1
|
Mambwe B, Mellody KT, Kiss O, O'Connor C, Bell M, Watson REB, Langton AK. Cosmetic retinoid use in photoaged skin: A review of the compounds, their use and mechanisms of action. Int J Cosmet Sci 2025; 47:45-57. [PMID: 39128883 PMCID: PMC11788006 DOI: 10.1111/ics.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
The inevitable attrition of skin due to ultraviolet radiation, termed photoaging, can be partially restored by treatment with retinoid compounds. Photoaged skin in lightly pigmented individuals, clinically presents with the appearance of wrinkles, increased laxity, and hyper- and hypopigmentation. Underlying these visible signs of ageing are histological features such as epidermal thinning, dermal-epidermal junction flattening, solar elastosis and loss of the dermal fibrillin microfibrillar network, fibrillar collagen and glycosaminoglycans. Retinoid compounds are comprised of three main generations with the first generation (all-trans retinoic acid, retinol, retinaldehyde and retinyl esters) primarily used for the clinical and cosmetic treatment of photoaging, with varying degrees of efficacy, tolerance and stability. All-trans retinoic acid is considered the 'gold standard' for skin rejuvenation; however, it is a prescription-only product largely confined to clinical use. Therefore, retinoid derivatives are readily incorporated into cosmeceutical formulations. The literature reported in this review suggests that retinol, retinyl esters and retinaldehyde that are used in many cosmeceutical products, are efficacious, safe and well-tolerated. Once in the skin, retinoids utilize a complex signalling pathway that promotes remodelling of photoaged epidermis and dermis and leads to the improvement of the cutaneous signs of photoaging.
Collapse
Affiliation(s)
- Bezaleel Mambwe
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
| | - Kieran T. Mellody
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
| | - Orsolya Kiss
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
| | - Clare O'Connor
- No7 Beauty Company, Walgreens Boots AllianceNottinghamUK
| | - Mike Bell
- No7 Beauty Company, Walgreens Boots AllianceNottinghamUK
| | - Rachel E. B. Watson
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR)Singapore CitySingapore
| | - Abigail K. Langton
- Centre for Dermatology ResearchSalford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of ManchesterManchesterUK
| |
Collapse
|
2
|
Assi A, Fischman S, Lopez C, Pedrazzani M, Grignon G, Missodey R, Korichi R, Cauchard JH, Ralambondrainy S, Bonnier F. Evaluating facial dermis aging in healthy Caucasian females with LC-OCT and deep learning. Sci Rep 2024; 14:24113. [PMID: 39406771 PMCID: PMC11480100 DOI: 10.1038/s41598-024-74370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Recent advancements in high-resolution imaging have significantly improved our understanding of microstructural changes in the skin and their relationship to the aging process. Line Field Confocal Optical Coherence Tomography (LC-OCT) provides detailed 3D insights into various skin layers, including the papillary dermis and its fibrous network. In this study, a deep learning model utilizing a 3D ResNet-18 network was trained to predict chronological age from LC-OCT images of 100 healthy Caucasian female volunteers, aged 20 to 70 years. The AI-based protocol focused on regions of interest delineated between the segmented dermal-epidermal junction and the superficial dermis, exploiting complex patterns within the collagen network for age prediction. The model achieved a mean absolute error of 4.2 years and exhibited a Pearson correlation coefficient of 0.937 with actual ages. Furthermore, there was a notable correlation (r = 0.87) between quantified clinical scoring, encompassing parameters such as firmness, elasticity, density, and wrinkle appearance, and the ages predicted by deep learning model. This strong correlation underscores how integrating emerging imaging technologies with deep learning can accelerate aging research and deepen our understanding of how alterations in skin microstructure are related to visible signs of aging.
Collapse
Affiliation(s)
- Ali Assi
- LVMH Recherche, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | | | | | | | - Guénolé Grignon
- LVMH Recherche, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | - Raoul Missodey
- LVMH Recherche, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | - Rodolphe Korichi
- LVMH Recherche, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France
| | | | | | - Franck Bonnier
- LVMH Recherche, 185 Avenue de Verdun, 45800, Saint Jean de Braye, France.
| |
Collapse
|
3
|
Kołodziej-Wojnar P, Borkowska J, Domaszewska-Szostek A, Bujanowska O, Noszczyk B, Krześniak N, Stańczyk M, Puzianowska-Kuznicka M. Ten-Eleven Translocation 1 and 2 Enzymes Affect Human Skin Fibroblasts in an Age-Related Manner. Biomedicines 2023; 11:1659. [PMID: 37371754 DOI: 10.3390/biomedicines11061659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ten-eleven translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC), first to 5-hydroxymethylcytosine (5hmC), then to 5-formylcytosine (5fC), and finally to 5-carboxycytosine (5caC). Evidence suggests that changes in TET expression may impact cell function and the phenotype of aging. Proliferation, apoptosis, markers of autophagy and double-strand DNA break repair, and the expression of Fibulin 5 were assessed by flow cytometry in TET1 and TET2-overexpressing fibroblasts isolated from sun-unexposed skin of young (23-35 years) and age-advanced (75-94 years) individuals. In cells derived from young individuals, TET1 overexpression resulted in the inhibition of proliferation and apoptosis by 37% (p = 0.03) and 24% (p = 0.05), respectively, while the overexpression of TET2 caused a decrease in proliferation by 46% (p = 0.01). Notably, in cells obtained from age-advanced individuals, TETs exhibited different effects. Specifically, TET1 inhibited proliferation and expression of autophagy marker Beclin 1 by 45% (p = 0.05) and 28% (p = 0.048), respectively, while increasing the level of γH2AX, a marker of double-strand DNA breaks necessary for initiating the repair process, by 19% (p = 0.04). TET2 inhibited proliferation by 64% (p = 0.053) and increased the level of γH2AX and Fibulin 5 by 46% (p = 0.007) and 29% (p = 0.04), respectively. These patterns of TET1 and TET2 effects suggest their involvement in regulating various fibroblast functions and that some of their biological actions depend on the donor's age.
Collapse
Affiliation(s)
- Paulina Kołodziej-Wojnar
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Department of Human Epigenetics, Mossakowski Medical Research Institute, PAS, 02-106 Warsaw, Poland
| | - Joanna Borkowska
- Department of Human Epigenetics, Mossakowski Medical Research Institute, PAS, 02-106 Warsaw, Poland
| | - Anna Domaszewska-Szostek
- Department of Human Epigenetics, Mossakowski Medical Research Institute, PAS, 02-106 Warsaw, Poland
| | - Olga Bujanowska
- Department of Human Epigenetics, Mossakowski Medical Research Institute, PAS, 02-106 Warsaw, Poland
| | - Bartłomiej Noszczyk
- Department of Plastic Surgery, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | - Natalia Krześniak
- Department of Plastic Surgery, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | - Marek Stańczyk
- Department of General and Oncological Surgery with Traumatic Unit, Wolski Hospital, 01-211 Warsaw, Poland
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland
| | - Monika Puzianowska-Kuznicka
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Department of Human Epigenetics, Mossakowski Medical Research Institute, PAS, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
5
|
Naughton GK, Jiang LI, Makino ET, Chung R, Nguyen A, Cheng T, Kadoya K, Mehta RC. Targeting Multiple Hallmarks of Skin Aging: Preclinical and Clinical Efficacy of a Novel Growth Factor-Based Skin Care Serum. Dermatol Ther (Heidelb) 2022; 13:169-186. [PMID: 36374431 PMCID: PMC9823186 DOI: 10.1007/s13555-022-00839-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The aging process involves numerous biological mechanisms that have been characterized and proposed as the "hallmarks of aging." Targeting the processes and pathways related to these hallmarks of aging that cause and promote skin aging could provide anti-aging benefits. A novel topical growth factor-based skin care serum (A+) was developed using human fibroblast conditioned media. This study aimed to assess the effects of A+ on four hallmarks of aging and its clinical efficacy in skin rejuvenation in subjects with moderate to severe overall facial photodamage. METHODS Preclinical studies included immunohistochemistry in human ex vivo skin, and gene expression analysis in human 3D skin models. A 24-week, vehicle placebo-controlled study, including FaceQ patient-reported outcomes and skin biopsy analysis, was performed to assess clinical efficacy and tolerability. RESULTS Treatment with A+ resulted in reduced expression of cell senescence biomarker H2A.J and upregulation of genes associated with proteasome, autophagy, stemness, and intercellular communication. Clinical assessments showed A+ provided significantly greater reductions in sagging, coarse lines/wrinkles, fine lines/wrinkles, overall photodamage, and overall hyperpigmentation compared with placebo. Subjects felt they appeared younger-looking, reporting a median decrease in self-perceived age of 6 years after 12 weeks of use. Decreased levels of H2A.J and increased expression of key dermal extracellular matrix and epidermal barrier components, including collagen and elastin, were observed in skin biopsy samples. CONCLUSION The present study shows for the first time the potential effects of a topical growth factor-based cosmeceutical on cellular processes related to four hallmarks of aging (cellular senescence, loss of proteostasis, stem cell exhaustion, and altered intercellular communication) to help delay the aging process and restore aged skin. A+ targets the biological mechanisms underlying the aging process itself and stimulates skin regeneration, resulting in rapid and significant clinical improvements.
Collapse
Affiliation(s)
| | | | - Elizabeth T Makino
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Robin Chung
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Audrey Nguyen
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Tsing Cheng
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Kuniko Kadoya
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA, 92612, USA
| | - Rahul C Mehta
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA, 92612, USA.
| |
Collapse
|
6
|
de Bengy AF, Lamartine J, Sigaudo-Roussel D, Fromy B. Newborn and elderly skin: two fragile skins at higher risk of pressure injury. Biol Rev Camb Philos Soc 2022; 97:874-895. [PMID: 34913582 DOI: 10.1111/brv.12827] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 02/03/2023]
Abstract
Skin is a key organ maintaining internal homeostasis by performing many functions such as water loss prevention, body temperature regulation and protection from noxious substance absorption, microorganism intrusion and physical trauma. Skin ageing has been well studied and it is well known that physiological changes in the elderly result in higher skin fragility favouring the onset of skin diseases. For example, prolonged and/or high-intensity pressure may suppress local blood flow more easily, disturbing cell metabolism and inducing pressure injury (PI) formation. Pressure injuries (PIs) represent a significant problem worldwide and their prevalence remains too high. A higher PI prevalence is correlated with an elderly population. Newborn skin evolution has been less studied, but some data also report a higher PI prevalence in this population compared to older children, and several authors also consider this skin as physiologically fragile. In this review, we compare the characteristics of newborn and elderly skin in order to determine common features that may explain their fragility, especially regarding PI risk. We show that, despite differences in appearance, they share many common features leading to higher fragility to shear and pressure forces, not only at the structural level but also at the cellular and molecular level and in terms of physiology. Both newborn and elderly skin have: (i) a thinner epidermis; (ii) a thinner dermis containing a less-resistant collagen network, a higher collagen III:collagen I ratio and less elastin; (iii) a flatter dermal-epidermal junction (DEJ) with lower anchoring systems; and (iv) a thinner hypodermis, resulting in lower mechanical resistance to skin damage when pressure or shear forces are applied. At the molecular level, reduced expression of transforming growth factor β (TGFβ) and its receptor TGFβ receptor II (TβRII) is involved in the decreased production and/or increased degradation of various dermal extracellular matrix (ECM) components. Epidermal fragility also involves a higher skin pH which decreases the activity of key enzymes inducing ceramide deficiency and reduced barrier protection. This seems to be correlated with higher PI prevalence in some situations. Some data also suggest that stratum corneum (SC) dryness, which may disturb cell metabolism, also increases the risk of PI formation. Besides this structural fragility, several skin functions are also less efficient. Low applied pressures induce skin vessel vasodilation via a mechanism called pressure-induced vasodilation (PIV). Individuals lacking a normal PIV response show an early decrease in cutaneous blood flow in response to the application of very low pressures, reflecting vascular fragility of the skin that increases the risk of ulceration. Due to changes in endothelial function, skin PIV ability decreases during skin ageing, putting it at higher risk of PI formation. In newborns, some data lead us to hypothesize that the nitric oxide (NO) pathway is not fully functional at birth, which may partly explain the higher risk of PI formation in newborns. In the elderly, a lower PIV ability results from impaired functionality of skin innervation, in particular that of C-fibres which are involved in both touch and pain sensation and the PIV mechanism. In newborns, skin sensitivity differs from adults due to nerve system immaturity, but the role of this in PIV remains to be determined.
Collapse
Affiliation(s)
| | - Jérôme Lamartine
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR5305, 7 Passage du Vercors, Lyon Cedex 7, F- 69367, France
| | - Dominique Sigaudo-Roussel
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR5305, 7 Passage du Vercors, Lyon Cedex 7, F- 69367, France
| | - Bérengère Fromy
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR5305, 7 Passage du Vercors, Lyon Cedex 7, F- 69367, France
| |
Collapse
|
7
|
Charoenchon N, Rhodes LE, Nicolaou A, Williamson G, Watson RE, Farrar MD. Ultraviolet radiation‐induced degradation of dermal extracellular matrix and protection by green tea catechins: a randomised controlled trial. Clin Exp Dermatol 2022; 47:1314-1323. [PMID: 35279873 PMCID: PMC9320810 DOI: 10.1111/ced.15179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022]
Abstract
Background Aim Methods Results Conclusions
Collapse
Affiliation(s)
- Nisamanee Charoenchon
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences School of Biological Sciences Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre Manchester UK
| | - Lesley E. Rhodes
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences School of Biological Sciences Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre Manchester UK
- Photobiology Unit, Dermatology Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre Manchester UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry School of Health Sciences Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre Manchester UK
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences Monash University Victoria Australia
| | - Rachel E.B. Watson
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences School of Biological Sciences Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre Manchester UK
| | - Mark D. Farrar
- Centre for Dermatology Research, Division of Musculoskeletal and Dermatological Sciences School of Biological Sciences Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre Manchester UK
| |
Collapse
|
8
|
Jin S, Oh YN, Son YR, Kwon B, Park JH, Gang MJ, Kim BW, Kwon HJ. Three-Dimensional Skin Tissue Printing with Human Skin Cell Lines and Mouse Skin-Derived Epidermal and Dermal Cells. J Microbiol Biotechnol 2022; 32:238-247. [PMID: 34949744 PMCID: PMC9628848 DOI: 10.4014/jmb.2111.11042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Since the skin covers most surfaces of the body, it is susceptible to damage, which can be fatal depending on the degree of injury to the skin because it defends against external attack and protects internal structures. Various types of artificial skin are being studied for transplantation to repair damaged skin, and recently, the production of replaceable skin using three-dimensional (3D) bioprinting technology has also been investigated. In this study, skin tissue was produced using a 3D bioprinter with human skin cell lines and cells extracted from mouse skin, and the printing conditions were optimized. Gelatin was used as a bioink, and fibrinogen and alginate were used for tissue hardening after printing. Printed skin tissue maintained a survival rate of 90% or more when cultured for 14 days. Culture conditions were established using 8 mM calcium chloride treatment and the skin tissue was exposed to air to optimize epidermal cell differentiation. The skin tissue was cultured for 14 days after differentiation induction by this optimized culture method, and immunofluorescent staining was performed using epidermal cell differentiation markers to investigate whether the epidermal cells had differentiated. After differentiation, loricrin, which is normally found in terminally differentiated epidermal cells, was observed in the cells at the tip of the epidermal layer, and cytokeratin 14 was expressed in the lower cells of the epidermis layer. Collectively, this study may provide optimized conditions for bioprinting and keratinization for three-dimensional skin production.
Collapse
Affiliation(s)
- Soojung Jin
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - You Na Oh
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Yu Ri Son
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Boguen Kwon
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Jung-ha Park
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Min jeong Gang
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea,Blue-Bio Industry Regional Innovation Center, Dong-Eui University, Busan 47340, Republic of Korea,
B.W. Kim Phone: +82-51-890-2900 Fax: +82-505-182-6951 E-mail:
| | - Hyun Ju Kwon
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea,Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea,Blue-Bio Industry Regional Innovation Center, Dong-Eui University, Busan 47340, Republic of Korea,Corresponding authors H.J. Kwon Phone: +82-51-890-4471 Fax: +82-505-182-6871 E-mail:
| |
Collapse
|
9
|
Eckersley A, Ozols M, O'Connor C, Bell M, Sherratt MJ. Predicting and characterising protein damage in the extracellular matrix. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
10
|
Ozols M, Eckersley A, Mellody KT, Mallikarjun V, Warwood S, O'Cualain R, Knight D, Watson REB, Griffiths CEM, Swift J, Sherratt MJ. Peptide location fingerprinting reveals modification-associated biomarker candidates of ageing in human tissue proteomes. Aging Cell 2021; 20:e13355. [PMID: 33830638 PMCID: PMC8135079 DOI: 10.1111/acel.13355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Although dysfunctional protein homeostasis (proteostasis) is a key factor in many age-related diseases, the untargeted identification of structurally modified proteins remains challenging. Peptide location fingerprinting is a proteomic analysis technique capable of identifying structural modification-associated differences in mass spectrometry (MS) data sets of complex biological samples. A new webtool (Manchester Peptide Location Fingerprinter), applied to photoaged and intrinsically aged skin proteomes, can relatively quantify peptides and map statistically significant differences to regions within protein structures. New photoageing biomarker candidates were identified in multiple pathways including extracellular matrix organisation (collagens and proteoglycans), protein synthesis and folding (ribosomal proteins and TRiC complex subunits), cornification (keratins) and hemidesmosome assembly (plectin and integrin α6β4). Crucially, peptide location fingerprinting uniquely identified 120 protein biomarker candidates in the dermis and 71 in the epidermis which were modified as a consequence of photoageing but did not differ significantly in relative abundance (measured by MS1 ion intensity). By applying peptide location fingerprinting to published MS data sets, (identifying biomarker candidates including collagen V and versican in ageing tendon) we demonstrate the potential of the MPLF webtool for biomarker discovery.
Collapse
Affiliation(s)
- Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
| | - Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
| | - Kieran T. Mellody
- Division of Musculoskeletal & Dermatological Sciences The University of Manchester Manchester UK
| | - Venkatesh Mallikarjun
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Wellcome Centre for Cell‐Matrix Research The University of Manchester Manchester UK
| | - Stacey Warwood
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Biological Mass Spectrometry Core Research Facility School of Biological Sciences Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Ronan O'Cualain
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Biological Mass Spectrometry Core Research Facility School of Biological Sciences Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - David Knight
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Biological Mass Spectrometry Core Research Facility School of Biological Sciences Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Rachel E. B. Watson
- Division of Musculoskeletal & Dermatological Sciences The University of Manchester Manchester UK
- NIHR Manchester Biomedical Research CentreCentral Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science Centre Manchester UK
| | - Christopher E. M. Griffiths
- Division of Musculoskeletal & Dermatological Sciences The University of Manchester Manchester UK
- NIHR Manchester Biomedical Research CentreCentral Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science Centre Manchester UK
| | - Joe Swift
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
- Wellcome Centre for Cell‐Matrix Research The University of Manchester Manchester UK
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine The University of Manchester Manchester UK
| |
Collapse
|
11
|
Ozols M, Eckersley A, Platt CI, Stewart-McGuinness C, Hibbert SA, Revote J, Li F, Griffiths CEM, Watson REB, Song J, Bell M, Sherratt MJ. Predicting Proteolysis in Complex Proteomes Using Deep Learning. Int J Mol Sci 2021; 22:3071. [PMID: 33803033 PMCID: PMC8002881 DOI: 10.3390/ijms22063071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Both protease- and reactive oxygen species (ROS)-mediated proteolysis are thought to be key effectors of tissue remodeling. We have previously shown that comparison of amino acid composition can predict the differential susceptibilities of proteins to photo-oxidation. However, predicting protein susceptibility to endogenous proteases remains challenging. Here, we aim to develop bioinformatics tools to (i) predict cleavage site locations (and hence putative protein susceptibilities) and (ii) compare the predicted vulnerabilities of skin proteins to protease- and ROS-mediated proteolysis. The first goal of this study was to experimentally evaluate the ability of existing protease cleavage site prediction models (PROSPER and DeepCleave) to identify experimentally determined MMP9 cleavage sites in two purified proteins and in a complex human dermal fibroblast-derived extracellular matrix (ECM) proteome. We subsequently developed deep bidirectional recurrent neural network (BRNN) models to predict cleavage sites for 14 tissue proteases. The predictions of the new models were tested against experimental datasets and combined with amino acid composition analysis (to predict ultraviolet radiation (UVR)/ROS susceptibility) in a new web app: the Manchester proteome susceptibility calculator (MPSC). The BRNN models performed better in predicting cleavage sites in native dermal ECM proteins than existing models (DeepCleave and PROSPER), and application of MPSC to the skin proteome suggests that: compared with the elastic fiber network, fibrillar collagens may be susceptible primarily to protease-mediated proteolysis. We also identify additional putative targets of oxidative damage (dermatopontin, fibulins and defensins) and protease action (laminins and nidogen). MPSC has the potential to identify potential targets of proteolysis in disparate tissues and disease states.
Collapse
Affiliation(s)
- Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Christopher I. Platt
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Callum Stewart-McGuinness
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Sarah A. Hibbert
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| | - Jerico Revote
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia;
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia;
| | - Fuyi Li
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3800, Australia;
| | - Christopher E. M. Griffiths
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (C.E.M.G.); (R.E.B.W.)
- NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Rachel E. B. Watson
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (C.E.M.G.); (R.E.B.W.)
- NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Jiangning Song
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia;
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Mike Bell
- Research and Development, Walgreens Boots Alliance, Thane Road, Nottingham NG90 1BS, UK;
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (A.E.); (C.I.P.); (C.S.-M.); (S.A.H.)
| |
Collapse
|
12
|
Zhang Z, Paudel S, Feltham T, Lobao MH, Schon L. Foot fat pad: Characterization by mesenchymal stromal cells in rats. Anat Rec (Hoboken) 2020; 304:1582-1591. [PMID: 33099882 DOI: 10.1002/ar.24549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 11/10/2022]
Abstract
Foot fat pad (FFP) is a highly functionalized fat depot of great significance for weight bearing in the foot. Mesenchymal stromal cells (MSCs) in subcutaneous adipose tissues are widely studied for regenerative potentials. MSCs in FFP, which may contribute to the physiological and pathological conditions of the foot, have not been characterized. In this study, MSCs were isolated from FFP (designated as MSCs-ffp) and subcutaneous adipose tissue (designated as MSCs-sub) from rats. The cell surface markers, proliferation, and efficiency of colony formation were compared between MSCs-ffp and MSCs-sub. In addition, MSCs-ffp were induced for osteogenic, chondrogenic, and adipogenic differentiation. The tri-lineage differentiation potentials were compared between MSCs-ffp and MSCs-sub by the expression of Runx2, Sox9, and proliferator-activated receptor gamma (PPAR-γ), respectively, using quantitative polymerized chain reaction. The expression of elastin and associated genes by MSCs-ffp were also evaluated. MSCs-ffp, like MSCs-sub, expressed CD44, CD73, and CD90. MSCs-ffp and MSCs-sub proliferated at similar rates but MSCs-ffp formed more colonies than MSCs-sub. MSCs-ffp were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages. Under the conditions of osteogenic and adipogenic differentiation, MSCs-sub expressed more Runx2 and PPAR-γ, respectively, than MSCs-ffp. The undifferentiated MSCs-ffp upregulated the expression of fibulin-5. In conclusion, MSCs-ffp shared common biology with MSCs-sub but were more efficient in colony formation, less adipogenic and osteogenic, and participated in elastogenesis. The unique features of MSCs-ffp may relate to their roles in the physiological functions of FFP.
Collapse
Affiliation(s)
- Zijun Zhang
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, Maryland, USA
| | - Sharada Paudel
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Tyler Feltham
- Philadelphia College of Osteopathic Medicine-GA, Suwanee, Georgia, USA
| | - Mario H Lobao
- Department of Orthopaedic Surgery, Columbia University Medical Center, New York, New York, USA
| | - Lew Schon
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, Maryland, USA.,Institute for Foot and Ankle Reconstruction, Mercy Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Adamo CS, Zuk AV, Sengle G. The fibrillin microfibril/elastic fibre network: A critical extracellular supramolecular scaffold to balance skin homoeostasis. Exp Dermatol 2020; 30:25-37. [PMID: 32920888 DOI: 10.1111/exd.14191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
Supramolecular networks composed of fibrillins (fibrillin-1 and fibrillin-2) and associated ligands form intricate cellular microenvironments which balance skin homoeostasis and direct remodelling. Fibrillins assemble into microfibrils which are not only indispensable for conferring elasticity to the skin, but also control the bioavailability of growth factors targeted to the extracellular matrix architecture. Fibrillin microfibrils (FMF) represent the core scaffolds for elastic fibre formation, and they also decorate the surface of elastic fibres and form independent networks. In normal dermis, elastic fibres are suspended in a three-dimensional basket-like lattice of FMF intersecting basement membranes at the dermal-epidermal junction and thus conferring pliability to the skin. The importance of FMF for skin homoeostasis is illustrated by the clinical features caused by mutations in the human fibrillin genes (FBN1, FBN2), summarized as "fibrillinopathies." In skin, fibrillin mutations result in phenotypes ranging from thick, stiff and fibrotic skin to thin, lax and hyperextensible skin. The most plausible explanation for this spectrum of phenotypic outcomes is that FMF regulate growth factor signalling essential for proper growth and homoeostasis of the skin. Here, we will give an overview about the current understanding of the underlying pathomechanisms leading to fibrillin-dependent fibrosis as well as forms of cutis laxa caused by mutational inactivation of FMF-associated ligands.
Collapse
Affiliation(s)
- Christin S Adamo
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexandra V Zuk
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
14
|
Eckersley A, Ozols M, O'Cualain R, Keevill EJ, Foster A, Pilkington S, Knight D, Griffiths CEM, Watson REB, Sherratt MJ. Proteomic fingerprints of damage in extracellular matrix assemblies. Matrix Biol Plus 2020; 5:100027. [PMID: 33543016 PMCID: PMC7852314 DOI: 10.1016/j.mbplus.2020.100027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
In contrast to the dynamic intracellular environment, structural extracellular matrix (ECM) proteins with half-lives measured in decades, are susceptible to accumulating damage. Whilst conventional approaches such as histology, immunohistochemistry and mass spectrometry are able to identify age- and disease-related changes in protein abundance or distribution, these techniques are poorly suited to characterising molecular damage. We have previously shown that mass spectrometry can detect tissue-specific differences in the proteolytic susceptibility of protein regions within fibrillin-1 and collagen VI alpha-3. Here, we present a novel proteomic approach to detect damage-induced “peptide fingerprints” within complex multi-component ECM assemblies (fibrillin and collagen VI microfibrils) following their exposure to ultraviolet radiation (UVR) by broadband UVB or solar simulated radiation (SSR). These assemblies were chosen because, in chronically photoaged skin, fibrillin and collagen VI microfibril architectures are differentially susceptible to UVR. In this study, atomic force microscopy revealed that fibrillin microfibril ultrastructure was significantly altered by UVR exposure whereas the ultrastructure of collagen VI microfibrils was resistant. UVR-induced molecular damage was further characterised by proteolytic peptide generation with elastase followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Peptide mapping revealed that UVR exposure increased regional proteolytic susceptibility within the protein structures of fibrillin-1 and collagen VI alpha-3. This allowed the identification of UVR-induced molecular changes within these two key ECM assemblies. Additionally, similar changes were observed within protein regions of co-purifying, microfibril-associated receptors integrins αv and β1. This study demonstrates that LC-MS/MS mapping of peptides enables the characterisation of molecular post-translational damage (via direct irradiation and radiation-induced oxidative mechanisms) within a complex in vitro model system. This peptide fingerprinting approach reliably allows both the identification of UVR-induced molecular damage in and between proteins and the identification of specific protein domains with increased proteolytic susceptibility as a result of photo-denaturation. This has the potential to serve as a sensitive method of identifying accumulated molecular damage in vivo using conventional mass spectrometry data-sets. Mass spectrometry “peptide fingerprinting” can detect post-translational damage within extracellular matrix proteins. UVR-induced FBN1 and COL6A3 peptide fingerprints are reproducibly identified from purified microfibrils. Peptide mapping reveals increased regional susceptibilities to proteolysis in FBN1 and COL6A3 proteins. Regional changes are also observed in protein structures of microfibril-associated receptor integrins αv and β1. This “peptide fingerprinting” approach is applicable to conventional LC-MS/MS datasets.
Collapse
Key Words
- AFM, atomic force microscopy
- COL6A3, collagen VI alpha 3 chain
- Collagen VI microfibril
- ECM, extracellular matrix
- EGF, epidermal growth factor domain
- Fibrillin microfibril
- HDF, human dermal fibroblast
- LC-MS/MS, liquid chromatography tandem mass spectrometry
- Mass spectrometry
- PSM, peptide spectrum match
- Photodamage
- ROS, reactive oxygen species
- SSR, solar simulated radiation
- TGFβ, transforming growth factor beta
- UVR, ultraviolet radiation
- Ultraviolet radiation
- vWA, von Willebrand factor type A domain
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ronan O'Cualain
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emma-Jayne Keevill
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - April Foster
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Suzanne Pilkington
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - David Knight
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Christopher E M Griffiths
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel E B Watson
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Vostálová J, Galandáková A, Zálešák B, Lichnovská R, Čížková K, Ulrichová J, Rajnochová Svobodová A. Changes in antioxidant, inflammatory and metabolic markers during 1 week cultivation of human skin explants. J Appl Toxicol 2019; 39:773-782. [DOI: 10.1002/jat.3766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/16/2018] [Accepted: 11/26/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry; Palacký University; Hněvotínská 3 775 15 Olomouc Czech Republic
| | - Adéla Galandáková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry; Palacký University; Hněvotínská 3 775 15 Olomouc Czech Republic
| | - Bohumil Zálešák
- Department of Plastic and Aesthetic Surgery; University Hospital Olomouc; I. P. Pavlova 6 779 00 Olomouc Czech Republic
| | - Radka Lichnovská
- Department of Histology and Embryology, Faculty of Medicine and Dentistry; Palacký University; Hněvotínská 3 775 15 Olomouc Czech Republic
| | - Kateřina Čížková
- Department of Histology and Embryology, Faculty of Medicine and Dentistry; Palacký University; Hněvotínská 3 775 15 Olomouc Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry; Palacký University; Hněvotínská 3 775 15 Olomouc Czech Republic
| | - Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry; Palacký University; Hněvotínská 3 775 15 Olomouc Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry,; Palacký University; Hněvotínská 3 775 15 Olomouc Czech Republic
| |
Collapse
|
16
|
Watson MK, Mitchell MA, Stern AW, Labelle AL, Joslyn S, Fan TM, Cavaretta M, Kohles M, Marshall K. EVALUATING THE CLINICAL AND PHYSIOLOGICAL EFFECTS OF LONG-TERM ULTRAVIOLET B RADIATION ON RABBITS (ORYCTOLAGUS CUNICULUS). J Exot Pet Med 2019. [DOI: 10.1053/j.jepm.2018.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Hibbert SA, Watson REB, Griffiths CEM, Gibbs NK, Sherratt MJ. Selective proteolysis by matrix metalloproteinases of photo-oxidised dermal extracellular matrix proteins. Cell Signal 2018; 54:191-199. [PMID: 30521860 DOI: 10.1016/j.cellsig.2018.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
Photodamage in chronically sun-exposed skin manifests clinically as deep wrinkles and histologically as extensive remodelling of the dermal extracellular matrix (ECM) and in particular, the elastic fibre system. We have shown previously that loss of fibrillin microfibrils, a key elastic fibre component, is a hallmark of early photodamage and that these ECM assemblies are susceptible in vitro to physiologically attainable doses of ultraviolet radiation (UVR). Here, we test the hypotheses that UVR-mediated photo-oxidation is the primary driver of fibrillin microfibril and fibronectin degradation and that prior UVR exposure will enhance the subsequent proteolytic activity of UVR-upregulated matrix metalloproteinases (MMPs). We confirmed that UVB (280-315 nm) irradiation in vitro induced structural changes to both fibrillin microfibrils and fibronectin and these changes were largely reactive oxygen species (ROS)-driven, with increased ROS lifetime (D2O) enhancing protein damage and depleted O2 conditions abrogating it. Furthermore, we show that although exposure to UVR alone increased microfibril structural heterogeneity, exposure to purified MMPs (1, -3, -7 and - 9) alone had minimal effect on microfibril bead-to-bead periodicity; however, microfibril suspensions exposed to UVR and then MMPs were more structurally homogenous. In contrast, the susceptibly of fibronectin to proteases was unaffected by prior UVR exposure. These observations suggest that both direct photon absorption and indirect production of ROS are important mediators of ECM remodelling in photodamage. We also show that fibrillin microfibrils are relatively resistant to proteolysis by MMPs -1, -3, -7 and - 9 but that these MMPs may selectively remove damaged microfibril assemblies. These latter observations have implications for predicting the mechanisms of tissue remodelling and targeted repair.
Collapse
Affiliation(s)
- Sarah A Hibbert
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, UK.
| | - Rachel E B Watson
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - Christopher E M Griffiths
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - Neil K Gibbs
- Centre for Dermatology Research, Faculty of Biology, Medicine and Health, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, The University of Manchester, Manchester, UK.
| |
Collapse
|
18
|
Langton AK, Alessi S, Hann M, Chien ALL, Kang S, Griffiths CEM, Watson REB. Aging in Skin of Color: Disruption to Elastic Fiber Organization Is Detrimental to Skin's Biomechanical Function. J Invest Dermatol 2018; 139:779-788. [PMID: 30404021 DOI: 10.1016/j.jid.2018.10.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 11/26/2022]
Abstract
Skin aging is a complex process involving the additive effects of time-dependent intrinsic aging and changes elicited via skin's interaction with the environment. Maintaining optimal skin function is essential for healthy aging across global populations; yet most research focuses on lightly pigmented skin (Fitzpatrick phototypes I-III), with little emphasis on skin of color (Fitzpatrick phototypes V-VI). Here, we explore the biomechanical and histologic consequences of aging in black African-American volunteers. We found that healthy young buttock and dorsal forearm skin was biomechanically resilient, highly elastic, and characterized histologically by strong interdigitation of rete ridges, abundant organized fibrillar collagen, and plentiful arrays of elastic fibers. In contrast, intrinsically aged buttock skin was significantly less resilient, less elastic, and was accompanied by effacement of rete ridges with reduced deposition of both elastic fibers and fibrillar collagens. In chronically photoexposed dorsal forearm, significant impairment of all biomechanical functions was identified, with complete flattening of rete ridges and marked depletion of elastic fibers and fibrillar collagens. We conclude that in skin of color, both intrinsic aging and photoaging significantly impact skin function and composition, despite the additional photoprotective properties of increased melanin. Improved public health advice regarding the consequences of chronic photoexposure and the importance of multimodal photoprotection use for all is of global significance.
Collapse
Affiliation(s)
- Abigail Kate Langton
- Centre for Dermatology Research, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; National Institute for Health Research, Manchester Biomedical Research Centre, Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Sabrina Alessi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Hann
- Centre for Biostatistics, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Anna Lien-Lun Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher Ernest Maitland Griffiths
- Centre for Dermatology Research, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; National Institute for Health Research, Manchester Biomedical Research Centre, Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel Elizabeth Beatrice Watson
- Centre for Dermatology Research, The University of Manchester and Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; National Institute for Health Research, Manchester Biomedical Research Centre, Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
19
|
Utility of the Teslar Facial Massager for Skin Elasticity and the Mechanism of its Effects. COSMETICS 2018. [DOI: 10.3390/cosmetics5030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Teslar is a facial massager that emits a weak electric current, where users have reported a beneficial effect on skin elasticity with continued use. Accordingly, we conducted a clinical utility study and a comprehensive gene analysis, with cultured human fibroblasts to investigate the utility and mechanism of this treatment. In this clinical utility study, we found significant improvement in skin elasticity in Teslar treatments, compared to controls after two weeks of treatment. In cell experiments, we found that adenosine triphosphate synthesis and collagen contraction were promoted in fibroblasts cultured in type I collagen gel, following Teslar treatment. We considered that Teslar treatment exerted a structurally regenerative effect on the dermal matrix, based on the results of GeneChip® Expression Analysis. In particular, we demonstrated that Teslar treatment promotes type I collagen mRNA expression and fibulin-5/DANCE (Developmental arteries and neural crest EGF (epidermal growth factor)-like) mRNA expression and protein levels, which are reduced with aging. We also found increases in LTBP-3 (Latent TGF-β binding protein-3) and CSPG4 (Chondroitin sulfate proteoglycan 4) mRNA expression levels. Based on these results, we considered that Teslar treatment promoted dermal regeneration and recovery of skin elasticity.
Collapse
|
20
|
Charoenchon N, Rhodes LE, Pilkington SM, Farrar MD, Watson REB. Differential reorganisation of cutaneous elastic fibres: a comparison of the in vivo effects of broadband ultraviolet B versus solar simulated radiation. Photochem Photobiol Sci 2018; 17:889-895. [PMID: 29697102 PMCID: PMC6044188 DOI: 10.1039/c7pp00412e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/11/2018] [Indexed: 01/12/2023]
Abstract
Long-term exposure of human skin to ultraviolet radiation (UVR) in sunlight negatively impacts its appearance and function with photoaged skin having a characteristic leathery, rough appearance, with deep wrinkles. These clinical features of photodamage are thought to result from UVR-induced remodelling of the dermal extracellular matrix, particularly the elastic fibre system. There are few in vivo human data on the impact of acute UVR exposure on this fibre system and particularly solar-simulated radiation (SSR)-mediated effects. We examined the differential effect of broadband UVB and SSR on the human dermal elastic fibre system, and specifically the microfibrillar components fibrillin-1, fibulin-2 and fibulin-5. Healthy white Caucasian adults (skin type II-III) were recruited and irradiated with 3× their minimal erythema dose of broadband UVB (n = 6) or SSR (n = 6) on photoprotected buttock skin. Punch biopsies were taken 24 h after irradiation and from unirradiated control skin. Overall, histological assessment of elastic fibres revealed significantly less elastic fibre staining in broadband UVB (P = 0.004) or SSR (P = 0.04) irradiated skin compared to unirradiated control skin. Significantly less staining of fibrillin-1-positive microfibrils was also observed in the papillary dermis of UVB irradiated skin (P = 0.02) but not skin exposed to SSR. Conversely, immunohistochemistry for fibulin-5-positive microfibrils revealed significantly less expression in skin exposed to SSR (P = 0.04) but not to broadband UVB. There was no significant change in fibulin-2-positive microfibrils following either broadband UVB or SSR irradiation. Thus, broadband UVB and SSR mediate differential effects on individual components of the dermal elastic fibre network in human skin. Further human studies are required to explore the mechanisms underlying these findings and the impact of potential photoprotective agents.
Collapse
Affiliation(s)
- Nisamanee Charoenchon
- Centre for Dermatology Research
, Division of Musculoskeletal and Dermatological Sciences
, School of Biological Sciences
, Faculty of Biology
, Medicine and Health
, Manchester Academic Health Science Centre
, The University of Manchester M13 9PT and The Dermatology Centre
, Salford Royal NHS Foundation Trust
,
Salford M6 8HD
, UK
.
; Tel: +44 (0)161 275 5505
| | - Lesley E. Rhodes
- Centre for Dermatology Research
, Division of Musculoskeletal and Dermatological Sciences
, School of Biological Sciences
, Faculty of Biology
, Medicine and Health
, Manchester Academic Health Science Centre
, The University of Manchester M13 9PT and The Dermatology Centre
, Salford Royal NHS Foundation Trust
,
Salford M6 8HD
, UK
.
; Tel: +44 (0)161 275 5505
| | - Suzanne M. Pilkington
- Centre for Dermatology Research
, Division of Musculoskeletal and Dermatological Sciences
, School of Biological Sciences
, Faculty of Biology
, Medicine and Health
, Manchester Academic Health Science Centre
, The University of Manchester M13 9PT and The Dermatology Centre
, Salford Royal NHS Foundation Trust
,
Salford M6 8HD
, UK
.
; Tel: +44 (0)161 275 5505
| | - Mark D. Farrar
- Centre for Dermatology Research
, Division of Musculoskeletal and Dermatological Sciences
, School of Biological Sciences
, Faculty of Biology
, Medicine and Health
, Manchester Academic Health Science Centre
, The University of Manchester M13 9PT and The Dermatology Centre
, Salford Royal NHS Foundation Trust
,
Salford M6 8HD
, UK
.
; Tel: +44 (0)161 275 5505
| | - Rachel E. B. Watson
- Centre for Dermatology Research
, Division of Musculoskeletal and Dermatological Sciences
, School of Biological Sciences
, Faculty of Biology
, Medicine and Health
, Manchester Academic Health Science Centre
, The University of Manchester M13 9PT and The Dermatology Centre
, Salford Royal NHS Foundation Trust
,
Salford M6 8HD
, UK
.
; Tel: +44 (0)161 275 5505
| |
Collapse
|
21
|
Edgar S, Hopley B, Genovese L, Sibilla S, Laight D, Shute J. Effects of collagen-derived bioactive peptides and natural antioxidant compounds on proliferation and matrix protein synthesis by cultured normal human dermal fibroblasts. Sci Rep 2018; 8:10474. [PMID: 29992983 PMCID: PMC6041269 DOI: 10.1038/s41598-018-28492-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/19/2018] [Indexed: 11/18/2022] Open
Abstract
Nutraceuticals containing collagen peptides, vitamins, minerals and antioxidants are innovative functional food supplements that have been clinically shown to have positive effects on skin hydration and elasticity in vivo. In this study, we investigated the interactions between collagen peptides (0.3-8 kDa) and other constituents present in liquid collagen-based nutraceuticals on normal primary dermal fibroblast function in a novel, physiologically relevant, cell culture model crowded with macromolecular dextran sulphate. Collagen peptides significantly increased fibroblast elastin synthesis, while significantly inhibiting release of MMP-1 and MMP-3 and elastin degradation. The positive effects of the collagen peptides on these responses and on fibroblast proliferation were enhanced in the presence of the antioxidant constituents of the products. These data provide a scientific, cell-based, rationale for the positive effects of these collagen-based nutraceutical supplements on skin properties, suggesting that enhanced formation of stable dermal fibroblast-derived extracellular matrices may follow their oral consumption.
Collapse
Affiliation(s)
- Suzanne Edgar
- Portsmouth, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Blake Hopley
- Portsmouth, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Licia Genovese
- Minerva Research Labs, 1-6 Yarmouth Place, London, W1J 7BU, UK
| | - Sara Sibilla
- Minerva Research Labs, 1-6 Yarmouth Place, London, W1J 7BU, UK.
| | - David Laight
- Portsmouth, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Janis Shute
- Portsmouth, University of Portsmouth, Portsmouth, PO1 2DT, UK
| |
Collapse
|
22
|
Charles-de-Sá L, Gontijo-de-Amorim NF, Takiya CM, Borojevic R, Benati D, Bernardi P, Sbarbati A, Rigotti G. Effect of Use of Platelet-Rich Plasma (PRP) in Skin with Intrinsic Aging Process. Aesthet Surg J 2018; 38:321-328. [PMID: 29040421 DOI: 10.1093/asj/sjx137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND In previous papers, we demonstrated that the treatment of human photoaged skin with stromal-vascular fraction-enriched fat or expanded adipose-derived stem cells showed a decrease of elastosis and the appearance of new oxytalan elastic fibers in dermis and an increase in the vascular network. The utilization of fat plus platelet-rich plasma (PRP) led to an increase in the vascular permeability and reactivity of the nervous component. OBJECTIVES The purpose of this study was to analyze the histologic and ultrastructural changes of human skin after the injection of only PRP in the retroauricular area that was not exposed to sun and did not present the photoaging process, in comparison with our previous results. METHODS This study was performed in 13 patients who were candidates for facelift and whose ages ranged between 45 and 65 years. The PRP injection was performed in the mastoidea area. Fragments of skin were removed before and 3 months after treatment and analyzed by optical and electron microscopy. RESULTS After the injection of PRP, we observed an increase of reticular dermis thickness because of the deposition of elastic fibers and collagen, with a fibrotic aspect. A modified pattern of adipose tissue was also found at the dermohypodermal junction. Significative regenerative aspects were not found at histologic and ultrastructural analysis. The presence of foci of moderate inflammation and microangiopathy were observed. CONCLUSIONS Treatment with PRP increased reticular dermis thickness with a fibrotic aspect. In the long term, the presence of inflammation and microangiopathy caused by PRP injection could lead to trophic alteration of the skin and the precocious aging process. LEVEL OF EVIDENCE 4
Collapse
Affiliation(s)
| | | | | | - Radovan Borojevic
- Postgraduate Program in Surgical Science, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Andrea Sbarbati
- Department of Neurological and Motor Science, Section of Anatomy and Histology, University of Verona, Verona, Italy
| | - Gino Rigotti
- Regenerative Surgery Unit, San Francesco Clinic, Verona, Italy
| |
Collapse
|
23
|
Blume-Peytavi U, Kottner J, Sterry W, Hodin MW, Griffiths TW, Watson REB, Hay RJ, Griffiths CEM. Age-Associated Skin Conditions and Diseases: Current Perspectives and Future Options. THE GERONTOLOGIST 2017; 56 Suppl 2:S230-42. [PMID: 26994263 DOI: 10.1093/geront/gnw003] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The International League of Dermatological Societies (ILDS), a global, not-for-profit organization representing 157 dermatological societies worldwide, has identified the consequences of skin aging as one of the most important grand challenges in global skin health. Reduced functional capacity and increased susceptibility of the skin with development of dermatoses such as dry skin, itching, ulcers, dyspigmentation, wrinkles, fungal infections, as well as benign and malignant tumors are the most common skin conditions in aged populations worldwide. Environmental (e.g., pollution) and lifestyle factors (e.g., smoking, sunbed use) negatively affect skin health. In turn altered appearance, dry skin, chronic wounds, and other conditions decrease general health and reduce the likelihood for healthy and active aging. Preventive skin care includes primary, secondary, and tertiary interventions. Continuous sun protection from early childhood onward is most important, to avoid extrinsic skin damage and skin cancer. Exposure to irritants, allergens, or other molecules damaging the skin must be avoided or reduced to a minimum. Public health approaches are needed to implement preventive and basic skin care worldwide to reach high numbers of dermatological patients and care receivers. Education of primary caregivers and implementation of community dermatology are successful strategies in resource-poor countries. Besides specialist physicians, nurses and other health care professionals play important roles in preventing and managing age-related skin conditions in developing as well as in developed countries. Healthy skin across the life course leads to better mental and emotional health, positive impact on social engagement, and healthier, more active, and productive lives.
Collapse
Affiliation(s)
- Ulrike Blume-Peytavi
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Germany.
| | - Jan Kottner
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Germany
| | - Wolfram Sterry
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Germany. The International League of Dermatological Societies, London, UK
| | | | - Tamara W Griffiths
- The Dermatology Centre, University of Manchester, Academic Health Science Centre, UK
| | - Rachel E B Watson
- The Dermatology Centre, University of Manchester, Academic Health Science Centre, UK
| | | | - Christopher E M Griffiths
- The Dermatology Centre, University of Manchester, Academic Health Science Centre, UK. The International League of Dermatological Societies, London, UK
| |
Collapse
|
24
|
Amano S. Characterization and mechanisms of photoageing-related changes in skin. Damages of basement membrane and dermal structures. Exp Dermatol 2016; 25 Suppl 3:14-9. [DOI: 10.1111/exd.13085] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 11/28/2022]
|
25
|
Antiaging treatment of the facial skin by fat graft and adipose-derived stem cells. Plast Reconstr Surg 2015; 135:999-1009. [PMID: 25811565 DOI: 10.1097/prs.0000000000001123] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The regenerative property of fat grafting has been described. However, it is not clear whether the clinical results are attributable to the stem cells or are linked to other components of the adipose tissue. This work is aimed at analysis of the histologic and ultrastructural changes of aged facial skin after injection of fat graft in addition to its stromal vascular fraction, obtained by centrifugation, and to compare the results with those obtained by the injection of expanded adipose-derived mesenchymal stem cells. METHODS This study was performed in six consecutive patients who were candidates for face lift and whose ages ranged between 45 and 65 years. The patients underwent sampling of fat by liposuction from the abdominal region. The injection of fat and its stromal vascular fraction or expanded mesenchymal stem cells was performed in the preauricular areas. Fragments of skin were removed before and 3 months after each treatment and analyzed by optical and electron microscopy. RESULTS After treatment with the autologous lipidic component and stromal vascular fraction, the skin showed a decrease in elastic fiber network (elastosis) and the appearance of new oxytalan elastic fibers in papillary dermis. The ultrastructural examination showed a modified tridimensional architecture of the reticular dermis and the presence of a richer microvascular bed. Similar results following treatment with expanded mesenchymal stem cells were observed. CONCLUSION This study demonstrates that treatment with either fat and stromal vascular fraction or expanded mesenchymal stem cells modifies the pattern of the dermis, representing a skin rejuvenation effect.
Collapse
|
26
|
A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues. Redox Biol 2015; 5:101-113. [PMID: 25911998 PMCID: PMC4412910 DOI: 10.1016/j.redox.2015.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 01/19/2023] Open
Abstract
Excessive ultraviolet radiation (UVR) exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds) reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (containing UVA, UVB and UVC wavelengths) here we hypothesised that UV chromophore (Cys, Trp and Tyr) content can predict the susceptibility of structural proteins in skin and the eye to damage by physiologically relevant doses (up to 15.4 J/cm2) of solar UVR (95% UVA, 5% UVB). We show that: i) purified suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and β- and γ-lens crystallins undergo solar simulated radiation (SSR)-induced aggregation and/or decomposition and ii) exposure to identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoelastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin associated proteins, elastic fibre-associated components and β- and γ-crystallins) are localised and/or particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich proteins are localised in regions of high UVR exposure as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage. Major structural proteins such as collagen I and tropoelastin are UVA-resistant. In contrast, proteins which are rich in Cys, Trp and Tyr residues are UV-susceptible. These proteins are concentrated in UV exposed tissues. UV-chromophore (Cys, Trp, Tyr)-rich proteins may act as endogenous sunscreens.
Collapse
|
27
|
Over-the-counter anti-ageing topical agents and their ability to protect and repair photoaged skin. Maturitas 2015; 80:265-72. [DOI: 10.1016/j.maturitas.2014.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 12/30/2014] [Indexed: 01/20/2023]
|
28
|
Watson MK, Stern AW, Labelle AL, Joslyn S, Fan TM, Leister K, Kohles M, Marshall K, Mitchell MA. Evaluating the clinical and physiological effects of long term ultraviolet B radiation on guinea pigs (Cavia porcellus). PLoS One 2014; 9:e114413. [PMID: 25517408 PMCID: PMC4269393 DOI: 10.1371/journal.pone.0114413] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022] Open
Abstract
Vitamin D is an important hormone in vertebrates. Most animals acquire this hormone through their diet, secondary to exposure to ultraviolet B (UVB) radiation, or a combination thereof. The objectives for this research were to evaluate the clinical and physiologic effects of artificial UVB light supplementation on guinea pigs (Cavia porcellus) and to evaluate the long-term safety of artificial UVB light supplementation over the course of six months. Twelve juvenile acromelanic Hartley guinea pigs were randomly assigned to one of two treatment groups: Group A was exposed to 12 hours of artificial UVB radiation daily and Group B received only ambient fluorescent light for 12 hours daily. Animals in both groups were offered the same diet and housed under the same conditions. Blood samples were collected every three weeks to measure blood chemistry values, parathyroid hormone, ionized calcium, and serum 25-hydroxyvitamin D3 (25-OHD3) levels. Serial ophthalmologic examinations, computed tomography scans, and dual energy x-ray absorptiometry scans were performed during the course of the study. At the end of the study the animals were euthanized and necropsied. Mean ± SD serum 25-OHD3 concentrations differed significantly in the guinea pigs (p<0.0001) between the UVB supplementation group (101.49±21.81 nmol/L) and the control group (36.33±24.42 nmol/L). An increased corneal thickness in both eyes was also found in the UVB supplementation compared to the control group (right eye [OD]: p<0.0001; left eye [OS]: p<0.0001). There were no apparent negative clinical or pathologic side effects noted between the groups. This study found that exposing guinea pigs to UVB radiation long term significantly increased their circulating serum 25-OHD3 levels, and that this increase was sustainable over time. Providing guinea pigs exposure to UVB may be an important husbandry consideration that is not currently recommended.
Collapse
Affiliation(s)
- Megan K. Watson
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, United States of America
| | - Adam W. Stern
- Department of Pathobiology, University of Illinois, Urbana, Illinois, United States of America
| | - Amber L. Labelle
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, United States of America
| | - Stephen Joslyn
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, United States of America
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, United States of America
| | - Katie Leister
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, United States of America
| | - Micah Kohles
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America; Oxbow Animal Health, Murdock, Nebraska, United States of America
| | | | - Mark A. Mitchell
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Watson REB, Gibbs NK, Griffiths CEM, Sherratt MJ. Damage to skin extracellular matrix induced by UV exposure. Antioxid Redox Signal 2014; 21:1063-77. [PMID: 24124905 DOI: 10.1089/ars.2013.5653] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Chronic exposure to environmental ultraviolet radiation (UVR) plays a key role in both photocarcinogenesis and induction of accelerated skin aging. Although the spatiotemporal consequences of UVR exposure for the composition and architecture of the dermal extracellular matrix (ECM) are well characterized, the pathogenesis of photoaging remains poorly defined. Given the compelling evidence for the role of reactive oxygen species (ROS) as mediators of photoaging, UVR-exposed human skin may be an accessible model system in which to characterize the role of oxidative damage in both internal and external tissues. RECENT ADVANCES Although the cell-mediated degradation of dermal components via UVR-induced expression of ECM proteases has long been identified as an integral part of the photoaging pathway, the relative importance and identity of cellular and extracellular photosensitizers (direct hit and bystanders models, respectively) in initiating this enzymatic activity is unclear. Recently, both age-related protein glycation and relative amino-acid composition have been identified as potential risk factors for photo-ionization and/or photo-sensitization. Here, we propose a selective multi-hit model of photoaging. CRITICAL ISSUES Bioinformatic analyses can be employed to identify candidate UVR targets/photosensitizers, but the action of UVR on protein structure and/or ROS production should be verified experimentally. Crucially, in the case of biochemically active ECM components such as fibronectin and fibrillin, the downstream effects of photo-degradation on tissue homeostasis remain to be confirmed. FUTURE DIRECTIONS Both topical antioxidants and inhibitors of detrimental cell signaling may be effective in abrogating the effects of specific UVR-mediated protein degradation in the dermis.
Collapse
Affiliation(s)
- Rachel E B Watson
- 1 The Dermatology Centre, Salford Royal Hospital, Institute of Inflammation and Repair, The University of Manchester , Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | | | | |
Collapse
|
30
|
Sherratt MJ. Age-Related Tissue Stiffening: Cause and Effect. Adv Wound Care (New Rochelle) 2013; 2:11-17. [PMID: 24527318 DOI: 10.1089/wound.2011.0328] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Indexed: 11/12/2022] Open
Abstract
SIGNIFICANCE Tissue elasticity is severely compromised in aging skin, lungs, and blood vessels. In the vascular and pulmonary systems, respectively, loss of mechanical function is linked to hypertension, which in turn is a risk factor for heart and renal failure, stroke, and aortic aneurysms, and to an increased risk of mortality as a result of acute lung infections. RECENT ADVANCES Although cellular mechanisms were thought to play an important role in mediating tissue aging, the reason for the apparent sensitivity of elastic fibers to age-related degradation remained unclear. We have recently demonstrated that compared with type I collagen, a key component of the elastic fiber system, the cysteine-rich fibrillin microfibril is highly susceptible to direct UV exposure in a cell-free environment. We hypothesized therefore that, as a consequence of both their remarkable longevity and cysteine-rich composition, many elastic fiber-associated components will be susceptible to the accumulation of damage by both direct UV radiation and reactive oxygen species-mediated oxidation. CRITICAL ISSUES Although elastic fiber remodeling is a common feature of aging dynamic tissues, the inaccessibility of most human tissues has hampered attempts to define the molecular causes. CLINICAL CARE RELEVANCE Although, currently, the localized repair of damaged elastic fibers may be effected by the topical application of retinoids and some cosmetic products, future studies may extend the application of systemic transforming growth factor β antagonists, which can prevent cardiovascular remodeling in murine Marfan syndrome, to aging humans. Acellular mechanisms may be key mediators of elastic fiber remodeling and hence age-related tissue stiffening.
Collapse
Affiliation(s)
- Michael J. Sherratt
- Manchester Academic Health Sciences Centre and School of Regenerative Biomedicine, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
31
|
Abe H, Tajima S. UVB irradiation down-regulates type XVI collagen expression in mouse and human skin. J Cosmet Dermatol 2012; 11:169-78. [PMID: 22938000 DOI: 10.1111/j.1473-2165.2012.00612.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Type XVI collagen is a member of the fibril-associated collagens with interrupted triple helices; however, its function or regulation remain unclear. AIMS This study is to examine the effect of ultraviolet B (UVB) or photoaging on type XVI collagen expression in various cultured cells, mouse, and human skin. METHODS The level of α1 (XVI) collagen mRNA was determined by quantitative real-time reverse transcriptase-polymerase chain reaction and the localization of type XVI collagen in normal human skins was detected by theα1 (XVI) collagen polypeptide antibody. RESULTS Exposure of keratinocytes resulted in suppression of mRNA level in a dose- and time-dependent manner and in normal fibroblasts or organotypic cocultures was also inhibited. Expression level in hairless mouse skin was decreased by UVB exposure. Messenger RNA level of human skins in the sun-protected area appeared to be greater than that in the sun-exposed area. Sun-protected and sun-exposed normal skin taken from young subjects showed positive immunoreactivities with the anti-α1 (XVI) collagen antibody in the subepidermal region, whereas sun-exposed skin from elderly subjects exhibited negative immunoreaction. CONCLUSIONS Reduction of type XVI collagen by UVB irradiation in vitro and in vivo may be related to the alteration of extracellular matrix in the photodamaged skin.
Collapse
Affiliation(s)
- Hiroyuki Abe
- Department of Dermatology, National Defense Medical College, Saitama, Japan.
| | | |
Collapse
|
32
|
Thurstan SA, Gibbs NK, Langton AK, Griffiths CE, Watson RE, Sherratt MJ. Chemical consequences of cutaneous photoageing. Chem Cent J 2012; 6:34. [PMID: 22534143 PMCID: PMC3410765 DOI: 10.1186/1752-153x-6-34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/25/2012] [Indexed: 12/28/2022] Open
Abstract
Human skin, in common with other organs, ages as a consequence of the passage of time, but in areas exposed to solar ultraviolet radiation, the effects of this intrinsic ageing process are exacerbated. In particular, both the severity and speed of onset of age-related changes, such as wrinkle formation and loss of elasticity, are enhanced in photoaged (also termed extrinsically aged) as compared with aged, photoprotected, skin. The anatomy of skin is characterised by two major layers: an outer, avascular, yet highly cellular and dynamic epidermis and an underlying vascularised, comparatively static and cell-poor, dermis. The structural consequences of photoageing are mainly evident in the extracellular matrix-rich but cell-poor dermis where key extracellular matrix proteins are particularly susceptible to photodamage. Most investigations to date have concentrated on the cell as both a target for and mediator of, ultraviolet radiation-induced photoageing. As the main effectors of dermal remodelling produced by cells (extracellular proteases) generally have low substrate specificity, we recently suggested that the differential susceptibility of key extracellular matrix proteins to the processes of photoageing may be due to direct, as opposed to cell-mediated, photodamage. In this review, we discuss the experimental evidence for ultraviolet radiation (and related reactive oxygen species)-mediated differential degradation of normally long lived dermal proteins including the fibrillar collagens, elastic fibre components, glycoproteins and proteoglycans. Whilst these components exhibit highly diverse primary and hence macro- and supra-molecular structures, we present evidence that amino acid composition alone may be a useful predictor of age-related protein degradation in both photoexposed and, as a consequence of differential oxidation sensitivity, photoprotected, tissues.
Collapse
Affiliation(s)
- Sarah A Thurstan
- Developmental Biomedicine Research Groups, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Vedrenne N, Coulomb B, Danigo A, Bonté F, Desmoulière A. The complex dialogue between (myo)fibroblasts and the extracellular matrix during skin repair processes and ageing. ACTA ACUST UNITED AC 2012; 60:20-7. [DOI: 10.1016/j.patbio.2011.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 09/16/2011] [Indexed: 01/31/2023]
|
34
|
Annovi G, Boraldi F, Moscarelli P, Guerra D, Tiozzo R, Parma B, Sommer P, Quaglino D. Heparan Sulfate Affects Elastin Deposition in Fibroblasts Cultured from Donors of Different Ages. Rejuvenation Res 2012; 15:22-31. [DOI: 10.1089/rej.2011.1182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Giulia Annovi
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica Boraldi
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Deanna Guerra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Tiozzo
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Pascal Sommer
- Institut de Biologie et Chimie des Protéines, CNRS– Université Lyon 1, Lyon, France
| | - Daniela Quaglino
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
35
|
Kasamatsu S, Hachiya A, Fujimura T, Sriwiriyanont P, Haketa K, Visscher MO, Kitzmiller WJ, Bello A, Kitahara T, Kobinger GP, Takema Y. Essential role of microfibrillar-associated protein 4 in human cutaneous homeostasis and in its photoprotection. Sci Rep 2011; 1:164. [PMID: 22355679 PMCID: PMC3240987 DOI: 10.1038/srep00164] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/08/2011] [Indexed: 11/26/2022] Open
Abstract
UVB-induced cutaneous photodamage/photoaging is characterized by qualitative and quantitative deterioration in dermal extracellular matrix (ECM) components such as collagen and elastic fibers. Disappearance of microfibrillar-associated protein 4 (MFAP-4), a possible limiting factor for cutaneous elasticity, was documented in photoaged dermis, but its function is poorly understood. To characterize its possible contribution to photoprotection, MFAP-4 expression was either augmented or inhibited in a human skin xenograft photodamage murine model and human fibroblasts. Xenografted skin with enhanced MFAP-4 expression was protected from UVB-induced photodamage/photoaging accompanied by the prevention of ECM degradation and aggravated elasticity. Additionally, remarkably increased or decreased fibrillin-1-based microfibril development was observed when fibroblasts were treated with recombinant MFAP-4 or with MFAP-4-specific siRNA, respectively. Immunoprecipitation analysis confirmed direct interaction between MFAP-4 and fibrillin-1. Taken together, our findings reveal the essential role of MFAP-4 in photoprotection and offer new therapeutic opportunities to prevent skin-associated pathologies.
Collapse
Affiliation(s)
- Shinya Kasamatsu
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi, 321–3497, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Baillie L, Askew D, Douglas N, Soyer H. Strategies for assessing the degree of photodamage to skin: a systematic review of the literature. Br J Dermatol 2011; 165:735-42. [DOI: 10.1111/j.1365-2133.2011.10416.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- L. Baillie
- Dermatology Research Centre, The University of Queensland, School of Medicine, Princess Alexandra Hospital, 199 Ipswich Road, Brisbane, Qld 4102, Australia
| | - D. Askew
- Dermatology Research Centre, The University of Queensland, School of Medicine, Princess Alexandra Hospital, 199 Ipswich Road, Brisbane, Qld 4102, Australia
| | - N. Douglas
- Dermatology Research Centre, The University of Queensland, School of Medicine, Princess Alexandra Hospital, 199 Ipswich Road, Brisbane, Qld 4102, Australia
| | - H.P. Soyer
- Dermatology Research Centre, The University of Queensland, School of Medicine, Princess Alexandra Hospital, 199 Ipswich Road, Brisbane, Qld 4102, Australia
| |
Collapse
|
37
|
Naylor EC, Watson REB, Sherratt MJ. Molecular aspects of skin ageing. Maturitas 2011; 69:249-56. [PMID: 21612880 DOI: 10.1016/j.maturitas.2011.04.011] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 04/20/2011] [Indexed: 11/16/2022]
Abstract
Ageing of human skin may result from both the passage of time (intrinsic ageing) and from cumulative exposure to external influences (extrinsic ageing) such as ultraviolet radiation (UVR) which promote wrinkle formation and loss of tissue elasticity. Whilst both ageing processes are associated with phenotypic changes in cutaneous cells, the major functional manifestations of ageing occur as a consequence of structural and compositional remodeling of normally long-lived dermal extracellular matrix proteins. This review briefly considers the effects of ageing on dermal collagens and proteoglycans before focusing on the mechanisms, functional consequences and treatment of elastic fibre remodeling in ageing skin. The early stages of photoageing are characterised by the differential degradation of elastic fibre proteins and whilst the activity of extracellular matrix proteases is increased in photoexposed skin, the substrate specificity of these enzymes is low. We have recently shown however, that isolated fibrillin microfibrils are susceptible to direct degradation by physiologically attainable doses of UV-B radiation and that elastic fibre proteins as a group are highly enriched in UV-absorbing amino acid residues. Functionally, elastic fibre remodeling events may adversely impact on: the mechanical properties of tissues, the recruitment and activation of immune cells, the expression of matrix metalloproteinases and cytokine signaling (by perturbing fibrillin microfibril sequestration of TGFβ). Finally, newly developed topical interventions appear to be capable of regenerating elements of the elastic fibre system in ageing skin, whilst systemic treatments may potentially prevent the pathological tissue remodeling events which occur in response to elastic fibre degradation.
Collapse
Affiliation(s)
- Elizabeth C Naylor
- Manchester Academic Health Sciences Centre, The University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
38
|
Auer-Grumbach M, Weger M, Fink-Puches R, Papić L, Fröhlich E, Auer-Grumbach P, El Shabrawi-Caelen L, Schabhüttl M, Windpassinger C, Senderek J, Budka H, Trajanoski S, Janecke AR, Haas A, Metze D, Pieber TR, Guelly C. Fibulin-5 mutations link inherited neuropathies, age-related macular degeneration and hyperelastic skin. ACTA ACUST UNITED AC 2011; 134:1839-52. [PMID: 21576112 DOI: 10.1093/brain/awr076] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To identify the disease-causing gene responsible for an autosomal dominantly inherited Charcot-Marie-Tooth neuropathy subtype in a family excluded for mutations in the common Charcot-Marie-Tooth genes, we used array-based sequence capture to simultaneously analyse the disease-linked protein coding exome at chromosome 14q32. A missense mutation in fibulin-5, encoding a widely expressed constituent of the extracellular matrix that has an essential role in elastic fibre assembly and has been shown to cause cutis laxa, was detected as the only novel non-synonymous sequence variant within the disease interval. Screening of 112 index probands with unclassified Charcot-Marie-Tooth neuropathies detected two further fibulin-5 missense mutations in two families with Charcot-Marie-Tooth disease and hyperextensible skin. Since fibulin-5 mutations have been described in patients with age-related macular degeneration, an additional 300 probands with exudative age-related macular degeneration were included in this study. Two further fibulin-5 missense mutations were identified in six patients. A mild to severe peripheral neuropathy was detected in the majority of patients with age-related macular degeneration carrying mutations in fibulin-5. This study identifies fibulin-5 as a gene involved in Charcot-Marie-Tooth neuropathies and reveals heterozygous fibulin-5 mutations in 2% of our patients with age-related macular degeneration. Furthermore, it adumbrates a new syndrome by linking concurrent pathologic alterations affecting peripheral nerves, eyes and skin to mutations in the fibulin-5 gene.
Collapse
Affiliation(s)
- Michaela Auer-Grumbach
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Medical University of Graz, Stiftingtalstraße 24; A-8010 Graz, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Budatha M, Roshanravan S, Zheng Q, Weislander C, Chapman SL, Davis EC, Starcher B, Word RA, Yanagisawa H. Extracellular matrix proteases contribute to progression of pelvic organ prolapse in mice and humans. J Clin Invest 2011; 121:2048-59. [PMID: 21519142 DOI: 10.1172/jci45636] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/09/2011] [Indexed: 12/21/2022] Open
Abstract
Pelvic organ prolapse (POP) is a common condition affecting almost half of women over the age of 50. The molecular and cellular mechanisms underlying this condition, however, remain poorly understood. Here we have reported that fibulin-5, an integrin-binding matricellular protein that is essential for elastic fiber assembly, regulated the activity of MMP-9 to maintain integrity of the vaginal wall and prevented development of POP. In murine vaginal stromal cells, fibulin-5 inhibited the β1 integrin-dependent, fibronectin-mediated upregulation of MMP-9. Mice in which the integrin-binding motif was mutated to an integrin-disrupting motif (Fbln5RGE/RGE) exhibited upregulation of MMP-9 in vaginal tissues. In contrast to fibulin-5 knockouts (Fbln5-/-), Fbln5RGE/RGE mice were able to form intact elastic fibers and did not exhibit POP. However, treatment of mice with β-aminopropionitrile (BAPN), an inhibitor of matrix cross-linking enzymes, induced subclinical POP. Conversely, deletion of Mmp9 in Fbln5-/- mice significantly attenuated POP by increasing elastic fiber density and improving collagen fibrils. Vaginal tissue samples from pre- and postmenopausal women with POP also displayed significantly increased levels of MMP-9. These results suggest that POP is an acquired disorder of extracellular matrix and that therapies targeting matrix proteases may be successful for preventing or ameliorating POP in women.
Collapse
Affiliation(s)
- Madhusudhan Budatha
- Department of Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Langton AK, Sherratt MJ, Griffiths CEM, Watson REB. Differential expression of elastic fibre components in intrinsically aged skin. Biogerontology 2011; 13:37-48. [DOI: 10.1007/s10522-011-9332-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/21/2011] [Indexed: 11/28/2022]
|
41
|
Iriyama S, Matsunaga Y, Takahashi K, Matsuzaki K, Kumagai N, Amano S. Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal-epidermal junction in human skin. Arch Dermatol Res 2011; 303:253-61. [PMID: 21221614 DOI: 10.1007/s00403-010-1117-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/12/2010] [Accepted: 12/14/2010] [Indexed: 12/01/2022]
Abstract
Recently, we reported that heparanase plays important roles in barrier-disrupted skin, leading to increased interaction of growth factors between epidermis and dermis and facilitating various cutaneous changes, including epidermal hyperplasia and wrinkle formation. However, the role of heparanase in sun-exposed skin remains unknown. Here, we show that heparanase in human keratinocytes is activated by ultraviolet B (UVB) exposure and that heparan sulfate of perlecan is markedly degraded in UVB-irradiated human skin. The degradation of heparan sulfate resulted in a marked reduction of binding activity of the basement membrane for vascular endothelial growth factor, fibroblast growth factor-2 and -7 at the dermal-epidermal junction. Degradation of heparan sulfate was observed not only in acutely UVB-irradiated skin, but also in skin chronically exposed to sun. Interestingly, heparan sulfate was found to be degraded in sun-exposed skin, but not in sun-protected skin. These findings suggest that chronic UVB exposure activates heparanase, leading to degradation of heparan sulfate in the basement membrane and increased growth factor interaction between epidermis and dermis. These changes may facilitate photo-aging.
Collapse
Affiliation(s)
- Shunsuke Iriyama
- Shiseido Research Center, Hayabuchi, Tsuzuki-ku, Yokohama, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Sherratt MJ, Bayley CP, Reilly SM, Gibbs NK, Griffiths CEM, Watson REB. Low-dose ultraviolet radiation selectively degrades chromophore-rich extracellular matrix components. J Pathol 2010; 222:32-40. [PMID: 20552716 DOI: 10.1002/path.2730] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photoageing of human skin due to chronic exposure to ultraviolet radiation (UVR) is characterized histologically by extensive remodelling of the dermal elastic fibre system. Whilst enzymatic pathways are thought to play a major role in mediating extracellular matrix (ECM) degeneration in UV-exposed skin, the substrate specificity of UVR-up-regulated and activated matrix metalloproteinases (MMPs) is low. It is unclear, therefore, how such cell-mediated mechanisms alone could be responsible for the reported selective degradation of elastic fibre components such as fibrillin-1 and fibulin-5 during the early stages of photoageing. Here we use atomic force microscopy (AFM) and scanning transmission electron microscopy (STEM) to demonstrate that physiologically attainable doses (20-100 mJ/cm(2)) of direct UV-B radiation can induce profound, dose-dependent, changes in the structure of, and mass distribution within, isolated fibrillin microfibrils. Furthermore, using reducing and native PAGE in combination with AFM, we show that, whilst exposure to low-dose UV-B radiation significantly alters the macromolecular and quaternary structures of both UV chromophore (Cys, His, Phe, Trp and Tyr)-rich fibrillin microfibrils (fibrillin-1, 21.0%) and fibronectin dimers (fibronectin, 12.9%), similar doses have no detectable effect on UV chromophore-poor type I collagen monomers (2.2%). Analysis of the published primary amino acid sequences of 49 dermal ECM components demonstrates that most elastic fibre-associated proteins, but crucially neither elastin nor members of the collagen family, are rich in UV chromophores. We suggest, therefore, that the amino acid composition of elastic fibre-associated proteins [including the fibrillins, fibulins, latent TGFbeta binding proteins (LTBPs) and the lysyl oxidase family of enzymes (LOK/LOXLs)] may predispose them to direct degradation by UVR. As a consequence, this selective acellular photochemical pathway may play an important role in initiating and/or exacerbating cell-mediated ECM remodelling in UVR-exposed skin.
Collapse
Affiliation(s)
- Michael J Sherratt
- Regenerative Biomedicine, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Sherratt MJ. Tissue elasticity and the ageing elastic fibre. AGE (DORDRECHT, NETHERLANDS) 2009; 31:305-25. [PMID: 19588272 PMCID: PMC2813052 DOI: 10.1007/s11357-009-9103-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 06/08/2009] [Indexed: 04/16/2023]
Abstract
The ability of elastic tissues to deform under physiological forces and to subsequently release stored energy to drive passive recoil is vital to the function of many dynamic tissues. Within vertebrates, elastic fibres allow arteries and lungs to expand and contract, thus controlling variations in blood pressure and returning the pulmonary system to a resting state. Elastic fibres are composite structures composed of a cross-linked elastin core and an outer layer of fibrillin microfibrils. These two components perform distinct roles; elastin stores energy and drives passive recoil, whilst fibrillin microfibrils direct elastogenesis, mediate cell signalling, maintain tissue homeostasis via TGFβ sequestration and potentially act to reinforce the elastic fibre. In many tissues reduced elasticity, as a result of compromised elastic fibre function, becomes increasingly prevalent with age and contributes significantly to the burden of human morbidity and mortality. This review considers how the unique molecular structure, tissue distribution and longevity of elastic fibres pre-disposes these abundant extracellular matrix structures to the accumulation of damage in ageing dermal, pulmonary and vascular tissues. As compromised elasticity is a common feature of ageing dynamic tissues, the development of strategies to prevent, limit or reverse this loss of function will play a key role in reducing age-related morbidity and mortality.
Collapse
Affiliation(s)
- Michael J Sherratt
- Tissue Injury and Repair Group, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
44
|
Katsuta Y, Ogura Y, Iriyama S, Goetinck PF, Klement JF, Uitto J, Amano S. Fibulin-5 accelerates elastic fibre assembly in human skin fibroblasts. Exp Dermatol 2008; 17:837-42. [DOI: 10.1111/j.1600-0625.2008.00709.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Immunohistochemical Investigation of Mid-Dermal Elastolysis With a History of Erythema. Am J Dermatopathol 2008; 30:477-80. [DOI: 10.1097/dad.0b013e318176b874] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Abstract
The environment, especially solar irradiation, plays a major role in skin aging. In humans, cutaneous areas frequently exposed to solar radiations are subject to premature skin ageing (heliodermatitis) which has specific clinical and histological features distinct from those observed in photoprotected skin. Most of the cellular and molecular mechanisms implicated in chronologic aging are observed in both ultraviolet exposed and photoprotected skin and can be stimulated in vitro and in vivo by repeated ultraviolet exposures. This article reviews the epidemiological, clinical and histological characteristics of photoaging and summarizes the recent findings acquired in this field.
Collapse
Affiliation(s)
- P-E Stoebner
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-UM1-UM2, Montpellier, France.
| | | |
Collapse
|
47
|
Sato Y, Sawada S, Nakanuma Y. Fibulin-5 is involved in phlebosclerosis of major portal vein branches associated with elastic fiber deposition in idiopathic portal hypertension. Hepatol Res 2008; 38:166-73. [PMID: 18197878 DOI: 10.1111/j.1872-034x.2007.00253.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM In cases of idiopathic portal hypertension (IPH), the deposition of elastic fibers in the major portal vein branches and peripheral portal tracts is a common and characteristic histological finding, which may be related to the disease's pathogenesis. This study aimed to clarify the mechanism of this portal fibroelastosis. METHODS The expression of fibulin-5 and fibrillin-1, proteins essential for elastogenesis, was examined in IPH livers (n = 15) using immunohistochemistry. Liver specimens obtained from patients with chronic viral hepatitis (CVH)/liver cirrhosis (LC) (n = 12) and normal/subnormal livers (n = 10) were used as controls. RESULTS In IPH livers, immunohistochemical labeling of fibulin-5 was observed in the major portal vein branches in eight cases (53%), and the distribution corresponded to that of elastic fibers in the vessel walls, while the peripheral portaltracts totally lacked fibulin-5 in spite of the presence of dense elastic fibers. In CVH/LC and normal livers, fibulin-5 expression was absent or faint throughout the sections. Fibrillin-1 was detected in the connective tissue of the hilar region and peripheral portal tracts in IPH, CVH/LC and normal livers, with the expression varying greatly among cases. CONCLUSIONS These results suggest that fibulin-5, rather than fibrillin-1, expressed in the major portal vein branches of IPH livers is related to phlebosclerosis, leading to an increase in presinusoidal vascular resistance and portal hypertension. In addition, the mechanism of fibroelastosis may differ between the major portal vein branches and peripheral portal tracts of IPH livers.
Collapse
Affiliation(s)
- Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | | |
Collapse
|
48
|
Farwick M, Watson REB, Rawlings AV, Wollenweber U, Lersch P, Bowden JJ, Bastrilles JY, Griffiths CEM. Salicyloyl-phytosphingosine: a novel agent for the repair of photoaged skin. Int J Cosmet Sci 2007; 29:319-29. [DOI: 10.1111/j.1467-2494.2007.00394.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Sullivan KM, Bissonnette R, Yanagisawa H, Hussain SN, Davis EC. Fibulin-5 functions as an endogenous angiogenesis inhibitor. J Transl Med 2007; 87:818-27. [PMID: 17607303 DOI: 10.1038/labinvest.3700594] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ablation of the fibulin-5 gene (fbln5) in mice results in loose skin, emphysematous lungs and tortuous vessels. Additionally, fbln5(-/-) animals display an apparent increase in vascular sprouting from systemic and cutaneous vessels. From these observations, we hypothesized that a de-regulation of vascular sprouting occurs in the absence of endogenous fibulin-5. To test this hypothesis, vascular sprouts from the long thoracic artery were quantified and polyvinyl alcohol sponges were implanted subcutaneously in wild-type and fbln5(-/-) mice to assess fibrovascular invasion. Results showed a significant increase in in situ sprouting from vessels in fbln5(-/-) mice and a significant increase in vascular invasion, with no increase in fibroblast migration, into sponges removed from fbln5(-/-) mice compared with wild-type mice. Localization of fibulin-5 in wild-type mice showed the protein to be present subjacent to endothelial cells (ECs) in established vessels at the periphery of the sponge, and as a component of the newly formed, loose connective tissue within the sponge. These results suggest that fibulin-5 could function as an inhibitor molecule in initial sprouting and/or migration of ECs. To elucidate the molecular mechanism that drives the increased angiogenesis in the absence of fibulin-5, expression of vascular endothelial growth factor (VEGF) and the angiopoietins (Angs) was determined in sponges implanted for 12 days in wild-type and fbln5(-/-) mice. Quantitative RT-PCR showed message levels for VEGF and all three Angs to be elevated by several fold in the area of invasion of sponges from fbln5(-/-) mice compared with wild-type mice. Expression of Ang-1 was also shown to be elevated (30-fold) in vitro in aortic smooth muscle cells isolated from fbln5(-/-) mice when compared with wild-type cells, with no change in the expression of the Ang-1 mediating transcription factor, ESE-1. Taken together, these results suggest that the normal angiogenic process is enhanced in the absence of fibulin-5.
Collapse
Affiliation(s)
- Kaitlyn M Sullivan
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
50
|
Hasegawa K, Yoneda M, Kuwabara H, Miyaishi O, Itano N, Ohno A, Zako M, Isogai Z. Versican, a major hyaluronan-binding component in the dermis, loses its hyaluronan-binding ability in solar elastosis. J Invest Dermatol 2007; 127:1657-63. [PMID: 17363913 DOI: 10.1038/sj.jid.5700754] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Versican interacts with hyaluronan (HA) at its N-terminus and with fibrillin-1 at its C terminus. As versican in the dermis connects microfibrils to the HA-rich matrix for viscoelasticity, dermal diseases may involve destruction of these complexes. A recombinant versican protein, rVN, covering the HA binding region (HABR) of human versican and a polyclonal antibody, 6084, against rVN were prepared and characterized. Blotting analyses of skin extracts with 6084 and biotin-conjugated HA revealed that versican was a major HA-binding component in the dermis. Matrix metalloprotease-12, which is expressed in areas of solar elastosis, degraded versican and abrogated its HA-binding ability. Immunohistochemical analyses revealed that the elastic materials in solar elastosis lesions were negative for 6084, but positive for 2B1, an antibody recognizing the C-terminus of versican, indicating loss of the HABR in the aggregated elastic fibers. This loss of the HA-binding ability of versican followed by HA exclusion may be responsible for the pathological and phenotypical changes observed in solar elastosis.
Collapse
Affiliation(s)
- Keiko Hasegawa
- Department of Biochemistry and Molecular Biology, Aichi Prefectural College of Nursing and Health, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|