1
|
Lee YG, Jung Y, Choi HK, Lee JI, Lim TG, Lee J. Natural Product-Derived Compounds Targeting Keratinocytes and Molecular Pathways in Psoriasis Therapeutics. Int J Mol Sci 2024; 25:6068. [PMID: 38892253 PMCID: PMC11172960 DOI: 10.3390/ijms25116068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Psoriasis is a chronic autoimmune inflammatory skin disorder that affects approximately 2-3% of the global population due to significant genetic predisposition. It is characterized by an uncontrolled growth and differentiation of keratinocytes, leading to the formation of scaly erythematous plaques. Psoriasis extends beyond dermatological manifestations to impact joints and nails and is often associated with systemic disorders. Although traditional treatments provide relief, their use is limited by potential side effects and the chronic nature of the disease. This review aims to discuss the therapeutic potential of keratinocyte-targeting natural products in psoriasis and highlight their efficacy and safety in comparison with conventional treatments. This review comprehensively examines psoriasis pathogenesis within keratinocytes and the various related signaling pathways (such as JAK-STAT and NF-κB) and cytokines. It presents molecular targets such as high-mobility group box-1 (HMGB1), dual-specificity phosphatase-1 (DUSP1), and the aryl hydrocarbon receptor (AhR) for treating psoriasis. It evaluates the ability of natural compounds such as luteolin, piperine, and glycyrrhizin to modulate psoriasis-related pathways. Finally, it offers insights into alternative and sustainable treatment options with fewer side effects.
Collapse
Affiliation(s)
- Yu Geon Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.G.L.); (Y.J.); (H.-K.C.); (J.-I.L.)
| | - Younjung Jung
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.G.L.); (Y.J.); (H.-K.C.); (J.-I.L.)
| | - Hyo-Kyoung Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.G.L.); (Y.J.); (H.-K.C.); (J.-I.L.)
| | - Jae-In Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.G.L.); (Y.J.); (H.-K.C.); (J.-I.L.)
| | - Tae-Gyu Lim
- Department of Food Science & Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea;
- Carbohydrate Bioproduct Research Center, Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jangho Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.G.L.); (Y.J.); (H.-K.C.); (J.-I.L.)
| |
Collapse
|
2
|
Yoo EH, Lee JH. Cannabinoids and Their Receptors in Skin Diseases. Int J Mol Sci 2023; 24:16523. [PMID: 38003712 PMCID: PMC10672037 DOI: 10.3390/ijms242216523] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic application of cannabinoids has gained traction in recent years. Cannabinoids interact with the human endocannabinoid system in the skin. A large body of research indicates that cannabinoids could hold promise for the treatment of eczema, psoriasis, acne, pruritus, hair disorders, and skin cancer. However, most of the available data are at the preclinical stage. Comprehensive, large-scale, randomized, controlled clinical trials have not yet been fully conducted. In this article, we describe new findings in cannabinoid research and point out promising future research areas.
Collapse
Affiliation(s)
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
3
|
Simard M, Morin S, Ridha Z, Pouliot R. Current knowledge of the implication of lipid mediators in psoriasis. Front Immunol 2022; 13:961107. [PMID: 36091036 PMCID: PMC9459139 DOI: 10.3389/fimmu.2022.961107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The skin is an organ involved in several biological processes essential to the proper functioning of the organism. One of these essential biological functions of the skin is its barrier function, mediated notably by the lipids of the stratum corneum, and which prevents both penetration from external aggression, and transepidermal water loss. Bioactive lipid mediators derived from polyunsaturated fatty acids (PUFAs) constitute a complex bioactive lipid network greatly involved in skin homeostasis. Bioactive lipid mediators derived from n-3 and n-6 PUFAs have well-documented anti- and pro-inflammatory properties and are recognized as playing numerous and complex roles in the behavior of diverse skin diseases, including psoriasis. Psoriasis is an inflammatory autoimmune disease with many comorbidities and is associated with enhanced levels of pro-inflammatory lipid mediators. Studies have shown that a high intake of n-3 PUFAs can influence the development and progression of psoriasis, mainly by reducing the severity and frequency of psoriatic plaques. Herein, we provide an overview of the differential effects of n-3 and n-6 PUFA lipid mediators, including prostanoids, hydroxy-fatty acids, leukotrienes, specialized pro-resolving mediators, N-acylethanolamines, monoacylglycerols and endocannabinoids. This review summarizes current findings on lipid mediators playing a role in the skin and their potential as therapeutic targets for psoriatic patients.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Zainab Ridha
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/Laboratoire d’Organogénèse EXpérimentale (LOEX), Axe Médecine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- *Correspondence: Roxane Pouliot,
| |
Collapse
|
4
|
Cytokeratin 10 (CK10) expression in cancer: A tissue microarray study on 11,021 tumors. Ann Diagn Pathol 2022; 60:152029. [PMID: 36029589 DOI: 10.1016/j.anndiagpath.2022.152029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
Cytokeratin 10 (CK10) is a type I acidic low molecular weight cytokeratin which is mainly expressed in keratinizing squamous epithelium of the skin. Variable levels of CK10 protein have been described in squamous carcinomas of different sites and in some other epithelial neoplasms. To comprehensively determine the prevalence of CK10 expression in normal and neoplastic tissues, a tissue microarray containing 11,021 samples from 131 different tumor types and subtypes was analyzed by immunohistochemistry. CK10 immunostaining was detectable in 41 (31.3 %) of 131 tumor categories, including 18 (13.7 %) tumor types with at least one strongly positive case. The highest rate of positive staining was found in squamous cell carcinomas from various sites of origin (positive in 18.6 %-66.1 %) and in Warthin tumors of salivary glands (47.8 %), followed by various tumor entities known to potentially exhibit areas with squamous cell differentiation such as teratomas (33.3 %), basal cell carcinomas of the skin (14.3 %), adenosquamous carcinomas of the cervix (11.1 %), and several categories of urothelial neoplasms (3.1 %-16.8 %). In a combined analysis of 956 squamous cell carcinomas from 11 different sites of origin, reduced CK10 staining was linked to high grade (p < 0.0001) and advanced stage (p = 0.0015) but unrelated to HPV infection. However, CK10 staining was not statistically related to grade (p = 0.1509) and recurrence-free (p = 0.5247) or overall survival (p = 0.5082) in 176 cervical squamous cell carcinomas. In the urinary bladder, CK10 staining occurred more commonly in muscle-invasive (17.7 %) than in non-invasive urothelial carcinomas (4.0 %-6.0 %; p < 0.0001). In summary, our data corroborate a role of CK10 as a suitable marker for mature, keratinizing squamous cell differentiation in epithelial tissues. CK10 immunohistochemistry may thus be instrumental for a more objective evaluation of the clinical significance of focal squamous differentiation in cancer.
Collapse
|
5
|
The Psoriatic Nonlesional Skin: A Battlefield between Susceptibility and Protective Factors. J Invest Dermatol 2021; 141:2785-2790. [PMID: 34216605 DOI: 10.1016/j.jid.2021.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022]
Abstract
In the last two decades, large-scale gene-expression studies on psoriatic skin samples revealed that even though nonlesional skin is macroscopically identical to healthy skin, it harbors several molecular differences. Originally, these molecular differences were thought to represent susceptibility factors for plaque formation. However, we review in this paper the several factors of immune regulation and structural alteration that are specific for the nonlesional skin and serve as protective factors by counteracting plaque formation and contributing to the maintenance of the nonlesional phenotype.
Collapse
|
6
|
Pavez Lorie E, Stricker N, Plitta-Michalak B, Chen IP, Volkmer B, Greinert R, Jauch A, Boukamp P, Rapp A. Characterisation of the novel spontaneously immortalized and invasively growing human skin keratinocyte line HaSKpw. Sci Rep 2020; 10:15196. [PMID: 32938951 PMCID: PMC7494900 DOI: 10.1038/s41598-020-71315-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
We here present the spontaneously immortalised cell line, HaSKpw, as a novel model for the multistep process of skin carcinogenesis. HaSKpw cells were established from the epidermis of normal human adult skin that, without crisis, are now growing unrestricted and feeder-independent. At passage 22, clonal populations were established and clone7 (HaSKpwC7) was further compared to the also spontaneously immortalized HaCaT cells. As important differences, the HaSKpw cells express wild-type p53, remain pseudodiploid, and show a unique chromosomal profile with numerous complex aberrations involving chromosome 20. In addition, HaSKpw cells overexpress a pattern of genes and miRNAs such as KRT34, LOX, S100A9, miR21, and miR155; all pointing to a tumorigenic status. In concordance, HaSKpw cells exhibit reduced desmosomal contacts that provide them with increased motility and a highly migratory/invasive phenotype as demonstrated in scratch- and Boyden chamber assays. In 3D organotypic cultures, both HaCaT and HaSKpw cells form disorganized epithelia but only the HaSKpw cells show tumorcell-like invasive growth. Together, HaSKpwC7 and HaCaT cells represent two spontaneous (non-genetically engineered) “premalignant” keratinocyte lines from adult human skin that display different stages of the multistep process of skin carcinogenesis and thus represent unique models for analysing skin cancer development and progression.
Collapse
Affiliation(s)
- Elizabeth Pavez Lorie
- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Nicola Stricker
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - Beata Plitta-Michalak
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - I-Peng Chen
- Centre of Dermatology, Elbe Clinics, Am Krankenhaus 1, Buxtehude, 21614, Germany
| | - Beate Volkmer
- Centre of Dermatology, Elbe Clinics, Am Krankenhaus 1, Buxtehude, 21614, Germany
| | - Rüdiger Greinert
- Centre of Dermatology, Elbe Clinics, Am Krankenhaus 1, Buxtehude, 21614, Germany
| | - Anna Jauch
- Institute of Human Genetics, University Heidelberg, 69120, Heidelberg, Germany
| | - Petra Boukamp
- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| | - Alexander Rapp
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany.
| |
Collapse
|
7
|
Albendazole negatively regulates keratinocyte proliferation. Clin Sci (Lond) 2020; 134:907-920. [PMID: 32236445 DOI: 10.1042/cs20191215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Increased keratinocyte proliferation occurs in the skin of psoriatic patients and is supposed to play a role in the pathogenesis of this disorder. Compounds interfering with keratinocyte proliferation could be useful in the management of psoriatic patients. AIM To investigate whether albendazole, an anti-helmintic drug that regulates epithelial cell function in various systems, inhibits keratinocyte proliferation in models of psoriasis. METHODS Aldara-treated mice received daily topical application of albendazole. Keratinocyte proliferation and keratin (K) 6 and K16 expression were evaluated by immunohistochemistry and Western blotting and inflammatory cells/mediators were analysed by immunohistochemistry and real-time PCR. In human keratinocytes (HEKa and HaCaT) treated with albendazole, cell cycle and proliferation, keratins and cell cycle-associated factors were evaluated by flow cytometry, colorimetric assay and Western blotting respectively. RESULTS Aldara-treated mice given albendazole exhibited reduced epidermal thickness, decreased number of proliferating keratinocytes and K6/K16 expression. Reduction of CD3- and Ly6G-positive cells in the skin of albendazole-treated mice associated with inhibition of IL-6, TNF-α, IL-1β, IL-17A, IL-36, CCL17, CXCL1, CXCL2 and CXCL5 expression. Treatment of keratinocytes with albendazole reduced K6/K16 expression and reversibly inhibited cell growth by promoting accumulation of cells in S-phase. This phenomenon was accompanied by down-regulation of CDC25A, a phosphatase regulating progression of cell cycle through S-phase, and PKR-dependent hyper-phosphorylation of eIF2α, an inhibitor of CDC25 translation. In Aldara-treated mice, albendazole activated PKR, enhanced eIF2α phosphorylation and reduced CDC25A expression. CONCLUSIONS Data show that albendazole inhibits keratinocyte proliferation and exerts therapeutic effect in a murine model of psoriasis.
Collapse
|
8
|
Chen L, Deshpande M, Grisotto M, Smaldini P, Garcia R, He Z, Gulko PS, Lira SA, Furtado GC. Skin expression of IL-23 drives the development of psoriasis and psoriatic arthritis in mice. Sci Rep 2020; 10:8259. [PMID: 32427877 PMCID: PMC7237669 DOI: 10.1038/s41598-020-65269-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
Psoriasis (PS) is a chronic skin inflammation. Up to 30% of the patients with PS develop psoriatic arthritis (PsA), a condition characterized by inflammatory arthritis that affects joints or entheses. Although there is mounting evidence for a critical role of interleukin-23 (IL-23) signaling in the pathogenesis of both PS and PsA, it remains unclear whether IL-23-induced skin inflammation drives joint disease. Here, we show that mice expressing increased levels of IL-23 in the skin (K23 mice) develop a PS-like disease that is characterized by acanthosis, parakeratosis, hyperkeratosis, and inflammatory infiltrates in the dermis. Skin disease preceded development of PsA, including enthesitis, dactylitis, and bone destruction. The development of enthesitis and dactylitis was not due to high circulating levels of IL-23, as transgenic animals and controls had similar levels of this cytokine in circulation. IL-22, a downstream cytokine of IL-23, was highly increased in the serum of K23 mice. Although IL-22 deficiency did not affect skin disease development, IL-22 deficiency aggravated the PsA-like disease in K23 mice. Our results demonstrate a central role for skin expressed IL-23 in the initiation of PS and on pathogenic processes leading to PsA.
Collapse
Affiliation(s)
- Lili Chen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madhura Deshpande
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcos Grisotto
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paola Smaldini
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto Garcia
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Zhengxiang He
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Percio S Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Glaucia C Furtado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Gao L, Dou J, Zhang B, Zeng J, Cheng Q, Lei L, Tan L, Zeng Q, Ding S, Guo A, Cheng H, Yang C, Luo Z, Lu J. Ozone therapy promotes the differentiation of basal keratinocytes via increasing Tp63-mediated transcription of KRT10 to improve psoriasis. J Cell Mol Med 2020; 24:4819-4829. [PMID: 32168425 PMCID: PMC7176851 DOI: 10.1111/jcmm.15160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Psoriasis is a chronic immune‐mediated inflammatory dermatosis. Recently, ozone therapy has been applicated to psoriasis treatment; however, the mechanism by which ozone therapy improves psoriasis remains unclear. The excessive proliferation and the differentiation of basal keratinocytes have been considered critical issues during pathological psoriasis process, in which keratin 6 (KRT6) and KRT10 might be involved. In the present study, KRT6, IL‐17 and IL‐22 protein within psoriasis lesions was decreased, while KRT10 and Tp63 protein in psoriasis lesions was increased by ozone treatment in both patient and IMQ mice psoriatic tissues. In the meantime, ozone treatment down‐regulated KRT6 mRNA and protein expression while up‐regulated KRT10 mRNA and protein expression within IL‐22 treated primary KCs; the cell viability of KCs was suppressed by ozone treatment. Moreover, Tp63 bound to KRT10 promoter region to activate its transcription in basal keratinocytes; the promotive effects of ozone on Tp63 and KRT10 were significantly reversed by Tp63 silence. Both TP63 and KRT10 mRNA expression were significantly increased by ozone treatment in psoriasis lesions; there was a positive correlation between Tp63 and KRT10 expression within tissue samples, suggesting that ozone induces the expression of Tp63 to enhance the expression of KRT10 and the differentiation of keratinocytes, therefore improving the psoriasis. In conclusion, the application of ozonated oil could be an efficient and safe treatment for psoriasis; ozone promotes the differentiation of keratinocytes via increasing Tp63‐mediated transcription of KRT10, therefore improving psoriasis.
Collapse
Affiliation(s)
- Lihua Gao
- Department of Physiology, College of Basic Medicine, Central South University, Changsha, China.,Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianhua Dou
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bo Zhang
- Department of Stomatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinrong Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingmei Cheng
- Department of Physiology, College of Basic Medicine, Central South University, Changsha, China
| | - Li Lei
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lina Tan
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shu Ding
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Aiyuan Guo
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Haipeng Cheng
- Department of Physiology, College of Basic Medicine, Central South University, Changsha, China
| | - Caifeng Yang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziqiang Luo
- Department of Physiology, College of Basic Medicine, Central South University, Changsha, China
| | - Jianyun Lu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Gao J, Chen F, Hua M, Guo J, Nong Y, Tang Q, Zhong F, Qin L. Knockdown of lncRNA MIR31HG inhibits cell proliferation in human HaCaT keratinocytes. Biol Res 2018; 51:30. [PMID: 30180891 PMCID: PMC6122774 DOI: 10.1186/s40659-018-0181-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/29/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Psoriasis is a complex, chronic inflammatory skin disease with substantial negative effects on patient quality of life. Long non-coding RNAs (lncRNAs) are able to be involved in multitudes of cellular processes in diverse human diseases. This study aimed to investigate the potential involvement of lncRNA MIR31HG in HaCaT keratinocytes proliferation. RESULTS The study showed that MIR31HG was significantly elevated in the lesional psoriatic skin compared with normal individuals' skin. Knockdown of MIR31HG inhibited HaCaT keratinocytes proliferation. Flow cytometry analysis showed that siRNA-mediated MIR31HG depletion induced cell cycle arrest in the G2/M phase. In addition, MIR31HG expression was found to be dependent on NF-κB activation. CONCLUSIONS NF-κB activation mediated MIR31HG upregulation plays an important role in the regulation of HaCaT keratinocytes proliferation. It could be a potential diagnostic biomarker and therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Jintao Gao
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China.
| | - Fangru Chen
- Department of Dermatology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Mingchun Hua
- Department of Plastic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Junfan Guo
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China
| | - Yuejuan Nong
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China
| | - Qinyan Tang
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China
| | - Fengxia Zhong
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China
| | - Linxiu Qin
- College of Biotechnology, Guilin Medical University, Guilin, 541100, Guangxi, People's Republic of China
| |
Collapse
|
11
|
Pro-inflammatory Cytokines, Biomarkers, Genetics and the Immune System: A Mechanistic Approach of Depression and Psoriasis. ACTA ACUST UNITED AC 2018; 47:177-186. [DOI: 10.1016/j.rcp.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/14/2016] [Accepted: 03/27/2017] [Indexed: 11/18/2022]
|
12
|
Elango T, Sun J, Zhu C, Zhou F, Zhang Y, Sun L, Yang S, Zhang X. Mutational analysis of epidermal and hyperproliferative type I keratins in mild and moderate psoriasis vulgaris patients: a possible role in the pathogenesis of psoriasis along with disease severity. Hum Genomics 2018; 12:27. [PMID: 29784039 PMCID: PMC5963134 DOI: 10.1186/s40246-018-0158-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Background Mutations in keratin proteins have been vastly associated with a wide array of genodermatoses; however, mutations of keratins in psoriasis have not been fully investigated. The main aim of the current research was to identify the mutation in K14, K10, K16, and K17 genes in two stages of psoriasis patients. Methods Ninety-six psoriatic skin biopsies were collected. mRNA transcript of K14, K10, K16, and K17 was prepared, amplified, and sequenced. Sanger sequences of all keratins were further validated for mutational analysis using Mutation Surveyor and Alamut Visual. Then, in silico analysis of protein stability and protein and gene expression of all keratins was performed and validated. Results Out of 44 mutations, about 75% of keratins are highly pathogenic and deleterious. Remaining 25% mutations are less pathogenic and tolerated in nature. In these 33 deleterious mutations were immensely found to decrease keratin protein stability. We also found a correlation between keratin and Psoriasis Area and Severity Index score which added that alteration in keratin gene in skin causes severity of psoriasis. Conclusions We strongly concluded that acanthosis and abnormal terminal differentiation was mainly due to the mutation in epidermal keratins. In turn, disease severity and relapsing of psoriasis are mainly due to the mutation of hyperproliferative keratins. These novel keratin mutations in psoriatic epidermis might be one of the causative factors for psoriasis. Electronic supplementary material The online version of this article (10.1186/s40246-018-0158-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamilselvi Elango
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China. .,Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China.
| | - Jingying Sun
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Caihong Zhu
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Fusheng Zhou
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yaohua Zhang
- Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Liangdan Sun
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China.,Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, China
| | - Sen Yang
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China.,Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, China
| | - Xuejun Zhang
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China. .,Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China. .,Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, China. .,Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, China. .,Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China.
| |
Collapse
|
13
|
Di Fusco D, Laudisi F, Dinallo V, Monteleone I, Di Grazia A, Marafini I, Troncone E, Colantoni A, Ortenzi A, Stolfi C, Picardo M, Monteleone G. Smad7 positively regulates keratinocyte proliferation in psoriasis. Br J Dermatol 2017; 177:1633-1643. [DOI: 10.1111/bjd.15703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2017] [Indexed: 12/16/2022]
Affiliation(s)
- D. Di Fusco
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - F. Laudisi
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - V. Dinallo
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - I. Monteleone
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - A. Di Grazia
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - I. Marafini
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - E. Troncone
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - A. Colantoni
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - A. Ortenzi
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - C. Stolfi
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| | - M. Picardo
- Cutaneous Physiopathology Laboratory and Metabolomic Center; San Gallicano Dermatological Institute; Rome Italy
| | - G. Monteleone
- Department of Systems Medicine; University of Rome ‘Tor Vergata’; Via Montpellier 1 00133 Rome Italy
| |
Collapse
|
14
|
Yang L, Fan X, Cui T, Dang E, Wang G. Nrf2 Promotes Keratinocyte Proliferation in Psoriasis through Up-Regulation of Keratin 6, Keratin 16, and Keratin 17. J Invest Dermatol 2017; 137:2168-2176. [DOI: 10.1016/j.jid.2017.05.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
|
15
|
Inflammation dependent mTORC1 signaling interferes with the switch from keratinocyte proliferation to differentiation. PLoS One 2017; 12:e0180853. [PMID: 28700632 PMCID: PMC5507280 DOI: 10.1371/journal.pone.0180853] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 06/06/2017] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a frequent and often severe inflammatory skin disease, characterized by altered epidermal homeostasis. Since we found previously that Akt/mTOR signaling is hyperactivated in psoriatic skin, we aimed at elucidating the role of aberrant mTORC1 signaling in this disease. We found that under healthy conditions mTOR signaling was shut off when keratinocytes switch from proliferation to terminal differentiation. Inflammatory cytokines (IL-1β, IL-17A, TNF-α) induced aberrant mTOR activity which led to enhanced proliferation and reduced expression of differentiation markers. Conversely, regular differentiation could be restored if mTORC1 signaling was blocked. In mice, activation of mTOR through the agonist MHY1485 also led to aberrant epidermal organization and involucrin distribution. In summary, these results not only identify mTORC1 as an important signal integrator pivotal for the cells fate to either proliferate or differentiate, but emphasize the role of inflammation-dependent mTOR activation as a psoriatic pathomechanism.
Collapse
|
16
|
Reijnders CMA, van Lier A, Roffel S, Kramer D, Scheper RJ, Gibbs S. Development of a Full-Thickness Human Skin Equivalent In Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts. Tissue Eng Part A 2015; 21:2448-59. [PMID: 26135533 PMCID: PMC4554934 DOI: 10.1089/ten.tea.2015.0139] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Currently, human skin equivalents (HSEs) used for in vitro assays (e.g., for wound healing) make use of primary human skin cells. Limitations of primary keratinocytes and fibroblasts include availability of donor skin and donor variation. The use of physiologically relevant cell lines could solve these limitations. The aim was to develop a fully differentiated HSE constructed entirely from human skin cell lines, which could be applied for in vitro wound-healing assays. Skin equivalents were constructed from human TERT-immortalized keratinocytes and fibroblasts (TERT-HSE) and compared with native skin and primary HSEs. HSEs were characterized by hematoxylin–eosin and immunohistochemical stainings with markers for epidermal proliferation and differentiation, basement membrane (BM), fibroblasts, and the extracellular matrix (ECM). Ultrastructure was determined with electron microscopy. To test the functionality of the TERT-HSE, burn and cold injuries were applied, followed by immunohistochemical stainings, measurement of reepithelialization, and determination of secreted wound-healing mediators. The TERT-HSE was composed of a fully differentiated epidermis and a fibroblast-populated dermis comparable to native skin and primary HSE. The epidermis consisted of proliferating keratinocytes within the basal layer, followed by multiple spinous layers, a granular layer, and cornified layers. Within the TERT-HSE, the membrane junctions such as corneosomes, desmosomes, and hemidesmosomes were well developed as shown by ultrastructure pictures. Furthermore, the BM consisted of a lamina lucida and lamina densa comparable to native skin. The dermal matrix of the TERT-HSE was more similar to native skin than the primary construct, since collagen III, an ECM marker, was present in TERT-HSEs and absent in primary HSEs. After wounding, the TERT-HSE was able to reepithelialize and secrete inflammatory wound-healing mediators. In conclusion, the novel TERT-HSE, constructed entirely from human cell lines, provides an excellent opportunity to study in vitro skin biology and can also be used for drug targeting and testing new therapeutics, and ultimately, for incorporating into skin-on-a chip in the future.
Collapse
Affiliation(s)
| | - Amanda van Lier
- 1 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Sanne Roffel
- 1 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Duco Kramer
- 2 Department of Dermatology, University Medical Centre Groningen , Groningen, The Netherlands
| | - Rik J Scheper
- 3 Department of Pathology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Susan Gibbs
- 1 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands .,4 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
17
|
Onderdijk A, Balak D, Baerveldt E, Florencia E, Kant M, Laman J, IJcken W, Racz E, Ridder D, Thio H, Prens E. Regulated genes in psoriatic skin during treatment with fumaric acid esters. Br J Dermatol 2014; 171:732-41. [DOI: 10.1111/bjd.13128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2014] [Indexed: 01/31/2023]
Affiliation(s)
- A.J. Onderdijk
- Department of Dermatology Erasmus University Medical Centre P.O. Box 2040 3000 CA Rotterdam the Netherlands
- Department of Immunology Erasmus University Medical Centre P.O. Box 2040 3000 CA Rotterdam the Netherlands
| | - D.M.W. Balak
- Department of Dermatology Erasmus University Medical Centre P.O. Box 2040 3000 CA Rotterdam the Netherlands
| | - E.M. Baerveldt
- Department of Dermatology Erasmus University Medical Centre P.O. Box 2040 3000 CA Rotterdam the Netherlands
| | - E.F. Florencia
- Department of Dermatology Erasmus University Medical Centre P.O. Box 2040 3000 CA Rotterdam the Netherlands
| | - M. Kant
- Department of Dermatology Erasmus University Medical Centre P.O. Box 2040 3000 CA Rotterdam the Netherlands
| | - J.D. Laman
- Department of Immunology Erasmus University Medical Centre P.O. Box 2040 3000 CA Rotterdam the Netherlands
| | - W.F.J. IJcken
- Department of Center for Biomics Erasmus University Medical Centre P.O. Box 2040 3000 CA Rotterdam the Netherlands
| | - E. Racz
- Department of Dermatology Erasmus University Medical Centre P.O. Box 2040 3000 CA Rotterdam the Netherlands
| | - D. Ridder
- The Delft Bioinformatics Lab Faculty of Electrical Engineering Mathematics and Computer Science Delft University of Technology Delft the Netherlands
| | - H.B. Thio
- Department of Dermatology Erasmus University Medical Centre P.O. Box 2040 3000 CA Rotterdam the Netherlands
| | - E.P. Prens
- Department of Dermatology Erasmus University Medical Centre P.O. Box 2040 3000 CA Rotterdam the Netherlands
- Department of Immunology Erasmus University Medical Centre P.O. Box 2040 3000 CA Rotterdam the Netherlands
| |
Collapse
|
18
|
Keijsers RRMC, van der Velden HMJ, van Erp PEJ, de Boer-van Huizen RT, Joosten I, Koenen HJPM, van de Kerkhof PCM. Balance of Treg vs. T-helper cells in the transition from symptomless to lesional psoriatic skin. Br J Dermatol 2014; 168:1294-302. [PMID: 23330679 DOI: 10.1111/bjd.12236] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND In the pathogenesis of psoriasis, proinflammatory T cells are strongly involved in the inflammatory process, where regulatory T-cell (Treg) function is impaired. OBJECTIVES As effective Treg function is associated with a numerical balance between Treg and effector T cells, we wondered whether Treg/T-helper cell ratios may be associated with certain stages of the inflammatory process. We opted for the margin zone model as a dynamic approach. METHODS From nine patients with chronic plaque psoriasis, 3-mm punch biopsies were obtained from the centre and margin of the lesion, perilesional skin and distant uninvolved skin. Skin biopsies of 10 healthy volunteers were included as a control. Samples were analysed using immunohistochemistry and immunofluorescence. RESULTS In the transition from symptomless to lesional skin, a significant increase of CD3+, CD4+ and Foxp3+ cells was found. In seven of nine patients the ratio of Treg (Foxp3+) vs. CD4+ T cells was higher in the distant uninvolved skin than in the perilesional and lesional skin. Interestingly, the Foxp3/CD4 ratio in the distant uninvolved skin was even higher than in the skin of healthy controls. Notably, we found that most of the interleukin (IL)-17 expression was not related to CD4+ cells, but to mast cells. CONCLUSIONS The relatively high Foxp3/CD4 ratio in symptomless skin of patients with psoriasis suggests an active immune controlling mechanism distant from the psoriatic plaque. In the margin and centre of the plaque the ratio appears skewed towards effector cells associated with inflammation. IL-17, an important driver of the psoriatic process, is mostly related to mast cells, and only sporadically to T cells.
Collapse
Affiliation(s)
- R R M C Keijsers
- Department of Dermatology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ramot Y, Sugawara K, Zákány N, Tóth BI, Bíró T, Paus R. A novel control of human keratin expression: cannabinoid receptor 1-mediated signaling down-regulates the expression of keratins K6 and K16 in human keratinocytes in vitro and in situ. PeerJ 2013; 1:e40. [PMID: 23638377 PMCID: PMC3628749 DOI: 10.7717/peerj.40] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/28/2013] [Indexed: 12/23/2022] Open
Abstract
Cannabinoid receptors (CB) are expressed throughout human skin epithelium. CB1 activation inhibits human hair growth and decreases proliferation of epidermal keratinocytes. Since psoriasis is a chronic hyperproliferative, inflammatory skin disease, it is conceivable that the therapeutic modulation of CB signaling, which can inhibit both proliferation and inflammation, could win a place in future psoriasis management. Given that psoriasis is characterized by up-regulation of keratins K6 and K16, we have investigated whether CB1 stimulation modulates their expression in human epidermis. Treatment of organ-cultured human skin with the CB1-specific agonist, arachidonoyl-chloro-ethanolamide (ACEA), decreased K6 and K16 staining intensity in situ. At the gene and protein levels, ACEA also decreased K6 expression of cultured HaCaT keratinocytes, which show some similarities to psoriatic keratinocytes. These effects were partly antagonized by the CB1-specific antagonist, AM251. While CB1-mediated signaling also significantly inhibited human epidermal keratinocyte proliferation in situ, as shown by K6/Ki-67-double immunofluorescence, the inhibitory effect of ACEA on K6 expression in situ was independent of its anti-proliferative effect. Given recent appreciation of the role of K6 as a functionally important protein that regulates epithelial wound healing in mice, it is conceivable that the novel CB1-mediated regulation of keratin 6/16 revealed here also is relevant to wound healing. Taken together, our results suggest that cannabinoids and their receptors constitute a novel, clinically relevant control element of human K6 and K16 expression.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Koji Sugawara
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Nóra Zákány
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, MHSC, RCMM, University of Debrecen, Debrecen, Hungary
| | - Balázs I Tóth
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, MHSC, RCMM, University of Debrecen, Debrecen, Hungary.,Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Tamás Bíró
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, MHSC, RCMM, University of Debrecen, Debrecen, Hungary
| | - Ralf Paus
- Department of Dermatology, University of Luebeck, Luebeck, Germany.,Institute of Inflammation and Repair, and Dermatology Centre, University of Manchester, Manchester, UK
| |
Collapse
|
20
|
Zhang ZH, Wang ZM, Crosby ME, Kang KF, Luan J, Huang W, Xiang LH, Zheng ZZ. Reassessment of microarray expression data of porokeratosis by quantitative real-time polymerase chain reaction. J Cutan Pathol 2010; 37:371-5. [DOI: 10.1111/j.1600-0560.2009.01332.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Chapman BP, Moynihan J. The brain-skin connection: role of psychosocial factors and neuropeptides in psoriasis. Expert Rev Clin Immunol 2009; 5:623-7. [PMID: 20477685 PMCID: PMC2926975 DOI: 10.1586/eci.09.56] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Smits T, van Laarhoven A, Staassen A, van de Kerkhof P, van Erp P, Gerritsen MJ. Induction of protoporphyrin IX by aminolaevulinic acid in actinic keratosis, psoriasis and normal skin: preferential porphyrin enrichment in differentiated cells. Br J Dermatol 2009; 160:849-57. [DOI: 10.1111/j.1365-2133.2008.09012.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Henno A, Blacher S, Lambert C, Colige A, Seidel L, Noël A, Lapière C, de la Brassinne M, Nusgens B. Altered expression of angiogenesis and lymphangiogenesis markers in the uninvolved skin of plaque-type psoriasis. Br J Dermatol 2009; 160:581-90. [DOI: 10.1111/j.1365-2133.2008.08889.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Mirza R, Hayasaka S, Kambe F, Maki K, Kaji T, Murata Y, Seo H. Increased expression of aquaporin-3 in the epidermis of DHCR24 knockout mice. Br J Dermatol 2008; 158:679-84. [PMID: 18241265 DOI: 10.1111/j.1365-2133.2007.08424.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The DHCR24 (3beta-hydroxysterol-Delta24 reductase) gene encodes an enzyme catalysing conversion of desmosterol to cholesterol. Desmosterolosis is an autosomal recessive disease due to mutation in the DHCR24 gene, with low cholesterol and high desmosterol levels. To understand the pathophysiology of this disease, we utilized DHCR24 knockout mice and reported that DHCR24-/- mice die soon after birth. Their skin was less wrinkled, shiny, and revealed features of lethal restrictive dermopathy associated with severe defects in epidermal maturation and barrier function. OBJECTIVES Markedly increased transepidermal water loss in DHCR24-/- mice led us to examine the role of aquaporin-3 (AQP3), because this is the only water/glycerol transporting channel protein expressed in the epidermis. METHODS Expression of AQP3 was studied by Western blot analysis and immunohistochemistry in the epidermis of DHCR24-/- and wild-type newborn mice. Glycerol uptake was determined in the isolated keratinocytes and glycerol content in the epidermis was analysed by an enzymatic method. RESULTS In control mice, AQP3 was expressed only in cells of the stratum basale, indicating its expression in immature keratinocytes. In DHCR24-/- mice, AQP3 was expressed throughout the epidermis and colocalized with the immature keratinocytes (keratin 14-positive cells). The increased AQP3 expression in the epidermis of DHCR24-/- mice was mirrored by a significantly higher glycerol uptake and glycerol content. This was associated with an increase in epidermal water content of DHCR24-/- mice. CONCLUSIONS This is the first demonstration that elevated AQP3 results in the retention of epidermal water, causing the taut, wrinkle-free skin phenotype of the DHCR24-/- mice.
Collapse
Affiliation(s)
- R Mirza
- Division of Stress Recognition and Response, Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Psoriasis comprises a host of abnormalities, and various aspects of the pathogenesis of psoriasis have been suggested to be of primary relevance. The aim of this review is to identity driving factors in the pathogenesis of psoriasis and to explore the dynamics of processes eventually resulting in a psoriatic lesion. In this review observations on the evolution from the symptomless skin to lesional skin in patients with psoriasis will be integrated with observations in various animal models of psoriasis.
Collapse
Affiliation(s)
- P C M van de Kerkhof
- Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
26
|
Körver JEM, Vissers WHPM, van Rens DWA, Pasch MC, van Erp PEJ, Boezeman JBM, van De Kerkhof PCM. A double-blind, randomized quantitative comparison of calcitriol ointment and calcipotriol ointment on epidermal cell populations, proliferation and differentiation. Br J Dermatol 2007; 156:130-7. [PMID: 17199579 DOI: 10.1111/j.1365-2133.2006.07561.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Calcitriol and calcipotriol are widely used in the topical treatment of psoriasis. However, studies comparing both treatment modalities are scarce. Especially, there are almost no studies comparing the effects on epidermal cell populations in a quantitative manner. OBJECTIVES The aim of this study was to quantitatively compare the effects of topical calcitriol and topical calcipotriol on clinical scores and epidermal subpopulations. PATIENTS AND METHODS From five patients with stable plaque psoriasis, skin biopsies were taken from two symmetrical regions on the trunk or extremities before and after treatment with either calcitriol or calcipotriol. Frozen sections were labelled immunofluorescently using direct immunofluorescence for beta-1 integrin and the Zenon labelling technique for keratin (K) 6, K10 and K15. The digital photographs of the stained sections were quantitatively analysed and the results of both treatments were compared. RESULTS The clinical SUM-score improved significantly for both the calcitriol- and the calcipotriol-treated lesions. In the calcipotriol-treated group the expression of K10 and K15 increased and the expression of K6 decreased significantly. No changes were seen for the marker beta-1 integrin. In the calcitriol-treated group none of the markers changed significantly. A tendency towards significance was seen for the changes in the expression of K6 and K15 in favour of calcipotriol. CONCLUSIONS Both calcitriol and calcipotriol gave a significant improvement in clinical scores. However, treatment with calcipotriol resulted in a normalization of K6, K10 and K15, whereas treatment with calcitriol did not. Comparison of both treatments showed a tendency towards significance for the above-mentioned markers for calcipotriol only.
Collapse
Affiliation(s)
- J E M Körver
- Department of Dermatology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Research Snippets. J Invest Dermatol 2006. [DOI: 10.1038/sj.jid.5700602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|