1
|
Zeng F, Li Y, Xu Y, Yu C, Li S, Wei N, Lin L, Yang W, Yang H, Li F, Shang J, Guo M, Yang F, Ji Z, Li K, Liu F, Zhai H. Exploring the optimal timing of HanChuan Zupa Granule for asthma treatment using a comprehensive research approach of "Disease circadian rhythm-drug target prediction-drug efficacy validation". JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119836. [PMID: 40254112 DOI: 10.1016/j.jep.2025.119836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/09/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hanchuan Zupa Granule(HCZP) is a classic Uygur medicine compound with a long history and proven efficacy. They have been included in the National Essential Medicines List of China and are commonly used in the treatment of asthma. It is of significant importance to elucidate its mechanisms through modern pharmacological research. AIM OF THE STUDY This study proposes a comprehensive research approach combining "disease circadian rhythm-drug target prediction-drug efficacy validation" to explore the optimal timing and mechanism of asthma treatment by examining the relationship between disease, medication, and time, supplemented by experimental investigations. MATERIALS AND METHODS ①Network pharmacology predicted the targets and mechanisms of HCZP's immune modulation in asthma. ②Preliminary research on antiasthmatic medication times from ancient and modern sources identified the most frequent time, which was used for grouping in this study. An ovalbumin-induced asthma model and the lung pathology, pulmonary function, and bronchial obstruction were used to detect the lung condition of asthmatic mice. Serum and lung tissue were analyzed for immunoglobulins and Th2 cytokines. MUC5AC mRNA and protein levels, along with mucus staining, were measured to evaluate airway mucus secretion. RESULTS ①Network pharmacological analyses showed that among the immune response-related pathways, the IL-17 signalling pathway had the highest aggregation and was associated with Th2 cells in asthma pathogenesis. ②In biological effect experiments, HCZP of all time subgroups could delay the progression of asthma pathology to a certain extent, increased FVC, FEV75, PEF, MMEF, IC to different degrees, and down-regulated IgE and Th2 characteristic cytokine expression. In terms of reducing mucus expression, the expression of MUC5AC was inhibited to varying degrees. In the treatment of asthma, the reasonable time to take the medicine is "evening (before going to bed)" CONCLUSION: This study, grounded in the disease circadian rhythm, applies an integrated approach combining drug target prediction and drug efficacy validation to explore the optimal timing for asthma treatment. This method is anticipated to introduce a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Fengping Zeng
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yixuan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yan Xu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chenqian Yu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Siyu Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Namin Wei
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Li Lin
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wanjun Yang
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Huanfei Yang
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Feiyu Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jing Shang
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mengrui Guo
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Fanlin Yang
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhihong Ji
- New Cicon Pharmaceutical Co. LTD., Urumchi, 830001, China
| | - Keao Li
- New Cicon Pharmaceutical Co. LTD., Urumchi, 830001, China
| | - Fangyao Liu
- Southwest Minzu University, Chengdu, 610041, China.
| | - Huaqiang Zhai
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
2
|
Liu T, Qin H. Association of obstructive sleep apnea risk with allergic asthma: A systematic review and meta-analysis. Medicine (Baltimore) 2025; 104:e41918. [PMID: 40228283 PMCID: PMC11999425 DOI: 10.1097/md.0000000000041918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 03/02/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND There is a close relationship between asthma and obstructive sleep apnea (OSA), and the mechanisms of these 2 diseases are overlapped. However, the relationship between OSA and allergic asthma remains to be analyzed through systematic review and meta-analysis. METHODS A systematic search was conducted using Scopus, PubMed, ISI, Google Scholar, and Cochrane Library by utilizing the keywords Allergic asthma, Obstructive sleep apnea, and OSA. Hazard ratio, odds ratio (OR), and risk ratio with 95% confidence interval, fixed and Mantel-Haenszel methods were calculated. Statistical software Stata was used for the evaluation of this meta-analysis. RESULTS Finally, 19 articles were included in this study. The prevalence of OSA in allergic asthma patients was 35.25% (19.92%, 50.57%), which was statistically significant, and pooled analysis of ORs observed in individual studies showed that the odds of OSA prevalence were 2.24 (1.32, 3.12) (P < 0.001). Also, the prevalence of OSA risk in allergic asthma patients was 30.08% (19.73%, 40.43%), which was statistically significant, and pooled analysis of ORs observed in individual studies showed that the odds of OSA risk were 3.46 (2.96, 4.94) (P < 0.001). CONCLUSION The present meta-analysis showed that the prevalence of OSA as well as the OSA risk in patients with asthma were significantly higher compared with healthy people.
Collapse
Affiliation(s)
- Ting Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - He Qin
- Department of Otorhinolaryngology-Head and Neck Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Drake LY, Roos BB, Wicher SA, Khalfaoui L, Nesbitt LL, Fang YH, Pabelick CM, Prakash YS. Aging, brain-derived neurotrophic factor, and allergen-induced pulmonary responses in mice. Am J Physiol Lung Cell Mol Physiol 2025; 328:L290-L300. [PMID: 39437757 DOI: 10.1152/ajplung.00145.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Asthma in the elderly is being recognized as more severe, resistant to standard therapies, and having greater morbidity. Therefore, it becomes important to understand the impact of aging-associated airway structure and functional changes toward pathogenesis of asthma in the elderly. Here, airway smooth muscle plays important roles in airway hyperreactivity and structural remodeling. The role of smooth muscle in asthma can be modulated by growth factors [including neurotrophins such as brain-derived neurotrophic factor (BDNF)] and proinflammatory senescence factors. In this study, we investigated aging effects on airway hyperreactivity, structural remodeling, inflammation, and senescence in a mouse model of allergic asthma. C57BL/6J wild-type mice or smooth muscle-specific BDNF knockout mice at 4, 18, and 24 mo of age were intranasally exposed to mixed allergens (MAs, ovalbumin, Aspergillus, Alternaria, and house dust mite) over 4 wk. Assessing lung function by flexiVent, we found that compared with 4-mo-old mice, 18- and 24-mo-old C57BL/6J mice showed decreased airway resistance and increased airway compliance after PBS or MA treatment. Deletion of smooth muscle BDNF blunted airway hyperreactivity in aged mice. Lung histology analysis revealed that aging increased bronchial airway thickness and decreased lung inflammation. Multiplex assays showed that aging largely reduced allergen-induced lung expression of proinflammatory chemokines and cytokines. By immunohistochemistry staining, we found that aging increased bronchial airway expression of senescence markers, including p21, phospho-p53, and phospho-γH2A.X. Our data suggest that aging-associated increase of airway senescence in the context of allergen exposure may contribute to asthma pathology in the elderly.NEW & NOTEWORTHY The pathogenesis of asthma in elderly is not well understood. Using a mouse model of asthma, we show that aging results in decreased lung function and less responsiveness to allergen exposure, impacted by locally produced brain-derived neurotrophic factor. Aging also decreases allergen-induced inflammation but increases airway remodeling and senescence. Our results suggest that senescence pathways may contribute to asthma pathogenesis in elderly.
Collapse
Affiliation(s)
- Li Y Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah A Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lisa L Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
4
|
Varricchi G, Poto R, Lommatzsch M, Brusselle G, Braido F, Virchow JC, Canonica GW. Biologics and airway remodeling in asthma: early, late, and potential preventive effects. Allergy 2025; 80:408-422. [PMID: 39520155 PMCID: PMC11804314 DOI: 10.1111/all.16382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Although airway remodeling in severe and/or fatal asthma is still considered irreversible, its individual components as a cause of clinical symptoms and/or lung function changes remain largely unknown. While inhaled glucocorticoids have not consistently been shown to affect airway remodeling, biologics targeting specific pathways of airway inflammation have been shown to improve lung function, mucus plugging, and airway structural changes that can exceed those seen with glucocorticoids. This superiority of biologic treatment, which cannot be solely explained by insufficient doses or limited durations of glucocorticoid therapies, needs to be further explored. For this field of research, we propose a novel classification of the potential effects of biologics on airway remodeling into three temporal effects: early effects (days to weeks, primarily modulating inflammatory processes), late effects (months to years, predominantly affecting structural changes), and potential preventive effects (outcomes of early treatment with biologics). For the identification of potential preventive effects of biologics, we call for studies exploring the impact of early biological treatment on airway remodeling in patients with moderate-to-severe asthma, which should be accompanied by a long-term evaluation of clinical parameters, biomarkers, treatment burden, and socioeconomic implications.
Collapse
Affiliation(s)
- G. Varricchi
- Department of Translational Medical SciencesUniversity of Naples Federico IINaplesItaly
- Center for Basic and Clinical Immunology Research (CISI)University of Naples Federico IINaplesItaly
- World Allergy Organization (WAO) Center of ExcellenceNaplesItaly
- Institute of Experimental Endocrinology and Oncology (IEOS)National Research CouncilNaplesItaly
| | - R. Poto
- Department of Translational Medical SciencesUniversity of Naples Federico IINaplesItaly
- Center for Basic and Clinical Immunology Research (CISI)University of Naples Federico IINaplesItaly
- World Allergy Organization (WAO) Center of ExcellenceNaplesItaly
| | - M. Lommatzsch
- Department of Pneumology and Critical Care MedicineUniversity of RostockRostockGermany
| | - G. Brusselle
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - F. Braido
- Respiratory Diseases and Allergy DepartmentIRCCS Polyclinic Hospital San MartinoGenoaItaly
| | - J. C. Virchow
- Department of Pneumology and Critical Care MedicineUniversity of RostockRostockGermany
| | - G. W. Canonica
- Respiratory Diseases and Allergy DepartmentIRCCS Polyclinic Hospital San MartinoGenoaItaly
- Department of Biomedical SciencesHumanitas UniversityMilanItaly
- Asthma & Allergy Unit‐IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
5
|
Zhong X, Song J, Lei C, Wang X, Wang Y, Yu J, Dai W, Xu X, Fan J, Xia X, Zhang W. Machine learning-based screening of asthma biomarkers and related immune infiltration. FRONTIERS IN ALLERGY 2025; 6:1506608. [PMID: 39963184 PMCID: PMC11831286 DOI: 10.3389/falgy.2025.1506608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Asthma has an annual increasing morbidity rate and imposes a heavy social burden on public healthcare systems. The aim of this study was to use machine learning to identify asthma-specific genes for the prediction and diagnosis of asthma. Methods Differentially expressed genes (DEGs) related to asthma were identified by examining public sequencing data from the Gene Expression Omnibus, coupled with the support vector machine recursive feature elimination and least absolute shrinkage and selection operator regression model. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene set enrichment analysis and correlation analyses between gene and immune cell levels were performed. An ovalbumin-induced asthma mouse model was established, and eukaryotic reference transcriptome high-throughput sequencing was performed to identify genes expressed in mouse lung tissues. Results Thirteen specific asthma genes were obtained from our dataset analysis (LOC100132287, CEACAM5, PRR4, CPA3, POSTN, LYPD2, TCN1, SCGB3A1, NOS2, CLCA1, TPSAB1, CST1, and C7orf26). The GO analysis demonstrated that DEGs linked to asthma were primarily related to positive regulation of guanylate cyclase activity, gpi anchor binding, peptidase activity and arginine binding. The renin-angiotensin system, arginine biosynthesis and arginine and proline metabolism were the key KEGG pathways of DEGs. Additionally, the genes CEACAM5, PRR4, CPA3, POSTN, CLCA1, and CST1 expression levels were positively associated with plasma cells and resting mast cells. The mouse model revealed elevated nos2 and clca1 expression in the asthmatic mouse group compared with that in normal mice, which was consistent with the findings in asthmatic patients. Discussion This study identified new marker genes for the prediction and diagnosis of asthma, which can be further validated and applied clinically.
Collapse
Affiliation(s)
- Xiaoying Zhong
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The 2nd Ward of Pediatrics, Jinhua Maternal and Child Health Care Hospital, Jinhua, Zhejiang, China
| | - Jingjing Song
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Changyu Lei
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoming Wang
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yufei Wang
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiahui Yu
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Dai
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyi Xu
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junwen Fan
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaodong Xia
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weixi Zhang
- Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Gupta S, Desai S. Green approach for simultaneous determination of long-acting β-agonists, their organic counterparts and corticosteroids by HPLC coupled with PDA detector. ANNALES PHARMACEUTIQUES FRANÇAISES 2025:S0003-4509(25)00009-4. [PMID: 39884425 DOI: 10.1016/j.pharma.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/18/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVE Accurate, precise and robust HPLC method was developed for the simultaneous estimation of long-acting β2 agonist drugs (formoterol fumarate, salmeterol xinafoate and vilanterol trifenatate) along with two organic counterparts (xinafoic acid and triphenyl acetic acid) and inhaled corticosteroids (fluticasone propionate and fluticasone furoate). MATERIAL AND METHODS The separation was carried out using C18 column (250×4.6mm, 5μ) with eluent comprising of 0.05% orthophosphoric acid: methanol: acetonitrile (40:30:30, v/v/v) at a 1mL/min flow rate. RESULTS Linearity was observed in the concentration ranges of 1.5-12μg/mL for formoterol fumarate, 2.82-22.6μg/mL for xinafoic acid, 6.25-50μg/mL for vilanterol, 3.12-25μg/mL for salmeterol, 2.0-15.2μg/mL for triphenyl acetic acid, 62.5-500μg/mL for fluticasone propionate and 25-200μg/mL for fluticasone furoate. CONCLUSION The proposed method was accurate, precise and robust and results were within the limit as per the ICH (Q2R1) guidelines. Additionally, the proposed method was found to be green and sustainable when analysed by different green analytical tools namely GAPI, AGREE, AGREEprep and BAGI.
Collapse
Affiliation(s)
- Sweta Gupta
- Department of Pharmaceutical Quality Assurance, SSR College of Pharmacy, Sayli Road, UT of Dadra and Nagar Haveli, Silvassa 396230, India
| | - Sonal Desai
- Department of Pharmaceutical Quality Assurance, SSR College of Pharmacy, Sayli Road, UT of Dadra and Nagar Haveli, Silvassa 396230, India.
| |
Collapse
|
7
|
Mapindra MP, Castillo-Hernandez T, Clark H, Madsen J. Surfactant Protein-A and its immunomodulatory roles in infant respiratory syncytial virus infection: a potential for therapeutic intervention? Am J Physiol Lung Cell Mol Physiol 2025; 328:L179-L196. [PMID: 39662519 DOI: 10.1152/ajplung.00199.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
The vast majority of early-life hospital admissions globally highlight respiratory syncytial virus (RSV), the leading cause of neonatal lower respiratory tract infections, as the major culprit behind the poor neonatal outcomes following respiratory infections. Unlike those of older children and adults, the immune system of neonates looks rather unique, therefore mostly counting on the innate immune system and antibodies of maternal origins. The collaborations between cells and immune compartments during infancy inclines bias toward a T-helper 2 (Th2) immune profile and thereby away from a T-helper 1 (Th1) immune response. What makes it more problematic is that RSV infection also tends to elicit a stronger Th2-biased immune response and drive an aberrant allergy-like inflammation. It is thus evident how RSV infections potentially pave the way for wheezing recurrences and childhood asthma later in life. Surfactant, the essential lung substance for normal breathing processes in mammals, has immunomodulatory properties including lung collectins such as Surfactant Protein-A (SP-A), which is the most abundant protein component of surfactant, and also Surfactant Protein-D (SP-D). Deficiency of SP-A and SP-D has been found to be associated with impaired pathogen clearance and exacerbated immune responses during infections. We therefore conducted a review of the literature to describe pathomechanisms of RSV infections during blunted neonatal immunity potentially facilitating allergy-like inflammatory events within the developing lungs and highlight the potential protective role of the humoral collectin SP-A to mitigate these in the "early in life" pulmonary immune system.
Collapse
Affiliation(s)
- Muhammad Pradhika Mapindra
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Tania Castillo-Hernandez
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Howard Clark
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Jens Madsen
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
8
|
Hamrick SK, Thompson MA, Rotello VM, Prakash YS, Pabelick CM. Nanoparticles to target asthma. Am J Physiol Lung Cell Mol Physiol 2024; 327:L964-L971. [PMID: 39470612 PMCID: PMC11684954 DOI: 10.1152/ajplung.00248.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 10/30/2024] Open
Abstract
Asthma is a heterogeneous chronic lung disease that affects nearly 340 million people globally. Airway hyperresponsiveness, remodeling (thickening and fibrosis), and mucus hypersecretion are some hallmarks of asthma. With several current treatments having serious side effects from long-term use and a proportion of patients with uncontrolled asthma, there is an urgent need for new therapies. With an increasing understanding of asthma pathophysiology, there is a recognized need to target therapies to specific cell types of the airway, which necessitates the identification of delivery systems that can overcome increased mucus and thickened airways. Nanoparticles (NPs) that are highly customizable (material, size, charge, and surface modification) are a potential solution for delivery systems of a wide variety of cargoes (nucleic acids, proteins, and/or small molecules), as well as sole therapeutics for asthma. However, there is a need to consider the safety of the NPs in terms of potential for inflammation, toxicity, nonspecific targets, and accumulation in organs. Ongoing clinical trials using NPs, some FDA-approved for therapeutics in other diseases, provide confidence regarding the potential safety and efficacy of NPs in asthma treatment. This review highlights the current state of the use of NPs in asthma, identifying opportunities for further improvements in NP design and utilization for targeting this chronic lung disease.
Collapse
Affiliation(s)
- Samantha K Hamrick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
9
|
Shi H, Chen Z, Lei Q, Ma D, Chen M, Liu J. Chest CT assess the impact of omalizumab treatment on airway remodeling in refractory asthma. Pulm Pharmacol Ther 2024; 87:102329. [PMID: 39368543 DOI: 10.1016/j.pupt.2024.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND To evaluate the benefits of omalizumab treatment in patients through real-world follow-up and assess the impact of omalizumab treatment on airway remodeling using chest CT. METHODS This is a single-center prospective, observational study included Chinese patients with refractory asthma who received omalizumab treatment from May 2021 to December 2022. We collected real-world clinical data, including their hospitalization information, pulmonary function, FENO, laboratory assessment, ACT scores, chest CT at baseline and every follow-up month. A comparison was made between the pre-treatment and post-treatment laboratory indicators, pulmonary function, airway parameters, and mucous plug scores under chest CT. RESULTS This study included a total of 61 patients with refractory asthma treated with omalizumab. The study found that: ①regardless of whether the treatment lasted for a full four months or not, it significantly improved patient asthma control scores and reduced hospitalization costs and length of stay (p < 0.05). ②After four months of treatment, pulmonary ventilation function examination revealed significant improvements (p < 0.05) in MEF75, MEF50, MEF75/25, PEF, and FEV1/FVC. ③After four months of omalizumab treatment, the ratio of wall thickness and outer radius (T/D) and wall area percentage (WA%) of the bronchial wall decreased significantly (p < 0.05). ④After medication, the expression of airway mucous plugs decreased. CONCLUSIONS Omalizumab treatment can reduce airway wall thickness, decrease the percentage of airway wall area, and the expression of airway mucous plugs, thereby improving airflow limitation. Utilizing chest CT provides a novel and intuitive assessment of the efficacy of omalizumab treatment. TRIAL REGISTRATION This study was registered in Chinese Clinical Trial Registry, the number is ChiCTR2100046343.
Collapse
Affiliation(s)
- Honglei Shi
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China; Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zehu Chen
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qianqian Lei
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Donghai Ma
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Meizhu Chen
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Jing Liu
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
10
|
Zhou T, Cai H, Wu L, Chen J, Zhou L, Liu J. Bioinformatics analysis and identification of underlying biomarkers potentially linking allergic rhinitis and autophagy. Sci Rep 2024; 14:27624. [PMID: 39528529 PMCID: PMC11555423 DOI: 10.1038/s41598-024-78375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Allergic rhinitis (AR) resulted in impairing human health and quality of life seriously. There is currently no definitive remedy for AR. Recent studies have shown that autophagy may regulate airway inflammation. Our comprehension of autophagy and its molecular mechanism in the field of AR condition remains incomplete. Our research endeavors to bridge this knowledge deficit by investigating the correlation between AR and autophagy. The AR-related gene expression profile GSE50223 was screened and downloaded. The "limma" package of R software was utilized to identify differentially expressed genes associated with autophagy. GO, KEGG, and Gene set enrichment analyses were conducted. A PPI network of differentially expressed autophagy-related genes were established and further identified through the CytoHubba algorithm. A receiver operating characteristic curve analysis was employed to evaluate the diagnostic effectiveness of the hub genes and to examine the relationship between autophagy-related genes and AR. Finally, qRT-PCR was carried out to confirm the chosen autophagy-related genes using clinical samples. 21 autophagy-related genes in allergic rhinitis were identified. BECN1, PIK3C3, GABARAPL2, ULK2, and UVRAG were considered as significant differentially expressed autophagy-related genes. However, additional molecular biological experiments will be necessary to elucidate the underlying mechanism connecting autophagy and AR.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hua Cai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Lisha Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Liuqing Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Jun Liu
- Department of Otorhinolaryngology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, Hubei, China.
| |
Collapse
|
11
|
Israel E, Castro M, Ambrose CS, Llanos JP, Molfino NA, Martin NL, Ponnarambil SS, Martin N. Efficacy of tezepelumab in patients with severe asthma and persistent airflow obstruction. ERJ Open Res 2024; 10:00164-2024. [PMID: 39588080 PMCID: PMC11587167 DOI: 10.1183/23120541.00164-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/31/2024] [Indexed: 11/27/2024] Open
Abstract
Background Persistent airflow obstruction (PAO) in patients with asthma can be difficult to treat. Tezepelumab blocks thymic stromal lymphopoietin, an epithelial cytokine implicated in asthma pathogenesis. This analysis evaluated the efficacy of tezepelumab in patients with severe, uncontrolled asthma and PAO. Methods PATHWAY (phase 2b) and NAVIGATOR (phase 3) were multicentre, randomised, double-blind, placebo-controlled studies. This post hoc analysis included PATHWAY and NAVIGATOR patients who received tezepelumab 210 mg or placebo every 4 weeks for 52 weeks. Change from baseline to week 52 in pre-bronchodilator forced expiratory volume in 1 s (FEV1) and the annualised asthma exacerbation rate (AAER) over 52 weeks were assessed in patients with and without PAO (post-bronchodilator FEV1/forced vital capacity ratio <0.7) at baseline. Results Of the 1334 included patients, 782 (58.6%) had PAO at baseline. At week 52, greater improvements in pre-bronchodilator FEV1 from baseline were observed in tezepelumab versus placebo recipients with PAO (least-squares (LS) mean 0.24 versus 0.07 L; difference 0.17 L, 95% confidence interval (CI): 0.11-0.23) and without PAO (LS mean 0.20 versus 0.12 L; difference 0.08 L, 95% CI: 0.01-0.15). Tezepelumab reduced the AAER versus placebo by 61% (95% CI: 51-69) and 56% (95% CI: 42-67) in patients with and without PAO, respectively. For patients with PAO at baseline, the proportion without PAO at week 52 was higher with tezepelumab (12.1%) than placebo (6.6%) (odds ratio 1.96, 95% CI: 1.30-2.94). Conclusion Tezepelumab improved lung function and reduced exacerbations versus placebo in patients with severe, uncontrolled asthma with and without PAO.
Collapse
Affiliation(s)
- Elliot Israel
- Pulmonary and Critical Care Medicine, Allergy and Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Christopher S. Ambrose
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD, USA
| | | | | | - Nicole L. Martin
- Biometrics, Late-stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA
- Cytel Inc., Waltham, MA, USA
| | - Sandhia S. Ponnarambil
- Late-stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Neil Martin
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
- University of Leicester, Leicester, UK
| |
Collapse
|
12
|
Thawanaphong S, Nair A, Volfson E, Nair P, Mukherjee M. IL-18 biology in severe asthma. Front Med (Lausanne) 2024; 11:1486780. [PMID: 39554494 PMCID: PMC11566457 DOI: 10.3389/fmed.2024.1486780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024] Open
Abstract
The role of interleukin-18 (IL-18) and inflammasomes in chronic inflammatory airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD), has garnered significant attention in recent years. This review aims to provide an overview of the current understanding of IL-18 biology, the associated signaling pathways, and the involvement of inflammasome complexes in airway diseases. We explore the multifaceted role of IL-18 in asthma pathophysiology, including its interactions with other cytokines and contributions to both T2 and non-T2 inflammation. Importantly, emerging evidence highlights IL-18 as a critical player in severe asthma, contributing to chronic airway inflammation, airway hyperresponsiveness (AHR), and mucus impaction. Furthermore, we discuss the emerging evidence of IL-18's involvement in autoimmunity and highlight potential therapeutic targets within the IL-18 and inflammasome pathways in severe asthma patients with evidence of infections and airway autoimmune responses. By synthesizing recent advancements and ongoing research, this review underscores the importance of IL-18 as a potential novel therapeutic target in the treatment of severe asthma and other related conditions.
Collapse
Affiliation(s)
- Sarita Thawanaphong
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Aswathi Nair
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Emily Volfson
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Parameswaran Nair
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Manali Mukherjee
- Department of Medicine, McMAster University, Hamilton, ON, Canada
- Research Institute of St. Joe’s Hamilton, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
13
|
Christensen K. Diversity under a Microscope: As Biodiversity Diminishes, Do Allergies and Asthma Increase? ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:114002. [PMID: 39570741 PMCID: PMC11580834 DOI: 10.1289/ehp15798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 11/24/2024]
Abstract
A state-of-the-science review probed whether biodiversity inside the body and in the environment were associated with certain immune responses.
Collapse
|
14
|
Lin CC, Law BF, Hettick JM. Circular RNA hsa_circ_0008726 Targets the hsa-miR-206-3p/KLF4 Axis to Modulate 4,4'-Methylene Diphenyl Diisocyanate-Glutathione Conjugate-Induced Chemokine Transcription in Macrophages. Cells 2024; 13:1725. [PMID: 39451243 PMCID: PMC11505732 DOI: 10.3390/cells13201725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Exposure to 4,4'-methylene diphenyl diisocyanate (MDI) in the workplace may lead to the development of occupational asthma (OA). However, the specific mechanism(s) by which MDI induces OA are poorly understood. Previous reports have demonstrated that MDI and MDI-glutathione (GSH) conjugate exposure downregulates endogenous human/murine (hsa/mmu)-microRNA(miR)-206-3p, resulting in the activation of mmu/hsa-miR-206-3p-regulated signaling pathways in macrophages. Circular RNAs (circRNAs) regulate many important biological processes by targeting endogenous miRs; however, whether MDI/MDI-GSH exposure may influence circRNA expressions is unknown. Several circRNAs have been identified that regulate hsa-miR-206-3p. We hypothesize that MDI-GSH conjugate exposure induces endogenous circRNA(s) to regulate hsa-miR-206-3p in macrophages. The expression of candidate hsa-miR-206-3p-binding circRNAs was determined from MDI-GSH conjugate-treated differentiated THP-1 macrophages using RT-qPCR. MDI-GSH exposures induced hsa_circ_0008726 and its host gene transcript DNAJB6, whereas other circRNA(s) examined were either not detected or unchanged. RNA-induced silencing complex-immunoprecipitation (RISC-IP) experiments confirm that hsa-miR-206-3p can bind to hsa_circ_0008726. The expressions of endogenous hsa-miR-206-3p, hsa-miR-206-3p-regulated KLF4, and KLF4-activated M2 macrophage-associated markers and chemokines were up-/down-regulated by transfection of hsa_circ_0008726 siRNAs or hsa_circ_0008726 overexpression plasmid in macrophages, respectively. These results suggest MDI-GSH exposure downregulates hsa-miR-206-3p via induction of endogenous hsa_circ_0008726/DNAJB6, resulting in the upregulation of hsa-miR-206-3p-mediated regulations in macrophages.
Collapse
Affiliation(s)
- Chen-Chung Lin
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; (B.F.L.); (J.M.H.)
| | | | | |
Collapse
|
15
|
Alswat AS. The Influence of the Gut Microbiota on Host Health: A Focus on the Gut-Lung Axis and Therapeutic Approaches. Life (Basel) 2024; 14:1279. [PMID: 39459579 PMCID: PMC11509314 DOI: 10.3390/life14101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
The human gut microbiota is a complex ecosystem harboring thousands of microbial strains that play a crucial role in maintaining the overall well-being of its host. The composition of the gut microbiota varies with age from infancy to adulthood and is influenced by dietary habits, environment, and genetic disposition. Recent advances in culture-independent techniques and nucleic acid sequencing have improved our understanding of the diversity of the gut microbiota. The microbial species present in the gut release short-chain fatty acids (SCFAs), which have anti-inflammatory properties. The gut microbiota also plays a substantial role in modulating the host's immune system, promoting immune tolerance, and maintaining homeostasis. The impact of the gut microbiota on the health of the host is quite evident, as gut dysbiosis has been linked to various diseases, including metabolic disorders, autoimmune diseases, allergies, and inflammatory bowel diseases. The gut microbiota has bidirectional communication with the respiratory system, creating the gut-lung axis, which has been associated with different respiratory diseases. Therapeutic approaches targeting the gut microbiota, such as probiotics, prebiotics, dietary interventions, and fecal microbiota transplantation (FMT), aim to restore microbial balance and promote the growth of beneficial strains in the gut. Nonetheless, gaining knowledge of the complex interactions between the gut microbiota and the host is necessary to develop personalized medicine approaches and microbiota-based therapies for various conditions. This review summarizes studies related to the gut-lung axis with particular emphasis on the role of the microbiota. Future research directions are also discussed.
Collapse
Affiliation(s)
- Amal S Alswat
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
16
|
Lee SY, Le DD, Bae CS, Park JW, Lee M, Cho SS, Park DH. Oleic acid attenuates asthma pathogenesis via Th1/Th2 immune cell modulation, TLR3/4-NF-κB-related inflammation suppression, and intrinsic apoptotic pathway induction. Front Immunol 2024; 15:1429591. [PMID: 39421735 PMCID: PMC11484255 DOI: 10.3389/fimmu.2024.1429591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024] Open
Abstract
WHO reported that asthma was responsible for 455,000 deaths in 2019 and asthma patients was evaluated 262 million in May 2023. The incidence is expected to increase as the average life expectancy increases, highlighting asthma as a significant health challenge in an aging society. The etiology of asthma is linked to an imbalance of Th1 and Th2 cells, respiratory inflammation, and pulmonary cell proliferation. The purpose of this study is to investigate the anti-asthmatic effect and potential mechanism of oleic acid. The anti-inflammatory effect of oleic acid was evaluated in an LPS-induced RAW 264.7 cell model, and immune modulation and the anti-apoptotic effect were measured in an ovalbumin-induced BALB/c mouse model. A variety of analytical procedures, such as MTT, qPCR, ELISA, Western blotting, immunofluorescence, gene transfection, immunohistochemistry, and several staining methods (Diff Quik, H&E, PAS), were used to evaluate the effectiveness and mechanisms of these methods. The results from in vitro experiments showed that oleic acid could reduce the levels of inflammatory cytokines (TNF-α, IL-6, and IL-1β), and molecular docking studies suggested that oleic acid could interact with TLR3 and TLR4 proteins to form ligand-protein complexes, showing good binding affinity. Additionally, oleic acid attenuated the expression of MAPK pathway components (JNK, p38 MAPK) and NF-κB pathway constituents (IκB, NF-κB, COX-2, PGE2). In vivo results indicated that oleic acid reduced the levels of inflammatory cells (WBCs and eosinophils) and IgE activity, reduced the expression of the Th2 cell transcription factor GATA-3, and decreased the levels of Th2/Th17-related cytokines (IL-4, TNF-α, and IL-6). Oleic acid also alleviated OVA-induced pathological changes in the lung, such as epithelial cell proliferation, inflammatory cell infiltration, and mucus hypersecretion. OVA restored apoptosis in lung epithelial cells by modulating the expression of Bcl-2 and Bax. In summary, oleic acid has potential as a novel candidate for asthma treatment through its ability to regulate immune cells, exert anti-inflammatory effects, and promote apoptosis, thereby ameliorating asthma manifestations.
Collapse
Affiliation(s)
- Soon-Young Lee
- College of Oriental Medicine, Dongshin University, Naju, Republic of Korea
| | - Duc Dat Le
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan, Republic of Korea
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan, Republic of Korea
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Republic of Korea
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju, Republic of Korea
| |
Collapse
|
17
|
Lin M, Lee Y, Liao J, Chou C, Yang Y. PTGES is involved in myofibroblast differentiation via HIF-1α-dependent glycolysis pathway. J Cell Mol Med 2024; 28:e70157. [PMID: 39417702 PMCID: PMC11484478 DOI: 10.1111/jcmm.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Patients with lung cancer usually exhibit poor prognoses and low 5-year survival rates. Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are both chronic lung dysfunctions resulting in lung fibrosis and increased risk of lung cancer. Myofibroblasts contribute to the progression of asthma, COPD and IPF, leading to fibrosis in the airway and lungs. A growing body of evidence demonstrates that metabolic reprogramming is a major hallmark of fibrosis, being important in the progression of fibrosis. Using gene expression microarray, we identified and validated that the lipid metabolic pathway was upregulated in lung fibroblasts upon interleukin (IL)-4, IL-13 and tumour necrosis factor (TNF)-α treatment. In this study, we described that prostaglandin E synthase (PTGES) was upregulated in lung fibroblasts after IL-4, IL-13 and TNF-α treatments. PTGES increased α-SMA levels and promoted lung fibroblast cell migration and invasion abilities. Furthermore, PTGES was upregulated in a lung fibrosis rat model in vivo. PTGES increased AKT phosphorylation, leading to activation of the HIF-1α-glycolysis pathway in lung fibroblast cells. HIF-1α inhibitor or 2-DG treatments reduced α-SMA expression in recombinant PTGES (rPTGES)-treated lung fibroblast cells. Targeting PGE2 signalling in PTGES-overexpressing cells by a PTGES inhibitor reduced α-SMA expression. In conclusion, the results of this study demonstrate that PTGES increases the expression of myofibroblast marker via HIF-1α-dependent glycolysis and contributes to myofibroblast differentiation.
Collapse
Affiliation(s)
- Min‐Hsi Lin
- Division of Chest MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Yi‐Chen Lee
- Department of Anatomy, School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Jia‐Bin Liao
- Department of Pathology and Laboratory MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Chih‐Yu Chou
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Yi‐Fang Yang
- Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
| |
Collapse
|
18
|
Zheng X, Chen M, Zhuang Y, Zhao L, Qian Y, Shi C. Unveiling genetic links between gut microbiota and asthma: a Mendelian randomization. Front Microbiol 2024; 15:1448629. [PMID: 39372270 PMCID: PMC11449699 DOI: 10.3389/fmicb.2024.1448629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Background Multiple studies suggest a potential connection between the gut microbiome and asthma. Our objective is to use advanced genetic and metagenomic techniques to elucidate the causal relationships and underlying mechanisms between gut microbiota and asthma. Methods The study utilized comprehensive Linkage Disequilibrium Score Regression (LDSC) and Mendelian randomization (MR) analyses to examine the relationship between 119 gut microbiota genera and asthma, using publicly accessible genome-wide association studies (GWAS). The meta-analysis synthesized summary effect estimates obtained from LDSC, forward MR, and reverse MR. The MiBioGen collaboration, involving 18,340 individuals, identified genetic variations associated with gut bacteria. Asthma data were collected from the UK Biobank, FinnGen, and GERA, encompassing a total of 82,060 cases and 641,049 controls. Results LDSC analysis revealed significant negative genetic correlations between asthma and RuminococcaceaeUCG004 (Rg = -0.55, p = 7.66 × 10-5) and Subdoligranulum (Rg = -0.35, p = 3.61 × 10-4). Forward MR analysis suggested associations between Butyricicoccus (OR = 0.92, p = 0.01), Turicibacter (OR = 0.95, p = 0.025), Butyrivibrio (OR = 0.98, p = 0.047), and reduced asthma risk. Conversely, Coprococcus2 (OR = 1.10, p = 0.035) and Roseburia (OR = 1.07, p = 0.039) were associated with increased risk. Reverse MR analysis indicated significant associations between genetically predicted asthma and Eubacteriumxylanophilumgroup (Beta = -0.08, p = 9.25 × 10-7), LachnospiraceaeNK4A136group (Beta = -0.05, p = 1.26 × 10-4), and Eisenbergiella (Beta = 0.06, p = 0.015, Rg_P = 0.043). Conclusion The findings underscore significant genetic correlations and causal relationships between specific gut microbiota and asthma. These insights highlight the potential of gut microbiota as both markers and modulators of asthma risk, offering new avenues for targeted therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - ChengCheng Shi
- Emergency Department, Wujin People’s Hospital Affiliated with Jiangsu University, Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
19
|
Lin CC, Law BF, Hettick JM. MicroRNA-mediated Krüppel-like factor 4 upregulation induces alternatively activated macrophage-associated marker and chemokine transcription in 4,4'-methylene diphenyl diisocyanate exposed macrophages. Xenobiotica 2024; 54:730-748. [PMID: 38568505 PMCID: PMC11489325 DOI: 10.1080/00498254.2024.2334329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
1. Occupational exposure to 4,4'-methylene diphenyl diisocyanate (MDI) is associated with occupational asthma (OA) development. Alveolar macrophage-induced recruitment of immune cells to the lung microenvironment plays an important role during asthma pathogenesis. Previous studies identified that MDI/MDI-glutathione (GSH)-exposure downregulates endogenous hsa-miR-206-3p/hsa-miR-381-3p. Our prior report shows that alternatively activated (M2) macrophage-associated markers/chemokines are induced by MDI/MDI-GSH-mediated Krüppel-Like Factor 4 (KLF4) upregulation in macrophages and stimulates immune cell chemotaxis. However, the underlying molecular mechanism(s) by which MDI/MDI-GSH upregulates KLF4 remain unclear. 2. Following MDI-GSH exposure, microRNA(miR)-inhibitors/mimics or plasmid transfection, endogenous hsa-miR-206-3p/hsa-miR-381-3p, KLF4, or M2 macrophage-associated markers (CD206, TGM2), and chemokines (CCL17, CCL22, CCL24) were measured by either RT-qPCR, western blot, or luciferase assay. 3. MDI-GSH exposure downregulates hsa-miR-206-3p/hsa-miR-381-3p by 1.46- to 9.75-fold whereas upregulates KLF4 by 1.68- to 1.99-fold, respectively. In silico analysis predicts binding between hsa-miR-206-3p/hsa-miR-381-3p and KLF4. Gain- and loss-of-function, luciferase reporter assays and RNA-induced silencing complex-immunoprecipitation (RISC-IP) studies confirm the posttranscriptional regulatory roles of hsa-miR-206-3p/hsa-miR-381-3p and KLF4 in macrophages. Furthermore, hsa-miR-206-3p/hsa-miR-381-3p regulate the expression of M2 macrophage-associated markers and chemokines via KLF4. 4. In conclusion, hsa-miR-206-3p/hsa-miR-381-3p play a major role in regulation of MDI/MDI-GSH-induced M2 macrophage-associated markers and chemokines by targeting the KLF4 transcript, and KLF4-mediated regulation in macrophages.
Collapse
Affiliation(s)
- Chen-Chung Lin
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Brandon F. Law
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Justin M. Hettick
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| |
Collapse
|
20
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)The First Department of Thoracic SurgeryPeking University Cancer Hospital and InstitutePeking University School of OncologyBeijingChina
| | - Jin Zhang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Yuchen Yang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Zhuofeng Liu
- Department of Traditional Chinese MedicineThe Third Affiliated Hospital of Xi'an Medical UniversityXi'anChina
| | - Sijia Sun
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Rui Li
- Department of EpidemiologySchool of Public HealthAir Force Medical UniversityXi'anChina
| | - Hui Zhu
- Department of AnatomyMedical College of Yan'an UniversityYan'anChina
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Tian Li
- School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Jin Zheng
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Jie Li
- Department of EndocrineXijing 986 HospitalAir Force Medical UniversityXi'anChina
| | - Litian Ma
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
- Department of GastroenterologyTangdu HospitalAir Force Medical UniversityXi'anChina
- School of MedicineNorthwest UniversityXi'anChina
| |
Collapse
|
21
|
Zhu N, Lin S, Wang L, Kong X, Huang W, Cao C. Elevated inflammatory burden index increases mortality in adults with chronic inflammatory airway diseases: a nationwide cohort study. BMC Pulm Med 2024; 24:399. [PMID: 39164650 PMCID: PMC11337749 DOI: 10.1186/s12890-024-03211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the potential association between the inflammatory burden index (IBI) and the prevalence of chronic inflammatory airway diseases (CIAD), as well as mortality rates among individuals diagnosed with CIAD. METHODS Participants were sourced from the National Health and Nutrition Examination Survey (NHANES) conducted between 1999 and 2010. The IBI was calculated using the formula: IBI = C-reactive protein * neutrophils / lymphocytes. CIAD comprised self-reported asthma, chronic bronchitis, and chronic obstructive pulmonary disease (COPD). Mortality outcomes, including all-cause and respiratory disease mortality, were determined through linked data from the National Death Index (NDI) up to December 2019. RESULTS A total of 27,495 adults were included. IBI was divided into quartiles, with the lowest quartile as the reference group. After adjusting for confounding variables, a positive correlation was observed between higher IBI and increased prevalence of total CIAD (OR = 1.383 [1.215-1.575]), asthma (OR = 1.267 [1.096-1.465]), chronic bronchitis (OR = 1.568 [1.263-1.946]), and COPD (OR = 1.907 [1.311-2.774]). Over a median follow-up of 12.33 [9.92-16.00] years, there were 1221 deaths from all causes and 220 deaths from respiratory disease among 4499 patients with CIAD. Following multivariate adjustments, the fourth quartile was significantly associated with increased risk of all-cause mortality (HR = 2.227 [1.714-2.893]) and respiratory disease mortality (HR = 2.748 [1.383-5.459]) compared to the first quartile of IBI in CIAD participants. Moreover, variable importance analysis using a random survival forest model demonstrated the significance of IBI in predicting mortality from both all-cause and respiratory diseases. CONCLUSION IBI exhibited an association with the prevalence of CIAD, with higher IBI levels correlating with elevated all-cause and respiratory disease mortality among individuals with CIAD.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shanhong Lin
- Department of Ultrasound, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Linfeng Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xue Kong
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Weina Huang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
22
|
Mou Y, Cao W, Wang R, Liu X, Yang X, Zhu J. The causality between C-reactive protein and asthma: a two-sample Mendelian randomization analysis. Postgrad Med J 2024; 100:555-561. [PMID: 38490259 DOI: 10.1093/postmj/qgae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/07/2024] [Accepted: 01/19/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE This study sought to investigate the causal effects of circulating C-reactive protein (CRP) level on risk of asthma and its subtypes by two-sample Mendelian randomization (MR) analysis. METHODS We utilized single nucleotide polymorphisms (SNPs) associated with both CRP and outcomes of asthma, allergic asthma, and obesity-related asthma as genetic variables via a genome-wide summary association study (GWAS). MR analysis mainly based on the inverse variance weighted (IVW) method was performed to infer the causal relationship between exposure and outcomes. Cochran's Q test and MR-Egger regression analysis were performed to determine respectively the heterogeneity and pleiotropy among instrumental variables (IVs), and leave-one-out analysis was conducted to determine the stability of the MR results. RESULTS In our study, 42 SNPs were identified as IVs for MR analyses. According to the primary inference results by IVW methods, circulating CRP was demonstrated to be significantly associated with risk of asthma [odds ratio (OR): 1.046; 95% confidence interval (95% CI): 1.004-1.090; P = .030] and obesity-related asthma (OR: 1.072; 95% CI: 1.009-1.138; P = 0.025), whereas no distinct causality with allergic asthma was found (OR: 1.051; 95% CI: 0.994-1.112; P = .081). Sensitivity analyses indicated that there was no horizontal pleiotropy among IVs, and the MR results were proved to be robust by leave-one-out sensitivity analysis, despite the presence of heterogeneity. CONCLUSION The present study suggested that higher CRP might genetically predict an increased risk of developing asthma and obesity-related asthma, without causality with allergic asthma.
Collapse
Affiliation(s)
- Yong Mou
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Wenhao Cao
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Rujuan Wang
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Xiaofan Liu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Xiuwen Yang
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Jing Zhu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| |
Collapse
|
23
|
Marchi E, Hinks TS, Richardson M, Khalfaoui L, Symon FA, Rajasekar P, Clifford R, Hargadon B, Austin CD, MacIsaac JL, Kobor MS, Siddiqui S, Mar JS, Arron JR, Choy DF, Bradding P. The effects of inhaled corticosteroids on healthy airways. Allergy 2024; 79:1831-1843. [PMID: 38686450 PMCID: PMC7616167 DOI: 10.1111/all.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND The effects of inhaled corticosteroids (ICS) on healthy airways are poorly defined. OBJECTIVES To delineate the effects of ICS on gene expression in healthy airways, without confounding caused by changes in disease-related genes and disease-related alterations in ICS responsiveness. METHODS Randomized open-label bronchoscopy study of high-dose ICS therapy in 30 healthy adult volunteers randomized 2:1 to (i) fluticasone propionate 500 mcg bd daily or (ii) no treatment, for 4 weeks. Laboratory staff were blinded to allocation. Biopsies and brushings were analysed by immunohistochemistry, bulk RNA sequencing, DNA methylation array and metagenomics. RESULTS ICS induced small between-group differences in blood and lamina propria eosinophil numbers, but not in other immunopathological features, blood neutrophils, FeNO, FEV1, microbiome or DNA methylation. ICS treatment upregulated 72 genes in brushings and 53 genes in biopsies, and downregulated 82 genes in brushings and 416 genes in biopsies. The most downregulated genes in both tissues were canonical markers of type-2 inflammation (FCER1A, CPA3, IL33, CLEC10A, SERPINB10 and CCR5), T cell-mediated adaptive immunity (TARP, TRBC1, TRBC2, PTPN22, TRAC, CD2, CD8A, HLA-DQB2, CD96, PTPN7), B-cell immunity (CD20, immunoglobulin heavy and light chains) and innate immunity, including CD48, Hobit, RANTES, Langerin and GFI1. An IL-17-dependent gene signature was not upregulated by ICS. CONCLUSIONS In healthy airways, 4-week ICS exposure reduces gene expression related to both innate and adaptive immunity, and reduces markers of type-2 inflammation. This implies that homeostasis in health involves tonic type-2 signalling in the airway mucosa, which is exquisitely sensitive to ICS.
Collapse
Affiliation(s)
- Emanuele Marchi
- NIHR Oxford Respiratory BRC and Respiratory Medicine Unit, Experimental Medicine, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Timothy S.C. Hinks
- NIHR Oxford Respiratory BRC and Respiratory Medicine Unit, Experimental Medicine, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Matthew Richardson
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | - Latifa Khalfaoui
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | - Fiona A. Symon
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | - Poojitha Rajasekar
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine; Nottingham NIHR Biomedical Research Centre; and Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Rachel Clifford
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine; Nottingham NIHR Biomedical Research Centre; and Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Beverley Hargadon
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | | | - Julia L. MacIsaac
- Edwin S.H. Leong Centre for Healthy Aging, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Michael S. Kobor
- Edwin S.H. Leong Centre for Healthy Aging, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Salman Siddiqui
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | | | | | | | - Peter Bradding
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| |
Collapse
|
24
|
van Boven FE, Braunstahl GJ, Arends LR, van Maaren MS, Bramer WM, van Wijk RG, de Jong NW. House dust mite allergen avoidance strategies for the treatment of allergic asthma: A hypothesis-generating meta-analysis. World Allergy Organ J 2024; 17:100919. [PMID: 38966606 PMCID: PMC11223119 DOI: 10.1016/j.waojou.2024.100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024] Open
Abstract
Background This study continues the review by Gøtzsche and Johansen (Cochrane Database of Systematic Reviews, 2008, Art. No: CD001187), aiming to systematically generate hypotheses on the effectiveness of (sub)strategies for house dust mite allergen avoidance in the treatment of allergic asthma. Methods We used the trials previously analysed by Gøtzsche and Johansen and searched recently published studies. Data on asthma symptom scores (ASS), ACQ, number of improved patients, AQLQ-scores, medication use, FEV1%, PC20, and FeNO levels were analysed. The effectiveness of strategies was assessed using Metafor in R. Results Thirty-five trials involving 2419 patients were included in the final study. The patient-reported outcome number of patients with improved condition following total bedroom control was RR = 3.39 (95% confidence interval: 1.04 to 11.04, P = 0.04). The mean differences in the ASS by nocturnal air purification was -0.7 (95% confidence interval: -1.08 to -0.32, P < 0.001). Other outcomes including partial bedroom control were non-significant or clinically not of importance. Conclusions Total bedroom control and nocturnal air purification of the breathing zone hypothetically provides clinical benefits in patients with house dust mite-induced allergic asthma. The number of patients with improvements in their condition respectively the asthma symptom score differences showed potential in small subgroups, consisting of single studies. Partial bedroom control is not recommended. Systematic Review Registration Prospero CRD42022323660.
Collapse
Affiliation(s)
- Frank E. van Boven
- Department of Internal Medicine, Section of Allergology & Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Gert-Jan Braunstahl
- Department of Pulmonology, Franciscus Gasthuis & Vlietland, P.O. Box 10900, 3004 BA, Rotterdam, the Netherlands
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Lidia R. Arends
- Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
- Department of Biostatistics & Epidemiology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Maurits S. van Maaren
- Department of Internal Medicine, Section of Allergology & Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Wichor M. Bramer
- Medical Library, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Roy Gerth van Wijk
- Department of Internal Medicine, Section of Allergology & Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Nicolette W. de Jong
- Department of Internal Medicine, Section of Allergology & Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| |
Collapse
|
25
|
Gutiérrez-Vera C, García-Betancourt R, Palacios PA, Müller M, Montero DA, Verdugo C, Ortiz F, Simon F, Kalergis AM, González PA, Saavedra-Avila NA, Porcelli SA, Carreño LJ. Natural killer T cells in allergic asthma: implications for the development of novel immunotherapeutical strategies. Front Immunol 2024; 15:1364774. [PMID: 38629075 PMCID: PMC11018981 DOI: 10.3389/fimmu.2024.1364774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting most prominently both young individuals and lower-income populations in developing and developed countries. To devise effective and curative immunotherapy, it is crucial to comprehend the intricate nature of this condition, characterized by an immune response imbalance that favors a proinflammatory profile orchestrated by diverse subsets of immune cells. Although the involvement of Natural Killer T (NKT) cells in asthma pathology is frequently implied, their specific contributions to disease onset and progression remain incompletely understood. Given their remarkable ability to modulate the immune response through the rapid secretion of various cytokines, NKT cells represent a promising target for the development of effective immunotherapy against allergic asthma. This review provides a comprehensive summary of the current understanding of NKT cells in the context of allergic asthma, along with novel therapeutic approaches that leverage the functional response of these cells.
Collapse
Affiliation(s)
- Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Verdugo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisca Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noemi A. Saavedra-Avila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
26
|
Kaya-Yasar Y, Engin S, Barut EN, Inan C, Saygin I, Erkoseoglu I, Sezen SF. The contribution of the WNT pathway to the therapeutic effects of montelukast in experimental murine airway inflammation induced by ovalbumin and lipopolysaccharide. Drug Dev Res 2024; 85:e22178. [PMID: 38528652 DOI: 10.1002/ddr.22178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
The wingless/integrase-1 (WNT) pathway involved in the pathogenesis of inflammatory airway diseases has recently generated considerable research interest. Montelukast, a leukotriene receptor antagonist, provides therapeutic benefits in allergic asthma involving eosinophils. We aimed to investigate the role of the WNT pathway in the therapeutic actions of montelukast (MT) in a mixed type of allergic-acute airway inflammation model induced by ovalbumin (OVA) and lipopolysaccharide (LPS) in mice. Female mice were sensitized with intraperitoneal OVA-Al(OH)3 administration in the initiation phase and intranasal OVA followed by LPS administration in the challenge phase. The mice were divided into eight groups: control, asthmatic, and control/asthmatic treated with XAV939 (inhibitor of the canonical WNT pathway), LGK-974 (inhibitor of the secretion of WNT ligands), or MT at different doses. The inhibition of the WNT pathway prevented tracheal 5-HT and bradykinin hyperreactivity, while only the inhibition of the canonical WNT pathway partially reduced 5-HT and bradykinin contractions compared to the inflammation group. Therefore, MT treatment hindered 5-HT and bradykinin hyperreactivity associated with airway inflammation. Furthermore, MT prevented the increases in the phosphorylated GSK-3β and WNT5A levels, which had been induced by airway inflammation, in a dose-dependent manner. Conversely, the MT application caused a further increase in the fibronectin levels, while there was no significant alteration in the phosphorylation of the Smad-2 levels in the isolated lungs of the mice. The MT treatment reversed the increase in the mRNA expression levels of interleukin-17A. An increase in eosinophil and neutrophil counts was observed in bronchoalveolar lavage fluid samples obtained from the mice in the inflammation group, which was hampered by the MT treatment. The inhibition of the WNT pathway did not alter inflammatory cytokine expression or cell infiltration. The WNT pathway mediated the therapeutic effects of MT due to the inhibition of GSK-3β phosphorylation as well as the reduction of WNT5A levels in a murine airway inflammation model.
Collapse
Affiliation(s)
- Yesim Kaya-Yasar
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Seckin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Cihan Inan
- Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Ismail Saygin
- Department of Pathology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ilknur Erkoseoglu
- Department of Medical Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Sena F Sezen
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
- Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
27
|
Varricchi G, Brightling CE, Grainge C, Lambrecht BN, Chanez P. Airway remodelling in asthma and the epithelium: on the edge of a new era. Eur Respir J 2024; 63:2301619. [PMID: 38609094 PMCID: PMC11024394 DOI: 10.1183/13993003.01619-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
Asthma is a chronic, heterogeneous disease of the airways, often characterised by structural changes known collectively as airway remodelling. In response to environmental insults, including pathogens, allergens and pollutants, the epithelium can initiate remodelling via an inflammatory cascade involving a variety of mediators that have downstream effects on both structural and immune cells. These mediators include the epithelial cytokines thymic stromal lymphopoietin, interleukin (IL)-33 and IL-25, which facilitate airway remodelling through cross-talk between epithelial cells and fibroblasts, and between mast cells and airway smooth muscle cells, as well as through signalling with immune cells such as macrophages. The epithelium can also initiate airway remodelling independently of inflammation in response to the mechanical stress present during bronchoconstriction. Furthermore, genetic and epigenetic alterations to epithelial components are believed to influence remodelling. Here, we review recent advances in our understanding of the roles of the epithelium and epithelial cytokines in driving airway remodelling, facilitated by developments in genetic sequencing and imaging techniques. We also explore how new and existing therapeutics that target the epithelium and epithelial cytokines could modify airway remodelling.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, WAO Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher E. Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
- G. Varricchi and C.E. Brightling contributed equally
| | - Christopher Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
| | - Bart N. Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| |
Collapse
|
28
|
Sadeghi M, Mohammadi M, Tavakol Afshari J, Iranparast S, Ansari B, Dehnavi S. Therapeutic potential of mesenchymal stem cell-derived exosomes for allergic airway inflammation. Cell Immunol 2024; 397-398:104813. [PMID: 38364454 DOI: 10.1016/j.cellimm.2024.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Due to their immunomodulatory capacities, mesenchymal stem cells (MSCs) have been extensively used as therapeutic approaches in cell-based therapy for various inflammatory diseases. Several lines of studies have shown that the most beneficial effects of MSCs are associated with MSC-derived exosomes. Exosomes are nanoscale extracellular vesicles that contain important biomolecules such as RNA, microRNAs (miRNAs), DNA, growth factors, enzymes, chemokines, and cytokines that regulate immune cell functions and parenchymal cell survival. Recently, exosomes, especially MSC-derived exosomes, have been shown to have protective effects in allergic airway inflammation. This review focused on the immune-regulatory potential of MSC-derived exosomes as nanoscale delivery systems in the treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Iranparast
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Ansari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Jiang M, Yan L, Li M, Ye F, Shang E, Sun S, Fan X. Computer-aided investigation of Traditional Chinese Medicine mechanisms: A case study of San-Ao decoction in asthma treatment. Comput Biol Med 2024; 169:107868. [PMID: 38211384 DOI: 10.1016/j.compbiomed.2023.107868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/18/2023] [Accepted: 12/17/2023] [Indexed: 01/13/2024]
Abstract
The San-Ao Decoction (SAD) is a well-known Traditional Chinese Medicine (TCM) formula used to alleviate respiratory symptoms, including asthma. However, its precise mechanisms of action have remained largely unknown. In this study, we utilized computer-aided approaches to explore these mechanisms. Firstly, we conducted a comprehensive analysis of the chemical composition of SAD, which allowed us to identify the 28 main ingredients. Then, we employed computer simulations to investigate the potential active ingredients of SAD and the corresponding binding sites of transient receptor potential vanilloid 1 (TRPV1). The simulations revealed that D509 and D647 were the potential binding sites for TRPV1. Notably, molecular dynamics (MD) studies indicated that site D509 may function as an allosteric site of TRPV1. Furthermore, to validate the computer-aided predictions, we performed experimental studies, including in vitro and in vivo assays. The results of these experiments confirmed the predictions made by our computational models, providing further evidence for the mechanisms of action of San-Ao Decoction in asthma treatment. Our findings demonstrated that: i) D509 and D647 of TRPV1 are the key binding sites for the main ingredients of SAD; ii) SAD or its main ingredients significantly reduce the influx of Ca2+ through TRPV1, following the TCM principle of "Jun, Chen, Zuo, Shi"; iii) SAD shows efficiency in comprehensive in vivo validation. In conclusion, our computer-aided investigation of San-Ao Decoction in asthma treatment has provided valuable insights into the therapeutic mechanisms of this TCM formula. The combination of computational analysis and experimental validation has proven effective in enhancing our understanding of TCM and may pave the way for future discoveries in the field.
Collapse
Affiliation(s)
- Minyue Jiang
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lu Yan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengwen Li
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fan Ye
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xinsheng Fan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
30
|
Gayen S, Dachert S, Lashari BH, Gordon M, Desai P, Criner GJ, Cardet JC, Shenoy K. Critical Care Management of Severe Asthma Exacerbations. J Clin Med 2024; 13:859. [PMID: 38337552 PMCID: PMC10856115 DOI: 10.3390/jcm13030859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Severe asthma exacerbations, including near-fatal asthma (NFA), have high morbidity and mortality. Mechanical ventilation of patients with severe asthma is difficult due to the complex pathophysiology resulting from severe bronchospasm and dynamic hyperinflation. Life-threatening complications of traditional ventilation strategies in asthma exacerbations include the development of systemic hypotension from hyperinflation, air trapping, and pneumothoraces. Optimizing pharmacologic techniques and ventilation strategies is crucial to treat the underlying bronchospasm. Despite optimal pharmacologic management and mechanical ventilation, the mortality rate of patients with severe asthma in intensive care units is 8%, suggesting a need for advanced non-pharmacologic therapies, including extracorporeal life support (ECLS). This review focuses on the pathophysiology of acute asthma exacerbations, ventilation management including non-invasive ventilation (NIV) and invasive mechanical ventilation (IMV), the pharmacologic management of acute asthma, and ECLS. This review also explores additional advanced non-pharmacologic techniques and monitoring tools for the safe and effective management of critically ill adult asthmatic patients.
Collapse
Affiliation(s)
- Shameek Gayen
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University Hospital, Philadelphia, PA 19140, USA; (S.D.); (B.H.L.); (M.G.); (P.D.); (G.J.C.); (K.S.)
| | - Stephen Dachert
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University Hospital, Philadelphia, PA 19140, USA; (S.D.); (B.H.L.); (M.G.); (P.D.); (G.J.C.); (K.S.)
| | - Bilal H. Lashari
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University Hospital, Philadelphia, PA 19140, USA; (S.D.); (B.H.L.); (M.G.); (P.D.); (G.J.C.); (K.S.)
| | - Matthew Gordon
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University Hospital, Philadelphia, PA 19140, USA; (S.D.); (B.H.L.); (M.G.); (P.D.); (G.J.C.); (K.S.)
| | - Parag Desai
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University Hospital, Philadelphia, PA 19140, USA; (S.D.); (B.H.L.); (M.G.); (P.D.); (G.J.C.); (K.S.)
| | - Gerard J. Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University Hospital, Philadelphia, PA 19140, USA; (S.D.); (B.H.L.); (M.G.); (P.D.); (G.J.C.); (K.S.)
| | - Juan Carlos Cardet
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, FL 33602, USA;
| | - Kartik Shenoy
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University Hospital, Philadelphia, PA 19140, USA; (S.D.); (B.H.L.); (M.G.); (P.D.); (G.J.C.); (K.S.)
| |
Collapse
|
31
|
Drake LY, Wicher SA, Roos BB, Khalfaoui L, Nesbitt L, Fang YH, Pabelick CM, Prakash YS. Functional role of glial-derived neurotrophic factor in a mixed allergen murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 326:L19-L28. [PMID: 37987758 PMCID: PMC11279745 DOI: 10.1152/ajplung.00099.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
32
|
Martinez GJ, Appleton M, Kipp ZA, Loria AS, Min B, Hinds TD. Glucocorticoids, their uses, sexual dimorphisms, and diseases: new concepts, mechanisms, and discoveries. Physiol Rev 2024; 104:473-532. [PMID: 37732829 PMCID: PMC11281820 DOI: 10.1152/physrev.00021.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The normal stress response in humans is governed by the hypothalamic-pituitary-adrenal (HPA) axis through heightened mechanisms during stress, raising blood levels of the glucocorticoid hormone cortisol. Glucocorticoids are quintessential compounds that balance the proper functioning of numerous systems in the mammalian body. They are also generated synthetically and are the preeminent therapy for inflammatory diseases. They act by binding to the nuclear receptor transcription factor glucocorticoid receptor (GR), which has two main isoforms (GRα and GRβ). Our classical understanding of glucocorticoid signaling is from the GRα isoform, which binds the hormone, whereas GRβ has no known ligands. With glucocorticoids being involved in many physiological and cellular processes, even small disruptions in their release via the HPA axis, or changes in GR isoform expression, can have dire ramifications on health. Long-term chronic glucocorticoid therapy can lead to a glucocorticoid-resistant state, and we deliberate how this impacts disease treatment. Chronic glucocorticoid treatment can lead to noticeable side effects such as weight gain, adiposity, diabetes, and others that we discuss in detail. There are sexually dimorphic responses to glucocorticoids, and women tend to have a more hyperresponsive HPA axis than men. This review summarizes our understanding of glucocorticoids and critically analyzes the GR isoforms and their beneficial and deleterious mechanisms and the sexual differences that cause a dichotomy in responses. We also discuss the future of glucocorticoid therapy and propose a new concept of dual GR isoform agonist and postulate why activating both isoforms may prevent glucocorticoid resistance.
Collapse
Affiliation(s)
- Genesee J Martinez
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Malik Appleton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Zachary A Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Barnstable Brown Diabetes Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
33
|
Liu X, Ali MK, Dua K, Mao Y, Liu J. Circular RNAs: emerging players in asthma and COPD. Front Cell Dev Biol 2023; 11:1267792. [PMID: 38078005 PMCID: PMC10704470 DOI: 10.3389/fcell.2023.1267792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/14/2023] [Indexed: 10/16/2024] Open
Abstract
Circular RNAs (circRNAs) belong to a unique class of endogenously expressed non-protein-coding RNAs with a distinct circularized structure, characterized by the absence of 5'-cap and 3'-polyadenylate ends. They are generally formed through back-splicing from pre-mRNAs. They serve as regulators of transcription and splicing, and act as sponges for microRNAs (miRNAs) and RNA-binding proteins, thereby modulating the expression of target genes. As a result, they exert a substantial impact on a diverse array of cellular and biological processes, including cell proliferation, migration, inflammation, and oxidative stress. Asthma and COPD are chronic airway conditions that currently have no cure. In recent years, emerging evidence suggests that altered expression of circRNAs in airway, bronchial and immune cells is involved in asthma and COPD pathogenesis. Studies exploring circRNA dysregulation in asthma have showcased their involvement in regulating the proliferation, migration, and inflammation of airway smooth muscle and bronchial epithelial cells, as well as impacting goblet cell metaplasia, Th2 cell differentiation, and macrophage activation, primarily through interactions with miRNAs. Similarly, in COPD, circRNAs have shown altered expression patterns in the blood and lungs of patients, and these changes have been linked to modulating inflammation, oxidative stress, and airway remodeling in preclinical models. Furthermore, certain circRNAs have demonstrated promising potential as diagnostic and prognostic biomarkers for both asthma and COPD. This review delves into the current understanding of the function and molecular mechanisms of circRNAs in asthma and COPD, along with exploring their potential as biomarkers in these respiratory conditions.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Md Khadem Ali
- Pre-Professional Health Academic Program, California State University, Hayward, CA, United States
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Yuqiang Mao
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Skills Practice Teaching Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Saha PK, Nadeem SA, Comellas AP. A Survey on Artificial Intelligence in Pulmonary Imaging. WILEY INTERDISCIPLINARY REVIEWS. DATA MINING AND KNOWLEDGE DISCOVERY 2023; 13:e1510. [PMID: 38249785 PMCID: PMC10796150 DOI: 10.1002/widm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/21/2023] [Indexed: 01/23/2024]
Abstract
Over the last decade, deep learning (DL) has contributed a paradigm shift in computer vision and image recognition creating widespread opportunities of using artificial intelligence in research as well as industrial applications. DL has been extensively studied in medical imaging applications, including those related to pulmonary diseases. Chronic obstructive pulmonary disease, asthma, lung cancer, pneumonia, and, more recently, COVID-19 are common lung diseases affecting nearly 7.4% of world population. Pulmonary imaging has been widely investigated toward improving our understanding of disease etiologies and early diagnosis and assessment of disease progression and clinical outcomes. DL has been broadly applied to solve various pulmonary image processing challenges including classification, recognition, registration, and segmentation. This paper presents a survey of pulmonary diseases, roles of imaging in translational and clinical pulmonary research, and applications of different DL architectures and methods in pulmonary imaging with emphasis on DL-based segmentation of major pulmonary anatomies such as lung volumes, lung lobes, pulmonary vessels, and airways as well as thoracic musculoskeletal anatomies related to pulmonary diseases.
Collapse
Affiliation(s)
- Punam K Saha
- Departments of Radiology and Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52242
| | | | | |
Collapse
|
35
|
Ekstedt S, Lagebro V, Kumlien Georén S, Cardell LO. Prolonged inflammatory resolution in allergic asthma relates to dysfunctional interactions between neutrophils and airway epithelium. Ann Allergy Asthma Immunol 2023; 131:349-355.e3. [PMID: 37268244 DOI: 10.1016/j.anai.2023.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Allergic asthma is a heterogeneous disorder involving chronic airway inflammation, reversible airflow limitation, and tissue remodeling, causing chronic airflow limitation. Most of the asthma research has been focused on elucidating the proinflammatory pathways underlying disease pathogenesis. Paradoxically, the necessity of appropriate termination and resolution of inflammation has not been recognized until recently. The latter has led to the concept of chronic inflammation developing as a result of lack of specific "stop" signals for the inflammatory process. OBJECTIVE To investigate the interaction between neutrophils and airway epithelium during inflammatory resolution in patients with allergic asthma. METHODS An in vitro scratch assay with cultured epithelial cells, based on live-imaging microscopy, was used to evaluate regeneration and the influence of neutrophils on resolution. Epithelial cells and autologous neutrophils were derived from healthy donors and patients with allergic asthma. Supernatants and cells were collected for enzyme-linked immunosorbent assay and transcriptional analyses at the end of the experiment. RESULTS Healthy epithelial cells regenerated faster than epithelial cells from patients with allergic asthma. Autologous neutrophils improved the regeneration of healthy epithelial cells but not asthmatic epithelial cells. Interleukin (IL)-8 and β-catenin were down-regulated in healthy epithelial cells after resolution, but not in allergic asthmatic epithelial cells. CONCLUSION The prolonged duration of inflammation in the respiratory tract in patients with allergic asthma could be due to the impaired healing pattern of epithelial cells and their compromised interactions with the neutrophils.
Collapse
Affiliation(s)
- Sandra Ekstedt
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Vilma Lagebro
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Olaf Cardell
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
36
|
Kim MH, Bae CS, Bok SH, Choi HS, Ahn T, Cho SS, Park DH. Drug Development from Natural Products Based on the Pathogenic Mechanism of Asthma. Int J Mol Sci 2023; 24:12469. [PMID: 37569846 PMCID: PMC10419019 DOI: 10.3390/ijms241512469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Asthma is a chronic inflammatory disease of the pulmonary system associated with many wheeze-to-sleep apnea complications that may lead to death. In 2019, approximately 262 million patients suffered from asthma, and 455 thousand died from the disease worldwide. It is a more severe health problem in children and older adults, and as the aging of society intensifies, the problem will continue to worsen. Asthma inducers can be classified as indoor and outdoor allergens and can cause asthma due to their repeated invasion. There are several theories about asthma occurrence, such as the imbalance between Th1 and Th2, inflammation in the pulmonary system, and the abnormal apoptosis/cell proliferation of cells related to asthma. Although there are many medications for asthma, as it is an incurable disease, the purpose of the drugs is only to suppress the symptoms. The current drugs can be divided into relievers and controllers; however, as they have many adverse effects, such as immune suppression, growth retardation, promotion of cataracts, hyperactivity, and convulsions, developing new asthma drugs is necessary. Although natural products can have adverse effects, the development of asthma drugs from natural products may be beneficial, as some have anti-asthmatic effects such as immune modulation, anti-inflammation, and/or apoptosis modulation.
Collapse
Affiliation(s)
- Min-Hee Kim
- Department of Forestry and Landscape Architecture, Dongshin University, Naju 58245, Republic of Korea;
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; (C.-S.B.); (T.A.)
| | - So-Hyeon Bok
- College of Oriental Medicine, Dongshin University, Naju 58245, Republic of Korea;
| | - Hyo-Seung Choi
- Department of Digital Contents, Dongshin University, Naju 58245, Republic of Korea;
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; (C.-S.B.); (T.A.)
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Dae-Hun Park
- College of Oriental Medicine, Dongshin University, Naju 58245, Republic of Korea;
| |
Collapse
|
37
|
Mottais A, Riberi L, Falco A, Soccal S, Gohy S, De Rose V. Epithelial-Mesenchymal Transition Mechanisms in Chronic Airway Diseases: A Common Process to Target? Int J Mol Sci 2023; 24:12412. [PMID: 37569787 PMCID: PMC10418908 DOI: 10.3390/ijms241512412] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a reversible process, in which epithelial cells lose their epithelial traits and acquire a mesenchymal phenotype. This transformation has been described in different lung diseases, such as lung cancer, interstitial lung diseases, asthma, chronic obstructive pulmonary disease and other muco-obstructive lung diseases, such as cystic fibrosis and non-cystic fibrosis bronchiectasis. The exaggerated chronic inflammation typical of these pulmonary diseases can induce molecular reprogramming with subsequent self-sustaining aberrant and excessive profibrotic tissue repair. Over time this process leads to structural changes with progressive organ dysfunction and lung function impairment. Although having common signalling pathways, specific triggers and regulation mechanisms might be present in each disease. This review aims to describe the various mechanisms associated with fibrotic changes and airway remodelling involved in chronic airway diseases. Having better knowledge of the mechanisms underlying the EMT process may help us to identify specific targets and thus lead to the development of novel therapeutic strategies to prevent or limit the onset of irreversible structural changes.
Collapse
Affiliation(s)
- Angélique Mottais
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
| | - Luca Riberi
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Andrea Falco
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Simone Soccal
- Postgraduate School in Respiratory Medicine, University of Torino, 10124 Torino, Italy; (L.R.); (A.F.); (S.S.)
| | - Sophie Gohy
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium; (A.M.); (S.G.)
- Department of Pneumology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
- Cystic Fibrosis Reference Centre, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Virginia De Rose
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
38
|
Nyenhuis SM, Dixon A, Wood L, Lv N, Wittels N, Ronneberg CR, Xiao L, Dosala S, Marroquin A, Barve A, Harmon W, Poynter M, Parikh A, Camargo CA, Appel L, Ma J. The effects of the DASH dietary pattern on clinical outcomes and quality of life in adults with uncontrolled asthma: Design and methods of the ALOHA Trial. Contemp Clin Trials 2023; 131:107274. [PMID: 37380019 PMCID: PMC10629484 DOI: 10.1016/j.cct.2023.107274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/31/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Poor diet quality is an important risk factor for increased asthma prevalence and poor asthma control. To address the question of whether adults with asthma can benefit from following a healthy diet, this trial will test the efficacy and mechanisms of action of a behavioral intervention promoting the Dietary Approaches to Stop Hypertension (DASH) dietary pattern with sodium reduction among patients with uncontrolled asthma. METHODS In this 2-arm randomized clinical trial, 320 racially/ethnically and socioeconomically diverse adults with uncontrolled asthma on standard controller therapy will be randomized to either a control or an intervention group and assessed at baseline, 3, 6 and 12 months. Control and intervention participants will receive education on lung health, asthma, and other general health topics; additionally, the intervention group will receive DASH behavioral counseling over 12 months. The primary hypothesis is that the DASH behavioral intervention, compared with the education-only control, will lead to significantly more participants with minimum clinically important improvement (responders) in asthma-specific quality of life at 12 months. Secondary hypotheses will test the intervention effects on other asthma (e.g., asthma control, lung function) and non-asthma outcomes (e.g., quality of life). Additionally, therapeutic (e.g., short chain fatty acids, cytokines) and nutritional biomarkers (e.g., dietary inflammatory index, carotenoids) will be assessed to understand the mechanisms of the intervention effect. CONCLUSION This trial can substantially advance asthma care by providing rigorous evidence on the benefits of a behavioral dietary intervention and mechanistic insights into the role of diet quality in asthma. CLINICALTRIALS gov #: NCT05251402.
Collapse
Affiliation(s)
- S M Nyenhuis
- Section of Allergy and Immunology, University of Chicago, Chicago, IL, USA
| | - A Dixon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Vermont, Burlington, VT, USA
| | - L Wood
- University of Newcastle, Newcastle, Australia
| | - N Lv
- Division of Academic Internal Medicine, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - N Wittels
- Division of Academic Internal Medicine, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - C R Ronneberg
- Division of Academic Internal Medicine, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - L Xiao
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA, United States of America
| | - S Dosala
- Division of Academic Internal Medicine, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - A Marroquin
- Division of Academic Internal Medicine, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - A Barve
- Division of Academic Internal Medicine, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - W Harmon
- Division of Academic Internal Medicine, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - M Poynter
- Division of Academic Internal Medicine, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - A Parikh
- Division of Academic Internal Medicine, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - C A Camargo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Appel
- Welch Center for Prevention, Epidemiology and Clinical Research, The Johns Hopkins University, Baltimore, MD, USA
| | - J Ma
- Division of Academic Internal Medicine, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
39
|
Bruno S, Lamberty A, McCoy M, Mark Z, Daphtary N, Aliyeva M, Butnor K, Poynter ME, Anathy V, Cunniff B. Deletion of Miro1 in airway club cells potentiates allergic asthma phenotypes. FRONTIERS IN ALLERGY 2023; 4:1187945. [PMID: 37377691 PMCID: PMC10291198 DOI: 10.3389/falgy.2023.1187945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria are multifaceted organelles necessary for numerous cellular signaling and regulatory processes. Mitochondria are dynamic organelles, trafficked and anchored to subcellular sites depending upon the cellular and tissue requirements. Precise localization of mitochondria to apical and basolateral membranes in lung epithelial cells is important for key mitochondrial processes. Miro1 is an outer mitochondrial membrane GTPase that associates with adapter proteins and microtubule motors to promote intracellular movement of mitochondria. We show that deletion of Miro1 in lung epithelial cells leads to perinuclear clustering of mitochondria. However, the role of Miro1 in epithelial cell response to allergic insults remains unknown. We generated a conditional mouse model to delete Miro1 in Club Cell Secretory Protein (CCSP) positive lung epithelial cells to examine the potential roles of Miro1 and mitochondrial trafficking in the lung epithelial response to the allergen, house dust mite (HDM). Our data show that Miro1 suppresses epithelial induction and maintenance of the inflammatory response to allergen, as Miro1 deletion modestly induces increases in pro-inflammatory signaling, specifically IL-6, IL-33, CCL20 and eotaxin levels, tissue reorganization, and airway hyperresponsiveness. Furthermore, loss of Miro1 in CCSP+ lung epithelial cells blocks resolution of the asthmatic insult. This study further demonstrates the important contribution of mitochondrial dynamic processes to the airway epithelial allergen response and the pathophysiology of allergic asthma.
Collapse
Affiliation(s)
- Sierra Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Amelia Lamberty
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Margaret McCoy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Zoe Mark
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Nirav Daphtary
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Minara Aliyeva
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Kelly Butnor
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Matthew E. Poynter
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
40
|
Gholami M, Ghorban K, Sadeghi M, Dadmanesh M, Rouzbahani NH, Dehnavi S. Mesenchymal stem cells and allergic airway inflammation; a therapeutic approach to induce immunoregulatory responses. Int Immunopharmacol 2023; 120:110367. [PMID: 37230032 DOI: 10.1016/j.intimp.2023.110367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/07/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Allergic airway inflammations are among the essential disorders worldwide that are already considered a significant concern. Mesenchymal stem cells (MSCs) are stromal cells with regenerative potential and immunomodulatory characteristics and are widely administered for tissue repair as an immunoregulatory agent in different inflammatory diseases. The current review summarized primary studies conducted to evaluate the therapeutic potential of MSCs for allergic airway disorders. In this case, modulation of airway pathologic inflammation and infiltration of inflammatory cells were examined, and modulation of the Th1/Th2 cellular balance and humoral responses. Also, the effects of MSCs on the Th17/Treg ratio and inducing Treg immunoregulatory responses along with macrophage and dendritic cell function were evaluated.
Collapse
Affiliation(s)
- Mohammad Gholami
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran; Department of Medical Microbiology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Khodayar Ghorban
- Department of Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dadmanesh
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, School Of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Negin Hosseini Rouzbahani
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran; Department of Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Maneechotesuwan K, Wongsurakiat P, Assawabhumi J, Kasetsinsombat K, Wongkajornsilp A. Involvement of Transforming Growth Factor-β-Associated Kinase 1 in Fixed Airway Obstruction in Asthmatic Patients with Longer Disease Duration Independent on Airway Eosinophilia. J Asthma Allergy 2023; 16:343-354. [PMID: 37038432 PMCID: PMC10082578 DOI: 10.2147/jaa.s403645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023] Open
Abstract
Objective Transforming growth factor-β-associated kinase 1 (TAK1) mediates non-canonical TGF-β signalling by promoting adhesive, migratory, proliferative and contractile responses of fibroblasts to TGF-β1. However, TAK1 expression status in asthmatic patients with or without fixed airway obstruction (FAO) is unknown. Patients and Methods A total of 60 adult asthmatics with FAO were recruited and compared to 43 those without FAO (nFAO). TGF-β1 concentrations, and total TAK1 and phosphorylated TAK1 (p-TAK1) levels were determined in sputum supernatants, cytospin, and whole cell lysate by ELISA, immunocytochemistry, and Western blot analysis, respectively, in asthmatics with and without FAO. Results Asthmatic patients with FAO had much greater sputum TGF-β1 concentrations than those without FAO. This was independent of airway eosinophilia as there was no significant difference in TGF-β1 levels between high and low eosinophil counts within FAO and nFAO groups. In contrast, patients with FAO in the presence of sputum eosinophilia had greater expression of TAK1 and p-TAK1 than those without sputum eosinophilia (P=0.0032 and P=0.0061, respectively). The Western Blot data of total TAK1 and p-TAK1 were consistent with the immunocytochemistry, showing upregulation in all sputum cell types (neutrophils, eosinophils, macrophages, lymphocytes and airway epithelial cells). In addition, total TAK1 expression negatively correlated with pre- and post-bronchodilator FEV1/FVC ratio. Conclusion TAK1 may play a key role in asthmatic patients with fixed airway obstruction, which was independent of eosinophilic airway inflammation. The interruption of TAK1 might have favourable clinical impact.
Collapse
Affiliation(s)
- Kittipong Maneechotesuwan
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Correspondence: Kittipong Maneechotesuwan, Division of Respiratory Diseases and Tuberculosis, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Street, Bangkok, 10700, Thailand, Tel +662 419 7757, Fax +662 419 7760, Email
| | - Phunsup Wongsurakiat
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jirawat Assawabhumi
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanda Kasetsinsombat
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
42
|
Erjefält JS. Anatomical and histopathological approaches to asthma phenotyping. Respir Med 2023; 210:107168. [PMID: 36822489 DOI: 10.1016/j.rmed.2023.107168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Asthma is typically characterized by variable respiratory symptoms and airflow limitation. Along with the pathophysiology and symptoms are immunological and inflammatory processes. The last decades research has revealed that the immunology of asthma is highly heterogeneous. This has clinical consequences and identification of immunological phenotypes is currently used to guide biological treatment. The focus of this review is on another dimension of asthma diversity, namely anatomical heterogeneity. Immunopathological alterations may go beyond the central airways to also involve the distal airways, the alveolar parenchyma, and pulmonary vessels. Also, extrapulmonary tissues are affected. The anatomical distribution of inflammation in asthma has remained relatively poorly discussed despite its potential implication on both clinical presentation and response to treatment. There is today evidence that a significant proportion of the asthma patients has small airway disease with type 2 immunity, eosinophilia and smooth muscle infiltration of mast cells. The small airways in asthma are also subjected to remodelling, constriction, and luminal plugging, events that are likely to contribute to the elevated distal airway resistance seen in some patients. In cases when the inflammation extends into the alveolar parenchyma alveolar FCER1-high mast cells, eosinophilia, type 2 immunity and activated alveolar macrophages, together with modest interstitial remodelling, create a complex immunopathological picture. Importantly, the distal lung inflammation in asthma can be pharmacologically targeted by use of inhalers with more distal drug deposition. Biological treatments, which are readily distributed to the distal lung, may also be beneficial in eligible patients with more severe and anatomically widespread disease.
Collapse
Affiliation(s)
- Jonas S Erjefält
- Unit of Airway Inflammation, Department of Experimental Medical Research, Lund University, Lund, Sweden; Department of Allergology and Respiratory Medicine, Skane University Hospital, Lund, Sweden.
| |
Collapse
|
43
|
Samrah SM, Qarqaz F, Obeidat O, Bataineh Z, Ramadan A, Al Zubaidi G, Alwani M, Abualnaaj D, Abu Za'nouneh FJ, Al-Balas H, Almomani Y, Samrah RS, Kubbara AF, Khassawneh BY. Subclinical high-resolution chest CT scan features in psoriasis. Respir Med 2023; 212:107226. [PMID: 36997097 DOI: 10.1016/j.rmed.2023.107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Although psoriasis is considered a systemic disease, no clear association has been established between psoriasis and lung diseases. This study aims to detect and describe subclinical pulmonary involvement in psoriasis patients with various degrees of cutaneous manifestations. METHODS Adult psoriasis patients with no known active pulmonary disease or respiratory symptoms were screened for subclinical pulmonary manifestations and possible parenchymal changes using high-resolution computed tomography (HRCT) scan of the chest. Patients were classified according to the severity of skin manifestations. The clinical characteristics and radiographic findings of these patients were evaluated. RESULTS Fifty-nine patients with psoriasis were included, among which 47 (79.7%) had abnormal HRCT scan features. Micronodules were the most common detected lung lesions (66.1%), followed by nonspecific interstitial changes (32.2%), including pleuro-parenchymal band/atelectasis, scarring, and focal ground-glass opacities. Other HRCT findings included emphysematous changes and calcified granulomas. Abnormal HRCT findings correlated with older age and duration of psoriasis but not with the severity of skin manifestations. CONCLUSIONS Micronodules and minor focal nonspecific interstitial changes were the most detected lung alterations in patients with psoriasis. These findings of the pilot study highlight a possible pulmonary involvement in patients with psoriasis. Larger multicenter studies are needed to clarify these findings further. LIMITATIONS A major limitation of the study, is the lack of a control group with similar radiologic findings of different conditions done in the same geographical region.
Collapse
Affiliation(s)
- Shaher M Samrah
- Division of Pulmonary and Critical Care Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| | - Firas Qarqaz
- Division of Dermatology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar Obeidat
- School of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | - Mustafa Alwani
- Surgical Research Division, Department of Surgery, Hamad Medical Cooperation, Doha, Qatar
| | | | | | - Hassan Al-Balas
- Department of Radiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Randa S Samrah
- School of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Aahd F Kubbara
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic Health System, 1221 Whipple St, Eau Claire, WI, 54703, USA
| | - Basheer Y Khassawneh
- Division of Pulmonary and Critical Care Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
44
|
Venuto S, Coda ARD, González-Pérez R, Laselva O, Tolomeo D, Storlazzi CT, Liso A, Conese M. IGFBP-6 Network in Chronic Inflammatory Airway Diseases and Lung Tumor Progression. Int J Mol Sci 2023; 24:4804. [PMID: 36902237 PMCID: PMC10003725 DOI: 10.3390/ijms24054804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The lung is an accomplished organ for gas exchanges and directly faces the external environment, consequently exposing its large epithelial surface. It is also the putative determinant organ for inducing potent immune responses, holding both innate and adaptive immune cells. The maintenance of lung homeostasis requires a crucial balance between inflammation and anti-inflammation factors, and perturbations of this stability are frequently associated with progressive and fatal respiratory diseases. Several data demonstrate the involvement of the insulin-like growth factor (IGF) system and their binding proteins (IGFBPs) in pulmonary growth, as they are specifically expressed in different lung compartments. As we will discuss extensively in the text, IGFs and IGFBPs are implicated in normal pulmonary development but also in the pathogenesis of various airway diseases and lung tumors. Among the known IGFBPs, IGFBP-6 shows an emerging role as a mediator of airway inflammation and tumor-suppressing activity in different lung tumors. In this review, we assess the current state of IGFBP-6's multiple roles in respiratory diseases, focusing on its function in the inflammation and fibrosis in respiratory tissues, together with its role in controlling different types of lung cancer.
Collapse
Affiliation(s)
- Santina Venuto
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | | | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, 38320 Tenerife, Spain
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 Tenerife, Spain
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Doron Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
45
|
Karaman Y, Kaya-Yasar Y, Eylem CC, Onder SC, Nemutlu E, Bozkurt TE, Sahin-Erdemli I. The effect of mitochondria-targeted slow hydrogen sulfide releasing donor AP39-treatment on airway inflammation. Eur J Pharmacol 2023; 946:175619. [PMID: 36828102 DOI: 10.1016/j.ejphar.2023.175619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Mitochondrial dysfunction has been shown to contribute to the pathophysiology of airway diseases. Therefore, mitochondria are targeted in the development of new therapeutic approaches. Hydrogen sulfide (H2S) has been shown to be involved in the pathophysiological processes of airway inflammation. We aimed to evaluate the effect of mitochondria-targeted slow H2S releasing donor AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol5yl)phenoxy)decyl)triphenylphosphoniumbromide)] on lipopolysaccharide (LPS)-induced airway inflammation in mice. LPS was applied to female Balb/c mice by intranasal (i.n.) route to induce airway inflammation and the subgroups of mice were treated with i.n. AP39 (250-1000 nmol/kg). 48 h after LPS administration airway reactivity was evaluated in vivo, then bronchoalveolar lavage (BAL) fluid and lungs were collected. LPS application led to bronchial hyperreactivity and neutrophil infiltration into the lung tissues along with increased TNF-α, IL-1β and IL-6 levels in BAL fluid. LPS also induced an increase in the rate of glycolysis, glycogenolysis and Krebs-cycle. AP39 treatment prevented the LPS-induced bronchial hyperreactivity and reversed the increase in TNF-α and IL-6 levels in BAL fluid. The increase in neutrophil numbers in BAL fluid was also prevented by AP39 treatment at the highest dose. Our results indicate that AP39 can prevent bronchial hyperreactivity and decrease airway inflammation. Targeting H2S to the mitochondria may be a new therapeutic approach in airway inflammation.
Collapse
Affiliation(s)
- Yasemin Karaman
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey.
| | - Yesim Kaya-Yasar
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Turkey
| | - Cemil Can Eylem
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Sevgen Celik Onder
- Hacettepe University, Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Hacettepe University, Faculty of Pharmacy, Bioanalytic and Omics Laboratory, Ankara, Turkey
| | - Turgut Emrah Bozkurt
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Inci Sahin-Erdemli
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| |
Collapse
|
46
|
Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol 2023; 14:1113100. [PMID: 36744026 PMCID: PMC9892557 DOI: 10.3389/fphys.2023.1113100] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Asthma affects an estimated 262 million people worldwide and caused over 461,000 deaths in 2019. The disease is characterized by chronic airway inflammation, reversible bronchoconstriction, and airway remodeling. Longitudinal studies have shown that current treatments for asthma (inhaled bronchodilators and corticosteroids) can reduce the frequency of exacerbations, but do not modify disease outcomes over time. Further, longitudinal studies in children to adulthood have shown that these treatments do not improve asthma severity or fixed airflow obstruction over time. In asthma, fixed airflow obstruction is caused by remodeling of the airway wall, but such airway remodeling also significantly contributes to airway closure during bronchoconstriction in acute asthmatic episodes. The goal of the current review is to understand what is known about the heterogeneity of airway remodeling in asthma and how this contributes to the disease process. We provide an overview of the existing knowledge on airway remodeling features observed in asthma, including loss of epithelial integrity, mucous cell metaplasia, extracellular matrix remodeling in both the airways and vessels, angiogenesis, and increased smooth muscle mass. While such studies have provided extensive knowledge on different aspects of airway remodeling, they have relied on biopsy sampling or pathological assessment of lungs from fatal asthma patients, which have limitations for understanding airway heterogeneity and the entire asthma syndrome. To further understand the heterogeneity of airway remodeling in asthma, we highlight the potential of in vivo imaging tools such as computed tomography and magnetic resonance imaging. Such volumetric imaging tools provide the opportunity to assess the heterogeneity of airway remodeling within the whole lung and have led to the novel identification of heterogenous gas trapping and mucus plugging as important predictors of patient outcomes. Lastly, we summarize the current knowledge of modification of airway remodeling with available asthma therapeutics to highlight the need for future studies that use in vivo imaging tools to assess airway remodeling outcomes.
Collapse
Affiliation(s)
- Aileen Hsieh
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Najmeh Assadinia
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Tillie-Louise Hackett,
| |
Collapse
|
47
|
Wang L, Wang J, Zhu X, Bai C, Song Y. Aquaporins in Respiratory System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:137-144. [PMID: 36717491 DOI: 10.1007/978-981-19-7415-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) are water channel proteins facilitating fluid transport in alveolar space, airway humidification, pleural fluid absorption, and submucosal gland secretion. In this chapter, we mainly focus on the expression of four AQPs in the lungs, which include AQP1, AQP2, AQP4, and AQP5 in normal and disease status, and the experience of AQPs function from various model and transgenic mice were summarized in detail to improve our understanding of the role of AQPs in fluid balance of respiratory system. It has been suggested that AQPs play important roles in various physiology and pathophysiology conditions of different lung diseases. There still remains unclear the exact role of AQPs in lung diseases, and thus continuous efforts on elucidating the roles of AQPs in lung physiological and pathophysiological processes are warranted.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China.
- Shanghai Respiratory Research Institute, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Jinshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
48
|
Thiam F, Yazeedi SA, Feng K, Phogat S, Demirsoy E, Brussow J, Abokor FA, Osei ET. Understanding fibroblast-immune cell interactions via co-culture models and their role in asthma pathogenesis. Front Immunol 2023; 14:1128023. [PMID: 36911735 PMCID: PMC9996007 DOI: 10.3389/fimmu.2023.1128023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Asthma is a chronic lung disease involving airway inflammation and fibrosis. Fibroblasts are the main effector cells important for lung tissue production which becomes abnormal in asthmatics and is one of the main contributors to airway fibrosis. Although fibroblasts were traditionally viewed solely as structural cells, they have been discovered to be highly active, and involved in lung inflammatory and fibrotic processes in asthma. In line with this, using 2D and 3D in vitro co-culture models, a complex interaction between lung fibroblasts and various immune cells important for the pathogenesis of asthma have been recently uncovered. Hence, in this review, we provide the first-ever summary of various studies that used 2D and 3D in vitro co-culture models to assess the nature of aberrant immune cell-fibroblast interactions and their contributions to chronic inflammation and fibrotic mechanisms in asthma pathogenesis.
Collapse
Affiliation(s)
- F Thiam
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - S Al Yazeedi
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - K Feng
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - S Phogat
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - E Demirsoy
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - J Brussow
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - F A Abokor
- Department of Biology, University of British Columbia, Kelowna, BC, Canada
| | - E T Osei
- Department of Biology, University of British Columbia, Kelowna, BC, Canada.,Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| |
Collapse
|
49
|
Anti-inflammatory and relaxation effects of Ulmus pumilla L. on EGF-inflamed bronchial epithelial and asthmatic bronchial smooth muscle cells. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Varricchi G, Ferri S, Pepys J, Poto R, Spadaro G, Nappi E, Paoletti G, Virchow JC, Heffler E, Canonica WG. Biologics and airway remodeling in severe asthma. Allergy 2022; 77:3538-3552. [PMID: 35950646 PMCID: PMC10087445 DOI: 10.1111/all.15473] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Asthma is a chronic inflammatory airway disease resulting in airflow obstruction, which in part can become irreversible to conventional therapies, defining the concept of airway remodeling. The introduction of biologics in severe asthma has led in some patients to the complete normalization of previously considered irreversible airflow obstruction. This highlights the need to distinguish a "fixed" airflow obstruction due to structural changes unresponsive to current therapies, from a "reversible" one as demonstrated by lung function normalization during biological therapies not previously obtained even with high-dose systemic glucocorticoids. The mechanisms by which exposure to environmental factors initiates the inflammatory responses that trigger airway remodeling are still incompletely understood. Alarmins represent epithelial-derived cytokines that initiate immunologic events leading to inflammatory airway remodeling. Biological therapies can improve airflow obstruction by addressing these airway inflammatory changes. In addition, biologics might prevent and possibly even revert "fixed" remodeling due to structural changes. Hence, it appears clinically important to separate the therapeutic effects (early and late) of biologics as a new paradigm to evaluate the effects of these drugs and future treatments on airway remodeling in severe asthma.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Sebastian Ferri
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy
| | - Jack Pepys
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Emanuele Nappi
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Paoletti
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Enrico Heffler
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Walter G Canonica
- Personalized Medicine Asthma and Allergy Unit - IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|