1
|
Ajona D, Cragg MS, Pio R. The complement system in clinical oncology: Applications, limitations and challenges. Semin Immunol 2025; 77:101921. [PMID: 39700788 DOI: 10.1016/j.smim.2024.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
The complement system, a key component of innate immunity, is involved in seemingly contradictory aspects of tumor progression and cancer therapy. It can act as an immune effector against cancer and modulate the antitumor activity of certain therapeutic antibodies, but it can also contribute to a tumor-promoting microenvironment. Understanding this dual role should lead to the development of better therapeutic tools, strategies for cancer treatment and biomarkers for the clinical management of cancer patients. Here, we review recent advances in the understanding of the role of complement in cancer, focusing on how these findings are being translated into the clinic. We highlight the activity of therapeutic agents that modulate the complement system, as well as combination therapies that integrate complement modulation with existing therapies. We conclude that the role of complement activation in cancer is a rapidly evolving field with the potential to translate findings into new therapeutic strategies and clinically useful biomarkers.
Collapse
Affiliation(s)
- Daniel Ajona
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ruben Pio
- Laboratory of Translational Oncology, Program in Solid Tumors, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Department of Biochemistry and Genetics, School of Sciences, Universidad de Navarra, Pamplona, Spain; Navarra's Health Research Institute (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
2
|
Saxena R, Gottlin EB, Campa MJ, He YW, Patz EF. Complement regulators as novel targets for anti-cancer therapy: A comprehensive review. Semin Immunol 2025; 77:101931. [PMID: 39826189 DOI: 10.1016/j.smim.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Cancer remains a formidable global health challenge requiring the continued exploration of innovative therapeutic approaches. While traditional treatment strategies including surgery, chemotherapy, and radiation therapy have had some success, primarily in early-stage disease, the quest for more targeted, personalized, safer, and effective therapies remains an ongoing pursuit. Over the past decade, significant advances in the field of tumor immunology have dramatically shifted a focus towards immunotherapy, although the ability to harness and coopt the immune system to treat cancer is still just beginning to be realized. One important area that has yet to be fully explored is the complement system, an integral part of innate immunity that has gathered attention recently as a source of potential targets for anti-cancer therapy. The complement system has a complex and context dependent role in cancer biology in that it not only contributes to immune surveillance but also may promote tumor progression. Complement regulators, including CD46, CD55, CD59, and complement factor H, exercise defined control over complement activation, and have also been acknowledged for their role in the tumor microenvironment. This review explores the intricate role of complement regulators in cancer development and progression, examining their potential as therapeutic targets, current strategies, challenges, and the evolving landscape of clinical research.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Knockdown of membrane-bound complement regulatory proteins suppresses colon cancer growth in mice through inducing tumor cell apoptosis. Int Immunopharmacol 2023; 114:109450. [PMID: 36446233 DOI: 10.1016/j.intimp.2022.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022]
Abstract
CD46, CD55 and CD59 are membrane-bound complement regulatory proteins (mCRPs) and highly expressed in many tumor tissues. Our analysis by RNA sequencing and qRT-PCR revealed that the expression of mCRPs was significantly elevated in cancer tissues of 15 patients with colon cancer. To further investigate the role of mCRPs in the development of colon cancer, we suppressed the expression of mCRPs by CD46-shRNA, CD55-shRNA and CD59-shRNA in colon cancer cell lines, SW620 and HT-29 cells. The results indicated that CD46-shRNA, CD55-shRNA and CD59-shRNA effectively reduced the expression of mCRPs, accompanied with the increased LDH release and the percentage of Annexin V + 7-AAD- early phase of apoptotic cells. The similar cytotoxic effects were also observed in the cells treated with CD46 neutralizing antibody (aCD46), associated with the increased C5b-9 deposition, cleaved caspase-3 and Bax expression in the treated cells. The cytotoxic effects by mCRPs knock-down were potentiated in the cells co-treated with doxorubicin (Dox). In addition, STAT3, STAT6, and p38 MAPK inhibitors, including C188-9, AS1517499 and SB203580 effectively reduced the expression of CD46 in the treated colon cells, associated with increased cell apoptosis and LDH release. Further study with mouse model revealed that mCRPs knockdown by mCRPs-shRNA significantly reduced colon cancer growth, associated with increased expression of Bax, cleaved caspase-3 and C5b-9 deposition, but reduced expression of Bcl-2, IL-6 and IL-1beta in tumor tissues of nude mice transplanted with SW620 cells. Thereby, mCRPs expression in human colon cancer cells were upregulated by STAT3/STAT6/p38 MAPK signaling and mCRPs knockdown reduced colon cancer growth in mice through inducing tumor cell apoptosis.
Collapse
|
4
|
Bharti R, Dey G, Lin F, Lathia J, Reizes O. CD55 in cancer: Complementing functions in a non-canonical manner. Cancer Lett 2022; 551:215935. [PMID: 36216147 PMCID: PMC11019835 DOI: 10.1016/j.canlet.2022.215935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
Abstract
CD55, or decay accelerating factor, is a membrane lipid microdomain-associated, GPI-anchored protein implicated in the shielding of cells from complement-mediated attack via accelerating decay of C3 and C5. Loss of CD55 is associated with a number of pathologies due to hyperactivation of the complement system. CD55 is also implicated in cancer progression thought to be driven via its role in cell shielding mechanisms. We now appreciate that CD55 can signal intracellularly to promote malignant transformation, cancer progression, cell survival, angiogenesis, and inhibition of apoptosis. Outside-in signaling via CD55 is mediated by signaling pathways including JNK, JAK/STAT, MAPK/NF-κB, and LCK. Moreover, CD55 is enriched in the cancer stem cell (CSC) niche of multiple tumors including breast, ovarian, cervical, and can be induced by chemotherapeutics and hypoxic environments. CSCs are implicated in tumor recurrence and chemoresistance. Here, we review the unexpected roles of CD55 in cancer including the roles of canonical and noncanonical pathways that CD55 orchestrates. We will highlight opportunities for therapeutic targeting CD55 and gaps in the field that require more in-depth mechanistic insights.
Collapse
Affiliation(s)
- Rashmi Bharti
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Goutam Dey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feng Lin
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
5
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
6
|
de Boer ECW, van Mourik AG, Jongerius I. Therapeutic Lessons to be Learned From the Role of Complement Regulators as Double-Edged Sword in Health and Disease. Front Immunol 2020; 11:578069. [PMID: 33362763 PMCID: PMC7758290 DOI: 10.3389/fimmu.2020.578069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The complement system is an important part of the innate immune system, providing a strong defense against pathogens and removing apoptotic cells and immune complexes. Due to its strength, it is important that healthy human cells are protected against damage induced by the complement system. To be protected from complement, each cell type relies on a specific combination of both soluble and membrane-bound regulators. Their importance is indicated by the amount of pathologies associated with abnormalities in these complement regulators. Here, we will discuss the current knowledge on complement regulatory protein polymorphisms and expression levels together with their link to disease. These diseases often result in red blood cell destruction or occur in the eye, kidney or brain, which are tissues known for aberrant complement activity or regulation. In addition, complement regulators have also been associated with different types of cancer, although their mechanisms here have not been elucidated yet. In most of these pathologies, treatments are limited and do not prevent the complement system from attacking host cells, but rather fight the consequences of the complement-mediated damage, using for example blood transfusions in anemic patients. Currently only few drugs targeting the complement system are used in the clinic. With further demand for therapeutics rising linked to the wide range of complement-mediated disease we should broaden our horizon towards treatments that can actually protect the host cells against complement. Here, we will discuss the latest insights on how complement regulators can benefit therapeutics. Such therapeutics are currently being developed extensively, and can be categorized into full-length complement regulators, engineered complement system regulators and antibodies targeting complement regulators. In conclusion, this review provides an overview of the complement regulatory proteins and their links to disease, together with their potential in the development of novel therapeutics.
Collapse
Affiliation(s)
- Esther C W de Boer
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Anouk G van Mourik
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ilse Jongerius
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
7
|
Lin WD, Fan TC, Hung JT, Yeo HL, Wang SH, Kuo CW, Khoo KH, Pai LM, Yu J, Yu AL. Sialylation of CD55 by ST3GAL1 Facilitates Immune Evasion in Cancer. Cancer Immunol Res 2020; 9:113-122. [PMID: 33177111 DOI: 10.1158/2326-6066.cir-20-0203] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/13/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Altered glycosylations, which are associated with expression and activities of glycosyltransferases, can dramatically affect the function of glycoproteins and modify the behavior of tumor cells. ST3GAL1 is a sialyltransferase that adds sialic acid to core 1 glycans, thereby terminating glycan chain extension. In breast carcinomas, overexpression of ST3GAL1 promotes tumorigenesis and correlates with increased tumor grade. In pursuing the role of ST3GAL1 in breast cancer using ST3GAL1-siRNA to knockdown ST3GAL1, we identified CD55 to be one of the potential target proteins of ST3GAL1. CD55 is an important complement regulatory protein, preventing cells from complement-mediated cytotoxicity. CD55 had one N-linked glycosylation site in addition to a Ser/Thr-rich domain, which was expected to be heavily O-glycosylated. Detailed analyses of N- and O-linked oligosaccharides of CD55 released from scramble or ST3GAL1 siRNA-treated breast cancer cells by tandem mass spectrometry revealed that the N-glycan profile was not affected by ST3GAL1 silencing. The O-glycan profile of CD55 demonstrated a shift in abundance to nonsialylated core 1 and monosialylated core 2 at the expense of the disialylated core 2 structure after ST3GAL1 silencing. We also demonstrated that O-linked desialylation of CD55 by ST3GAL1 silencing resulted in increased C3 deposition and complement-mediated lysis of breast cancer cells and enhanced sensitivity to antibody-dependent cell-mediated cytotoxicity. These data demonstrated that ST3GAL1-mediated O-linked sialylation of CD55 acts like an immune checkpoint molecule for cancer cells to evade immune attack and that inhibition of ST3GAL1 is a potential strategy to block CD55-mediated immune evasion.
Collapse
Affiliation(s)
- Wen-Der Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tan-Chi Fan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hui-Ling Yeo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chu-Wei Kuo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Li-Mei Pai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Alice L Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Pediatrics, University of California, San Diego, La Jolla, California
| |
Collapse
|
8
|
Flow cytometry-based assessment of direct-targeting anti-cancer antibody immune effector functions. Methods Enzymol 2020; 632:431-456. [PMID: 32000909 PMCID: PMC7000137 DOI: 10.1016/bs.mie.2019.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monoclonal antibody-based therapies are increasingly being used to treat cancer. Some mediate their therapeutic effects through modifying the function of immune cells globally, while others bind directly to tumor cells and can recruit immune effector cells through their Fc regions. As new direct-binding agents are developed, having the ability to test their Fc-mediated functions in a high-throughput manner is important for selecting antibodies with immune effector properties. Here, using monoclonal anti-CD20 antibody (rituximab) as an example and the CD20+ Raji cell line as tumor target, we describe flow cytometry-based assays for determining an antibody's capacity for mediating antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC). These assays are sensitive, reliable, affordable and avoid the use of radioactivity.
Collapse
|
9
|
Geller A, Yan J. The Role of Membrane Bound Complement Regulatory Proteins in Tumor Development and Cancer Immunotherapy. Front Immunol 2019; 10:1074. [PMID: 31164885 PMCID: PMC6536589 DOI: 10.3389/fimmu.2019.01074] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
It has long been understood that the control and surveillance of tumors within the body involves an intricate dance between the adaptive and innate immune systems. At the center of the interplay between the adaptive and innate immune response sits the complement system—an evolutionarily ancient response that aids in the destruction of microorganisms and damaged cells, including cancer cells. Membrane-bound complement regulatory proteins (mCRPs), such as CD46, CD55, and CD59, are expressed throughout the body in order to prevent over-activation of the complement system. These mCRPs act as a double-edged sword however, as they can also over-regulate the complement system to the extent that it is no longer effective at eliminating cancerous cells. Recent studies are now indicating that mCRPs may function as a biomarker of a malignant transformation in numerous cancer types, and further, are being shown to interfere with anti-tumor treatments. This highlights the critical roles that therapeutic blockade of mCRPs can play in cancer treatment. Furthermore, with the complement system having the ability to both directly and indirectly control adaptive T-cell responses, the use of a combinatorial approach of complement-related therapy along with other T-cell activating therapies becomes a logical approach to treatment. This review will highlight the biomarker-related role that mCRP expression may have in the classification of tumor phenotype and predicted response to different anti-cancer treatments in the context of an emerging understanding that complement activation within the Tumor Microenvironment (TME) is actually harmful for tumor control. We will discuss what is known about complement activation and mCRPs relating to cancer and immunotherapy, and will examine the potential for combinatorial approaches of anti-mCRP therapy with other anti-tumor therapies, especially checkpoint inhibitors such as anti PD-1 and PD-L1 monoclonal antibodies (mAbs). Overall, mCRPs play an essential role in the immune response to tumors, and understanding their role in the immune response, particularly in modulating currently used cancer therapeutics may lead to better clinical outcomes in patients with diverse cancer types.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Yan
- Immuno-Oncology Program, Department of Medicine, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
10
|
Fishelson Z, Kirschfink M. Complement C5b-9 and Cancer: Mechanisms of Cell Damage, Cancer Counteractions, and Approaches for Intervention. Front Immunol 2019; 10:752. [PMID: 31024572 PMCID: PMC6467965 DOI: 10.3389/fimmu.2019.00752] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023] Open
Abstract
The interactions of cancer cells with components of the complement system are highly complex, leading to an outcome that is either favorable or detrimental to cancer cells. Currently, we perceive only the "tip of the iceberg" of these interactions. In this review, we focus on the complement terminal C5b-9 complex, known also as the complement membrane attack complex (MAC) and discuss the complexity of its interaction with cancer cells, starting with a discussion of its proposed mode of action in mediating cell death, and continuing with a portrayal of the strategies of evasion exhibited by cancer cells, and closing with a proposal of treatment approaches targeted at evasion strategies. Upon intense complement activation and membrane insertion of sufficient C5b-9 complexes, the afflicted cells undergo regulated necrotic cell death with characteristic damage to intracellular organelles, including mitochondria, and perforation of the plasma membrane. Several pro-lytic factors have been proposed, including elevated intracellular calcium ion concentrations and activated JNK, Bid, RIPK1, RIPK3, and MLKL; however, further research is required to fully characterize the effective cell death signals activated by the C5b-9 complexes. Cancer cells over-express a multitude of protective measures which either block complement activation, thus reducing the number of membrane-inserted C5b-9 complexes, or facilitate the elimination of C5b-9 from the cell surface. Concomitantly, cancer cells activate several protective pathways that counteract the death signals. Blockage of complement activation is mediated by the complement membrane regulatory proteins CD46, CD55, and CD59 and by soluble complement regulators, by proteases that cleave complement proteins and by protein kinases, like CK2, which phosphorylate complement proteins. C5b-9 elimination and inhibition of cell death signals are mediated by caveolin and dynamin, by Hsp70 and Hsp90, by the mitochondrial stress protein mortalin, and by the protein kinases PKC and ERK. It is conceivable that various cancers and cancers at different stages of development will utilize distinct patterns of these and other MAC resistance strategies. In order to enhance the impact of antibody-based therapy on cancer, novel precise reagents that block the most effective protective strategies will have to be designed and applied as adjuvants to the therapeutic antibodies.
Collapse
Affiliation(s)
- Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
11
|
Dho SH, Lim JC, Kim LK. Beyond the Role of CD55 as a Complement Component. Immune Netw 2018; 18:e11. [PMID: 29503741 PMCID: PMC5833118 DOI: 10.4110/in.2018.18.e11] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 01/28/2023] Open
Abstract
The complement is a part of the immune system that plays several roles in removing pathogens. Despite the importance of the complement system, the exact role of each component has been overlooked because the complement system was thought to be a nonspecific humoral immune mechanism that worked against pathogens. Decay-accelerating factor (DAF or CD55) is a known inhibitor of the complement system and has recently attracted substantial attention due to its role in various diseases, such as cancer, protein-losing enteropathy, and malaria. Some protein-losing enteropathy cases are caused by CD55 deficiency, which leads to complement hyperactivation, malabsorption, and angiopathic thrombosis. In addition, CD55 has been reported to be an essential host receptor for infection by the malaria parasite. Moreover, CD55 is a ligand of the seven-span transmembrane receptor CD97. Since CD55 is present in various cells, the functional role of CD55 has been expanded by showing that CD55 is associated with a variety of diseases, including cancer, malaria, protein-losing enteropathy, paroxysmal nocturnal hemoglobinuria, and autoimmune diseases. This review summarizes the current understanding of CD55 and the role of CD55 in these diseases. It also provides insight into the development of novel drugs for the diagnosis and treatment of diseases associated with CD55.
Collapse
Affiliation(s)
- So Hee Dho
- Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 34057, Korea
| | - Jae Cheong Lim
- Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 34057, Korea
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS Project to Medical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea
| |
Collapse
|
12
|
|
13
|
Rozenberg P, Ziporen L, Gancz D, Saar-Ray M, Fishelson Z. Cooperation between Hsp90 and mortalin/GRP75 in resistance to cell death induced by complement C5b-9. Cell Death Dis 2018; 9:150. [PMID: 29396434 PMCID: PMC5833442 DOI: 10.1038/s41419-017-0240-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022]
Abstract
Cancer cells are commonly more resistant to cell death activated by the membranolytic protein complex C5b-9. Several surface-expressed and intracellular proteins that protect cells from complement-dependent cytotoxicity (CDC) have been identified. In this study, we investigated the function of heat shock protein 90 (Hsp90), an essential and ubiquitously expressed chaperone, overexpressed in cancer cells, in C5b-9-induced cell death. As shown, inhibition of Hsp90 with geldanamycin or radicicol is enhancing sensitivity of K562 erythroleukemia cells to CDC. Similarly, Hsp90 inhibition confers in Ramos B cell lymphoma cells elevated sensitivity to treatment with rituximab and complement. C5b-9 deposition is elevated on geldanamycin-treated cells. Purified Hsp90 binds directly to C9 and inhibits zinc-induced C9 polymerization, indicating that Hsp90 may act directly on the C5b-9 complex. Mortalin, also known as stress protein 70 or GRP75, is a mitochondrial chaperone that confers resistance to CDC. The postulated cooperation between Hsp90 and mortalin in protection from CDC was tested. Geldanamycin failed to sensitize toward CDC cells with knocked down mortalin. Direct binding of Hsp90 to mortalin was shown by co-immunoprecipitation in cell extracts after triggering with complement as well as by using purified recombinant proteins. These results provide an insight into the protective mechanisms utilized by cancer cells to evade CDC. They suggest that Hsp90 protects cells from CDC by inhibiting, together with mortalin, C5b-9 assembly and/or stability at the plasma membrane.
Collapse
Affiliation(s)
- Perri Rozenberg
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Lea Ziporen
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dana Gancz
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Moran Saar-Ray
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
14
|
Kulkarni HS, Liszewski MK, Brody SL, Atkinson JP. The complement system in the airway epithelium: An overlooked host defense mechanism and therapeutic target? J Allergy Clin Immunol 2018; 141:1582-1586.e1. [PMID: 29339260 DOI: 10.1016/j.jaci.2017.11.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in St Louis, St Louis, Mo; Division of Rheumatology, Department of Medicine, Washington University in St Louis, St Louis, Mo
| | - M Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University in St Louis, St Louis, Mo
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in St Louis, St Louis, Mo
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University in St Louis, St Louis, Mo.
| |
Collapse
|
15
|
Reis ES, Mastellos DC, Ricklin D, Mantovani A, Lambris JD. Complement in cancer: untangling an intricate relationship. Nat Rev Immunol 2018; 18:5-18. [PMID: 28920587 PMCID: PMC5816344 DOI: 10.1038/nri.2017.97] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In tumour immunology, complement has traditionally been considered as an adjunctive component that enhances the cytolytic effects of antibody-based immunotherapies, such as rituximab. Remarkably, research in the past decade has uncovered novel molecular mechanisms linking imbalanced complement activation in the tumour microenvironment with inflammation and suppression of antitumour immune responses. These findings have prompted new interest in manipulating the complement system for cancer therapy. This Review summarizes our current understanding of complement-mediated effector functions in the tumour microenvironment, focusing on how complement activation can act as a negative or positive regulator of tumorigenesis. It also offers insight into clinical aspects, including the feasibility of using complement biomarkers for cancer diagnosis and the use of complement inhibitors during cancer treatment.
Collapse
Affiliation(s)
- Edimara S Reis
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania 19104, Philadelphia, Pennsylvania, USA
| | | | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Alberto Mantovani
- Humanitas Clinical and Research Center and Humanitas University, Rozzano-Milan 20089, Italy
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania 19104, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Yeldell SB, Ruble BK, Dmochowski IJ. Oligonucleotide modifications enhance probe stability for single cell transcriptome in vivo analysis (TIVA). Org Biomol Chem 2017; 15:10001-10009. [PMID: 29052679 PMCID: PMC5718921 DOI: 10.1039/c7ob02353g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single cell transcriptomics provides a powerful discovery tool for identifying new cell types and functions as well as a means to probe molecular features of the etiology and treatment of human diseases, including cancer. However, such analyses are limited by the difficulty of isolating mRNA from single cells within biological samples. We recently introduced a photochemical method for isolating mRNA from single living cells, Transcriptome In Vivo Analysis (TIVA). The TIVA probe is a "caged" polyU : polyA oligonucleotide hairpin designed to enter live tissue, where site-specific activation with 405 nm laser reveals the polyU-biotin strand to bind mRNA in a target cell, enabling subsequent mRNA isolation and sequencing. The TIVA method is well suited for analysis of living cells in resected tissue, but has not yet been applied to living cells in whole organisms. Adapting TIVA to this more challenging environment requires a probe with higher thermal stability, more robust caging, and greater nuclease resistance. In this paper we present modifications to the original TIVA probe with multiple aspects of enhanced stability. These newer probes utilize an extended 22mer polyU capture strand with two 9mer polyA blocking strands ("22/9/9") for higher thermal stability pre-photolysis and improved mRNA capture affinity post-photolysis. The "22/9/9 GC" probe features a terminal GC pair to reduce pre-photolysis interactions with mRNA by more than half. The "PS-22/9/9" probe features a phosphorothioated backbone, which extends serum stability from <1 h to at least 48 h, and also mediates uptake into cultured human fibroblasts.
Collapse
Affiliation(s)
- S B Yeldell
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA.
| | | | | |
Collapse
|
17
|
Xiao K, Fang Z, Gao X, Zhao J, Huang R, Xie M. Membrane complement regulatory protein reduces the damage of transplanting autologous bone marrow mesenchymal stem cells by suppressing the activation of complement. Injury 2017; 48:2089-2094. [PMID: 28823400 DOI: 10.1016/j.injury.2017.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/08/2017] [Accepted: 08/03/2017] [Indexed: 02/02/2023]
Abstract
There are few studies on the interaction of transplanting autologous bone marrow mesenchymal stem cells (BMSCs) and complement. In order to further explore the effect of complement on BMSCs, BMSCs were obtained from bone marrow of 20 cases clinical patients, and then experimented in vitro. The cytotoxicity of complement on the mesenchymal stem cells in autologous human serum (AHS) was measured by Europium cytotoxicity assay. The complement membrane attack complex (MAC) deposited on the membrane surface was detected by flow cytometry. Finally, the cytotoxicity on BMSCs was measured after mCRPs overexpression or knockdown. We found that more than 90% of cells derived from bone marrow were identified to be mesenchymal stem cells through detection of cell membrane surface markers by flow cytometry. BMSCs harvested from the 20 patients all had cytotoxicity after incubated with AHS, and the cytotoxicity was significant higher than that incubated with complement inactivated autologous human serum (iAHS). Complement attack complex (MAC) could be detected on the BMSCs incubated with AHS, which implied the complement activation. We also found that mCRPs CD55 and CD59 overexpressions can resist the cytotoxicity induced by complement activation, while mCRPs CD55 and CD59 knockdown can enhance the cytotoxicity. Thus, the results indicated that mCRPs could effectively protect BMSCs from attacking by complement by suppressing the activation of complement.
Collapse
Affiliation(s)
- Kai Xiao
- Wuhan Puai Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, China.
| | - Zhenhua Fang
- Wuhan Puai Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, China
| | - Xinfeng Gao
- Wuhan Puai Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, China
| | - Jingjing Zhao
- Wuhan Puai Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, China
| | - Ruokun Huang
- Wuhan Puai Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, China
| | - Ming Xie
- Wuhan Puai Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, China
| |
Collapse
|
18
|
Wang Y, Yang YJ, Wang Z, Liao J, Liu M, Zhong XR, Zheng H, Wang YP. CD55 and CD59 expression protects HER2-overexpressing breast cancer cells from trastuzumab-induced complement-dependent cytotoxicity. Oncol Lett 2017; 14:2961-2969. [PMID: 28928834 PMCID: PMC5588148 DOI: 10.3892/ol.2017.6555] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/28/2017] [Indexed: 02/05/2023] Open
Abstract
A large proportion (40-60%) of patients with human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer do not benefit from trastuzumab treatment, potentially due to the lack of complement-dependent cytotoxicity (CDC) activation. In the present study, the effect of complement decay-accelerating factor (CD55) and CD59 glycoprotein precursor (CD59) expression on trastuzumab-induced CDC in HER2-positive breast cancer cell lines was investigated. The CD55 and CD59-overexpressing and HER2-positive cell lines SK-BR-3 and BT474 were selected for subsequent experiments. Blocking CD55 and CD59 function using targeting monoclonal antibodies significantly enhanced the cell lysis of SK-BR-3 and BT474 cells following treatment with trastuzumab. In addition, following treatment with 0.1 U/ml phosphatidylinositol-specific phospholipase C (PI-PLC) for 1 h, CD55 and CD59 surface expression was significantly decreased, and the cell lysis rate was further enhanced. Treatment of SK-BR-3 cells with short hairpin RNA (shRNA) targeting CD55 and CD59 downregulated CD55 and CD59 expression at the mRNA and protein levels, and resulted in significantly enhanced trastuzumab-induced CDC-dependent lysis. The data from the present study suggested that CD55 and CD59 serve roles in blocking trastuzumab-induced CDC, therefore strategies targeting CD55 and CD59 may overcome breast cancer cell resistance to trastuzumab. The results from the present study may provide a basis for developing suitable, personalized treatment strategies to improve the clinical efficacy of trastuzumab for patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Jun Yang
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhu Wang
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Juan Liao
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mei Liu
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Breast Cancer Research Center, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Xiao-Rong Zhong
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong Zheng
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan-Ping Wang
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
19
|
Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-Based Cancer Therapy: Successful Agents and Novel Approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:289-383. [PMID: 28325214 DOI: 10.1016/bs.ircmb.2016.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their discovery, antibodies have been viewed as ideal candidates or "magic bullets" for use in targeted therapy in the fields of cancer, autoimmunity, and chronic inflammatory disorders. A wave of antibody-dedicated research followed, which resulted in the clinical approval of a first generation of monoclonal antibodies for cancer therapy such as rituximab (1997) and cetuximab (2004), and infliximab (2002) for the treatment of autoimmune diseases. More recently, the development of antibodies that prevent checkpoint-mediated inhibition of T cell responses invigorated the field of cancer immunotherapy. Such antibodies induced unprecedented long-term remissions in patients with advanced stage malignancies, most notably melanoma and lung cancer, that do not respond to conventional therapies. In this review, we will recapitulate the development of antibody-based therapy, and detail recent advances and new functions, particularly in the field of cancer immunotherapy. With the advent of recombinant DNA engineering, a number of rationally designed molecular formats of antibodies and antibody-derived agents have become available, and we will discuss various molecular formats including antibodies with improved effector functions, bispecific antibodies, antibody-drug conjugates, antibody-cytokine fusion proteins, and T cells genetically modified with chimeric antigen receptors. With these exciting advances, new antibody-based treatment options will likely enter clinical practice and pave the way toward more successful control of malignant diseases.
Collapse
Affiliation(s)
- D Hendriks
- Department of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - G Choi
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - M de Bruyn
- Department of Obstetrics & Gynecology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - V R Wiersma
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| | - E Bremer
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands; University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
20
|
Kourtzelis I, Rafail S. The dual role of complement in cancer and its implication in anti-tumor therapy. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:265. [PMID: 27563652 DOI: 10.21037/atm.2016.06.26] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic inflammation has been linked to the initiation of carcinogenesis, as well as the advancement of established tumors. The polarization of the tumor inflammatory microenvironment can contribute to either the control, or the progression of the disease. The emerging participation of members of the complement cascade in several hallmarks of cancer, renders it a potential target for anti-tumor treatment. Moreover, the presence of complement regulatory proteins (CRPs) in most types of tumor cells is known to impede anti-tumor therapies. This review focuses on our current knowledge of complement's potential involvement in shaping the inflammatory tumor microenvironment and its role on the regulation of angiogenesis and hypoxia. Furthermore, we discuss approaches using complement-based therapies as an adjuvant in tumor immunotherapy.
Collapse
Affiliation(s)
- Ioannis Kourtzelis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stavros Rafail
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
21
|
Feng G, Li J, Zheng M, Yang Z, Liu Y, Zhang S, Ye L, Zhang W, Zhang X. Hepatitis B virus X protein up-regulates C4b-binding protein α through activating transcription factor Sp1 in protection of hepatoma cells from complement attack. Oncotarget 2016; 7:28013-26. [PMID: 27050367 PMCID: PMC5053706 DOI: 10.18632/oncotarget.8472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/14/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus X protein (HBx) plays crucial roles in the development of hepatocellular carcinoma (HCC). We previously showed that HBx protected hepatoma cells from complement attack by activation of CD59. Moreover, in this study we found that HBx protected hepatoma cells from complement attack by activation of C4b-binding protein α (C4BPα), a potent inhibitor of complement system. We observed that HBx were positively correlated with those of C4BPα in clinical HCC tissues. Mechanistically, HBx activated the promoter core region of C4BPα, located at -1199/-803nt, through binding to transcription factor Sp1. In addition, chromatin immunoprecipitation (ChIP) assays showed that HBx was able to bind to the promoter of C4BPα, which could be blocked by Sp1 silencing. Functionally, knockdown of C4BPα obviously increased the deposition of C5b-9, a complex of complement membrane attack, and remarkably abolished the HBx-induced resistance of hepatoma cells from complement attack in vitro and in vivo. Thus, we conclude that HBx up-regulates C4BPα through activating transcription factor Sp1 in protection of liver cancer cells from complement attack. Our finding provides new insights into the mechanism by which HBx enhances protection of hepatoma cells from complement attack.
Collapse
Affiliation(s)
- Guoxing Feng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Jiong Li
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Minying Zheng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Zhe Yang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Yunxia Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Shuqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Xiaodong Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| |
Collapse
|
22
|
Preclinical safety, pharmacokinetics, pharmacodynamics, and biodistribution studies with Ad35K++ protein: a novel rituximab cotherapeutic. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16013. [PMID: 27069950 PMCID: PMC4813608 DOI: 10.1038/mtm.2016.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022]
Abstract
Rituximab is a mouse/human chimeric monoclonal antibody targeted toward CD20. It is efficient as first-line therapy of CD20-positive B-cell malignancies. However, a large fraction of treated patients relapse with rituximab-resistant disease. So far, only modest progress has been made in treatment options for rituximab refractory patients. One of the mechanisms for rituximab resistance involves the upregulation of CD46, which is a key cell surface protein that blocks the activation of complement. We have recently developed a technology that depletes CD46 from the cell surface and thereby sensitizes tumor cells to complement-dependent cytotoxicity. This technology is based on a small recombinant protein, Ad35K++ that binds with high affinity to CD46. In preliminary studies using a 6 × histidinyl tagged protein, we had demonstrated that intravenous Ad35K++ injection in combination with rituximab was safe and increased rituximab-mediated killing of CD20-positive target cells in mice and nonhuman primates (NHPs). The presence of the tag, while allowing for easy purification by Ni-NTA chromatography, has the potential to increase the immunogenicity of the recombinant protein. For clinical application, we therefore developed an Ad35K++ protein without His-tag. In the present study, we performed preclinical studies in two animal species (mice and NHPs) with this protein demonstrating its safety and efficacy. These studies estimated the Ad35K++ dose range and treatment regimen to be used in patients. Furthermore, we showed that intravenous Ad35K++ injection triggers the shedding of the CD46 extracellular domain in xenograft mouse tumor models and in macaques. Shed serum CD46 can be measured in the serum and can potentially be used as a pharmacodynamic marker for monitoring Ad35K++ activity in patient undergoing treatment with this agent. These studies create the basis for an investigational new drug application for the use of Ad35K++ in combination with rituximab in the treatment of patients with B-cell malignancies.
Collapse
|
23
|
Taylor RP, Lindorfer MA. Cytotoxic mechanisms of immunotherapy: Harnessing complement in the action of anti-tumor monoclonal antibodies. Semin Immunol 2016; 28:309-16. [PMID: 27009480 DOI: 10.1016/j.smim.2016.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/07/2016] [Indexed: 01/02/2023]
Abstract
Several mAbs that have been approved for the treatment of cancer make use of complement-dependent cytotoxicity (CDC) to eliminate tumor cells. Comprehensive investigations, based on in vitro studies, mouse models and analyses of patient blood samples after mAb treatment have provided key insights into the details of individual steps in the CDC reaction. Based on the lessons learned from these studies, new and innovative approaches are now being developed to increase the clinical efficacy of next generation mAbs with respect to CDC. These improvements include engineering changes in the mAbs to enhance their ability to activate complement. In addition, mAb dosing paradigms are being developed that take into account the capacity as well as the limitations of the complement system to eliminate a substantial burden of mAb-opsonized cells. Over the next few years it is likely these approaches will lead to mAbs that are far more effective in the treatment of cancer.
Collapse
Affiliation(s)
- Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| |
Collapse
|
24
|
Complement factor H polymorphism rs1061170 and the effect of cigarette smoking on the risk of lung cancer. Contemp Oncol (Pozn) 2015; 19:441-5. [PMID: 26843839 PMCID: PMC4731447 DOI: 10.5114/wo.2015.56202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023] Open
Abstract
Aim of the study Complement factor H (CFH) has been known to inhibit the complement pathway and to contribute to tumour growth by suppressing the anti-tumour cell mediated response in cell lines from several malignancies. We examined the association of Try402His single nucleotide polymorphism in CFH gene with lung cancer and the interaction with cigarette smoking. Material and methods This case-control study included 80 primary lung cancer patients and 106 control subjects who were genotyped for Try402His (rs1061170) by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Results Variant genotypes (Tyr/His and His/His) were overpresented among patients compared to controls (p = 0.03, OR = 2.510, 95% CI: 1.068–5.899), and the frequency of variant H allele was significantly overexpressed in cases compared to controls (p = 0.021). Tyr/His genotype was identified in 100% of small cell lung cancer (SCLC) patients vs. 34.5% of non-SCLC (NSCLC), while 20.7% of NSCLC patients were homozygous for the variant allele (His/His) (p = 0.001). Binary logistic regression analysis revealed a 2.5 times greater estimated risk for NSCLC than for SCLC among variant allele carriers, and a 7.3-fold increased risk of lung cancer among variant allele smoking carriers vs. 1.3-fold increased risk among wild allele smoking carriers. Moreover, the stage of cancer positively correlated with smoking and pack-years in allele H carriers, and the correlation was stronger among those who were homozygous for it (His/His) than those who were heterozygous (Tyr/His). Conclusions CFH 402H variant is a smoking-related risk factor for lung cancer, particularly the NSCLC.
Collapse
|
25
|
Mamidi S, Höne S, Kirschfink M. The complement system in cancer: Ambivalence between tumour destruction and promotion. Immunobiology 2015; 222:45-54. [PMID: 26686908 DOI: 10.1016/j.imbio.2015.11.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/08/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
Abstract
Constituting a part of the innate immune system, the complement system consists of over 50 proteins either acting as part of a 3-branch activation cascade, a well-differentiated regulatory system in fluid phase or on each tissue, or as receptors translating the activation signal to multiple cellular effector functions. Complement serves as first line of defence against infections from bacteria, viruses and parasites by orchestrating the immune response through opsonisation, recruitment of immune cells to the site of infection and direct cell lysis. Complement is generally recognised as a protective mechanism against the formation of tumours in humans, but is often limited by various resistance mechanisms interfering with its cytotoxic action, now considered as a great barrier of successful antibody-based immunotherapy. However, recent studies also indicate a pro-tumourigenic potential of complement in certain cancers and under certain conditions. In this review, we present recent findings on the possible dual role of complement in destroying cancer, especially if resistance mechanisms are blocked, but also under certain inflammatory conditions-promoting tumour development.
Collapse
Affiliation(s)
| | - Simon Höne
- Institute for Immunology, University of Heidelberg, Germany
| | | |
Collapse
|
26
|
Chronic Activation of Innate Immunity Correlates With Poor Prognosis in Cancer Patients Treated With Oncolytic Adenovirus. Mol Ther 2015; 24:175-83. [PMID: 26310629 DOI: 10.1038/mt.2015.143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
Despite many clinical trials conducted with oncolytic viruses, the exact tumor-level mechanisms affecting therapeutic efficacy have not been established. Currently there are no biomarkers available that would predict the clinical outcome to any oncolytic virus. To assess the baseline immunological phenotype and find potential prognostic biomarkers, we monitored mRNA expression levels in 31 tumor biopsy or fluid samples from 27 patients treated with oncolytic adenovirus. Additionally, protein expression was studied from 19 biopsies using immunohistochemical staining. We found highly significant changes in several signaling pathways and genes associated with immune responses, such as B-cell receptor signaling (P < 0.001), granulocyte macrophage colony-stimulating factor (GM-CSF) signaling (P < 0.001), and leukocyte extravasation signaling (P < 0.001), in patients surviving a shorter time than their controls. In immunohistochemical analysis, markers CD4 and CD163 were significantly elevated (P = 0.020 and P = 0.016 respectively), in patients with shorter than expected survival. Interestingly, T-cell exhaustion marker TIM-3 was also found to be significantly upregulated (P = 0.006) in patients with poor prognosis. Collectively, these data suggest that activation of several functions of the innate immunity before treatment is associated with inferior survival in patients treated with oncolytic adenovirus. Conversely, lack of chronic innate inflammation at baseline may predict improved treatment outcome, as suggested by good overall prognosis.
Collapse
|
27
|
Mamidi S, Höne S, Teufel C, Sellner L, Zenz T, Kirschfink M. Neutralization of membrane complement regulators improves complement-dependent effector functions of therapeutic anticancer antibodies targeting leukemic cells. Oncoimmunology 2015; 4:e979688. [PMID: 25949896 PMCID: PMC4404820 DOI: 10.4161/2162402x.2014.979688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 01/12/2023] Open
Abstract
Complement-dependent cytotoxicity (CDC) is one of the effector mechanisms mediated by therapeutic anticancer monoclonal antibodies (mAbs). However, the efficacy of antibodies is limited by the resistance of malignant cells to complement attack, primarily due to the over-expression of one or more membrane complement regulatory proteins (mCRPs) CD46, CD55, and CD59. CD20-positive Burkitt lymphoma Raji cells and primary CLL cells are resistant to rituximab (RTX)-induced CDC whereas ofatumumab (OFA) proved to be more efficient in cell killing. Primary CLL cells but not CD52-positive acute lymphoblastic leukemia (ALL) REH cells were sensitive to alemtuzumab (ALM)-induced CDC. Upon combined inhibition on Raji and CLL cells by mCRPs-specific siRNAs or neutralizing antibodies, CDC induced by RTX and by OFA was augmented. Similarly, CDC of REH cells was enhanced after mCRPs were inhibited upon treatment with ALM. All mAbs induced C3 opsonization, which was significantly augmented upon blocking mCRPs. C3 opsonization led to enhanced cell-mediated cytotoxicity of leukemia cells exposed to PBLs or macrophages. Furthermore, opsonized CLL cells were efficiently phagocytized by macrophages. Our results provide conclusive evidence that inhibition of mCRPs expression sensitizes leukemic cells to complement attack thereby enhancing the therapeutic effect of mAbs targeting leukemic cells.
Collapse
Key Words
- ADCC, antibody-dependent cellular cytotoxicity
- ALM, Alemtuzumab
- CDC, complement-dependent cytotoxicity
- CDCC, complement-dependent cellular cytotoxicity
- MAC, membrane attack complex
- NHS, Normal Human Serum
- OFA, Ofatumumab
- PBLs, peripheral blood leukocytes
- RTX, Rituximab
- TRX, Trastuzumab
- alemtuzumab
- chronic lymphocytic leukemia
- complement regulatory proteins
- complement-dependent cytotoxicity
- mCRP, membrane-bound complement regulatory protein
- ofatumumab
- opsonization
- rituximab
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Srinivas Mamidi
- Institute for Immunology; University of Heidelberg; Heidelberg, Germany
| | - Simon Höne
- Institute for Immunology; University of Heidelberg; Heidelberg, Germany
| | - Claudia Teufel
- Institute for Immunology; University of Heidelberg; Heidelberg, Germany
| | - Leopold Sellner
- Department of Translational Oncology; National Center for Tumour Diseases (NCT) and German Cancer Research Center (DKFZ); Heidelberg, Germany
- Department of Medicine V; University of Heidelberg; Heidelberg, Germany
| | - Thorsten Zenz
- Department of Translational Oncology; National Center for Tumour Diseases (NCT) and German Cancer Research Center (DKFZ); Heidelberg, Germany
- Department of Medicine V; University of Heidelberg; Heidelberg, Germany
| | | |
Collapse
|
28
|
Targeted delivery of siRNA using transferrin-coupled lipoplexes specifically sensitizes CD71 high expressing malignant cells to antibody-mediated complement attack. Target Oncol 2014; 10:405-13. [DOI: 10.1007/s11523-014-0345-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023]
|
29
|
NIE FACHUAN, SU DONG, SHI YING, CHEN JINMEI, WANG HAIHUI, QIN WANXIANG, CHEN YAOHUA, WANG SUXIA, LI LEI. A preliminary study on the role of the complement regulatory protein, cluster of differentiation 55, in mice with diabetic neuropathic pain. Mol Med Rep 2014; 11:2076-82. [DOI: 10.3892/mmr.2014.2896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 10/03/2014] [Indexed: 11/05/2022] Open
|
30
|
Sayegh ET, Bloch O, Parsa AT. Complement anaphylatoxins as immune regulators in cancer. Cancer Med 2014; 3:747-58. [PMID: 24711204 PMCID: PMC4303144 DOI: 10.1002/cam4.241] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/10/2014] [Accepted: 02/26/2014] [Indexed: 12/31/2022] Open
Abstract
The role of the complement system in innate immunity is well characterized. However, a recent body of research implicates the complement anaphylatoxins C3a and C5a as insidious propagators of tumor growth and progression. It is now recognized that certain tumors elaborate C3a and C5a and that complement, as a mediator of chronic inflammation and regulator of immune function, may in fact foster rather than defend against tumor growth. A putative mechanism for this function is complement-mediated suppression of immune effector cells responsible for immunosurveillance within the tumor microenvironment. This paradigm accords with models of immune dysregulation, such as autoimmunity and infectious disease, which have defined a pathophysiological role for abnormal complement signaling. Several types of immune cells express the cognate receptors for the complement anaphylatoxins, C3aR and C5aR, and demonstrate functional modulation in response to complement stimulation. In turn, impairment of antitumor immunity has been intimately tied to tumor progression in animal models of cancer. In this article, the literature was systematically reviewed to identify studies that have characterized the effects of the complement anaphylatoxins on the composition and function of immune cells within the tumor microenvironment. The search identified six studies based upon models of lymphoma and ovarian, cervical, lung, breast, and mammary cancer, which collectively support the paradigm of complement as an immune regulator in the tumor microenvironment.
Collapse
Affiliation(s)
- Eli T Sayegh
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | |
Collapse
|
31
|
Lu Z, Zhang C, Cui J, Song Q, Wang L, Kang J, Li P, Hu X, Song H, Yang J, Sun Y. Bioinformatic analysis of the membrane cofactor protein CD46 and microRNA expression in hepatocellular carcinoma. Oncol Rep 2013; 31:557-64. [PMID: 24297460 PMCID: PMC3896517 DOI: 10.3892/or.2013.2877] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 10/25/2013] [Indexed: 02/05/2023] Open
Abstract
The therapeutic potential of membrane complement regulatory protein (mCRP)-neutralizing antibodies is unsatisfactory, which perhaps lies in the complex role of mCRPs in tumor occurrence and development. As a member of the mCRPs, CD46 is a transmembrane protein with a cytoplasmic domain and is implicated more in the control of the alternative complement pathway than of the classical complement pathway. Growing evidence has revealed that both the CD46 signaling pathway and microRNAs (miRNAs) play an important role in the development and progression of hepatocellular carcinoma (HCC). In the present study, we analyzed mCRP expression in different tumor tissues by employing western blotting and qPCR. To address the potential role of miRNAs in CD46 signaling, we set out to profile miRNA expression in CD46-overexpressed and -silenced HepG2 cell lines. Furthermore, bioinformatic analysis was performed to identify downstream targets of CD46 signaling. We found that the levels of CD46 expression in HCC tissues were significantly higher compared to that in the adjacent normal tissues. After complement-related gene expression profiling and unsupervised hierarchical clustering analysis of 10 HCC tissues, a total of 37 miRNAs showed significantly different expression levels before and after CD46 expression change. By bioinformatic analysis, we identified let-7b and miR-17 as downstream targets of CD46 signaling, and that the expression levels of let-7b and miR-17 were negatively correlated with that of CD46 in HepG2 cells. The present study suggests that CD46 plays an important role in HCC carcinogenesis by regulating let-7b and miR-17.
Collapse
Affiliation(s)
- Zejun Lu
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Chuanfu Zhang
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Jiajun Cui
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Qi Song
- Department of Gynaecology and Obstetrics, The General Hospital of the Chinese People's Armed Police Force, Beijing 100039, P.R. China
| | - Ligui Wang
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Jingbo Kang
- Department of Radiation Oncology, Naval General Hospital of PLA, Beijing 100048, P.R. China
| | - Peng Li
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Xiaofeng Hu
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Hongbin Song
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yansong Sun
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing 100071, P.R. China
| |
Collapse
|
32
|
Mamidi S, Cinci M, Hasmann M, Fehring V, Kirschfink M. Lipoplex mediated silencing of membrane regulators (CD46, CD55 and CD59) enhances complement-dependent anti-tumor activity of trastuzumab and pertuzumab. Mol Oncol 2013; 7:580-94. [PMID: 23474221 PMCID: PMC5528480 DOI: 10.1016/j.molonc.2013.02.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/18/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022] Open
Abstract
The therapeutic potential of anticancer antibodies is limited by the resistance of tumor cells to complement-mediated attack, primarily through the over-expression of membrane complement regulatory proteins (mCRPs: CD46, CD55 and CD59). Trastuzumab, an anti- HER2 monoclonal antibody, approved for the treatment of HER2-positive breast and gastric cancers, exerts only minor complement-mediated cytotoxicity (CDC). Pertuzumab is a novel anti-HER2 monoclonal antibody, which blocks HER2 dimerization with other ligand-activated HER family members. Here, we explored the complement-mediated anti-tumor effects of trastuzumab and pertuzumab on HER2-positive tumor cells of various histological origins. Delivery of chemically stabilized anti-mCRP siRNAs using cationic lipoplexes, AtuPLEXes, to HER2-over-expressing BT474, SK-BR-3 (breast), SKOV3 (ovarian) and Calu-3 (lung) cancer cells reduced mCRPs expression by 85-95%. Knockdown of individual complement regulators variably led to increased CDC only upon combined treatment with trastuzumab and pertuzumab. The combined down-regulation of all the three regulators augmented CDC by 48% in BT474, 46% in SK-BR-3 cells, 78% in SKOV3 cells and by 30% in Calu-3 cells and also increased complement-induced apoptosis and caspase activity on mCRP neutralized tumor cells. In addition, antibody-induced C3 opsonization of tumor cells was significantly enhanced after mCRP silencing and further augmented tumor cell killing by macrophages. Our findings suggest that siRNA-induced inhibition of complement regulator expression clearly enhances complement- and macrophage-mediated anti-tumor activity of trastuzumab and pertuzumab on HER2-positive tumor cells. Thus - if selectively targeted to the tumor - siRNA-induced inhibition of complement regulation may serve as an innovative strategy to potentiate the efficacy of antibody-based immunotherapy.
Collapse
Affiliation(s)
- Srinivas Mamidi
- Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Marc Cinci
- Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Max Hasmann
- Roche Diagnostics GmbH, Pharma Research and Early Development (pRED), Penzberg, Germany
| | | | - Michael Kirschfink
- Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| |
Collapse
|
33
|
Beyer I, Cao H, Persson J, Wang H, Liu Y, Yumul R, Li Z, Woodle D, Manger R, Gough M, Rocha D, Bogue J, Baldessari A, Berenson R, Carter D, Lieber A. Transient removal of CD46 is safe and increases B-cell depletion by rituximab in CD46 transgenic mice and macaques. Mol Ther 2012; 21:291-9. [PMID: 23089733 DOI: 10.1038/mt.2012.212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have developed a technology that depletes the complement regulatory protein (CRP) CD46 from the cell surface, and thereby sensitizes tumor cells to complement-dependent cytotoxicity triggered by therapeutic monoclonal antibodies (mAbs). This technology is based on a small recombinant protein, Ad35K++, which induces the internalization and subsequent degradation of CD46. In preliminary studies, we had demonstrated the utility of the combination of Ad35K++ and several commercially available mAbs such as rituximab, alemtuzumab, and trastuzumab in enhancing cell killing in vitro as well as in vivo in murine xenograft and syngeneic tumor models. We have completed scaled manufacturing of Ad35K++ protein in Escherichia coli for studies in nonhuman primates (NHPs). In macaques, we first defined a dose of the CD20-targeting mAb rituximab that did not deplete CD20-positive peripheral blood cells. Using this dose of rituximab, we then demonstrated that pretreatment with Ad35K++ reconstituted near complete elimination of B cells. Further studies demonstrated that the treatment was well tolerated and safe. These findings in a relevant large animal model provide the rationale for moving this therapy forward into clinical trials in patients with CD20-positive B-cell malignancies.
Collapse
Affiliation(s)
- Ines Beyer
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schwartz-Albiez R. Naturally occurring antibodies directed against carbohydrate tumor antigens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:27-43. [PMID: 22903664 DOI: 10.1007/978-1-4614-3461-0_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Healthy persons carry within their pool of circulating antibodies immunoglobulins preferentially of IgM isotype, which are directed against a variety of tumor-associated antigens. In closer scrutiny of their nature, some of these antibodies could be defined as naturally occurring antibodies due to the germline configuration of the variable immunoglobulin region. The majority of these immunoglobulins recognize carbohydrate antigens which can be classified as oncofetal antigens. Many of these IgM antibodies present in the peripheral blood circulation can bind to tumor cells and of these a minor portion are also able to destroy tumor cells by several mechanisms, as for instance complement-mediated cytolysis or apoptosis. It was postulated that anti-carbohydrate antibodies are part of an anti-tumor immune response, while their presence in the peripheral blood of healthy donors is still waiting for a plausible explanation. It may be that recognition of defined epitopes, including carbohydrate sequences, by naturally occurring antibodies constitutes the humoral arm of an anti-tumor immune response as part of the often postulated tumor surveillance. The cytotoxic capacity of these antibodies inspired several research groups and pharmaceutical companies to design novel strategies of immunoglobulin-based anti-tumor immunotherapy.
Collapse
|
35
|
Kolev M, Towner L, Donev R. Complement in cancer and cancer immunotherapy. Arch Immunol Ther Exp (Warsz) 2011; 59:407-19. [PMID: 21960413 DOI: 10.1007/s00005-011-0146-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/07/2011] [Indexed: 02/07/2023]
Abstract
Recently, there has been an increase of interest in the use of biological or immune-based therapies for patients with malignancies. This has been informed by the deeper understanding of the crosstalk between the host immune system and malignant tumours, as well as the potential advantages of immunotherapy-high specificity and less toxicity compared to standard approaches. The particular emphasis of this article is on the role of the complement system in tumour growth and antibody-based cancer immunotherapy. The functional consequences from overexpression of complement regulators by tumours and the development of strategies for overcoming this are discussed in detail. This review discusses these issues with a view to inspiring the development of new agents that could be useful for the treatment of cancer.
Collapse
Affiliation(s)
- Martin Kolev
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | | | | |
Collapse
|
36
|
Gao LJ, Ding L, Guo SY, Cai YQ, Su YJ, Gong H, Liu Y, Chen C, Gu PQ. Role of decay-accelerating factor in regulating survival of human cervical cancer cells. J Cancer Res Clin Oncol 2011; 137:81-7. [PMID: 20221634 DOI: 10.1007/s00432-010-0862-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 02/23/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND Decay-accelerating factor (DAF) is one of the key molecules involved in cell protection against autologous complement, which restricts the action of complement at critical stages of the cascade reaction. The effect of DAF on the survival of human cervical cancer cell (ME180) has not been demonstrated. METHODS In this study we applied, for the first time, small interference RNA (siRNA) to knock down the expression of the DAF with the aim of exploiting complement more effectively for tumor cell damage. Meanwhile, we investigated the effects of DAF on the viability and migration, moreover the proliferation of ME180 cell. RESULTS The results showed that the expression of DAF was significantly increased in human cervical cancer tissues. SiRNA inhibition of DAF expression enhanced complement-dependent cytolysis up to 32% in ME180 cells, which contributed to the control of C3 activation and increased the cells viability, migration and augment the number of ME180 cells. CONCLUSION These data indicated that DAF siRNA described in this study may offer an additional alternative to improve the efficacy of antibody- and complement-based cancer immunotherapy.
Collapse
Affiliation(s)
- Ling-Juan Gao
- Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Tianfei Alley, Nanjing Mochou Road, Nanjing 210004, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kolev MV, Ruseva MM, Morgan BP, Donev RM. Targeting neural-restrictive silencer factor sensitizes tumor cells to antibody-based cancer immunotherapy in vitro via multiple mechanisms. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:6035-42. [PMID: 20421646 DOI: 10.4049/jimmunol.1000045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tumor cells escape clearance by complement by abundantly expressing CD59 and other membrane complement regulators. Recently, we designed a peptide derived from the neural-restrictive silencer factor (REST), REST68, which we showed to inhibit expression of CD59 in tumors lacking the full-length REST and proposed a detailed model for regulation of CD59 expression via interplay between REST and nucleolin (NCL) transcription factors. In this paper, we study in detail the mechanisms for sensitization of malignant cells to Ab-based cancer immunotherapy by the REST68 peptide and the implications of the REST/NCL model for the design of treatment resulting in higher tumor susceptibility. REST68 inhibited CD59 expression in malignant cells expressing either truncated or full-length REST, but not in nonmalignant cells. However, activation of protein kinase C (PKC) in nonmalignant cells, a process that contributes to cellular transformation, phosphorylated NCL and enabled suppression of CD59 expression by the REST68. Combined treatment of different tumor types with REST68 and PKC inhibitor synergized to further suppress CD59 expression and reduce resistance to complement lysis. The combined treatment also increased susceptibility of tumors expressing either of the REST isoforms to PBMC-mediated killing, which, at least in part, accounted for the strong promotion of apoptosis by the REST68/PKC inhibitor. These data demonstrate that REST68 sensitizes tumors to Ab-based cancer immunotherapy via multiple mechanisms. Furthermore, the REST/NCL interplay model for regulation of expression of cd59 and other genes involved in cell survival enables the design of treatments for different tumor types to achieve more efficient tumor clearance.
Collapse
Affiliation(s)
- Martin V Kolev
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | |
Collapse
|
38
|
Pilzer D, Saar M, Koya K, Fishelson Z. Mortalin inhibitors sensitize K562 leukemia cells to complement-dependent cytotoxicity. Int J Cancer 2010; 126:1428-35. [PMID: 19739077 DOI: 10.1002/ijc.24888] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mortalin, the mitochondrial hsp70, is a vital constitutively expressed heat shock protein. Its elevated expression has been correlated with malignant transformation and poor cancer prognosis. Cancer cells exhibit increased resistance to complement-dependent cytotoxicity, partly due to their capacity to eliminate the complement membrane attack complex (MAC) from their cell surface. As we have previously reported, mortalin and the complement membrane attack complexes are released in membrane vesicles from complement attacked cells. As shown here, knock down of mortalin with specific siRNA reduces MAC elimination and enhances cell sensitivity to MAC-induced cell death. Similar results were obtained with MKT-077, a cationic rhodacyanine dye that inhibits mortalin. Treatment of human erythroleukemia K562 and colorectal carcinoma HCT116 cells with MKT-077 sensitizes them to cell death mediated by MAC but not by streptolysin O. Pre-treatment of cells with MKT-077 also reduces the extent of MAC-mortalin vesiculation following a sublytic complement attack. In the presence of MKT-077, the direct binding of mortalin to complement C9, the major MAC component, is inhibited. The tumor suppressor protein p53 is a known mortalin client protein. The effect of MKT-077 on complement-mediated lysis of HCT116 p53(+/+) and p53(-/-) cells was found to be independent on the presence of p53. Our results also demonstrate that recombinant human mortain inhibits complement-mediated hemolysis of rabbit erythrocytes as well as zinc-induced C9 polymerization. We conclude that mortalin supports cancer cell resistance to complement-dependent cytotoxicity and propose consideration of mortalin as a novel target for cancer adjuvant immunotherapy.
Collapse
Affiliation(s)
- David Pilzer
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
39
|
Bell NM, Micklefield J. Chemical modification of oligonucleotides for therapeutic, bioanalytical and other applications. Chembiochem 2010; 10:2691-703. [PMID: 19739190 DOI: 10.1002/cbic.200900341] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Neil M Bell
- School of Chemistry, The University of Manchester, Manchester Interdisciplinary Biocentre, 131 Princess Street, Manchester M1 7DN, UK
| | | |
Collapse
|
40
|
Natsume A, Shimizu-Yokoyama Y, Satoh M, Shitara K, Niwa R. Engineered anti-CD20 antibodies with enhanced complement-activating capacity mediate potent anti-lymphoma activity. Cancer Sci 2009; 100:2411-8. [PMID: 19758394 PMCID: PMC11159923 DOI: 10.1111/j.1349-7006.2009.01327.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
One of the major issues in current antibody therapy is insufficient efficacy. Various biological factors relating to the host's immune system or tumor cells have been suggested to reduce the efficacy of anti-CD20 therapy in B-cell malignancies. In this study, we characterized the in vitro anti-lymphoma activity of anti-CD20 antibodies having a novel engineered heavy chain with enhanced complement-dependent cytotoxicity (CDC). Anti-CD20 antibodies having a variant heavy constant region of mixed IgG1/IgG3 isotype, which have previously been found to enhance CDC, were investigated for their in vitro CDC against lymphoma cells and whole blood B-cell depletion activity. Use of the variant constant region greatly increased the CDC of an anti-CD20 antibody having variable regions identical to those of rituximab to the level shown by an IgG1 antibody of ofatumumab. Although the whole blood assay showed different cytotoxicity patterns among individual blood donors, the CDC-enhancing variant of rituximab showed higher activity than the parent IgG1 and consistently showed maximized activity when further combined with antibody-dependent cellular cytotoxicity (ADCC)-enhancing modification by fucose removal from Fc-linked oligosaccharides. In addition, the rituximab variant showed potent CDC against transfectant cells with lower CD20 expression and chronic lymphocytic leukemia-derived cell lines with higher complement regulatory proteins. These findings suggest that CDC enhancement, both alone and in combination with ADCC enhancement, increases the anti-lymphoma activity of anti-CD20 antibodies irrespective of individual differences in effector functions, and renders current anti-CD20 therapy capable of overcoming the potential resistance mechanisms.
Collapse
Affiliation(s)
- Akito Natsume
- Antibody Research Laboratories, Research Division, Kyowa Hakko Kirin Co, Ltd, Machida-shi, Tokyo, Japan
| | | | | | | | | |
Collapse
|
41
|
A recombinant adenovirus type 35 fiber knob protein sensitizes lymphoma cells to rituximab therapy. Blood 2009; 115:592-600. [PMID: 19965652 DOI: 10.1182/blood-2009-05-222463] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many tumors, including lymphomas, up-regulate expression of CD46 to escape destruction by complement. Tumor cells are therefore relatively resistant to therapy by monoclonal antibodies, which act through complement-dependent cytotoxicity (CDC). From an Escherichia coli expression library of adenovirus type 35 fiber knob mutants, we selected a variant (Ad35K(++)) that had a higher affinity to CD46 than did the natural Ad35 fiber knob. We demonstrated that incubation of lymphoma cells with recombinant Ad35K(++) protein resulted in transient removal of CD46 from the cell surface. Preincubation of lymphoma cells with Ad35K(++) sensitized cells to CDC, triggered by the CD20-specific monoclonal antibody rituximab. In xenograft models with human lymphoma cells, preinjection of Ad35K(++) dramatically increased the therapeutic effect of rituximab. Blood cell counts and organ histology were normal after intravenous injection of Ad35K(++) into mice that express human CD46. The presence of polyclonal anti-Ad35K(++) antibodies did not affect the ability of Ad35K(++) to enhance rituximab-mediated CDC in in vitro assays. The Ad35K(++)-based approach has potential implications in monoclonal antibody therapy of malignancies beyond the combination with rituximab.
Collapse
|
42
|
Gao LJ, Guo SY, Cai YQ, Gu PQ, Su YJ, Gong H, Liu Y, Chen C. Cooperation of decay-accelerating factor and membrane cofactor protein in regulating survival of human cervical cancer cells. BMC Cancer 2009; 9:384. [PMID: 19878546 PMCID: PMC2774863 DOI: 10.1186/1471-2407-9-384] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 10/30/2009] [Indexed: 11/27/2022] Open
Abstract
Background Decay-accelerating factor (DAF) and membrane cofactor protein (MCP) are the key molecules involved in cell protection against autologus complement, which restricts the action of complement at critical stages of the cascade reaction. The cooperative effect of DAF and MCP on the survival of human cervical cancer cell (ME180) has not been demonstrated. Methods In this study we applied, for the first time, short hairpin RNA (shRNA) to knock down the expression of the DAF and MCP with the aim of exploiting complement more effectively for tumor cell damage. Meanwhile, we investigated the cooperative effects of DAF and MCP on the viability and migration, moreover the proliferation of ME180 cell. Results The results showed that shRNA inhibition of DAF and MCP expression enhanced complement-dependent cytolysis (CDC) up to 39% for MCP and up to 36% for DAF, and the combined inhibition of both regulators yielded further additive effects in ME180 cells. Thus, the activities of DAF and MCP, when present together, are greater than the sum of the two protein individually. Conclusion These data indicated that combined DAF and MCP shRNA described in this study may offer an additional alternative to improve the efficacy of antibody-and complement-based cancer immunotherapy.
Collapse
Affiliation(s)
- Ling-Juan Gao
- Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Nanjing, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gancz D, Fishelson Z. Cancer resistance to complement-dependent cytotoxicity (CDC): Problem-oriented research and development. Mol Immunol 2009; 46:2794-800. [DOI: 10.1016/j.molimm.2009.05.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 05/10/2009] [Indexed: 01/04/2023]
|
44
|
Markiewski MM, Lambris JD. Is complement good or bad for cancer patients? A new perspective on an old dilemma. Trends Immunol 2009; 30:286-92. [PMID: 19428302 DOI: 10.1016/j.it.2009.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022]
Abstract
Several studies of human cancers have established that chronic and insidious inflammation promotes the process of carcinogenesis and exacerbates the growth of existing tumors. Conversely, acute inflammation seems to have the opposite effect. Recent discoveries indicate that this dualism in the role of inflammation in cancer is mirrored by the effects of the complement system on this disease process. Previous studies have suggested that complement proteins can contribute to the immune surveillance of malignant tumors. However, a very recent study has indicated that complement proteins can also promote tumor growth. Here, we describe our current understanding of the role of complement in tumor development and progression.
Collapse
Affiliation(s)
- Maciej M Markiewski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | |
Collapse
|
45
|
|
46
|
Guo B, Ma ZW, Li H, Xu GL, Zheng P, Zhu B, Wu YZ, Zou Q. Mapping of binding epitopes of a human decay-accelerating factor monoclonal antibody capable of enhancing rituximab-mediated complement-dependent cytotoxicity. Clin Immunol 2008; 128:155-63. [PMID: 18502181 DOI: 10.1016/j.clim.2008.03.507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/17/2008] [Accepted: 03/17/2008] [Indexed: 11/19/2022]
Abstract
Complement-dependent cytotoxicity (CDC) is thought to be one of the most important mechanisms of action of therapeutic monoclonal antibodies (mAbs). The decay-accelerating factor (DAF) overexpressed in certain tumors limits the CDC effect of the therapeutic anticancer antibodies. The use of DAF blocking antibodies targeted specifically at cancer cells in combination with immunotherapeutic mAbs of cancer may improve the therapeutic effect in cancer patients. In this study, the lysis of Raji cells mediated by CDC was determined after blocking DAF function by anti-DAF polyclonal antibody and 3 mAbs (DG3, DG9, DA11) prepared in our laboratory, respectively, in the presence of the anti-CD20 chimeric mAb rituximab. The binding domains of the three anti-DAF mAbs were identified using yeast surface display technique, and the mimic epitopes of mAb DG3 were screened from a random phage-display nonapeptide library. The results showed that blocking DAF function by anti-DAF polyclonal antibody enhanced complement-mediated killing of Raji cells. Among the 3 mAbs against DAF, only DG3 was found to be able to remarkably enhance the CDC effect of the therapeutic mAb rituximab. DG3 bound to the third short consensus repeat (SCR) of DAF. Binding of DG3 to immobilized DAF was inhibited by mimic epitope peptides screened from the peptide library. Our results suggest that a higher level of DAF expressed by certain tumor cells is significant to abolish the CDC effect of therapeutic anticancer antibodies, and mAbs binding to SCR3 can enhance the complement-mediated killing of Raji cells. It is of significance to identify the DAF epitopes required in inhibiting CDC not only for better understanding of the relationship between the structure and function of DAF, but also for designing and developing anti-DAF mAbs capable of enhancing CDC.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Murine-Derived
- Antibody Specificity
- Antigens, CD20/immunology
- Antineoplastic Agents/pharmacology
- CD55 Antigens/immunology
- CD55 Antigens/metabolism
- Cell Death
- Cell Line, Tumor
- Complement Activation
- Complement System Proteins/immunology
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic/drug effects
- Dose-Response Relationship, Immunologic
- Epitope Mapping
- Epitopes/immunology
- Epitopes/metabolism
- Humans
- Rituximab
Collapse
Affiliation(s)
- Bo Guo
- Institute of Immunology, Third Military Medical University, District Shapingba, Chongqing 400038, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Schwartz-Albiez R, Laban S, Eichmüller S, Kirschfink M. Cytotoxic natural antibodies against human tumours: an option for anti-cancer immunotherapy? Autoimmun Rev 2008; 7:491-5. [PMID: 18558368 DOI: 10.1016/j.autrev.2008.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 03/12/2008] [Indexed: 11/27/2022]
Abstract
Healthy individuals may contain in their peripheral blood antibodies which are able to destroy human tumour cells mediated either by complement-dependent cytotoxicity or by apoptosis. The largest proportion of these antibodies is of IgM isotype and directed against distinct tumour associated carbohydrate epitopes. Although the origin of these antibodies is not clear they seem to belong to the class of natural antibodies because they are not affinity matured and are encoded by distinct germ-line restricted gene families. It is most likely that this class of natural antibodies has in vivo an anti-tumour protective effect which may contribute to so-called tumour surveillance. On the other hand malignant tumour cells exert mechanisms to counteract such an antibody attack. These comprise soluble factors as well as cell surface expressed membrane complement regulatory proteins (mCRP). Further studies are needed to elucidate molecular mechanisms leading to either tumour destruction induced by natural antibodies or to overcome the protective strategies of the tumour against antibody attack.
Collapse
|
48
|
Yan J, Allendorf DJ, Li B, Yan R, Hansen R, Donev R. The Role of Membrane Complement Regulatory Proteins in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008. [DOI: 10.1007/978-0-387-78952-1_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|