a typical quantitative trait, controlled by multiple quantitative trait loci (QTL) of minor effect. To achieve increased plant resistance, selection for resistance alleles and/or selection against susceptibility alleles must be undertaken. Here, we performed genetic analysis of SNB resistance using an eight-founder German Multiparent Advanced Generation Inter-Cross (MAGIC) population, termed BMWpop. Field trials and greenhouse testing were conducted over three seasons in Norway, with genetic analysis identifying ten SNB resistance QTL. Of these, two QTL were identified over two seasons: QSnb.nmbu-2A.1 on chromosome 2A and QSnb.nmbu-5A.1 on chromosome 5A. The chromosome 2A BMWpop QTL co-located with a robust SNB resistance QTL recently identified in an independent eight-founder MAGIC population constructed using varieties released in the United Kingdom (UK). The validation of this SNB resistance QTL in two independent multi-founder mapping populations, regardless of the differences in genetic background and agricultural environment, highlights the value of this locus in SNB resistance breeding. The second robust QTL identified in the BMWpop, QSnb.nmbu-5A.1, was not identified in the UK MAGIC population. Combining resistance alleles at both loci resulted in additive effects on SNB resistance. Therefore, using marker assisted selection to combine resistance alleles is a promising strategy for improving SNB resistance in wheat breeding. Indeed, the multi-locus haplotypes determined in this study provide markers for efficient tracking of these beneficial alleles in future wheat genetics and breeding activities.
Collapse
Affiliation(s)
- Min Lin
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway
| | - Melanie Stadlmeier
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Andrea Ficke
- Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1433, Ås, Norway
| | - James Cockram
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway.
| |
Collapse
|
27
|
Faris JD, Friesen TL. Plant genes hijacked by necrotrophic fungal pathogens. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:74-80. [PMID: 32492572 DOI: 10.1016/j.pbi.2020.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 05/22/2023]
Abstract
Plant fungal pathogens can be classified according to their lifestyles. Biotrophs feed on living tissue and constitute an economically significant group of pathogens historically. Necrotrophs, which feed on dead tissue, have become economically significant over recent decades, especially those of the Dothideomycetes, which produce necrotrophic effectors (NEs) to modulate the host response. Some of these pathogens interact with their hosts in an inverse gene-for-gene manner, where NEs are recognized by specific dominant genes in the host leading to host-mediated programmed cell death allowing the pathogen to cause disease. Whereas the NE genes tend to be unique, several of the plant 'susceptibility' genes belong to the nucleotide-binding leucine-rich repeat class of disease 'resistance' genes, and one is a wall-associated kinase. These susceptible interactions exhibit hallmarks of defense responses to biotrophic pathogens. Therefore, there is now accumulating evidence that many necrotrophic specialists hijack the resistance mechanisms that are effective against biotrophic pathogens.
Collapse
Affiliation(s)
- Justin D Faris
- USDA-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, United States.
| | - Timothy L Friesen
- USDA-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, United States
| |
Collapse
|
28
|
Francki MG, Walker E, McMullan CJ, Morris WG. Multi-Location Evaluation of Global Wheat Lines Reveal Multiple QTL for Adult Plant Resistance to Septoria Nodorum Blotch (SNB) Detected in Specific Environments and in Response to Different Isolates. FRONTIERS IN PLANT SCIENCE 2020; 11:771. [PMID: 32655592 PMCID: PMC7325896 DOI: 10.3389/fpls.2020.00771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/15/2020] [Indexed: 05/26/2023]
Abstract
The slow rate of genetic gain for improving resistance to Septoria nodorum blotch (SNB) is due to the inherent complex interactions between host, isolates, and environments. Breeding for improved SNB resistance requires evaluation and selection of wheat genotypes consistently expressing low SNB response in different target production environments. The study focused on evaluating 232 genotypes from global origins for resistance to SNB in the flag leaf expressed in different Western Australian environments. The aim was to identify resistant donor germplasm against historical and contemporary pathogen isolates and enhance our knowledge of the genetic basis of genotype-by-environment interactions for SNB response. Australian wheat varieties, inbred lines from Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT), and International Center for Agricultural Research in the Dry Areas (ICARDA), and landraces from discrete regions of the world showed low to moderate phenotypic correlation for disease response amongst genotypes when evaluated with historical and contemporary isolates at two locations across 3 years in Western Australia (WA). Significant (P < 0.001) genotype-by-environment interactions were detected regardless of same or different isolates used as an inoculum source. Joint regression analysis identified 19 genotypes that consistently expressed low disease severity under infection with different isolates in multi-locations. The CIMMYT inbred lines, 30ZJN09 and ZJN12 Qno25, were particularly pertinent as they had low SNB response and highest trait stability at two locations across 3 years. Genome wide association studies detected 20 QTL associated with SNB resistance on chromosomes 1A, 1B, 4B, 5A, 5B, 6A, 7A, 7B, and 7D. QTL on chromosomes 1B and 5B were previously reported in similar genomic regions. Multiple QTL were identified on 1B, 5B, 6A, and 5A and detected in response to SNB infection against different isolates and specific environments. Known SnTox-Snn interactions were either not evident or variable across WA environments and SNB response may involve other multiple complex biological mechanisms.
Collapse
Affiliation(s)
- Michael G. Francki
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Esther Walker
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | | | - W. George Morris
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
29
|
Singh PK, Singh S, Deng Z, He X, Kehel Z, Singh RP. Characterization of QTLs for Seedling Resistance to Tan Spot and Septoria Nodorum Blotch in the PBW343/Kenya Nyangumi Wheat Recombinant Inbred Lines Population. Int J Mol Sci 2019; 20:E5432. [PMID: 31683619 PMCID: PMC6862150 DOI: 10.3390/ijms20215432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/25/2022] Open
Abstract
Tan spot (TS) and Septoria nodorum blotch (SNB) induced by Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively, cause significant yield losses and adversely affect grain quality. The objectives of this study were to decipher the genetics and map the resistance to TS and SNB in the PBW343/Kenya Nyangumi (KN) population comprising 204 F6 recombinant inbred lines (RILs). Disease screening was performed at the seedling stage under greenhouse conditions. TS was induced by P. tritici-repentis isolate MexPtr1 while SNB by P. nodorum isolate MexSN1. Segregation pattern of the RILs indicated that resistance to TS and SNB in this population was quantitative. Diversity Array Technology (DArTs) and simple sequence repeats (SSRs) markers were used to identify the quantitative trait loci (QTL) for the diseases using inclusive composite interval mapping (ICIM). Seven significant additive QTLs for TS resistance explaining 2.98 to 23.32% of the phenotypic variation were identified on chromosomes 1A, 1B, 5B, 7B and 7D. For SNB, five QTLs were found on chromosomes 1A, 5A, and 5B, explaining 5.24 to 20.87% of the phenotypic variation. The TS QTL on 1B chromosome coincided with the pleiotropic adult plant resistance (APR) gene Lr46/Yr29/Pm39. This is the first report of the APR gene Lr46/Yr29/Pm39 contributing to TS resistance.
Collapse
Affiliation(s)
- Pawan Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, México 06600, D.F., Mexico.
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, México 06600, D.F., Mexico.
| | - Zhiying Deng
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, México 06600, D.F., Mexico.
- State Key Laboratory of Crop Biology, Cooperation Innovation Center of Efficient Production with High Annual Yield of Wheat and Corn, Shandong Agricultural University, Taian 271018, China.
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, México 06600, D.F., Mexico.
| | - Zakaria Kehel
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, México 06600, D.F., Mexico.
| | - Ravi Prakash Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, México 06600, D.F., Mexico.
| |
Collapse
|
30
|
Richards JK, Stukenbrock EH, Carpenter J, Liu Z, Cowger C, Faris JD, Friesen TL. Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. PLoS Genet 2019; 15:e1008223. [PMID: 31626626 PMCID: PMC6821140 DOI: 10.1371/journal.pgen.1008223] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/30/2019] [Accepted: 08/25/2019] [Indexed: 12/22/2022] Open
Abstract
Filamentous fungi rapidly evolve in response to environmental selection pressures in part due to their genomic plasticity. Parastagonospora nodorum, a fungal pathogen of wheat and causal agent of septoria nodorum blotch, responds to selection pressure exerted by its host, influencing the gain, loss, or functional diversification of virulence determinants, known as effector genes. Whole genome resequencing of 197 P. nodorum isolates collected from spring, durum, and winter wheat production regions of the United States enabled the examination of effector diversity and genomic regions under selection specific to geographically discrete populations. 1,026,859 SNPs/InDels were used to identify novel loci, as well as SnToxA and SnTox3 as factors in disease. Genes displaying presence/absence variation, predicted effector genes, and genes localized on an accessory chromosome had significantly higher pN/pS ratios, indicating a higher rate of sequence evolution. Population structure analyses indicated two P. nodorum populations corresponding to the Upper Midwest (Population 1) and Southern/Eastern United States (Population 2). Prevalence of SnToxA varied greatly between the two populations which correlated with presence of the host sensitivity gene Tsn1 in the most prevalent cultivars in the corresponding regions. Additionally, 12 and 5 candidate effector genes were observed to be under diversifying selection among isolates from Population 1 and 2, respectively, but under purifying selection or neutrally evolving in the opposite population. Selective sweep analysis revealed 10 and 19 regions that had recently undergone positive selection in Population 1 and 2, respectively, involving 92 genes in total. When comparing genes with and without presence/absence variation, those genes exhibiting this variation were significantly closer to transposable elements. Taken together, these results indicate that P. nodorum is rapidly adapting to distinct selection pressures unique to spring and winter wheat production regions by rapid adaptive evolution and various routes of genomic diversification, potentially facilitated through transposable element activity.
Collapse
Affiliation(s)
- Jonathan K. Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Eva H. Stukenbrock
- Department of Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jessica Carpenter
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
| | - Christina Cowger
- Plant Science Research Unit, USDA-ARS, Raleigh, North Carolina, United States of America
| | - Justin D. Faris
- Cereal Crops Research Unit, Edward T. Schaefer Agricultural Research Center, USDA-ARS, Fargo, North Dakota, United States of America
| | - Timothy L. Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, United States of America
- Cereal Crops Research Unit, Edward T. Schaefer Agricultural Research Center, USDA-ARS, Fargo, North Dakota, United States of America
| |
Collapse
|
31
|
Zhang W, Zhu X, Zhang M, Shi G, Liu Z, Cai X. Chromosome engineering-mediated introgression and molecular mapping of novel Aegilops speltoides-derived resistance genes for tan spot and Septoria nodorum blotch diseases in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2605-2614. [PMID: 31183521 DOI: 10.1007/s00122-019-03374-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
We identified, mapped and introduced novel Aegilops speltoides-derived resistance genes for tan spot and SNB diseases into wheat, enhancing understanding and utilization of host resistance to both diseases in wheat. Tan spot and Septoria nodorum blotch (SNB) are two important fungal diseases of wheat. Resistance to these diseases is often observed as the lack of sensitivity to the necrotrophic effectors (NE) produced by the fungal pathogens and thus exhibits a recessive inheritance pattern. In this study, we identified novel genes for resistance to tan spot and SNB on Aegilops speltoides (2n = 2x = 14, genome SS) chromosome 2S. These genes confer dominant resistance in the wheat background, indicating a distinct NE-independent mechanism of resistance. Ae. speltoides chromosome 2S was engineered for resistance gene introgression and molecular mapping by inducing meiotic homoeologous recombination with wheat chromosome 2B. Twenty representative 2B-2S recombinants were evaluated for reaction to tan spot and SNB and were delineated by genomic in situ hybridization and high-throughput wheat 90 K SNP assay. The resistance genes physically mapped to the sub-telomeric region (~ 8 Mb) on the short arm of chromosome 2S and designated TsrAes1 for tan spot resistance and SnbAes1 for SNB resistance. In addition, we developed SNP-derived PCR markers closely linked to TsrAes1/SnbAes1 for marker-assisted selection in wheat breeding. TsrAes1 and SnbAes1 are the first set of NE-independent tan spot, and SNB resistance genes are identified from Ae. speltoides. The 2SS-2BS·2BL recombinants with minimal amounts of Ae. speltoides chromatin containing TsrAes1/SnbAes1 were produced for germplasm development, making the wild species-derived resistance genes usable in wheat breeding. This will strengthen and diversify resistance of wheat to tan spot and SNB and facilitate understanding of resistance to these two diseases.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Mingyi Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
32
|
Peters Haugrud AR, Zhang Z, Richards JK, Friesen TL, Faris JD. Genetics of Variable Disease Expression Conferred by Inverse Gene-For-Gene Interactions in the Wheat- Parastagonospora nodorum Pathosystem. PLANT PHYSIOLOGY 2019; 180:420-434. [PMID: 30858234 PMCID: PMC6501074 DOI: 10.1104/pp.19.00149] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/24/2019] [Indexed: 05/18/2023]
Abstract
The wheat-Parastagonospora nodorum pathosystem involves the recognition of pathogen-secreted necrotrophic effectors (NEs) by corresponding wheat NE sensitivity genes. This inverse gene-for-gene recognition leads to necrotrophic effector-triggered susceptibility and ultimately septoria nodorum blotch disease. Here, we used multiple pathogen isolates to individually evaluate the effects of the host gene-NE interactions Tan spot necrosis1-Stagonospora nodorum ToxinA (Tsn1-SnToxA), Stagonospora nodorum necrosis1-Stagonospora nodorum Toxin1 (Snn1-SnTox1), and Stagonospora nodorum necrosis3-B genome homeolog1-Stagonospora nodorum Toxin3 (Snn3-B1-SnTox3), alone and in various combinations, to determine the relative importance of these interactions in causing disease. Genetic analysis of a recombinant inbred wheat population inoculated separately with three P. nodorum isolates, all of which produce all three NEs, indicated that the Tsn1-SnToxA and Snn3-B1-SnTox3 interactions contributed to disease caused by all four isolates, but their effects varied and ranged from epistatic to additive. The Snn1-SnTox1 interaction was associated with increased disease for one isolate, but for other isolates, there was evidence that this interaction inhibited the expression of other host gene-NE interactions. RNA sequencing analysis in planta showed that SnTox1 was differentially expressed between these three isolates after infection. Further analysis of NE gene-knockout isolates showed that the effect of some interactions could be masked or inhibited by other compatible interactions, and the regulation of this occurs at the level of NE gene transcription. Collectively, these results show that the inverse gene-for-gene interactions leading to necrotrophic effector-triggered susceptibility in the wheat-P. nodorum pathosystem vary in their effects depending on the genetic backgrounds of the pathogen and host, and interplay among the interactions is complex and intricately regulated.
Collapse
Affiliation(s)
| | - Zengcui Zhang
- United States Department of Agriculture-Agriculture Research Service, Cereal Crops Research Unit, Eduard T. Schafer Agricultural Research Center, Fargo, North Dakota 58102
| | - Jonathan K Richards
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Timothy L Friesen
- United States Department of Agriculture-Agriculture Research Service, Cereal Crops Research Unit, Eduard T. Schafer Agricultural Research Center, Fargo, North Dakota 58102
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58102
| | - Justin D Faris
- United States Department of Agriculture-Agriculture Research Service, Cereal Crops Research Unit, Eduard T. Schafer Agricultural Research Center, Fargo, North Dakota 58102
| |
Collapse
|
33
|
Lorang J. Necrotrophic Exploitation and Subversion of Plant Defense: A Lifestyle or Just a Phase, and Implications in Breeding Resistance. PHYTOPATHOLOGY 2019; 109:332-346. [PMID: 30451636 DOI: 10.1094/phyto-09-18-0334-ia] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Breeding disease-resistant plants is a critical, environmentally friendly component of any strategy to sustainably feed and clothe the 9.8 billion people expected to live on Earth by 2050. Here, I review current literature detailing plant defense responses as they relate to diverse biological outcomes; disease resistance, susceptibility, and establishment of mutualistic plant-microbial relationships. Of particular interest is the degree to which these outcomes are a function of plant-associated microorganisms' lifestyles; biotrophic, hemibiotrophic, necrotrophic, or mutualistic. For the sake of brevity, necrotrophic pathogens and the necrotrophic phase of pathogenicity are emphasized in this review, with special attention given to the host-specific pathogens that exploit defense. Defense responses related to generalist necrotrophs and mutualists are discussed in the context of excellent reviews by others. In addition, host evolutionary trade-offs of disease resistance with other desirable traits are considered in the context of breeding for durable disease resistance.
Collapse
Affiliation(s)
- Jennifer Lorang
- Department of Botany, 2082 Cordley Hall, Oregon State University, Corvallis 97331
| |
Collapse
|
34
|
Syme RA, Tan KC, Rybak K, Friesen TL, McDonald BA, Oliver RP, Hane JK. Pan-Parastagonospora Comparative Genome Analysis-Effector Prediction and Genome Evolution. Genome Biol Evol 2018; 10:2443-2457. [PMID: 30184068 PMCID: PMC6152946 DOI: 10.1093/gbe/evy192] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2018] [Indexed: 01/01/2023] Open
Abstract
We report a fungal pan-genome study involving Parastagonospora spp., including 21 isolates of the wheat (Triticum aestivum) pathogen Parastagonospora nodorum, 10 of the grass-infecting Parastagonospora avenae, and 2 of a closely related undefined sister species. We observed substantial variation in the distribution of polymorphisms across the pan-genome, including repeat-induced point mutations, diversifying selection and gene gains and losses. We also discovered chromosome-scale inter and intraspecific presence/absence variation of some sequences, suggesting the occurrence of one or more accessory chromosomes or regions that may play a role in host-pathogen interactions. The presence of known pathogenicity effector loci SnToxA, SnTox1, and SnTox3 varied substantially among isolates. Three P. nodorum isolates lacked functional versions for all three loci, whereas three P. avenae isolates carried one or both of the SnTox1 and SnTox3 genes, indicating previously unrecognized potential for discovering additional effectors in the P. nodorum-wheat pathosystem. We utilized the pan-genomic comparative analysis to improve the prediction of pathogenicity effector candidates, recovering the three confirmed effectors among our top-ranked candidates. We propose applying this pan-genomic approach to identify the effector repertoire involved in other host-microbe interactions involving necrotrophic pathogens in the Pezizomycotina.
Collapse
Affiliation(s)
- Robert A Syme
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Kar-Chun Tan
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Kasia Rybak
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Timothy L Friesen
- Cereal Crops Research Unit, USDA-ARS Red River Valley Agricultural Research Center, Fargo, North Dakota
| | - Bruce A McDonald
- Plant Pathology Group, Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Richard P Oliver
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Bentley, Western Australia, Australia
- Curtin Institute for Computation, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
35
|
Phan HTT, Rybak K, Bertazzoni S, Furuki E, Dinglasan E, Hickey LT, Oliver RP, Tan KC. Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1223-1238. [PMID: 29470621 PMCID: PMC5945755 DOI: 10.1007/s00122-018-3073-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/16/2018] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE The fungus Parastagonospora nodorum causes Septoria nodorum blotch (SNB) of wheat. A genetically diverse wheat panel was used to dissect the complexity of SNB and identify novel sources of resistance. The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch (SNB) of wheat. The pathosystem is mediated by multiple fungal necrotrophic effector-host sensitivity gene interactions that include SnToxA-Tsn1, SnTox1-Snn1, and SnTox3-Snn3. A P. nodorum strain lacking SnToxA, SnTox1, and SnTox3 (toxa13) retained wild-type-like ability to infect some modern wheat cultivars, suggesting evidence of other effector-mediated susceptibility gene interactions or the lack of host resistance genes. To identify genomic regions harbouring such loci, we examined a panel of 295 historic wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources in Russia, which is comprised of genetically diverse landraces and breeding lines registered from 1920 to 1990. The wheat panel was subjected to effector bioassays, infection with P. nodorum wild type (SN15) and toxa13. In general, SN15 was more virulent than toxa13. Insensitivity to all three effectors contributed significantly to resistance against SN15, but not toxa13. Genome-wide association studies using phenotypes from SN15 infection detected quantitative trait loci (QTL) on chromosomes 1BS (Snn1), 2DS, 5AS, 5BS (Snn3), 3AL, 4AL, 4BS, and 7AS. For toxa13 infection, a QTL was detected on 5AS (similar to SN15), plus two additional QTL on 2DL and 7DL. Analysis of resistance phenotypes indicated that plant breeders may have inadvertently selected for effector insensitivity from 1940 onwards. We identify accessions that can be used to develop bi-parental mapping populations to characterise resistance-associated alleles for subsequent introgression into modern bread wheat to minimise the impact of SNB.
Collapse
Affiliation(s)
- Huyen T T Phan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Kasia Rybak
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Stefania Bertazzoni
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Eiko Furuki
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
36
|
McDonald MC, Solomon PS. Just the surface: advances in the discovery and characterization of necrotrophic wheat effectors. Curr Opin Microbiol 2018; 46:14-18. [PMID: 29452845 DOI: 10.1016/j.mib.2018.01.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/09/2018] [Accepted: 01/31/2018] [Indexed: 02/04/2023]
Abstract
For many years pathogens of wheat have remained poorly understood. Hindered by an inaccessible host and the obligate nature of many of the pathogens, our understanding of these interactions has been limited compared to other more amenable pathosystems. However, breakthroughs over recent years have shed new light on diseases of wheat, particularly those caused by the genetically tractable necrotrophic pathogens. We now understand that many of the necrotrophic fungal pathogens do interact with wheat in a strict gene-for-gene relationship, and that pathogen and host partners in these interactions have now been identified. This improved understanding of necrotrophic effector biology has fundamentally changed the way we consider these important wheat diseases.
Collapse
Affiliation(s)
- Megan C McDonald
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Peter S Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
37
|
Rodriguez-Moreno L, Ebert MK, Bolton MD, Thomma BPHJ. Tools of the crook- infection strategies of fungal plant pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:664-674. [PMID: 29277938 DOI: 10.1111/tpj.13810] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 05/14/2023]
Abstract
Fungi represent an ecologically diverse group of microorganisms that includes plant pathogenic species able to cause considerable yield loses in crop production systems worldwide. In order to establish compatible interactions with their hosts, pathogenic fungi rely on the secretion of molecules of diverse nature during host colonization to modulate host physiology, manipulate other environmental factors or provide self-defence. These molecules, collectively known as effectors, are typically small secreted cysteine-rich proteins, but may also comprise secondary metabolites and sRNAs. Here, we discuss the most common strategies that fungal plant pathogens employ to subvert their host plants in order to successfully complete their life cycle and secure the release of abundant viable progeny.
Collapse
Affiliation(s)
- Luis Rodriguez-Moreno
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Malaika K Ebert
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Melvin D Bolton
- USDA - Agricultural Research Service, Red River Valley Agricultural Research Center, Fargo, ND, USA
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
38
|
Petrov V, Qureshi MK, Hille J, Gechev T. Occurrence, biochemistry and biological effects of host-selective plant mycotoxins. Food Chem Toxicol 2017; 112:251-264. [PMID: 29288760 DOI: 10.1016/j.fct.2017.12.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 02/08/2023]
Abstract
Host-selective mycotoxins (HSTs) are various secondary metabolites or proteinaceous compounds secreted by pathogenic necrotrophic fungi that feed off on dead tissues of certain plants. Research on the HSTs has not only fundamental but also practical importance. On one hand they are implicated in the onset of devastating crop diseases. On the other hand, they have been studied as a good model for revealing the intricate mechanisms of plant-pathogen interactions. At the cellular level, HSTs target different compartments and in most instances induce programmed cell death (PCD) by a wide range of mechanisms. Often the responses provoked by HSTs resemble the effector-triggered immunity used by plant cells to combat biotrophic pathogens, which suggests that HST-producing fungi exploit the plants' own defensive systems to derive benefits. Although by definition HSTs are active only in tissues of susceptible plant genotypes, it has been demonstrated that some of them are able to influence animal cells as well. The possible effects, like cytotoxicity or cytostasis, can be harmful or beneficial and thus HSTs may either pose a health risk for humans and livestock, or be of prospective use in the fields of pharmacology, medicine and agriculture.
Collapse
Affiliation(s)
- Veselin Petrov
- Center of Plant Systems Biology and Biotechnology, 139 Ruski blvd., Plovdiv 4000, Bulgaria; Department of Plant Physiology and Biochemistry, Agricultural University, 12 Mendeleev str., Plovdiv 4000, Bulgaria.
| | - Muhammad Kamran Qureshi
- Department of Plant Breeding & Genetics, Faculty of Agricultural Sciences & Technology, Bahauddin Zakariya University, Bosan Road, 60800, Multan, Punjab, Pakistan.
| | - Jacques Hille
- Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 139 Ruski blvd., Plovdiv 4000, Bulgaria; Institute of Molecular Biology and Biotechnology, 105 Ruski blvd., Plovdiv 4000, Bulgaria; Department of Plant Physiology and Molecular Biology, Plovdiv University, 24 Tsar Assen str., Plovdiv 4000, Bulgaria.
| |
Collapse
|
39
|
Abstract
Effectors are molecules used by microbial pathogens to facilitate infection via effector-triggered susceptibility or tissue necrosis in their host. Much research has been focussed on the identification and elucidating the function of fungal effectors during plant pathogenesis. By comparison, knowledge of how phytopathogenic fungi regulate the expression of effector genes has been lagging. Several recent studies have illustrated the role of various transcription factors, chromosome-based control, effector epistasis, and mobilisation of endosomes within the fungal hyphae in regulating effector expression and virulence on the host plant. Improved knowledge of effector regulation is likely to assist in improving novel crop protection strategies.
Collapse
Affiliation(s)
- Kar-Chun Tan
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| | - Richard P. Oliver
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
40
|
Rybak K, See PT, Phan HTT, Syme RA, Moffat CS, Oliver RP, Tan K. A functionally conserved Zn 2 Cys 6 binuclear cluster transcription factor class regulates necrotrophic effector gene expression and host-specific virulence of two major Pleosporales fungal pathogens of wheat. MOLECULAR PLANT PATHOLOGY 2017; 18:420-434. [PMID: 27860150 PMCID: PMC6638278 DOI: 10.1111/mpp.12511] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The fungus Parastagonospora nodorum is the causal agent of Septoria nodorum blotch of wheat (Triticum aestivum). The interaction is mediated by multiple fungal necrotrophic effector-dominant host sensitivity gene interactions. The three best-characterized effector-sensitivity gene systems are SnToxA-Tsn1, SnTox1-Snn1 and SnTox3-Snn3. These effector genes are highly expressed during early infection, but expression decreases as the infection progresses to tissue necrosis and sporulation. However, the mechanism of regulation is unknown. We have identified and functionally characterized a gene, referred to as PnPf2, which encodes a putative zinc finger transcription factor. PnPf2 deletion resulted in the down-regulation of SnToxA and SnTox3 expression. Virulence on Tsn1 and Snn3 wheat cultivars was strongly reduced. The SnTox1-Snn1 interaction remained unaffected. Furthermore, we have also identified and deleted an orthologous PtrPf2 from the tan spot fungus Pyrenophora tritici-repentis which possesses a near-identical ToxA that was acquired from P. nodorum via horizontal gene transfer. PtrPf2 deletion also resulted in the down-regulation of PtrToxA expression and a near-complete loss of virulence on Tsn1 wheat. We have demonstrated, for the first time, evidence for a functionally conserved signalling component that plays a role in the regulation of a common/horizontally transferred effector found in two major fungal pathogens of wheat.
Collapse
Affiliation(s)
- Kasia Rybak
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Pao Theen See
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Huyen T. T. Phan
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Robert A. Syme
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Caroline S. Moffat
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Richard P. Oliver
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| | - Kar‐Chun Tan
- Department of Environment & Agriculture, Centre for Crop and Disease ManagementCurtin University, Bentley, 6102PerthAustralia
| |
Collapse
|
41
|
Doehlemann G, Ökmen B, Zhu W, Sharon A. Plant Pathogenic Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0023-2016. [PMID: 28155813 PMCID: PMC11687436 DOI: 10.1128/microbiolspec.funk-0023-2016] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 01/05/2023] Open
Abstract
Fungi are among the dominant causal agents of plant diseases. To colonize plants and cause disease, pathogenic fungi use diverse strategies. Some fungi kill their hosts and feed on dead material (necrotrophs), while others colonize the living tissue (biotrophs). For successful invasion of plant organs, pathogenic development is tightly regulated and specialized infection structures are formed. To further colonize hosts and establish disease, fungal pathogens deploy a plethora of virulence factors. Depending on the infection strategy, virulence factors perform different functions. While basically all pathogens interfere with primary plant defense, necrotrophs secrete toxins to kill plant tissue. In contrast, biotrophs utilize effector molecules to suppress plant cell death and manipulate plant metabolism in favor of the pathogen. This article provides an overview of plant pathogenic fungal species and the strategies they use to cause disease.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Bilal Ökmen
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, D-50674 Cologne, Germany
| | - Wenjun Zhu
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
42
|
Virdi SK, Liu Z, Overlander ME, Zhang Z, Xu SS, Friesen TL, Faris JD. New Insights into the Roles of Host Gene-Necrotrophic Effector Interactions in Governing Susceptibility of Durum Wheat to Tan Spot and Septoria nodorum Blotch. G3 (BETHESDA, MD.) 2016; 6:4139-4150. [PMID: 27777262 PMCID: PMC5144982 DOI: 10.1534/g3.116.036525] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/14/2016] [Indexed: 01/09/2023]
Abstract
Tan spot and Septoria nodorum blotch (SNB) are important diseases of wheat caused by the necrotrophic fungi Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively. The P. tritici-repentis necrotrophic effector (NE) Ptr ToxB causes tan spot when recognized by the Tsc2 gene. The NE ToxA is produced by both pathogens and has been associated with the development of both tan spot and SNB when recognized by the wheat Tsn1 gene. Most work to study these interactions has been conducted in common wheat, but little has been done in durum wheat. Here, quantitative trait loci (QTL) analysis of a segregating biparental population indicated that the Tsc2-Ptr ToxB interaction plays a prominent role in the development of tan spot in durum. However, analysis of two biparental populations indicated that the Tsn1-ToxA interaction was not associated with the development of tan spot, but was strongly associated with the development of SNB. Pa. nodorum expressed ToxA at high levels in infected Tsn1 plants, whereas ToxA expression in P. tritici-repentis was barely detectable, suggesting that the differences in disease levels associated with the Tsn1-ToxA interaction were due to differences in pathogen expression of ToxA These and previous results together indicate that: (1) the effects of Tsn1-ToxA on tan spot in common wheat can range from nonsignificant to highly significant depending on the host genetic background; (2) Tsn1-ToxA is not a significant factor for tan spot development in durum wheat; and (3) Tsn1-ToxA plays a major role in SNB development in both common and durum wheat. Durum and common wheat breeders alike should strive to remove both Tsc2 and Tsn1 from their materials to achieve disease resistance.
Collapse
Affiliation(s)
- Simerjot K Virdi
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58108
| | - Megan E Overlander
- United States Department of Agriculture-Agricultural Research Service, Cereal Cops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| | - Zengcui Zhang
- United States Department of Agriculture-Agricultural Research Service, Cereal Cops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| | - Steven S Xu
- United States Department of Agriculture-Agricultural Research Service, Cereal Cops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota 58108
- United States Department of Agriculture-Agricultural Research Service, Cereal Cops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| | - Justin D Faris
- United States Department of Agriculture-Agricultural Research Service, Cereal Cops Research Unit, Northern Crop Science Laboratory, Fargo, North Dakota 58102
| |
Collapse
|
43
|
Liu Z, Gao Y, Kim YM, Faris JD, Shelver WL, de Wit PJGM, Xu SS, Friesen TL. SnTox1, a Parastagonospora nodorum necrotrophic effector, is a dual-function protein that facilitates infection while protecting from wheat-produced chitinases. THE NEW PHYTOLOGIST 2016; 211:1052-64. [PMID: 27041151 DOI: 10.1111/nph.13959] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/03/2016] [Indexed: 05/02/2023]
Abstract
SnTox1 induces programmed cell death and the up-regulation of pathogenesis-related genes including chitinases. Additionally, SnTox1 has structural homology to several plant chitin-binding proteins. Therefore, we evaluated SnTox1 for chitin binding and localization. We transformed an avirulent strain of Parastagonospora nodorum as well as three nonpathogens of wheat (Triticum aestivum), including a necrotrophic pathogen of barley, a hemibiotrophic pathogen of sugar beet and a saprotroph, to evaluate the role of SnTox1 in infection and in protection from wheat chitinases. SnTox1 bound chitin and an SnTox1-green fluorescent fusion protein localized to the mycelial cell wall. Purified SnTox1 induced necrosis in the absence of the pathogen when sprayed on the leaf surface and appeared to remain on the leaf surface while inducing both epidermal and mesophyll cell death. SnTox1 protected the different fungi from chitinase degradation. SnTox1 was sufficient to change the host range of a necrotrophic pathogen but not a hemibiotroph or saprotroph. Collectively, this work shows that SnTox1 probably interacts with a receptor on the outside of the cell to induce cell death to acquire nutrients, but SnTox1 accomplishes a second role in that it protects against one aspect of the defense response, namely the effects of wheat chitinases.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Yuanyuan Gao
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Yong Min Kim
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Justin D Faris
- Northern Crop Science Laboratory, United States Department of Agriculture - Agricultural Research Service, Fargo, ND, 58102, USA
| | - Weilin L Shelver
- Biosciences Research Laboratory, United States Department of Agriculture - Agricultural Research Service, Fargo, ND, 58102, USA
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Steven S Xu
- Northern Crop Science Laboratory, United States Department of Agriculture - Agricultural Research Service, Fargo, ND, 58102, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Northern Crop Science Laboratory, United States Department of Agriculture - Agricultural Research Service, Fargo, ND, 58102, USA
| |
Collapse
|
44
|
Phan HTT, Rybak K, Furuki E, Breen S, Solomon PS, Oliver RP, Tan KC. Differential effector gene expression underpins epistasis in a plant fungal disease. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:343-54. [PMID: 27133896 PMCID: PMC5053286 DOI: 10.1111/tpj.13203] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/18/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
Fungal effector-host sensitivity gene interactions play a key role in determining the outcome of septoria nodorum blotch disease (SNB) caused by Parastagonospora nodorum on wheat. The pathosystem is complex and mediated by interaction of multiple fungal necrotrophic effector-host sensitivity gene systems. Three effector sensitivity gene systems are well characterized in this pathosystem; SnToxA-Tsn1, SnTox1-Snn1 and SnTox3-Snn3. We tested a wheat mapping population that segregated for Snn1 and Snn3 with SN15, an aggressive P. nodorum isolate that produces SnToxA, SnTox1 and SnTox3, to study the inheritance of sensitivity to SnTox1 and SnTox3 and disease susceptibility. Interval quantitative trait locus (QTL) mapping showed that the SnTox1-Snn1 interaction was paramount in SNB development on both seedlings and adult plants. No effect of the SnTox3-Snn3 interaction was observed under SN15 infection. The SnTox3-Snn3 interaction was however, detected in a strain of SN15 in which SnTox1 had been deleted (tox1-6). Gene expression analysis indicates increased SnTox3 expression in tox1-6 compared with SN15. This indicates that the failure to detect the SnTox3-Snn3 interaction in SN15 is due - at least in part - to suppressed expression of SnTox3 mediated by SnTox1. Furthermore, infection of the mapping population with a strain deleted in SnToxA, SnTox1 and SnTox3 (toxa13) unmasked a significant SNB QTL on 2DS where the SnTox2 effector sensitivity gene, Snn2, is located. This QTL was not observed in SN15 and tox1-6 infections and thus suggesting that SnToxA and/or SnTox3 were epistatic. Additional QTLs responding to SNB and effectors sensitivity were detected on 2AS1 and 3AL.
Collapse
Affiliation(s)
- Huyen T T Phan
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102, Australia
| | - Kasia Rybak
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102, Australia
| | - Eiko Furuki
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102, Australia
| | - Susan Breen
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Peter S Solomon
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102, Australia.
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
45
|
Lu P, Liang Y, Li D, Wang Z, Li W, Wang G, Wang Y, Zhou S, Wu Q, Xie J, Zhang D, Chen Y, Li M, Zhang Y, Sun Q, Han C, Liu Z. Fine genetic mapping of spot blotch resistance gene Sb3 in wheat (Triticum aestivum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:577-89. [PMID: 26747045 DOI: 10.1007/s00122-015-2649-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/08/2015] [Indexed: 05/19/2023]
Abstract
Spot blotch disease resistance gene Sb3 was mapped to a 0.15 centimorgan (cM) genetic interval spanning a 602 kb physical genomic region on chromosome 3BS. Wheat spot blotch disease, caused by B. sorokiniana, is a devastating disease that can cause severe yield losses. Although inoculum levels can be reduced by planting disease-free seed, treatment of plants with fungicides and crop rotation, genetic resistance is likely to be a robust, economical and environmentally friendly tool in the control of spot blotch. The winter wheat line 621-7-1 confers immune resistance against B. sorokiniana. Genetic analysis indicates that the spot blotch resistance of 621-7-1 is controlled by a single dominant gene, provisionally designated Sb3. Bulked segregant analysis (BSA) and simple sequence repeat (SSR) mapping showed that Sb3 is located on chromosome arm 3BS linked with markers Xbarc133 and Xbarc147. Seven and twelve new polymorphic markers were developed from the Chinese Spring 3BS shotgun survey sequence contigs and 3BS reference sequences, respectively. Finally, Sb3 was mapped in a 0.15 cM genetic interval spanning a 602 kb physical genomic region of Chinese Spring chromosome 3BS. The genetic and physical maps of Sb3 provide a framework for map-based cloning and marker-assisted selection (MAS) of the spot blotch resistance.
Collapse
Affiliation(s)
- Ping Lu
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yong Liang
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Delin Li
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhengzhong Wang
- China Rural Technology Development Center, Beijing, 100045, China
| | - Wenbin Li
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Guoxin Wang
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yong Wang
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Shenghui Zhou
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Qiuhong Wu
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Jingzhong Xie
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Deyun Zhang
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yongxing Chen
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Miaomiao Li
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Zhang
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Chenggui Han
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhiyong Liu
- State Key Laboratory for Agrobiotechnology/Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
46
|
Liu Z, El-Basyoni I, Kariyawasam G, Zhang G, Fritz A, Hansen J, Marais F, Friskop A, Chao S, Akhunov E, Baenziger PS. Evaluation and Association Mapping of Resistance to Tan Spot and Stagonospora Nodorum Blotch in Adapted Winter Wheat Germplasm. PLANT DISEASE 2015; 99:1333-1341. [PMID: 30690997 DOI: 10.1094/pdis-11-14-1131-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tan spot and Stagonospora nodorum blotch (SNB), often occurring together, are two economically significant diseases of wheat in the Northern Great Plains of the United States. They are caused by the fungi Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively, both of which produce multiple necrotrophic effectors (NE) to cause disease. In this work, 120 hard red winter wheat (HRWW) cultivars or elite lines, mostly from the United States, were evaluated in the greenhouse for their reactions to the two diseases as well as NE produced by the two pathogens. One P. nodorum isolate (Sn4) and four Pyrenophora tritici-repentis isolates (Pti2, 331-9, DW5, and AR CrossB10) were used separately in the disease evaluations. NE sensitivity evaluation included ToxA, Ptr ToxB, SnTox1, and SnTox3. The numbers of lines that were rated highly resistant to individual isolates ranged from 11 (9%) to 30 (25%) but only six lines (5%) were highly resistant to all isolates, indicating limited sources of resistance to both diseases in the U.S. adapted HRWW germplasm. Sensitivity to ToxA was identified in 83 (69%) of the lines and significantly correlated with disease caused by Sn4 and Pti2, whereas sensitivity to other NE was present at much lower frequency and had no significant association with disease. As expected, association mapping located ToxA and SnTox3 sensitivity to chromosome arm 5BL and 5BS, respectively. A total of 24 potential quantitative trait loci was identified with -log (P value) > 3.0 on 12 chromosomes, some of which are novel. This work provides valuable information and tools for HRWW production and breeding in the Northern Great Plains.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo 58102
| | - Ibrahim El-Basyoni
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln 68583
| | | | - Guorong Zhang
- Agricultural Research Center-Hays, Kansas State University, Hays 67601
| | - Allan Fritz
- Department of Agronomy, Kansas State University, Manhattan 66506
| | - Jana Hansen
- Department of Plant Pathology, North Dakota State University, Fargo
| | - Francois Marais
- Department of Plant Science, North Dakota State University, Fargo
| | - Andrew Friskop
- Department of Plant Pathology, North Dakota State University, Fargo
| | - Shiaoman Chao
- United States Department of Agriculture-Agricultural Research Service, Biosciences Research Laboratory, Fargo, ND, 58105
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University Manhattan
| | | |
Collapse
|
47
|
Shi G, Zhang Z, Friesen TL, Bansal U, Cloutier S, Wicker T, Rasmussen JB, Faris JD. Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat. Mol Genet Genomics 2015; 291:107-19. [PMID: 26187026 DOI: 10.1007/s00438-015-1091-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/01/2015] [Indexed: 12/29/2022]
Abstract
Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a severe foliar and glume disease on durum and common wheat. Pathogen-produced necrotrophic effectors (NEs) are the major determinants for SNB on leaves. One such NE is SnTox3, which evokes programmed cell death and leads to disease when recognized by the wheat Snn3-B1 gene. Here, we developed saturated genetic linkage maps of the Snn3-B1 region using two F2 populations derived from the SnTox3-sensitive line Sumai 3 crossed with different SnTox3-insensitive lines. Markers were identified and/or developed from various resources including previously mapped simple sequence repeats, bin-mapped expressed sequence tags, single nucleotide polymorphisms, and whole genome survey sequences. Subsequent high-resolution mapping of the Snn3-B1 locus in 5600 gametes delineated the gene to a 1.5 cM interval. Analysis of micro-colinearity of the Snn3-B1 region indicated that it was highly disrupted compared to rice and Brachypodium distachyon. The screening of a collection of durum and common wheat cultivars with tightly linked markers indicated they are not diagnostic for the presence of Snn3-B1, but can be useful for marker-assisted selection if the SnTox3 reactions of lines are first determined. Finally, we developed an ethyl methanesulfonate-induced mutant population of Sumai 3 where the screening of 408 M2 families led to the identification of 17 SnTox3-insensitive mutants. These mutants along with the markers and high-resolution map developed in this research provide a strong foundation for the map-based cloning of Snn3-B1, which will broaden our understanding of the wheat-P. nodorum system and plant-necrotrophic pathogen interactions in general.
Collapse
Affiliation(s)
- Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Zengcui Zhang
- USDA-ARS Cereal Crops Research Unit, USDA-ARS NPA NCSL, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA
| | - Timothy L Friesen
- USDA-ARS Cereal Crops Research Unit, USDA-ARS NPA NCSL, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA
| | - Urmil Bansal
- The University of Sydney PBI-Cobbity, Private Bag 4011, Narellan, NSW, 2567, Australia
| | - Sylvie Cloutier
- Eastern Cereal and Oil Research Centre, Agriculture and Agri-Food Canada, K.W. Neatby Building, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada
| | - Thomas Wicker
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Jack B Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, USDA-ARS NPA NCSL, Red River Valley Agricultural Research Center, 1605 Albrecht BLVD, Fargo, ND, 58102-2765, USA.
| |
Collapse
|
48
|
Gao Y, Faris JD, Liu Z, Kim YM, Syme RA, Oliver RP, Xu SS, Friesen TL. Identification and Characterization of the SnTox6-Snn6 Interaction in the Parastagonospora nodorum-Wheat Pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:615-25. [PMID: 25608181 DOI: 10.1094/mpmi-12-14-0396-r] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Parastagonospora nodorum is a necrotrophic fungal pathogen that causes Septoria nodorum blotch (SNB) (formerly Stagonospora nodorum blotch) on wheat. P. nodorum produces necrotrophic effectors (NE) that are recognized by dominant host sensitivity gene products resulting in disease development. The NE-host interaction is critical to inducing NE-triggered susceptibility (NETS). To date, seven NE-host sensitivity gene interactions, following an inverse gene-for-gene model, have been identified in the P. nodorum-wheat pathosystem. Here, we used a wheat mapping population that segregated for sensitivity to two previously characterized interactions (SnTox1-Snn1 and SnTox3-Snn3-B1) to identify and characterize a new interaction involving the NE designated SnTox6 and the host sensitivity gene designated Snn6. SnTox6 is a small secreted protein that induces necrosis on wheat lines harboring Snn6. Sensitivity to SnTox6, conferred by Snn6, was light-dependent and was shown to underlie a major disease susceptibility quantitative trait locus (QTL). No other QTL were identified, even though the P. nodorum isolate used in this study harbored both the SnTox1 and SnTox3 genes. Reverse transcription-polymerase chain reaction showed that the expression of SnTox1 was not detectable, whereas SnTox3 was expressed and, yet, did not play a significant role in disease development. This work expands our knowledge of the wheat-P. nodorum interaction and further establishes this system as a model for necrotrophic specialist pathosystems.
Collapse
Affiliation(s)
- Y Gao
- 1Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - J D Faris
- 2USDA-ARS, Northern Crop Science Lab, Cereal Crops Research Unit, Fargo, ND 58102, U.S.A
| | - Z Liu
- 1Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Y M Kim
- 1Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - R A Syme
- 3Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Western Australia, Australia
| | - R P Oliver
- 3Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Western Australia, Australia
| | - S S Xu
- 2USDA-ARS, Northern Crop Science Lab, Cereal Crops Research Unit, Fargo, ND 58102, U.S.A
| | - T L Friesen
- 1Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
- 2USDA-ARS, Northern Crop Science Lab, Cereal Crops Research Unit, Fargo, ND 58102, U.S.A
| |
Collapse
|
49
|
Liu Z, Holmes DJ, Faris JD, Chao S, Brueggeman RS, Edwards MC, Friesen TL. Necrotrophic effector-triggered susceptibility (NETS) underlies the barley-Pyrenophora teres f. teres interaction specific to chromosome 6H. MOLECULAR PLANT PATHOLOGY 2015; 16:188-200. [PMID: 25040207 PMCID: PMC6638325 DOI: 10.1111/mpp.12172] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Barley net form net blotch (NFNB), caused by the necrotrophic fungus Pyrenophora teres f. teres, is a destructive foliar disease in barley-growing regions worldwide. Little is known about the genetic and molecular basis of this pathosystem. Here, we identified a small secreted proteinaceous necrotrophic effector (NE), designated PttNE1, from intercellular wash fluids of the susceptible barley line Hector after inoculation with P. teres f. teres isolate 0-1. Using a barley recombinant inbred line (RIL) population developed from a cross between the sensitive/susceptible line Hector and the insensitive/resistant line NDB 112 (HN population), sensitivity to PttNE1, which we have named SPN1, mapped to a common resistance/susceptibility region on barley chromosome 6H. PttNE1-SPN1 interaction accounted for 31% of the disease variation when the HN population was inoculated with the 0-1 isolate. Strong accumulation of hydrogen peroxide and increased levels of electrolyte leakage were associated with the susceptible reaction, but not the resistant reaction. In addition, the HN RIL population was evaluated for its reactions to 10 geographically diverse P. teres f. teres isolates. Quantitative trait locus (QTL) mapping led to the identification of at least 10 genomic regions associated with disease, with chromosomes 3H and 6H harbouring major QTLs for resistance/susceptibility. SPN1 was associated with all the 6H QTLs, except one. Collectively, this information indicates that the barley-P. teres f. teres pathosystem follows, at least partially, an NE-triggered susceptibility (NETS) model that has been described in other necrotrophic fungal disease systems, especially in the Dothideomycete class of fungi.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Tan KC, Phan HTT, Rybak K, John E, Chooi YH, Solomon PS, Oliver RP. Functional redundancy of necrotrophic effectors - consequences for exploitation for breeding. FRONTIERS IN PLANT SCIENCE 2015; 6:501. [PMID: 26217355 PMCID: PMC4495316 DOI: 10.3389/fpls.2015.00501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Necrotrophic diseases of wheat cause major losses in most wheat growing areas of world. Tan spot (caused by Pyrenophora tritici-repentis) and septoria nodorum blotch (SNB; Parastagonospora nodorum) have been shown to reduce yields by 10-20% across entire agri-ecological zones despite the application of fungicides and a heavy focus over the last 30 years on resistance breeding. Efforts by breeders to improve the resistance of cultivars has been compromised by the universal finding that resistance was quantitative and governed by multiple quantitative trait loci (QTL). Most QTL had a limited effect that was hard to measure precisely and varied significantly from site to site and season to season. The discovery of necrotrophic effectors has given breeding for disease resistance new methods and tools. In the case of tan spot in West Australia, a single effector, PtrToxA and its recogniser gene Tsn1, has a dominating impact in disease resistance. The delivery of ToxA to breeders has had a major impact on cultivar choice and breeding strategies. For P. nodorum, three effectors - SnToxA, SnTox1, and SnTox3 - have been well characterized. Unlike tan spot, no one effector has a dominating role. Genetic analysis of various mapping populations and pathogen isolates has shown that different effectors have varying impact and that epistatic interactions also occur. As a result of these factors the deployment of these effectors for SNB resistance breeding is more complex. We have deleted the three effectors in a strain of P. nodorum and measured effector activity and disease potential of the triple knockout mutant. The culture filtrate causes necrosis in several cultivars and the strain causes disease, albeit the overall levels are less than in the wild type. Modeling of the field disease resistance scores of cultivars from their reactions to the microbially expressed effectors SnToxA, SnTox1, and SnTox3 is significantly improved by including the response to the triple knockout mutant culture filtrate. This indicates that one or more further effectors are secreted into the culture filtrate. We conclude that the in vitro-secreted necrotrophic effectors explain a very large part of the disease response of wheat germplasm and that this method of resistance breeding promises to further reduce the impact of these globally significant diseases.
Collapse
Affiliation(s)
- Kar-Chun Tan
- Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, BentleyWA, Australia
- *Correspondence: Richard P. Oliver and Kar-Chun Tan, Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia, ;
| | - Huyen T. T. Phan
- Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, BentleyWA, Australia
| | - Kasia Rybak
- Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, BentleyWA, Australia
| | - Evan John
- Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, BentleyWA, Australia
| | - Yit H. Chooi
- Plant Sciences Division, Research School of Biology, Australian National University, CanberraACT, Australia
- School of Chemistry and Biochemistry, University of Western Australia, PerthWA, Australia
| | - Peter S. Solomon
- Plant Sciences Division, Research School of Biology, Australian National University, CanberraACT, Australia
| | - Richard P. Oliver
- Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, BentleyWA, Australia
- *Correspondence: Richard P. Oliver and Kar-Chun Tan, Centre for Crop Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia, ;
| |
Collapse
|