1
|
Wang WM, Gao YM, Zheng XF, Jin HZ. IWR-1 attenuates the promotional effect of IL-36γ in a mouse model of psoriasis. BMC Immunol 2024; 25:78. [PMID: 39578777 PMCID: PMC11585084 DOI: 10.1186/s12865-024-00669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory skin disease. The Wnt/β-catenin signaling pathway is essential for the regulation of adult stem cells, homeostasis, and tissue regeneration; however, the relationship between this pathway and interleukin (IL)-36γ in the pathogenesis of psoriasis remains unclear. METHODS In this study, psoriasiform model mice were established using imiquimod (IMQ) induction. Hematoxylin and eosin (H&E) staining was used to evaluate pathological morphologies, while immunohistochemistry was used to verify the expression patterns of β-catenin and the inflammatory factors IL-6, IL-17 A, and interferon (IFN)-γ. RESULTS IL-36γ treatment increased psoriasis area and severity index scores, and enhanced proliferation of keratinocytes in IMQ-induced psoriatic mice. The effects of IL-36γ on the severity of psoriasiform lesions and epidermal hyperplasia were partly inhibited by IWR-1, which is an inhibitor of the Wnt/β-catenin signaling pathway. Furthermore, the levels of proinflammatory cytokines and molecules involved in the Wnt/β-catenin signaling pathway in psoriatic mouse skin, including IL-6, IL-17 A, IFN-γ, β-catenin, and Dickkopf-1 (DKK1), were upregulated by treatment with IL-36γ. Consistently, the effects of IL-36γ on the inflammatory response and the Wnt/β-catenin signaling pathway were alleviated by IWR-1. CONCLUSIONS Taken together, our findings suggested that inhibition of the Wnt/β-catenin signaling pathway may be useful in the alleviation of IL-36γ-induced psoriasis-like lesions.
Collapse
Affiliation(s)
- Wen-Ming Wang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, China
| | - Yi-Meng Gao
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, China
| | - Xiao-Feng Zheng
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, China
| | - Hong-Zhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No.1 Shuaifuyuan Dongcheng District, Beijing, China.
| |
Collapse
|
2
|
Sai Varshini M, Aishwarya Reddy R, Thaggikuppe Krishnamurthy P. Unlocking hope: GSK-3 inhibitors and Wnt pathway activation in Alzheimer's therapy. J Drug Target 2024; 32:909-917. [PMID: 38838023 DOI: 10.1080/1061186x.2024.2365263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterised by progressive cognitive decline and the accumulation of amyloid-β plaques and tau tangles. The Wnt signalling pathway known for its crucial role in neurodevelopment and adult neurogenesis has emerged as a potential target for therapeutic intervention in AD. Glycogen synthase kinase-3 beta (GSK-3β), a key regulator of the Wnt pathway, plays a pivotal role in AD pathogenesis by promoting tau hyperphosphorylation and neuroinflammation. Several preclinical studies have demonstrated that inhibiting GSK-3β leads to the activation of Wnt pathway thereby promoting neuroprotective effects, and mitigating cognitive deficits in AD animal models. The modulation of Wnt signalling appears to have multifaceted benefits including the reduction of amyloid-β production, tau hyperphosphorylation, enhancement of synaptic plasticity, and inhibition of neuroinflammation. These findings suggest that targeting GSK-3β to activate Wnt pathway may represent a novel approach for slowing or halting the progression of AD. This hypothesis reviews the current state of research exploring the activation of Wnt pathway through the inhibition of GSK-3β as a promising therapeutic strategy in AD.
Collapse
Affiliation(s)
- Magham Sai Varshini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Ramakkamma Aishwarya Reddy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | | |
Collapse
|
3
|
Shutova MS, Borowczyk J, Russo B, Sellami S, Drukala J, Wolnicki M, Brembilla NC, Kaya G, Ivanov AI, Boehncke WH. Inflammation modulates intercellular adhesion and mechanotransduction in human epidermis via ROCK2. iScience 2023; 26:106195. [PMID: 36890793 PMCID: PMC9986521 DOI: 10.1016/j.isci.2023.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Aberrant mechanotransduction and compromised epithelial barrier function are associated with numerous human pathologies including inflammatory skin disorders. However, the cytoskeletal mechanisms regulating inflammatory responses in the epidermis are not well understood. Here we addressed this question by inducing a psoriatic phenotype in human keratinocytes and reconstructed human epidermis using a cytokine stimulation model. We show that the inflammation upregulates the Rho-myosin II pathway and destabilizes adherens junctions (AJs) promoting YAP nuclear entry. The integrity of cell-cell adhesion but not the myosin II contractility per se is the determinative factor for the YAP regulation in epidermal keratinocytes. The inflammation-induced disruption of AJs, increased paracellular permeability, and YAP nuclear translocation are regulated by ROCK2, independently from myosin II activation. Using a specific inhibitor KD025, we show that ROCK2 executes its effects via cytoskeletal and transcription-dependent mechanisms to shape the inflammatory response in the epidermis.
Collapse
Affiliation(s)
- Maria S. Shutova
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julia Borowczyk
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Barbara Russo
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sihem Sellami
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Justyna Drukala
- Jagiellonian University, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Michal Wolnicki
- Department of Pediatric Urology, Jagiellonian University Medical College, Cracow, Poland
| | - Nicolo C. Brembilla
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gurkan Kaya
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Wolf-Henning Boehncke
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Shutova MS, Boehncke WH. Mechanotransduction in Skin Inflammation. Cells 2022; 11:2026. [PMID: 35805110 PMCID: PMC9265324 DOI: 10.3390/cells11132026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In the process of mechanotransduction, the cells in the body perceive and interpret mechanical stimuli to maintain tissue homeostasis and respond to the environmental changes. Increasing evidence points towards dysregulated mechanotransduction as a pathologically relevant factor in human diseases, including inflammatory conditions. Skin is the organ that constantly undergoes considerable mechanical stresses, and the ability of mechanical factors to provoke inflammatory processes in the skin has long been known, with the Koebner phenomenon being an example. However, the molecular mechanisms and key factors linking mechanotransduction and cutaneous inflammation remain understudied. In this review, we outline the key players in the tissue's mechanical homeostasis, the available data, and the gaps in our current understanding of their aberrant regulation in chronic cutaneous inflammation. We mainly focus on psoriasis as one of the most studied skin inflammatory diseases; we also discuss mechanotransduction in the context of skin fibrosis as a result of chronic inflammation. Even though the role of mechanotransduction in inflammation of the simple epithelia of internal organs is being actively studied, we conclude that the mechanoregulation in the stratified epidermis of the skin requires more attention in future translational research.
Collapse
Affiliation(s)
- Maria S. Shutova
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| |
Collapse
|
5
|
Intervention Mechanism of Hunag-Lian Jie-Du Decoction on Canonical Wnt/ β-Catenin Signaling Pathway in Psoriasis Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3193572. [PMID: 35463060 PMCID: PMC9023143 DOI: 10.1155/2022/3193572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/28/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
Abstract
Background Psoriasis is a common chronic inflammatory skin disease with multifactor etiology, characterized by abnormal proliferation and differentiation of keratinocytes. Huang-Lian Jie-Du decoction (HLJDD) is a traditional Chinese medicine prescription with good clinical curative effect on psoriasis. However, its therapeutic mechanisms are still unclear. Methods The psoriasis model of SKH-1 nude mice was established by imiquimod-induced and HLJDD gavage was given. Hematoxylin and eosin staining were used to evaluate pathological morphologies, and immunohistochemistry was used to detect the expressions of Wnt1, β-catenin, and c-Myc in psoriasis mice. Western blot was used to examine the expressions of Frizzled-2, LRP5/6, GSK-3β, APC, Axin2, TCF4, LEF1, cyclin D1, TBX3, EPHB2, and NOTUM enzyme. Results In this study, HLJDD reduced skin erythema and lesions, decreased the thickness of epidermal and downregulated the expressions of Wnt1, β-catenin, and c-Myc. Western blot results showed that HLJDD reduced the expressions of Wnt receptors Frizzled-2 and LRP5/6, and Wnt downstream target genes TCF4, LEF1, cyclin D1, TBX3, and EPHB2, while upregulated destruction complex proteins GSK-3β, APC, and Axin2. Conclusions HLJDD can effectively treat psoriasis and inhibit the Wnt/β-catenin signaling pathway at multiple stages.
Collapse
|
6
|
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 2022; 7:3. [PMID: 34980884 PMCID: PMC8724284 DOI: 10.1038/s41392-021-00762-6] [Citation(s) in RCA: 1099] [Impact Index Per Article: 366.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Collapse
|
7
|
Kochia scoparia Saponin Momordin Ic Modulates HaCaT Cell Proliferation and Apoptosis via the Wnt/ β-Catenin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5522164. [PMID: 34326883 PMCID: PMC8310444 DOI: 10.1155/2021/5522164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Abstract
Psoriasis is a chronic, recurrent, immunoinflammatory disease. For a long period, Traditional Chinese Medicine (TCM) is considered a reliable alternative therapy for patients with psoriasis. Fructus Kochiae (or Kochia scoparia) and its principle saponin, Momordin Ic, have been reported to protect against inflammation. Herein, we demonstrated that Momordin Ic could inhibit HaCaT cell proliferation and enhance cell apoptosis. In the meantime, Momordin Ic alters Wnt/β-catenin pathway activation by affecting β-catenin nuclear distribution. The Wnt/β-catenin signaling activator LiCl partially reversed the effects of Momordin Ic on HaCaT phenotypes and the Wnt/β-catenin pathway factors. Altogether, we demonstrate the inhibitory effects of Momordin Ic, one of the major saponin constituents of Fructus Kochiae, on HaCaT cell proliferation and Momordin Ic-induced alteration within the Wnt/β-catenin pathway. Momordin Ic might act on HaCaT cells by modulating the Wnt/β-catenin pathway.
Collapse
|
8
|
Liu SG, Luo GP, Qu YB, Chen YF. Indirubin inhibits Wnt/β-catenin signal pathway via promoter demethylation of WIF-1. BMC Complement Med Ther 2020; 20:250. [PMID: 32795328 PMCID: PMC7427955 DOI: 10.1186/s12906-020-03045-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Psoriasis is a common inflammatory skin disease. Abnormal proliferation of keratinocytes is one of the psoriatic histopathological features. Indirubin has an essential effect on the proliferation and activation of keratinocytes; however, in psoriasis, the specific mechanism of action of indirubin on keratinocytes is unclear. In the present study, we revealed the effects of indirubin on DNA methyltransferase 1 (DNMT1), wnt inhibitory factor 1 (wif-1), and wnt/β-catenin signal pathway, in the meantime, we explored the effects of indirubin on proliferation, cell cycle and the apoptosis of HaCaT cells. Methods The expression of DNMT1, wif-1, Frizzled2, Frizzled5, and β-catenin in HaCaT cells treated with different concentrations of indirubin were detected by Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR). The expression levels of DNMT1 and wif-1 were observed after treated with different concentrations of indirubin by enzyme-linked immunosorbent assay (ELISA). The wif-1 promoter methylation status was detected by DNA methylation-specific PCR (MSP). The transcriptional activities of wif-1 and β-catenin were discovered by a luciferase reporter gene system. Cell viability was determined by Cell Counting Kit-8 (CCK8) method. The cell cycle was detected by flow cytometry. The apoptotic cells were surveyed by the apoptosis kit. The expression of Inolucrin, Loricrin, Filaggrin, Keratin 17, and transcriptional activation of transglutaminase 1(TGase1) were detected by Western blotting. Results Indirubin inhibited the expression of DNMT1 and the methylation of the wif-1 promoter. In the wnt signal pathway, indirubin restored the protein expression of wif-1 and inhibited expression of Frizzled2, Frizzled5, and β-catenin. Besides, indirubin inhibited the proliferation of HaCaT cells, induced apoptosis, and arrest cell cycle. We also reported that indirubin could down-regulate the expression of Involucrin, TGase 1, and keratin 17, but the expression of Filaggrin and Loricrin had no significant effect. Conclusion Our research showed that indirubin promoted the demethylation of wif-1 and suppressed the wnt/β-catenin signal pathway, thereby exerted an anti-proliferative effect. This study reveals the anti-proliferation mechanism of indirubin, which may provide an effective option for the treatment of proliferative diseases.
Collapse
Affiliation(s)
- Shou Gang Liu
- Dermatology Hospital, Southern Medical University, 2, lujing Road, Yuexiu District, Guangzhou, Guangdong, 510091, People's Republic of China
| | - Guang Pu Luo
- Dermatology Hospital, Southern Medical University, 2, lujing Road, Yuexiu District, Guangzhou, Guangdong, 510091, People's Republic of China
| | - Yong Bin Qu
- Dermatology Hospital, Southern Medical University, 2, lujing Road, Yuexiu District, Guangzhou, Guangdong, 510091, People's Republic of China
| | - Yong Feng Chen
- Dermatology Hospital, Southern Medical University, 2, lujing Road, Yuexiu District, Guangzhou, Guangdong, 510091, People's Republic of China.
| |
Collapse
|
9
|
Yu X, Yan N, Li Z, Hua Y, Chen W. FGF19 sustains the high proliferative ability of keratinocytes in psoriasis through the regulation of Wnt/GSK-3β/β-catenin signalling via FGFR4. Clin Exp Pharmacol Physiol 2019; 46:761-769. [PMID: 31074061 DOI: 10.1111/1440-1681.13103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/26/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022]
Abstract
Accumulating evidence has shown that fibroblast growth factor 19 (FGF19) plays an important role in regulating cell proliferation. Psoriasis is characterized by the hyperproliferation of keratinocytes in skin lesions. However, whether FGF19 regulates the proliferation of keratinocytes in psoriasis remains unknown. In this study, we aimed to explore the potential relevance of FGF19 in psoriasis. We found that FGF19 was highly expressed in psoriatic skin from psoriasis patients, as well as keratinocytes that were stimulated with a cocktail of cytokines (M5), which is an in vitro model of psoriasis. Functional experiments demonstrated that FGF19 overexpression promoted the growth and proliferation of keratinocytes, while FGF19 knockdown showed opposite effect. Moreover, we found that FGF19 increased the phosphorylation of glycogen synthase kinase (GSK)-3β and promoted the expression of β-catenin and the activation of T cell factor 4 (TCF4) transcriptional activity. Notably, blocking Wnt/β-catenin signalling by silencing β-catenin partially reversed FGF19-mediated promotional effects on keratinocyte proliferation. In addition, FGFR4 inhibition significantly blocked the promotional effect of FGF19 on keratinocyte proliferation and GSK-3β/β-catenin/TCF4 signalling. Taken together, our results demonstrated that FGF19 contributes to sustaining the high proliferative ability of keratinocytes through promoting Wnt/GSK-3β/β-catenin signalling via FGFR4, highlighting the importance of FGF19 in the pathogenesis of psoriasis. Our study suggests that FGF19 may serve as a novel and potential therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Xiaoyun Yu
- Department of Dermatology, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ning Yan
- Department of Dermatology, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zihai Li
- Department of Dermatology, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yunhui Hua
- Department of Dermatology, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Chen
- Department of Dermatology, Nanjing Second Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Malakou LS, Gargalionis AN, Piperi C, Papadavid E, Papavassiliou AG, Basdra EK. Molecular mechanisms of mechanotransduction in psoriasis. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:245. [PMID: 30069447 DOI: 10.21037/atm.2018.04.09] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Psoriasis is an immune disease of the skin that frequently develops upon triggering events of mechanical nature and leads to increased proliferation and damaged differentiation of keratinocytes of the epidermis. Mechanical forces are mediated through mechanotransduction, which is the process that translates physical cues into biochemical signaling networks. Latest updates underline the role of mechanotransduction during the acquisition of aberrant properties by the keratinocytes of the skin, therefore implying a potential contribution that promotes psoriasis pathogenesis. The present review discusses the mechano-induced signaling pathways and individual molecules that become activated in psoriasis and in keratinocytes, along with mechano-based putative treatment strategies. We also suggest emerging mechanosensitive molecules for further investigation with potential diagnostic and therapeutic utility in psoriasis.
Collapse
Affiliation(s)
- Lina S Malakou
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Papadavid
- Second Department of Dermatology, Medical School, National and Kapodistrian University of Athens, 'Attikon' General University Hospital, Athens, Greece
| | - Athanasios G Papavassiliou
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Chanson M, Watanabe M, O'Shaughnessy EM, Zoso A, Martin PE. Connexin Communication Compartments and Wound Repair in Epithelial Tissue. Int J Mol Sci 2018; 19:ijms19051354. [PMID: 29751558 PMCID: PMC5983803 DOI: 10.3390/ijms19051354] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Epithelial tissues line the lumen of tracts and ducts connecting to the external environment. They are critical in forming an interface between the internal and external environment and, following assault from environmental factors and pathogens, they must rapidly repair to maintain cellular homeostasis. These tissue networks, that range from a single cell layer, such as in airway epithelium, to highly stratified and differentiated epithelial surfaces, such as the epidermis, are held together by a junctional nexus of proteins including adherens, tight and gap junctions, often forming unique and localised communication compartments activated for localised tissue repair. This review focuses on the dynamic changes that occur in connexins, the constituent proteins of the intercellular gap junction channel, during wound-healing processes and in localised inflammation, with an emphasis on the lung and skin. Current developments in targeting connexins as corrective therapies to improve wound closure and resolve localised inflammation are also discussed. Finally, we consider the emergence of the zebrafish as a concerted whole-animal model to study, visualise and track the events of wound repair and regeneration in real-time living model systems.
Collapse
Affiliation(s)
- Marc Chanson
- Department of Pediatrics and Cell Physiology & Metabolism, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland.
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.
| | - Erin M O'Shaughnessy
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Alice Zoso
- Department of Pediatrics and Cell Physiology & Metabolism, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland.
| | - Patricia E Martin
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| |
Collapse
|
12
|
Wang W, Yu X, Wu C, Jin H. Differential effects of Wnt5a on the proliferation, differentiation and inflammatory response of keratinocytes. Mol Med Rep 2017; 17:4043-4048. [PMID: 29286164 DOI: 10.3892/mmr.2017.8358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/24/2017] [Indexed: 11/06/2022] Open
Abstract
The predominant role of Wnt family member 5A (Wnt5a) is to induce non-canonical Wnt signalling pathways, including the Wnt‑Ca2+ and Wnt‑planar cell polarity pathways. Enhanced Wnt5a expression is involved in the formation of psoriatic plaques; however, its mechanistic role remains to be determined. In the present study, the effects of Wnt5a expression on HaCaT keratinocytes were investigated. HaCaT cells were cultured in medium supplemented with 0, 40 or 80 ng/ml Wnt5a for 24 h. Cell proliferation, the cell cycle, gene expression and inflammatory responses were investigated using Cell‑Counting Kit‑8 assays, flow cytometry analyses, reverse transcription‑quantitative polymerase chain reaction analyses and enzyme‑linked immunosorbent assays, respectively. Wnt5a treatment was revealed to suppress cell proliferation in HaCaT cells. Furthermore, Wnt5a was also demonstrated to increase the proportion of HaCaT cells arrested at the G2/M phase of the cell cycle, but reduce the proportion of HaCaT cells arrested at G0/G1 phase cells. In addition, the expression levels of the differentiation markers, including filaggrin, keratin 1 and keratin 10 were revealed to be downregulated in HaCaT cells. Expression of the canonical Wnt signalling genes (β‑catenin and cyclin D1) and proliferation markers, such as Ki‑67 and proliferating cell nuclear antigen in HaCaT cells were also revealed to be downregulated. However, the expression levels of inflammatory response markers (interferon‑γ, interleukin‑8 and interleukin‑17A) were revealed to be upregulated in HaCaT cells following Wnt5a treatment. These findings suggest that Wnt5a expression may be involved in the inhibition of cell differentiation and the induction of an inflammatory response in patients with psoriasis.
Collapse
Affiliation(s)
- Wenming Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiaoling Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Chao Wu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Hongzhong Jin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
13
|
Jadon DR, Sengupta R, Nightingale A, Lu H, Dunphy J, Green A, Elder JT, Nair RP, Korendowych E, Lindsay MA, McHugh NJ. Serum bone-turnover biomarkers are associated with the occurrence of peripheral and axial arthritis in psoriatic disease: a prospective cross-sectional comparative study. Arthritis Res Ther 2017; 19:210. [PMID: 28934972 PMCID: PMC5609020 DOI: 10.1186/s13075-017-1417-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022] Open
Abstract
Background A recent systematic review identified four candidate serum-soluble bone-turnover biomarkers (dickkopf-1, Dkk-1; macrophage-colony stimulating factor, M-CSF; matrix metalloproteinase-3, MMP-3; osteoprotegerin, OPG) showing possible association with psoriatic arthritis (PsA). We aimed to: (i) confirm and determine if these four biomarkers are associated with PsA; (ii) differentiate psoriasis cases with and without arthritis; and (iii) differentiate PsA cases with and without axial arthritis. Methods A prospective cross-sectional comparative two-centre study recruited 200 patients with psoriasis without arthritis (PsC), 127 with PsA without axial arthritis (pPsA), 117 with PsA with axial arthritis (psoriatic spondyloarthritis, PsSpA), 157 with ankylosing spondylitis (AS) without psoriasis, and 50 matched healthy controls (HC). Serum biomarker concentrations were measured using ELISA. Multivariable regression and receiver operating characteristic analyses were performed. Results MMP-3 concentrations were significantly higher and M-CSF significantly lower in each arthritis disease group compared with HC (p ≤ 0.02). MMP-3 concentrations were significantly higher (adjusted odds ratio, ORadj 1.02 per ng/ml increase in concentration; p = 0.0004) and M-CSF significantly lower (ORadj 0.44 per ng/ml increase; p = 0.01) in PsA (pPsA and PsSpA combined) compared with PsC. Dkk-1 concentrations were significantly higher (ORadj 1.22 per ng/mL increase; p = 0.01), and OPG concentrations significantly lower (ORadj 0.20 per ng/mL increase; p = 0.02) in patients with axial arthritis (PsSpA and AS combined) than in those without (pPsA). Furthermore, Dkk-1 concentrations were significantly higher along a spectrum of increasing axial arthritis; Dkk-1 concentrations were higher in AS compared with PsSpA (ORadj 1.18 per ng/mL increase; p = 0.02). Receiver operating characteristic analysis showed MMP-3 to be the best single biomarker for differentiating PsA from PsC (AUC 0.70 for a cut-off of 14.51 ng/mL; sensitivity 0.76, specificity 0.60). Conclusions MMP-3 and M-CSF are biomarkers for the presence of arthritis in psoriatic disease, and could therefore be used to screen for PsA in psoriasis cohorts. Dkk-1 and OPG are biomarkers of axial arthritis; they could therefore be used to screen for the presence of axial disease in PsA cases, and help differentiate PsSpA from AS. High concentrations of Dkk-1 in AS and PsSpA compared with HC, support previous reports that Dkk-1 is dysfunctional in the spondyloarthritides.
Collapse
Affiliation(s)
- Deepak R Jadon
- Department of Rheumatology, Royal National Hospital for Rheumatic Diseases, Bath, UK. .,Department of Rheumatology, Cambridge University Hospitals NHSFT, Cambridge, UK.
| | - Raj Sengupta
- Department of Rheumatology, Royal National Hospital for Rheumatic Diseases, Bath, UK
| | | | - Hui Lu
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
| | - Juliet Dunphy
- Department of Rheumatology, Royal National Hospital for Rheumatic Diseases, Bath, UK
| | - Amelia Green
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
| | - James T Elder
- Department of Dermatology, Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Rajan P Nair
- Department of Dermatology, Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Eleanor Korendowych
- Department of Rheumatology, Royal National Hospital for Rheumatic Diseases, Bath, UK
| | - Mark A Lindsay
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
| | - Neil J McHugh
- Department of Rheumatology, Royal National Hospital for Rheumatic Diseases, Bath, UK.,Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
| |
Collapse
|
14
|
Sominsky S, Shterzer N, Jackman A, Shapiro B, Yaniv A, Sherman L. E6 proteins of α and β cutaneous HPV types differ in their ability to potentiate Wnt signaling. Virology 2017; 509:11-22. [DOI: 10.1016/j.virol.2017.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 01/29/2023]
|
15
|
Duvetorp A, Olsen RS, Nyström H, Skarstedt M, Dienus O, Mrowietz U, Söderman J, Seifert O. Expression of low-density lipoprotein-related receptors 5 and 6 (LRP5/6) in psoriasis skin. Exp Dermatol 2017; 26:1033-1038. [PMID: 28418602 DOI: 10.1111/exd.13362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 12/17/2022]
Abstract
Low-density lipoprotein-related receptors 5 and 6 (LRP5/6) are transmembrane receptors with key functions in canonical Wnt signalling. Wnt ligands are thought to play an important role in innate immunity and psoriasis, and recent studies assigned LRP5/6 anti-inflammatory properties. The objective of this study was to investigate the expression of LRP5 and LRP6 in lesional and non-lesional skin in peripheral blood and in mononuclear cells of patients with chronic plaque type psoriasis compared with control individuals. To investigate the effect of UV-B radiation, LRP5/6 skin gene expression was analysed before and after narrowband UV-B treatment. Our results showed significantly decreased gene expression of LRP5 and LRP6 in lesional skin and in peripheral blood from patients with psoriasis compared with non-lesional skin and healthy control skin. Immunohistochemistry did not reveal differences in protein expression of LRP5/6. Narrowband UV-B treatment induced a significant increase in LRP5 and LRP6 gene expression in lesional skin. Decreased gene expression of LRP5/6 in lesional skin and upregulation after nb UV-B treatment suggest a possible role for LRP5/6 in psoriasis.
Collapse
Affiliation(s)
- Albert Duvetorp
- Division of Dermatology and Venereology, Region Jönköping County, Jönköping, Sweden
| | - Renate Slind Olsen
- Faculty of Medicine and Health Sciences, Department of Medicine and Health Sciences, Division of Drug Research, Linköping University, Linköping, Sweden.,Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden
| | - Helena Nyström
- Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden
| | - Marita Skarstedt
- Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden
| | - Olaf Dienus
- Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden
| | - Ulrich Mrowietz
- Department of Dermatology, Psoriasis-Center, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jan Söderman
- Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden
| | - Oliver Seifert
- Division of Dermatology and Venereology, Region Jönköping County, Jönköping, Sweden.,Faculty of Medicine and Health Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
16
|
Huang H, Chen Z, Ni X. Tissue transglutaminase-1 promotes stemness and chemoresistance in gastric cancer cells by regulating Wnt/β-catenin signaling. Exp Biol Med (Maywood) 2016; 242:194-202. [PMID: 27660242 DOI: 10.1177/1535370216670541] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer is a common malignancy, and is one of the most frequent causes of cancer deaths worldwide. Recently, members of the transglutaminases (TGM) family, especially TGM2, have been implicated in the progression and drug resistance of cancers, but the function of TGM1 in cancer development has been largely overlooked. In this study, we demonstrate the roles of TGM1 in development of gastric cancer. We found that expression levels of TGM1 were upregulated in both gastric cancer tissues and cultured gastric cancer cells, and that TGM1 expression levels were correlated with patient survival. In cultured gastric cancer cells, loss of TGM1 expression inhibited cell proliferation and promoted apoptosis, as well increased gastric cancer cell sensitivity to chemotherapeutic drugs and reducing stemness. These results strongly supported the participation of TGM1 in the regulation of gastric cancer development. In addition, we found evidence that the mechanism of action of TGM1 in regulating gastric cancer cell might involve the Wnt signaling pathway, as loss of TGM1 expression in gastric cancer cells led to a significant suppression of Wnt signaling activities.
Collapse
Affiliation(s)
- Haitao Huang
- 1 Department of General Surgery, Oilfield General Hospital of Daqing, Daqing 163001, China
| | - Zhiqi Chen
- 1 Department of General Surgery, Oilfield General Hospital of Daqing, Daqing 163001, China
| | - Xiuqin Ni
- 2 Department of Anatomy, Harbin Medical University-Daqing, Daqing 163319, China
| |
Collapse
|
17
|
Li R, Wang J, Wang X, Zhou J, Wang M, Ma H, Xiao S. Increased βTrCP are associated with imiquimod-induced psoriasis-like skin inflammation in mice via NF-κB signaling pathway. Gene 2016; 592:164-171. [PMID: 27476970 DOI: 10.1016/j.gene.2016.07.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/08/2016] [Accepted: 07/27/2016] [Indexed: 12/25/2022]
Abstract
Psoriasis is a common inflammatory skin disease characterized by T cell-mediated hyperproliferation of keratinocytes, increased angiogenesis and inflammation. Accumulating evidence suggests that some keratinocyte differentiation events are controlled by the ubiquitin/proteasome system. β-transducin repeat-containing protein (βTrCP) serve as substrate recognition component of E3 ubiquitin ligases that control stability of important regulators of signal transduction including the nuclear factor (NF)-κB signaling, a key regulatory element in inflammatory pathways related to psoriasis, suggesting a potential role of βTrCP in psoriasis pathogenesis. However, no published study has investigated the role of βTrCP in the etiology of psoriasis. Here, we combined an in vitro cell model of tumor necrosis factor (TNF)-α-induced keratinocyte inflammation and an animal model of imiquimod (IMQ)-induced psoriasis-like inflammation to investigate the pathogenic mechanisms in psoriasis-like dermatitis and assess its βTrCP/NF-κB dependency. Daily application of IMQ on mouse back skin induced inflamed scaly skin lesions resembling plaque type psoriasis. These lesions were associated with elevated βTrCP levels, reduced inhibitor κB (IκB), and enhanced NF-κB activation in epidermal tissues. Furthermore, βTrCP knockdown via siRNA in in TNF-α-stimulated HaCaT and normal human epidermal keratinocytes (NHEK) cells significantly inhibited the over-activation of NF-κB and expression of intercellular adhesion molecule 1 (ICAM-1), demonstrating a pivotal role of βTrCP in regulation the TNF-α-activated NF-κB inflammatory pathways. Moreover, downregulation of βTrCP through lentiviral shRNA ameliorates IMQ-induced psoriasis-like skin lesions in vivo. In conclusion, βTrCP is involved in the NF-κB signaling mediated-, psoriasis-related inflammation and represent a novel target for developing agents to treat psoriasis.
Collapse
Affiliation(s)
- Ruilian Li
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China
| | - Juan Wang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China
| | - Xin Wang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China
| | - Jun Zhou
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China
| | - Mei Wang
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China
| | - Huiqun Ma
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China.
| | - Shengxiang Xiao
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shaanxi, China.
| |
Collapse
|
18
|
Man XY, Chen XB, Li W, Landeck L, Dou TT, Chen JQ, Zhou J, Cai SQ, Zheng M. Analysis of epithelial-mesenchymal transition markers in psoriatic epidermal keratinocytes. Open Biol 2016; 5:rsob.150032. [PMID: 26269426 PMCID: PMC4554915 DOI: 10.1098/rsob.150032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Psoriasis is similar to endpoints of epithelial–mesenchymal transition (EMT), a process of epithelial cells transformed into fibroblast-like cells. The molecular epithelial and mesenchymal markers were analysed in psoriatic keratinocytes. No obvious alteration of epithelial markers E-cadherin (E-cad), keratin 10 (K10), K14 and K16 was detected in psoriatic keratinocytes. However, significantly increased expression of Vim, FN, plasminogen activator inhibitor 1 (PAI-1) and Slug was seen. IL-17A and IL-13 at 50 ng ml−1 strongly decreased expression of K10, Vim and FN. TGF-β1 at 50 ng ml−1 promoted the production of N-cad, Vim, FN and PAI-1. Slug was decreased by dexamethasone (Dex), but E-cad was upregulated by Dex. Silencing of ERK partially increased E-cad and K16, but remarkably inhibited K14, FN, Vim, β-catenin, Slug and α5 integrin. Moreover, inhibition of Rho and GSK3 by their inhibitors Y27632 and SB216763, respectively, strongly raised E-cad, β-catenin and Slug. Dex decreased Y27632-mediated increase of β-catenin. Dex at 2.0 µM inhibited SB216763-regulated E-cad, β-catenin and slug. In conclusion, EMT in psoriatic keratinocytes may be defined as an intermediate phenotype of type 2 EMT. ERK, Rho and GSK3 play active roles in the process of EMT in psoriatic keratinocytes.
Collapse
Affiliation(s)
- Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Xi-Bei Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Wei Li
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Lilla Landeck
- Department of Dermatology, Ernst von Bergmann General Hospital, Teaching Hospital of Charité-University, Potsdam, Germany
| | - Ting-Ting Dou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Jia-Qi Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Jiong Zhou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Sui-Qing Cai
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| |
Collapse
|
19
|
Using Imiquimod-Induced Psoriasis-Like Skin as a Model to Measure the Skin Penetration of Anti-Psoriatic Drugs. PLoS One 2015; 10:e0137890. [PMID: 26355594 PMCID: PMC4565663 DOI: 10.1371/journal.pone.0137890] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
Objective Psoriasis is a chronic inflammatory skin disease and topical therapy remains a key role for treatment. The aim of this study is to evaluate the influence of psoriasis-like lesions on the cutaneous permeation of anti-psoriatic drugs. Methods We first set up imiquimod-induced dermatitis in mice that closely resembles human psoriasis lesions. The development of the lesions is based on the IL-23/IL17A axis for phenotypical and histological characteristics. Four drugs, 5-aminolevulinic acid (ALA), tacrolimus, calcipotriol, and retinoic acid, were used to evaluate percutaneous absorption. Results The most hydrophilic molecule, ALA, revealed the greatest enhancement on skin absorption after imiquimod treatment. Imiquimod increased the skin deposition and flux of ALA by 5.6 to 14.4-fold, respectively, compared to normal skin. The follicular accumulation of ALA was also increased 3.8-fold. The extremely lipophilic drug retinoic acid showed a 1.7- and 3.8-fold increase in skin deposition and flux, respectively. Tacrolimus flux was enhanced from 2 to 21 μg/cm2/h by imiquimod intervention. However, imiquimod did not promote skin deposition of this macrolide. The lipophilicity, but not the molecular size, dominated drug permeation enhancement by psoriatic lesions. The in vivo percutaneous absorption of ALA and rhodamine B examined by confocal microscopy confirmed the deficient resistance of epidermal barrier for facilitating cutaneous delivery of drugs via psoriasis-like skin. Conclusion We established the topical delivery profiles of anti-psoriatic drugs via imiquimod-treated psoriasis-like skin.
Collapse
|
20
|
Comparative analysis of the expression of E-cadherin, β-catenin, and β1 integrin in congenital and acquired cholesteatoma. Eur Arch Otorhinolaryngol 2015; 273:845-51. [PMID: 25864182 DOI: 10.1007/s00405-015-3621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
Abstract
E-cadherin, β-catenin, and β1 integrin are important cell adhesion molecules to maintain epithelial structure and function. We investigated the expression of these cell adhesion molecules in cholesteatomas to understand the role of cell-cell and cell-extracellular matrix interaction in cholesteatomas. An immunohistochemical investigation was carried out on 35 cholesteatoma tissue samples (14 congenital, 21 acquired cholesteatomas) and 10 normal retroauricular skin (RAS) tissues which are obtained during middle ear surgery. The expression rate was measured to find out differences between retroauricular skin and cholesteatoma, as well as between congenital and acquired cholesteatoma. E-cadherin expression rate was significantly lower in the cholesteatoma (spinous layer 88.7 ± 17.9 %, granular layer 54.6 ± 22.6 %) than in the RAS (100 %, 74.4 ± 7.4 %) and in the acquired (83.3 ± 19.4 %, 48.1 ± 22.9 %) than in the congenital (96.7 ± 12.0 %, 64.4 ± 18.8 %). β-catenin expression rate was significantly lower in the cholesteatoma (spinous layer 84.1 ± 17.2 %, granular layer 28.7 ± 30.8 %) than in the RAS (100 %, 75.9 ± 6.1 %) and in the acquired (78.1 ± 17.0 %, 17.1 ± 22.3 %) than in the congenital (93.2 ± 13.5 %, 46.1 ± 34.2 %). The expression pattern of β-catenin is similar to that of E-cadherin. In β1 integrin, there was no significant difference of the expression rate between RAS and cholesteatoma, as well as between congenital and acquired cholesteatoma. In conclusion, the expression of E-cadherin and β-catenin is reduced in cholesteatoma, and the reduction is more pronounced in acquired cholesteatoma than in congenital cholesteatoma. Acquired cholesteatomas showed more aggressive characteristics than congenital cholesteatomas in terms of cell-cell adhesion.
Collapse
|
21
|
Bai J, Liu Z, Xu Z, Ke F, Zhang L, Zhu H, Lou F, Wang H, Fei Y, Shi YL, Wang H. Epigenetic Downregulation of SFRP4 Contributes to Epidermal Hyperplasia in Psoriasis. THE JOURNAL OF IMMUNOLOGY 2015; 194:4185-98. [DOI: 10.4049/jimmunol.1403196] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/01/2015] [Indexed: 12/24/2022]
|
22
|
Hamdy M, Omar G, Elshereef RR, Ellaban AS, Amin M. Early detection of spondyloarthropathy in patients with psoriasis by using the ultrasonography and magnetic resonance image. Eur J Rheumatol 2015; 2:10-15. [PMID: 27708913 DOI: 10.5152/eurjrheumatol.2015.0075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/01/2014] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To assess the validity of ultrasound (US) in the early detection of arthritis and enthesitis, with assessment of the validity of magnetic resonance imaging (MRI) in the early detection of sacroiliitis and spondylitis in patients with psoriasis and to compare the findings of clinical examination and conventional radiography. MATERIAL AND METHODS The study included 50 patients with psoriasis and 20 healthy controls. All patients and controls underwent US and power Doppler analyses for the joints of both hands and feet and the entheseal sites. MRI of the lumbosacral spine and sacroiliac joints was performed. RESULTS Abnormal US findings of arthritis were present in 18% patients, whereas only 6% patients had X-ray abnormalities, the enthesopathy represent 74%, at a higher percentage than clinical and radiological assessment (46, 26% respectively). MRI and radiological study demonstrated evidence of inflammation in the spine in 44% and 16% patients, respectively, and evidence of sacroiliitis in 10% and 6% patients, respectively. CONCLUSION Use of newer imaging modalities allows early diagnosis and early initiation of therapy.
Collapse
Affiliation(s)
- Maha Hamdy
- Department of Rheumatology, Faculty of Medicine, Al-Minia University, Al-Minia, Egypt
| | - Gihan Omar
- Department of Rheumatology, Faculty of Medicine, Al-Minia University, Al-Minia, Egypt
| | - Rawhya R Elshereef
- Department of Rheumatology, Faculty of Medicine, Al-Minia University, Al-Minia, Egypt
| | - Abdou S Ellaban
- Department of Rheumatology, Faculty of Medicine, Al-Minia University, Al-Minia, Egypt
| | - Mohamed Amin
- Department of Radiology, Faculty of Medicine, Al-Minia University, Al-Minia, Egypt
| |
Collapse
|
23
|
El-wahed Gaber MA, El-Halim Kandil MA, El-Farargy SM, Galbet DAE. Beta-catenin expression in psoriasis. Indian Dermatol Online J 2015; 6:13-6. [PMID: 25657910 PMCID: PMC4314880 DOI: 10.4103/2229-5178.148923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Psoriasis is a common inflammatory skin disease characterized by abnormal keratinocyte proliferation and differentiation. Beta-catenin participates in intercellular adhesion. Catenins are proteins found in complexes with cadherin cell adhesion molecules of cells. The role of catenin in regulating keratinocyte stem cell differentiation and hair follicle morphogenesis has been extensively reported. AIMS AND OBJECTIVES is to study β-catenin expression in lesional and non-lesional psoriatic skin to throw light upon its possible role in the pathogenesis of psoriasis. MATERIALS AND METHODS Biopsies were taken from 20 patients with psoriasis vulgaris and from 10 normal controls. The distribution of Beta catenin was investigated using polycolonal rabbits B-catenin antibody-1 by immunohistochemical method. RESULTS In this study membranous β-catenin expression was significantly demonstrated in the control group then the non-lesional areas in comparison to the lesional areas (P < 0.001). Nuclear β-catenin staining expression was significantly more demonstrated in lesional and non-lesional areas in comparison to the control cases (P < 0.001). CONCLUSIONS The down regulation of membranous β-catenin expression in lesional psoriatic skin might reflect a useful phenotypic marker of hyperprolifration of keratinocytes in psoriasis. Moreover, the mild down regulation of membranous β-catenin expression in non lesional psoriatic skin may provide clues about incipient structural abnormalities in the pathogenesis of psoriasis, providing an early diagnostic indicator for evolution to a generalized form of the disease. Nuclear β-catenin expression was not found in the control group but was demonstrated in lesional and moderately in non-lesional reflecting its role in kerationcyte proliferation.
Collapse
Affiliation(s)
- Mohamed Abd El-wahed Gaber
- Department of Dermatology, Andrology and Venoreology, Faculty of Medicine, Menoufia University, Menufia, Egypt
| | | | - Shawki Mahmoud El-Farargy
- Department of Dermatology, Andrology and Venoreology, Faculty of Medicine, Menoufia University, Menufia, Egypt
| | | |
Collapse
|
24
|
Shen CI, Lee HC, Kao YH, Wu CS, Chen PH, Lin SZ, Lai PS, Su HL. EpCAM Induction Functionally Links to the Wnt-Enhanced Cell Proliferation in Human Keratinocytes. Cell Transplant 2014; 23:1031-1044. [PMID: 23635478 DOI: 10.3727/096368913x666403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Accelerating proliferation of primary keratinocytes benefits skin autografts for severely burned patients. Wnt signal, a conserved pathway controlling cell cycle and morphogenesis in embryo, also involves in cell proliferation and tumorigenesis in adult tissues. Here the effects of Wnt signal on the growth of human interfollicular keratinocytes were investigated. We demonstrated that recombinant Wnt3a significantly promoted the growth of primary keratinocytes at a low cell density. A well-characterized GSK-3b inhibitor, BIO, activated the Wnt signals and also enhanced the colony formation of keratinocytes dose dependently. Gene expression profile of the BIO-treated keratinocytes revealed the linkage of BIO with cell mitosis and indicated that epithelial cell adhesion molecule (EpCAM), a Wnt target gene, was significantly upregulated. Compared to the sorted EpCAM- keratinocytes, the EpCAM+ cells showed a higher proliferation rate and efficacy of colony formation. Inhibiting the EpCAM expression by shRNA attenuated the proliferation effect of BIO and the growth advantage of the EpCAM+ keratinocytes. These evidences emphasize the positive roles of canonical Wnt and EpCAM on the regulation of cell growth and self-renewal of human keratinocytes.
Collapse
Affiliation(s)
- Ching-I Shen
- Department of Chemistry, Agricultural Biotechnology Center, National Chung-Hsing University, Taiwan
| | - Hsiu-Chin Lee
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung-Hsing University, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-DA Hospital, I-Shou University, Taiwan
| | - Chieh-Shan Wu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Taiwan
| | - Po-Hung Chen
- Chen Po-Hung Dermatologic Clinic, Kaohsiung, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University and Hospital, Taiwan.,China Medical University Beigang Hospital, Taiwan.,Department of Immunology, China Medical University, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, Agricultural Biotechnology Center, National Chung-Hsing University, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung-Hsing University, Taiwan.,Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
25
|
Martin PE, Easton JA, Hodgins MB, Wright CS. Connexins: sensors of epidermal integrity that are therapeutic targets. FEBS Lett 2014; 588:1304-14. [PMID: 24607543 DOI: 10.1016/j.febslet.2014.02.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 12/25/2022]
Abstract
Gap junction proteins (connexins) are differentially expressed throughout the multiple layers of the epidermis. A variety of skin conditions arise with aberrant connexin expression or function and suggest that maintaining the epidermal gap junction network has many important roles in preserving epidermal integrity and homeostasis. Mutations in a number of connexins lead to epidermal dysplasias giving rise to a range of dermatological disorders of differing severity. 'Gain of function' mutations reveal connexin-mediated roles in calcium signalling within the epidermis. Connexins are involved in epidermal innate immunity, inflammation control and in wound repair. The therapeutic potential of targeting connexins to improve wound healing responses is now clear. This review discusses the role of connexins in epidermal integrity, and examines the emerging evidence that connexins act as epidermal sensors to a variety of mechanical, temperature, pathogen-induced and chemical stimuli. Connexins thus act as an integral component of the skin's protective barrier.
Collapse
Affiliation(s)
- Patricia E Martin
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | - Jennifer A Easton
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK; Department of Dermatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Malcolm B Hodgins
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Catherine S Wright
- Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow G4 0BA, UK
| |
Collapse
|
26
|
Volkov IA, Frigo NV, Znamenskaya LF, Katunina OR. Application of Confocal Laser Scanning Microscopy in Biology and Medicine. VESTNIK DERMATOLOGII I VENEROLOGII 2014. [DOI: 10.25208/0042-4609-2014-90-1-17-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Fluorescence confocal laser scanning microscopy and reflectance confocal laser scanning microscopy are up-to-date highend study methods. Confocal microscopy is used in cell biology and medicine. By using confocal microscopy, it is possible to study bioplasts and localization of protein molecules and other compounds relative to cell or tissue structures, and to monitor dynamic cell processes. Confocal microscopes enable layer-by-layer scanning of test items to create demonstrable 3D models. As compared to usual fluorescent microscopes, confocal microscopes are characterized by a higher contrast ratio and image definition.
Collapse
|
27
|
Lei M, Yang T, Lai X, Bai X, Qiu W, Lian X, Yang L. Upregulation of interfollicular epidermal and hair infundibulum β-catenin expression in Gsdma3 mutant mice. Acta Histochem 2013; 115:63-9. [PMID: 22694914 DOI: 10.1016/j.acthis.2012.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/07/2012] [Accepted: 04/16/2012] [Indexed: 11/26/2022]
Abstract
Skin hyperplasia associated with hair follicle abnormality can be seen in many skin diseases caused by gene mutations. Gsdma3 was reported to be a mutation hotpot gene whose mutation contributed to various skin hyperplasia phenotypes in Bsk, Dfl, Rco2, Fgn, Re (den), and Rim3 mice. However, the signaling molecules involved in these skin anomalies due to Gsdma3 mutations have not yet been addressed. In this study, using hematoxylin and eosin staining, we showed that Gsdma3 mutation gave rise to thickened skin and lengthened hair infundibula throughout the hair follicle cycle. Using immunofluoresence staining, we found that Gsdma3 had a spatial expression profile very similar to that of β-catenin in the epidermis and skin appendages. Furthermore, we showed that epidermal β-catenin expression was increased at all postnatal stages in Gsdma3 mutant mice. These results suggest that Gsdma3 may play a role in the proliferation and differentiation of epidermal cells and hair follicles through negatively regulating β-catenin expression.
Collapse
|
28
|
Tervaniemi MH, Siitonen HA, Söderhäll C, Minhas G, Vuola J, Tiala I, Sormunen R, Samuelsson L, Suomela S, Kere J, Elomaa O. Centrosomal localization of the psoriasis candidate gene product, CCHCR1, supports a role in cytoskeletal organization. PLoS One 2012. [PMID: 23189171 PMCID: PMC3506594 DOI: 10.1371/journal.pone.0049920] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
CCHCR1 (Coiled-Coil α-Helical Rod protein 1), within the major psoriasis susceptibility locus PSORS1, is a plausible candidate gene with the psoriasis associated risk allele CCHCR1*WWCC. Although its expression pattern in psoriatic skin differs from healthy skin and its overexpression influences cell proliferation in transgenic mice, its role as a psoriasis effector gene has remained unsettled. The 5′-region of the gene contains a SNP (rs3130453) that controls a 5′-extended open reading frame and thus the translation of alternative isoforms. We have now compared the function of two CCHCR1 isoforms: the novel longer isoform 1 and the previously studied isoform 3. In samples of Finnish and Swedish families, the allele generating only isoform 3 shows association with psoriasis (P<10−7). Both isoforms localize at the centrosome, a cell organelle playing a role in cell division. In stably transfected cells the isoform 3 affects cell proliferation and with the CCHCR1*WWCC allele, also apoptosis. Furthermore, cells overexpressing CCHCR1 show isoform- and haplotype-specific influences in the cell size and shape and alterations in the organization and expression of the cytoskeletal proteins actin, vimentin, and cytokeratins. The isoform 1 with the non-risk allele induces the expression of keratin 17, a hallmark for psoriasis; the silencing of CCHCR1 reduces its expression in HEK293 cells. CCHCR1 also regulates EGF-induced STAT3 activation in an isoform-specific manner: the tyrosine phosphorylation of STAT3 is disturbed in isoform 3-transfected cells. The centrosomal localization of CCHCR1 provides a connection to the abnormal cell proliferation and offers a link to possible cellular pathways altered in psoriasis.
Collapse
Affiliation(s)
- Mari H. Tervaniemi
- Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Research Program's Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - H. Annika Siitonen
- Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Research Program's Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Gurinder Minhas
- Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Research Program's Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Jyrki Vuola
- Helsinki Burn Centre, Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Inkeri Tiala
- Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Research Program's Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Raija Sormunen
- Biocenter Oulu, Department of Pathology, University of Oulu, Oulu, Finland
| | - Lena Samuelsson
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sari Suomela
- Department of Dermatology, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland
| | - Juha Kere
- Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Research Program's Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Outi Elomaa
- Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Research Program's Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
29
|
Widelitz RB. Wnt signaling in skin organogenesis. Organogenesis 2012; 4:123-33. [PMID: 19279724 DOI: 10.4161/org.4.2.5859] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 12/18/2022] Open
Abstract
While serving as the interface between an organism and its environment, the skin also can elaborate a wide range of skin appendages to service specific purposes in a region-specific fashion. As in other organs, Wnt signaling plays a key role in regulating the proliferation, differentiation and motility of skin cells during their morphogenesis. Here I will review some of the recent work that has been done on skin organogenesis. I will cover dermis formation, the development of skin appendages, cycling of appendages in the adult, stem cell regulation, patterning, orientation, regional specificity and modulation by sex hormone nuclear receptors. I will also cover their roles in wound healing, hair regeneration and skin related diseases. It appears that Wnt signaling plays essential but distinct roles in different hierarchical levels of morphogenesis and organogenesis. Many of these areas have not yet been fully explored but are certainly promising areas of future research.
Collapse
Affiliation(s)
- Randall B Widelitz
- Department of Pathology; Keck School of Medicine; University of Southern California; Los Angeles, California USA
| |
Collapse
|
30
|
Pourreyron C, Reilly L, Proby C, Panteleyev A, Fleming C, McLean K, South AP, Foerster J. Wnt5a is strongly expressed at the leading edge in non-melanoma skin cancer, forming active gradients, while canonical Wnt signalling is repressed. PLoS One 2012; 7:e31827. [PMID: 22384081 PMCID: PMC3285195 DOI: 10.1371/journal.pone.0031827] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/12/2012] [Indexed: 11/24/2022] Open
Abstract
Wnt5a is one of the so-called non-canonical Wnt ligands which do not act through β-catenin. In normal development, Wnt5a is secreted and directs the migration of target cells along concentration gradients. The effect of Wnt5a on target cells is regulated by many factors, including the expression level of inhibitors and receptors. Dysregulated Wnt5a signalling facilitates invasion of multiple tumor types into adjacent tissue. However, the expression and distribution of Wnt5a in cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), as well as the effect of Wnt5a on keratinocyte migration has not been studied in detail to date. We here report that Wnt5a is upregulated in SCC and BCC and localised to the leading edge of tumors, as well as tumor-associated fibroblasts. The Wnt5a-triggered bundling of its receptor Fzd3 provides evidence of Wnt5a concentration gradients projecting into the tumor. In vitro migration assays show that Wnt5a concentration gradients determine its effect on keratinoctye migration: While chemotactic migration is inhibited by Wnt5a present in homogenous concentrations, it is enhanced in the presence of a Wnt5a gradient. Expression profiling of the Wnt pathway shows that the upregulation of Wnt5a in SCC is coupled to repression of canonical Wnt signalling. This is confirmed by immunohistochemistry showing lack of nuclear β-catenin, as well as absent accumulation of Axin2. Since both types of Wnt signalling act mutually antogonistically at multiple levels, the concurrent repression of canonical Wnt signalling suggests hyper-active Wnt5a signal transduction. Significantly, this combination of gene dysregulation is not observed in the benign hyperproliferative inflammatory skin disease psoriasis. Collectively, our data strongly suggest that Wnt5a signalling contributes to tissue invasion by non-melanoma skin cancer.
Collapse
Affiliation(s)
- Celine Pourreyron
- Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
- Cancer Research UK Cancer Centre Dundee, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
| | - Louise Reilly
- Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
- Cancer Research UK Cancer Centre Dundee, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
| | - Charlotte Proby
- Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
- Department of Dermatology, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
- Cancer Research UK Cancer Centre Dundee, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
| | - Andrey Panteleyev
- Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
- Cancer Research UK Cancer Centre Dundee, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
| | - Colin Fleming
- Department of Dermatology, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
- Education Division, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
| | - Kathleen McLean
- Cancer Research UK Cancer Centre Dundee, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
- Tayside Tissue Bank, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
| | - Andrew P. South
- Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
- Cancer Research UK Cancer Centre Dundee, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
| | - John Foerster
- Department of Dermatology, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
- Education Division, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
- * E-mail:
| |
Collapse
|
31
|
Gudjonsson JE, Johnston A, Stoll SW, Riblett MB, Xing X, Kochkodan JJ, Ding J, Nair RP, Aphale A, Voorhees JJ, Elder JT. Evidence for altered Wnt signaling in psoriatic skin. J Invest Dermatol 2010; 130:1849-59. [PMID: 20376066 PMCID: PMC2886156 DOI: 10.1038/jid.2010.67] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Wnt gene family encodes a set of highly conserved secreted signaling proteins that have major roles in embryogenesis and tissue homeostasis. Yet the expression of this family of important mediators in psoriasis, a disease characterized by marked changes in keratinocyte growth and differentiation, is incompletely understood. We subjected 58 paired biopsies from lesional and uninvolved psoriatic skin and 64 biopsies from normal skin to global gene expression profiling. WNT5A transcripts were upregulated fivefold in lesional skin, accompanied by increased Wnt-5a protein levels. Notably, WNT5A mRNA was markedly induced by IL-1alpha, tumor necrosis factor-alpha, IFN-gamma, and transforming growth factor-alpha in cultured keratinocytes. Frizzled 2 (FZD2) and FZD5, which encode receptors for Wnt5A, were also increased in lesional psoriatic skin. In contrast, expression of WIF1 mRNA, encoding a secreted antagonist of the Wnt proteins, was downregulated >10-fold in lesional skin, along with decreased WNT inhibitory factor (WIF)-1 immunostaining. Interestingly, pathway analysis along with reduced AXIN2 expression and lack of nuclear translocation of beta-catenin indicated a suppression of canonical Wnt signaling in lesional skin. The results of our study suggest a shift away from canonical Wnt signaling toward noncanonical pathways driven by interactions between Wnt-5a and its cognate receptors in psoriasis, accompanied by impaired homeostatic inhibition of Wnt signaling by WIF-1 and dickkopf.
Collapse
Affiliation(s)
- Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Alexandroff A, Graham-Brown R. Report from the 67th Annual Meeting of the American Academy of Dermatology. Br J Dermatol 2009; 162:12-21. [DOI: 10.1111/j.1365-2133.2009.09395.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Romanowska M, Evans A, Kellock D, Bray SE, McLean K, Donandt S, Foerster J. Wnt5a exhibits layer-specific expression in adult skin, is upregulated in psoriasis, and synergizes with type 1 interferon. PLoS One 2009; 4:e5354. [PMID: 19399181 PMCID: PMC2670517 DOI: 10.1371/journal.pone.0005354] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/17/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Wnt5a is a member of the wingless-type patterning regulators important in pre-natal development. The expression and distribution of Wnt5a and its receptors frizzled (fzd) 3 and fzd 5 in adult human skin have not been comprehensively studied to date. METHODOLOGY/PRINCIPAL FINDINGS We here show that Wnt5a, fzd3, fzd5, as well as fzd6 are restricted to specific layers in normal epidermis, analogous to their zonal distribution in hair follicles, suggesting a role in adult skin differentiation. In line, Wnt5a and fzd5 are both overexpressed and re-distributed in the epidermis of psoriasis which involves disturbed keratinocyte differentiation. Functionally, Wnt5a lowers the concentration of IFN required to induce target genes, and increases the magnitude of IFN target gene induction, suggesting a molecular mechanism underlying IFN hypersensitivity in psoriasis. Finally, we identify nedd8 and the amyloid precursor APP, previously shown to be upregulated in psoriasis, as targets of synergistic IFNalpha/Wnt5a induction. CONCLUSIONS/SIGNIFICANCE The present data (i) suggest that Wnt5a regulates epidermal differentiation even in adult skin and (ii) identify synergistic induction of type 1 IFN target genes as a novel mode of Wnt5a action. Targeting Wnt5a in the skin may reduce IFN hypersensitivity and be of therapeutical value.
Collapse
Affiliation(s)
- Malgorzata Romanowska
- Division of Experimental Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - Alan Evans
- Division of Experimental Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - David Kellock
- Tayside Tissue Bank, University of Dundee, Dundee, Scotland, United Kingdom
| | - Susan E. Bray
- Tayside Tissue Bank, University of Dundee, Dundee, Scotland, United Kingdom
| | - Kathleen McLean
- Tayside Tissue Bank, University of Dundee, Dundee, Scotland, United Kingdom
| | - Susanne Donandt
- Department of Dermatology, University of Dundee, Dundee, Scotland, United Kingdom
| | - John Foerster
- Division of Experimental Medicine, University of Dundee, Dundee, Scotland, United Kingdom
- Charité Medical University, Berlin, Germany
- * E-mail:
| |
Collapse
|