1
|
Dzhemileva LU, Zakharova EN, Goncharenko AO, Vorontsova MV, Rumyantsev SA, Mokrysheva NG, Loguinova MY, Chekhonin VP. Current views on etiology, diagnosis, epidemiology and gene therapy of maturity onset diabetes in the young. Front Endocrinol (Lausanne) 2025; 15:1497298. [PMID: 39902162 PMCID: PMC11788143 DOI: 10.3389/fendo.2024.1497298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025] Open
Abstract
MODY, or maturity-onset diabetes of the young, is a group of monogenic diseases characterized by autosomal dominant inheritance of a non-insulin-dependent form of diabetes that classically manifests in adolescence or in young adults under 25 years of age. MODY is a rare cause of diabetes, accounting for 1% of all cases, and is often misdiagnosed as type 1 or type 2 diabetes. It is of great importance to accurately diagnose MODY, as this allows for the most appropriate treatment of patients and facilitates early diagnosis for them and their families. This disease has a high degree of phenotypic and genetic polymorphism. The most prevalent forms of the disease are attributed to mutations in three genes: GCK (MODY 2) and (HNF)1A/4A (MODY 3 and MODY 1). The remaining MODY subtypes, which are less prevalent, have been identified by next generation sequencing (NGS) in the last decade. Mutations in the GCK gene result in asymptomatic, stable fasting hyperglycemia, which does not require specific treatment. Mutations in the HNF1A and HNF4A genes result in pancreatic β-cell dysfunction, which in turn causes hyperglycemia. This often leads to diabetic angiopathy. The most commonly prescribed drugs for the treatment of hyperglycemia are sulfonylurea derivatives. Nevertheless, with advancing age, some patients may require insulin therapy due to the development of resistance to sulfonylurea drugs. The strategy of gene therapy for monogenic forms of MODY is still an experimental approach, and it is unlikely to be widely used in the clinic due to the peculiarities of MODY structure and the high genetic polymorphism and clinical variability even within the same form of the disease. Furthermore, there is a lack of clear gene-phenotypic correlations, and there is quite satisfactory curability in the majority of patients. This review presents the main clinical and genetic characteristics and mutation spectrum of common and rarer forms of MODY, with a detailed analysis of the field of application of AVV vectors in the correction of hyperglycemia and insulin resistance.
Collapse
|
2
|
Overvad M, Díaz LJ, Bjerregaard P, Pedersen ML, Larsen CVL, Grarup N, Hansen T, Rossing P, Jørgensen ME. The effect of diabetes and the diabetogenic TBC1D4 p.Arg684ter variant on kidney function in Inuit in Greenland. Int J Circumpolar Health 2023; 82:2191406. [PMID: 36944026 PMCID: PMC10035948 DOI: 10.1080/22423982.2023.2191406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
The aim of this study was to examine the effect of diabetes and the diabetogenic TBC1D4 variant on kidney function in Greenland in a population-based setting. Health survey data and TBC1D4 genotypes from 5,336 Greenlanders were used to estimate odds ratios (ORs) of albuminuria (>30 mg/g creatinine) and chronic kidney disease (CKD, eGFR <60 ml/min/1.73m2), comparing individuals with and without diabetes, including the effect of TBC1D4 variant. Of the 3,909 participants with complete data, 9.3% had diabetes. Albuminuria was found in 27.6% and 9.5% and CKD was found in 10.8% and 6.3% among those with and without diabetes, respectively. Diabetes was cross-sectionally associated with an increased risk of albuminuria (OR (95% CI) = 2.37 (1.69,3.33); p < 0.001) and the TBC1D4 variant protected against albuminuria (OR (95% CI) = 0.44 (0.22,0.90); p = 0.02) in a multivariable model. Neither diabetes nor the TBC1D4 variant significantly associated with CKD. The presence/absence of diabetes did not predict changes in eGFR and UACR in longitudinal analyses. Diabetes conferred an increased risk of albuminuria, and the TBC1D4 variant was associated with a decreased risk of albuminuria, but neither was associated with CKD. The potential renoprotective association of the TBC1D4 variant on albuminuria calls for further studies.
Collapse
Affiliation(s)
- Maria Overvad
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Clinical Epidemiology, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Lars Jorge Díaz
- Clinical Epidemiology, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Peter Bjerregaard
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Michael Lynge Pedersen
- Greenland Center for Health Research, University of Greenland, Nuuk, Greenland
- Steno Diabetes Center Greenland, Nuuk, Greenland
| | - Christina Viskum Lytken Larsen
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Greenland Center for Health Research, University of Greenland, Nuuk, Greenland
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Rossing
- Clinical Epidemiology, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marit Eika Jørgensen
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Clinical Epidemiology, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Greenland Center for Health Research, University of Greenland, Nuuk, Greenland
- Steno Diabetes Center Greenland, Nuuk, Greenland
| |
Collapse
|
3
|
Svalastoga P, Kaci A, Molnes J, Solheim MH, Johansson BB, Krogvold L, Skrivarhaug T, Valen E, Johansson S, Molven A, Sagen JV, Søfteland E, Bjørkhaug L, Tjora E, Aukrust I, Njølstad PR. Characterisation of HNF1A variants in paediatric diabetes in Norway using functional and clinical investigations to unmask phenotype and monogenic diabetes. Diabetologia 2023; 66:2226-2237. [PMID: 37798422 PMCID: PMC10627920 DOI: 10.1007/s00125-023-06012-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/09/2023] [Indexed: 10/07/2023]
Abstract
AIMS/HYPOTHESIS Correctly diagnosing MODY is important, as individuals with this diagnosis can discontinue insulin injections; however, many people are misdiagnosed. We aimed to develop a robust approach for determining the pathogenicity of variants of uncertain significance in hepatocyte nuclear factor-1 alpha (HNF1A)-MODY and to obtain an accurate estimate of the prevalence of HNF1A-MODY in paediatric cases of diabetes. METHODS We extended our previous screening of the Norwegian Childhood Diabetes Registry by 830 additional samples and comprehensively genotyped HNF1A variants in autoantibody-negative participants using next-generation sequencing. Carriers of pathogenic variants were treated by local healthcare providers, and participants with novel likely pathogenic variants and variants of uncertain significance were enrolled in an investigator-initiated, non-randomised, open-label pilot study (ClinicalTrials.gov registration no. NCT04239586). To identify variants associated with HNF1A-MODY, we functionally characterised their pathogenicity and assessed the carriers' phenotype and treatment response to sulfonylurea. RESULTS In total, 615 autoantibody-negative participants among 4712 cases of paediatric diabetes underwent genetic sequencing, revealing 19 with HNF1A variants. We identified nine carriers with novel variants classified as variants of uncertain significance or likely to be pathogenic, while the remaining ten participants carried five pathogenic variants previously reported. Of the nine carriers with novel variants, six responded favourably to sulfonylurea. Functional investigations revealed their variants to be dysfunctional and demonstrated a correlation with the resulting phenotype, providing evidence for reclassifying these variants as pathogenic. CONCLUSIONS/INTERPRETATION Based on this robust classification, we estimate that the prevalence of HNF1A-MODY is 0.3% in paediatric diabetes. Clinical phenotyping is challenging and functional investigations provide a strong complementary line of evidence. We demonstrate here that combining clinical phenotyping with functional protein studies provides a powerful tool to obtain a precise diagnosis of HNF1A-MODY.
Collapse
Affiliation(s)
- Pernille Svalastoga
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Alba Kaci
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Marie H Solheim
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bente B Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Krogvold
- Division of Childhood and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Torild Skrivarhaug
- Division of Childhood and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Stefan Johansson
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jørn V Sagen
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Eirik Søfteland
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Erling Tjora
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
4
|
da Silva Santos T, Fonseca L, Santos Monteiro S, Borges Duarte D, Martins Lopes A, Couto de Carvalho A, Oliveira MJ, Borges T, Laranjeira F, Couce ML, Cardoso MH. MODY probability calculator utility in individuals' selection for genetic testing: Its accuracy and performance. Endocrinol Diabetes Metab 2022; 5:e00332. [PMID: 35822264 PMCID: PMC9471596 DOI: 10.1002/edm2.332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction MODY probability calculator (MPC) represents an easy‐to‐use tool developed by Exeter University to help clinicians prioritize which individuals should be oriented to genetic testing. We aimed to assess the utility of MPC in a Portuguese cohort with early‐onset monogenic diabetes. Methods This single‐centre retrospective study enrolled 132 participants submitted to genetic testing between 2015 and 2020. Automatic sequencing and, in case of initial negative results, generation sequencing were performed. MODY probability was calculated using the probability calculator available online. Positive and negative predictive values (PPV and NPV, respectively), accuracy, sensitivity and specificity of the calculator were determined for this cohort. Results Seventy‐three individuals were included according to inclusion criteria: 20 glucokinase (GCK‐MODY); 16 hepatocyte nuclear factor 1A (HNF1A‐MODY); 2 hepatocyte nuclear factor 4A (HNF4A‐MODY) and 35 DM individuals with no monogenic mutations found. The median probability score of MODY was significantly higher in monogenic diabetes‐positive subgroup (75.5% vs. 24.2%, p < .001). The discriminative accuracy of the calculator, as expressed by area under the curve, was 75% (95% CI: 64%–85%). In our cohort, the best cut‐off value for the MODY calculator was found to be 36%, with a PPV of 74.4%, NPV of 73.5% and corresponding sensitivity and specificity of 76.2% and 71.4%, respectively. Conclusions In a highly pre‐selected group of probands qualified for genetic testing, the Exeter MODY probability calculator provided a useful tool in individuals' selection for genetic testing, with good discrimination ability under an optimal probability cut‐off of 36%. Further geographical and population adjustments are warranted for general use.
Collapse
Affiliation(s)
- Tiago da Silva Santos
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Liliana Fonseca
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Sílvia Santos Monteiro
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Diana Borges Duarte
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Ana Martins Lopes
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - André Couto de Carvalho
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Maria João Oliveira
- Division of Pediatric Endocrinology Department of Pediatrics Centro Materno‐Infantil do Norte – Centro Hospitalar e Universitário do Porto Porto Portugal
| | - Teresa Borges
- Division of Pediatric Endocrinology Department of Pediatrics Centro Materno‐Infantil do Norte – Centro Hospitalar e Universitário do Porto Porto Portugal
| | | | - María Luz Couce
- University Clinical Hospital of Santiago de Compostela, IDIS CIBERER MetabERN Santiago de Compostela Spain
| | - Maria Helena Cardoso
- Division of Endocrinology, Diabetes and Metabolism Hospital de Santo António – Centro Hospitalar e Universitário do Porto Porto Portugal
| |
Collapse
|
5
|
Rojano-Toimil A, Rivera-Esteban J, Manzano-Nuñez R, Bañares J, Martinez Selva D, Gabriel-Medina P, Ferrer R, Pericàs JM, Ciudin A. When Sugar Reaches the Liver: Phenotypes of Patients with Diabetes and NAFLD. J Clin Med 2022; 11:jcm11123286. [PMID: 35743358 PMCID: PMC9225139 DOI: 10.3390/jcm11123286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) have been traditionally linked to one another. Recent studies suggest that NAFLD may be increasingly common in other types of diabetes such as type 1 diabetes (T1DM) and less frequently ketone-prone and Maturity-onset Diabetes of the Young (MODY) diabetes. In this review, we address the relationship between hyperglycemia and insulin resistance and the onset and progression of NAFLD. In addition, despite the high rate of patients with T2DM and other diabetes phenotypes that can alter liver metabolism and consequently develop steatosis, fibrosis, and cirrhosis, NALFD screening is not still implemented in the daily care routine. Incorporating a clinical algorithm created around a simple, non-invasive, cost-effective model would identify high-risk patients. The principle behind managing these patients is to improve insulin resistance and hyperglycemia states with lifestyle changes, weight loss, and new drug therapies.
Collapse
Affiliation(s)
- Alba Rojano-Toimil
- Endocrinology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
| | - Jesús Rivera-Esteban
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Medicine Department Bellaterra, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Liver Unit, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Ramiro Manzano-Nuñez
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Liver Unit, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Juan Bañares
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Liver Unit, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - David Martinez Selva
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Spanish Network of Biomedical Research Centers, Diabetes and Metabolic Associated Disorders (CIBERdem), 28029 Madrid, Spain
| | - Pablo Gabriel-Medina
- Biochemistry Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (P.G.-M.); (R.F.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
| | - Roser Ferrer
- Biochemistry Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (P.G.-M.); (R.F.)
| | - Juan M Pericàs
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Liver Unit, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
- Spanish Network of Biomedical Research Centers, Liver and Digestive Diseases (CIBERehd), 28801 Madrid, Spain
- Correspondence: (J.M.P.); (A.C.)
| | - Andreea Ciudin
- Endocrinology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Medicine Department Bellaterra, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Spanish Network of Biomedical Research Centers, Diabetes and Metabolic Associated Disorders (CIBERdem), 28029 Madrid, Spain
- Correspondence: (J.M.P.); (A.C.)
| |
Collapse
|
6
|
Pace NP, Grech CA, Vella B, Caruana R, Vassallo J. Frequency and spectrum of glucokinase mutations in an adult Maltese population. Acta Diabetol 2022; 59:339-348. [PMID: 34677673 DOI: 10.1007/s00592-021-01814-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022]
Abstract
AIM To investigate the frequency and spectrum of glucokinase (GCK) mutations in a cohort of adults from an island population having a high prevalence of diabetes mellitus (DM). METHODS A single-centre cohort study was conducted, including 145 non-obese adults of Maltese-Caucasian ethnicity with impaired fasting glycaemia (IFG) or non-autoimmune diabetes diagnosed before the age of 40 years. Bidirectional sequencing of the GCK coding regions was performed. Genotype-phenotype associations and familial segregation were explored and the effects of missense variants on protein structure were evaluated using computational analysis. RESULTS Three probands with pathogenic/likely pathogenic GCK variants in the heterozygous state having clinical features consistent with GCK-diabetes were detected. The missense variants have structurally destabilising effects on protein structure. GCK variant carriers exhibited a significantly lower body mass index and serum triglyceride levels when compared to GCK variant non-carriers. CONCLUSIONS The frequency of GCK-diabetes is approximately 2% in non-obese Maltese adults with diabetes or prediabetes. This study broadens the mutational spectrum of GCK and highlights clinical features that could be useful in discriminating GCK-DM from type 2 DM or prediabetes. It reinforces the need for increased molecular testing in young adults with diabetes having a suspected monogenic aetiology.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Nikolai Paul Pace, Room 325, Msida, 2080, MSD, Malta.
| | - Celine Ann Grech
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Nikolai Paul Pace, Room 325, Msida, 2080, MSD, Malta
| | - Barbara Vella
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Nikolai Paul Pace, Room 325, Msida, 2080, MSD, Malta
| | - Ruth Caruana
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| |
Collapse
|
7
|
Maturity-Onset Diabetes of the Young (MODY): Genetic Causes, Clinical Characteristics, Considerations for Testing, and Treatment Options. ENDOCRINES 2021. [DOI: 10.3390/endocrines2040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Maturity Onset Diabetes of the Young (MODY) encompasses a group of rare monogenic forms of diabetes distinct in etiology and clinical presentation from the more common forms of Type 1 (autoimmune) and Type 2 diabetes. Since its initial description as a clinical entity nearly 50 years ago, the underlying genetic basis for the various forms of MODY has been increasingly better elucidated. Clinically, the diagnosis may be made in childhood or young adulthood and can present as overt hyperglycemia requiring insulin therapy or as a subtle form of slowly progressive glucose impairment. Due to the heterogeneity of clinical symptoms, patients with MODY may be misdiagnosed as possessing another form of diabetes, resulting in potentially inappropriate treatment and delays in screening of affected family members and associated comorbidities. In this review, we highlight the various known genetic mutations associated with MODY, clinical presentation, indications for testing, and the treatment options available.
Collapse
|
8
|
Tosur M, Soler-Alfonso C, Chan KM, Khayat MM, Jhangiani SN, Meng Q, Refaey A, Muzny D, Gibbs RA, Murdock DR, Posey JE, Balasubramanyam A, Redondo MJ, Sabo A. Exome sequencing in children with clinically suspected maturity-onset diabetes of the young. Pediatr Diabetes 2021; 22:960-968. [PMID: 34387403 PMCID: PMC8530905 DOI: 10.1111/pedi.13257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Commercial gene panels identify pathogenic variants in as low as 27% of patients suspected to have MODY, suggesting the role of yet unidentified pathogenic variants. We sought to identify novel gene variants associated with MODY. RESEARCH DESIGN AND METHODS We recruited 10 children with a clinical suspicion of MODY but non-diagnostic commercial MODY gene panels. We performed exome sequencing (ES) in them and their parents. RESULTS Mean age at diabetes diagnosis was 10 (± 3.8) years. Six were females; 4 were non-Hispanic white, 5 Hispanic, and 1 Asian. Our variant prioritization analysis identified a pathogenic, de novo variant in INS (c.94G > A, p.Gly32Ser), confirmed by Sanger sequencing, in a proband who was previously diagnosed with "autoantibody-negative type 1 diabetes (T1D)" at 3 y/o. This rare variant, absent in the general population (gnomAD database), has been reported previously in neonatal diabetes. We also identified a frameshift deletion (c.2650delC, p.Gln884AsnfsTer57) in RFX6 in a child with a previous diagnosis of "autoantibody-negative T1D" at 12 y/o. The variant was inherited from the mother, who was diagnosed with "thin type 2 diabetes" at 25 y/o. Heterozygous protein-truncating variants in RFX6 gene have been recently reported in individuals with MODY. CONCLUSIONS We diagnosed two patients with MODY using ES in children initially classified as "T1D". One has a likely pathogenic novel gene variant not previously associated with MODY. We demonstrate the clinical utility of ES in patients with clinical suspicion of MODY.
Collapse
Affiliation(s)
- Mustafa Tosur
- Department of Pediatrics, The Section of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Katie M Chan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Michael M Khayat
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - David R Murdock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ashok Balasubramanyam
- Baylor College of Medicine, Division of Diabetes, Endocrinology and Metabolism, Houston, TX, USA
| | - Maria J Redondo
- Department of Pediatrics, The Section of Diabetes and Endocrinology, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
A Comprehensive Analysis of Hungarian MODY Patients-Part II: Glucokinase MODY Is the Most Prevalent Subtype Responsible for about 70% of Confirmed Cases. Life (Basel) 2021; 11:life11080771. [PMID: 34440516 PMCID: PMC8400228 DOI: 10.3390/life11080771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 01/22/2023] Open
Abstract
MODY2 is caused by heterozygous inactivating mutations in the glucokinase (GCK) gene that result in persistent, stable and mild fasting hyperglycaemia (5.6–8.0 mmol/L, glycosylated haemoglobin range of 5.6–7.3%). Patients with GCK mutations usually do not require any drug treatment, except during pregnancy. The GCK gene is considered to be responsible for about 20% of all MODY cases, transcription factors for 67% and other genes for 13% of the cases. Based on our findings, GCK and HNF1A mutations together are responsible for about 90% of the cases in Hungary, this ratio being higher than the 70% reported in the literature. More than 70% of these patients have a mutation in the GCK gene, this means that GCK-MODY is the most prevalent form of MODY in Hungary. In the 91 index patients and their 72 family members examined, we have identified a total of 65 different pathogenic (18) and likely pathogenic (47) GCK mutations of which 28 were novel. In two families, de novo GCK mutations were detected. About 30% of the GCK-MODY patients examined were receiving unnecessary OAD or insulin therapy at the time of requesting their genetic testing, therefore the importance of having a molecular genetic diagnosis can lead to a major improvement in their quality of life.
Collapse
|
10
|
NGS Analysis Revealed Digenic Heterozygous GCK and HNF1A Variants in a Child with Mild Hyperglycemia: A Case Report. Diagnostics (Basel) 2021; 11:diagnostics11071164. [PMID: 34202200 PMCID: PMC8306687 DOI: 10.3390/diagnostics11071164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Monogenic diabetes (MD) represents a heterogeneous group of disorders whose most frequent form is maturity-onset diabetes of the young (MODY). MD is predominantly caused by a mutation in a single gene. We report a case of a female patient with suspected MD and a positive family history for diabetes and obesity. In this patient, two gene variants have been identified by next-generation sequencing (NGS): one in the Glucokinase (GCK) gene reported in the Human Gene Mutation Database (HGMD) and in the literature associated with GCK/MODY, and the other in the hepatocyte nuclear factor 1A (HNF1A) gene not previously described. The GCK variant was also identified in the hyperglycemic father, whereas the HNF1A variant was present in the mother. This new case of digenic GCK/HNF1A variants identified in a hyperglycemic subject, evidences the importance of NGS analysis in patients with suspected MD. In fact, this methodology will allow us to both increase the number of diagnoses and to identify mutations in more than one gene, with a better understanding of the genetic cause, and the clinical course, of the disease.
Collapse
|
11
|
Breidbart E, Deng L, Lanzano P, Fan X, Guo J, Leibel RL, LeDuc CA, Chung WK. Frequency and characterization of mutations in genes in a large cohort of patients referred to MODY registry. J Pediatr Endocrinol Metab 2021; 34:633-638. [PMID: 33852230 PMCID: PMC8970616 DOI: 10.1515/jpem-2020-0501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/12/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES There have been few large-scale studies utilizing exome sequencing for genetically undiagnosed maturity onset diabetes of the young (MODY), a monogenic form of diabetes that is under-recognized. We describe a cohort of 160 individuals with suspected monogenic diabetes who were genetically assessed for mutations in genes known to cause MODY. METHODS We used a tiered testing approach focusing initially on GCK and HNF1A and then expanding to exome sequencing for those individuals without identified mutations in GCK or HNF1A. The average age of onset of hyperglycemia or diabetes diagnosis was 19 years (median 14 years) with an average HbA1C of 7.1%. RESULTS Sixty (37.5%) probands had heterozygous likely pathogenic/pathogenic variants in one of the MODY genes, 90% of which were in GCK or HNF1A. Less frequently, mutations were identified in PDX1, HNF4A, HNF1B, and KCNJ11. For those probands with available family members, 100% of the variants segregated with diabetes in the family. Cascade genetic testing in families identified 75 additional family members with a familial MODY mutation. CONCLUSIONS Our study is one of the largest and most ethnically diverse studies using exome sequencing to assess MODY genes. Tiered testing is an effective strategy to genetically diagnose atypical diabetes, and familial cascade genetic testing identified on average one additional family member with monogenic diabetes for each mutation identified in a proband.
Collapse
Affiliation(s)
- Emily Breidbart
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, NYU School of Medicine, NY, NY USA
| | - Liyong Deng
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| | - Patricia Lanzano
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| | - Xiao Fan
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| | - Jiancheng Guo
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| | - Rudolph L. Leibel
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| | - Charles A. LeDuc
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| | - Wendy K. Chung
- Department of Pediatrics, Division of Molecular Genetics Columbia University Medical Center, NY, NY USA
| |
Collapse
|
12
|
Katashima R, Matsumoto M, Watanabe Y, Moritani M, Yokota I. Identification of Novel GCK and HNF4α Gene Variants in Japanese Pediatric Patients with Onset of Diabetes before 17 Years of Age. J Diabetes Res 2021; 2021:7216339. [PMID: 34746319 PMCID: PMC8570896 DOI: 10.1155/2021/7216339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young (MODY) is commonly misdiagnosed as type 1 or type 2 diabetes. Common reasons for misdiagnosis are related to limitations in genetic testing. A precise molecular diagnosis is essential for the optimal treatment of patients and allows for early diagnosis of their asymptomatic family members. OBJECTIVE The aim of this study was to identify rare monogenic variants of common MODY genes in Japanese pediatric patients. METHODS We investigated 45 Japanese pediatric patients based on the following clinical criteria: development of diabetes before 17 years of age, a family history of diabetes, testing negative for glutamate decarboxylase-65 (GAD 65) antibodies and insulinoma-2-associated autoantibodies (IA-2A), no significant obesity, and evidence of endogenous insulin production. Genetic screening for MODY1 (HNF4α), MODY2 (GCK), MODY3 (HNF1α), and MODY5 (HNF1β) was performed by direct sequencing followed by multiplex ligation amplification assays. RESULTS We identified 22 missense variants (3 novel variants) in 27 patients (60.0%) in the GCK, HNF4α, and HNF1α genes. We also detected a whole exon deletion in the HNF1β gene and an exon 5-6 aberration in the GCK gene, each in one proband (4.4%). There were a total of 29 variations (64.4%), giving a relative frequency of 53.3% (24/45) for GCK, 2.2% (1/45) for HNF4α, 6.7% (3/45) for HNF1α, and 2.2% (1/45) for HNF1β genes. CONCLUSIONS Clinicians should consider collecting and assessing detailed clinical information, especially regarding GCK gene variants, in young antibody-negative patients with diabetes. Correct molecular diagnosis of MODY better predicts the clinical course of diabetes and facilitates individualized management.
Collapse
Affiliation(s)
- Rumi Katashima
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
| | - Mari Matsumoto
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yuka Watanabe
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
| | - Maki Moritani
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
| | - Ichiro Yokota
- Laboratory for Pediatric Genome Medicine, Department of Clinical Research, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1 Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
- Department of Pediatric Endocrinology and Metabolism, National Hospital Organization Shikoku Medical Center for Children and Adults, 2-1-1, Senyu-cho, Zentsuji City, Kagawa 765-8507, Japan
| |
Collapse
|
13
|
Tatsi EB, Kanaka-Gantenbein C, Scorilas A, Chrousos GP, Sertedaki A. Next generation sequencing targeted gene panel in Greek MODY patients increases diagnostic accuracy. Pediatr Diabetes 2020; 21:28-39. [PMID: 31604004 DOI: 10.1111/pedi.12931] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/02/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Maturity Onset Diabetes of the Young (MODY) constitutes a genetically and clinically heterogeneous type of monogenic diabetes. It is characterized by early onset, autosomal dominant inheritance and a defect in pancreatic β-cell insulin secretion. To date, various MODY subtypes have been reported, each one of a distinct genetic etiology. OBJECTIVE The aim of this study was to identify the molecular defects of 50 patients with MODY employing the methodology of next generation sequencing (NGS) targeted gene panel. METHODS A panel of seven MODY genes was designed and employed to screen 50 patients fulfilling the MODY diagnostic criteria. Patients with no pathogenic, likely pathogenic or uncertain significance variants detected, were further tested by multiplex ligation-dependent probe amplification (MLPA) for copy number variations (CNVs). RESULTS Eight different pathogenic or likely pathogenic variants were identified in eight MODY patients (diagnostic rate 16%). Five variants of uncertain significance were also detected in seven MODY patients. Five novel pathogenic and likely pathogenic variants were detected in the genes GCK; p.Cys371X, HNF1A; p.Asn402Tyr, HNF4A; p.Glu285Lys, and ABCC8; p.Met1514Thr and p.Ser1386Phe. Two de novo heterozygous deletions of the entire HNF1B gene were detected in two patients, raising the diagnostic rate to 20%. CONCLUSIONS Although many MODY patients still remain without exact MODY type identification, the application of NGS methodology provided rapid results, increased diagnostic accuracy, and was cost-effective compared to Sanger sequencing. Accurate genetic diagnosis of the MODY subtype is important for treatment selection, disease prognosis, and family counseling.
Collapse
Affiliation(s)
- Elizabeth B Tatsi
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Amalia Sertedaki
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
14
|
Jang KM. Maturity-onset diabetes of the young: update and perspectives on diagnosis and treatment. Yeungnam Univ J Med 2020; 37:13-21. [PMID: 31914718 PMCID: PMC6986955 DOI: 10.12701/yujm.2019.00409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a clinically heterogeneous group of monogenic disorders characterized by ß-cell dysfunction. MODY accounts for between 2% and 5% of all diabetes cases, and distinguishing it from type 1 or type 2 diabetes is a diagnostic challenge. Recently, MODY-causing mutations have been identified in 14 different genes. Sanger DNA sequencing is the gold standard for identifying the mutations in MODY-related genes, and may facilitate the diagnosis. Despite the lower frequency among diabetes mellitus cases, a correct genetic diagnosis of MODY is important for optimizing treatment strategies. There is a discrepancy in the disease-causing locus between the Asian and Caucasian patients with MODY. Furthermore, the prevalence of the disease in Asian populations remains to be studied. In this review, the current understanding of MODY is summarized and the Asian studies of MODY are discussed in detail.
Collapse
Affiliation(s)
- Kyung Mi Jang
- Department of Pediatrics, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
15
|
Glotov OS, Serebryakova EA, Turkunova ME, Efimova OA, Glotov AS, Barbitoff YA, Nasykhova YA, Predeus AV, Polev DE, Fedyakov MA, Polyakova IV, Ivashchenko TE, Shved NY, Shabanova ES, Tiselko AV, Romanova OV, Sarana AM, Pendina AA, Scherbak SG, Musina EV, Petrovskaia-Kaminskaia AV, Lonishin LR, Ditkovskaya LV, Zhelenina LА, Tyrtova LV, Berseneva OS, Skitchenko RK, Suspitsin EN, Bashnina EB, Baranov VS. Whole‑exome sequencing in Russian children with non‑type 1 diabetes mellitus reveals a wide spectrum of genetic variants in MODY‑related and unrelated genes. Mol Med Rep 2019; 20:4905-4914. [PMID: 31638168 PMCID: PMC6854535 DOI: 10.3892/mmr.2019.10751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
The present study reports on the frequency and the spectrum of genetic variants causative of monogenic diabetes in Russian children with non-type 1 diabetes mellitus. The present study included 60 unrelated Russian children with non-type 1 diabetes mellitus diagnosed before the age of 18 years. Genetic variants were screened using whole-exome sequencing (WES) in a panel of 35 genes causative of maturity onset diabetes of the young (MODY) and transient or permanent neonatal diabetes. Verification of the WES results was performed using PCR-direct sequencing. A total of 38 genetic variants were identified in 33 out of 60 patients (55%). The majority of patients (27/33, 81.8%) had variants in MODY-related genes: GCK (n=19), HNF1A (n=2), PAX4 (n=1), ABCC8 (n=1), KCNJ11 (n=1), GCK+HNF1A (n=1), GCK+BLK (n=1) and GCK+BLK+WFS1 (n=1). A total of 6 patients (6/33, 18.2%) had variants in MODY-unrelated genes: GATA6 (n=1), WFS1 (n=3), EIF2AK3 (n=1) and SLC19A2 (n=1). A total of 15 out of 38 variants were novel, including GCK, HNF1A, BLK, WFS1, EIF2AK3 and SLC19A2. To summarize, the present study demonstrates a high frequency and a wide spectrum of genetic variants causative of monogenic diabetes in Russian children with non-type 1 diabetes mellitus. The spectrum includes previously known and novel variants in MODY-related and unrelated genes, with multiple variants in a number of patients. The prevalence of GCK variants indicates that diagnostics of monogenic diabetes in Russian children may begin with testing for MODY2. However, the remaining variants are present at low frequencies in 9 different genes, altogether amounting to ~50% of the cases and highlighting the efficiency of using WES in non-GCK-MODY cases.
Collapse
Affiliation(s)
- Oleg S Glotov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Elena A Serebryakova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Mariia E Turkunova
- St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Olga A Efimova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Andrey S Glotov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | | | - Yulia A Nasykhova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | | | - Dmitrii E Polev
- St. Petersburg State University, 199034 St. Petersburg, Russia
| | | | | | - Tatyana E Ivashchenko
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Natalia Y Shved
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Elena S Shabanova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Alena V Tiselko
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | - Olga V Romanova
- City Hospital Number 40, Sestroretsk, 197706 St. Petersburg, Russia
| | - Andrey M Sarana
- St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna A Pendina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | | | - Ekaterina V Musina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| | | | | | - Liliya V Ditkovskaya
- St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Liudmila А Zhelenina
- St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Ludmila V Tyrtova
- St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Olga S Berseneva
- St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | | | - Evgenii N Suspitsin
- St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Elena B Bashnina
- North‑Western State Medical University Named After I.I. Mechnikov, 191015 St. Petersburg, Russia
| | - Vladislav S Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 St. Petersburg, Russia
| |
Collapse
|
16
|
Li X, Ting TH, Sheng H, Liang CL, Shao Y, Jiang M, Xu A, Lin Y, Liu L. Genetic and clinical characteristics of Chinese children with Glucokinase-maturity-onset diabetes of the young (GCK-MODY). BMC Pediatr 2018; 18:101. [PMID: 29510678 PMCID: PMC5840826 DOI: 10.1186/s12887-018-1060-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 02/12/2018] [Indexed: 11/14/2022] Open
Abstract
Background There is scarcity of information on the clinical features and genetics of glucokinase-maturity-onset diabetes of the young (GCK-MODY) in China. The aim of the study was to investigate the clinical and molecular characteristics of Chinese children with GCK-MODY. Methods Eleven children with asymptomatic hyperglycemia and clinically suspected GCK-MODY were identified from the database of children with diabetes in the biggest children’s hospital in South China. Clinical data were obtained from medical records. Blood was collected from the patients and their parents for glucokinase (GCK) gene analysis. Parents without diabetes were tested for fasting glucose and HbA1c. Clinical information and blood for GCK gene analysis were obtained from grandparents with diabetes. GCK gene mutational analysis was performed by polymerase chain reaction and direct sequencing. Patients without a GCK gene mutation were screened by targeted next-generation sequencing (NGS) technology for other MODY genes. Results Nine children tested positive for GCK gene mutations while two were negative. The nine GCK-MODY patients were from unrelated families, aged 1 month to 9 years and 1 month at first detection of hyperglycaemia. Fasting glucose was elevated (6.1–8.5 mmol/L), HbA1c 5.2–6.7% (33.3–49.7 mmol/mol), both remained stable on follow-up over 9 months to 5 years. Five detected mutations had been previously reported: p.Val182Met, c.679 + 1G > A, p.Gly295Ser, p.Arg191Gln and p.Met41Thr. Four mutations were novel: c.483 + 2 T > A, p.Ser151del, p.Met57GlyfsX29 and p.Val374_Ala377del. No mutations were identified in the other two patients, who were also tested by NGS. Conclusions GCK gene mutations are detected in Chinese children and their family members with typical clinical features of GCK-MODY. Four novel mutations are detected.
Collapse
Affiliation(s)
- Xiuzhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Tzer Hwu Ting
- Department of Paediatrics, Faculty of Medicine & Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Huiying Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Cui Li Liang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Yongxian Shao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Minyan Jiang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Aijing Xu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China.
| |
Collapse
|
17
|
Pathway-induced allelic spectra of diseases in the presence of strong genetic effects. Hum Genet 2018; 137:215-230. [DOI: 10.1007/s00439-018-1872-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/31/2018] [Indexed: 12/15/2022]
|
18
|
Šimčíková D, Kocková L, Vackářová K, Těšínský M, Heneberg P. Evidence-based tailoring of bioinformatics approaches to optimize methods that predict the effects of nonsynonymous amino acid substitutions in glucokinase. Sci Rep 2017; 7:9499. [PMID: 28842611 PMCID: PMC5573313 DOI: 10.1038/s41598-017-09810-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/28/2017] [Indexed: 11/29/2022] Open
Abstract
Computational methods that allow predicting the effects of nonsynonymous substitutions are an integral part of exome studies. Here, we validated and improved their specificity by performing a comprehensive bioinformatics analysis combined with experimental and clinical data on a model of glucokinase (GCK): 8835 putative variations, including 515 disease-associated variations from 1596 families with diagnoses of monogenic diabetes (GCK-MODY) or persistent hyperinsulinemic hypoglycemia of infancy (PHHI), and 126 variations with available or newly reported (19 variations) data on enzyme kinetics. We also proved that high frequency of disease-associated variations found in patients is closely related to their evolutionary conservation. The default set prediction methods predicted correctly the effects of only a part of the GCK-MODY-associated variations and completely failed to predict the normoglycemic or PHHI-associated variations. Therefore, we calculated evidence-based thresholds that improved significantly the specificity of predictions (≤75%). The combined prediction analysis even allowed to distinguish activating from inactivating variations and identified a group of putatively highly pathogenic variations (EVmutation score <−7.5 and SNAP2 score >70), which were surprisingly underrepresented among MODY patients and thus under negative selection during molecular evolution. We suggested and validated the first robust evidence-based thresholds, which allow improved, highly specific predictions of disease-associated GCK variations.
Collapse
Affiliation(s)
- Daniela Šimčíková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Lucie Kocková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | | | - Miroslav Těšínský
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Petr Heneberg
- Charles University, Third Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
19
|
Emelyanov AO, Sechko E, Koksharova E, Sklyanik I, Kuraeva T, Mayorov A, Peterkova V, Dedov I. A glucokinase gene mutation in a young boy with diabetes mellitus, hyperinsulinemia, and insulin resistance. Int Med Case Rep J 2017; 10:77-80. [PMID: 28331372 PMCID: PMC5348075 DOI: 10.2147/imcrj.s125103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We report the case of a 12-year-old boy with a glucokinase (GCK) mutation, and diabetes with hyperinsulinemia and insulin resistance. For 4 years, the patient intermittently received insulin medications Actrapid HM and Protaphane HM (total dose 5 U/day), with glycated hemoglobin (HbA1c) levels of 6.6%–7.0%. After extensive screening the patient was found to carry a heterozygous mutation (p.E256K) in GCK (MIM #138079, reference sequence NM_000162.3). Insulin therapy was replaced by metformin at 1,700 mg/day. One year later, his HbA1c level was 6.9%, postprandial glycemia at 120 min of oral glucose tolerance test was 15.4 mmol/L, hyperinsulinemia had increased to 508.9 mU/L, homeostasis model assessment index was 114.2 and the Matsuda index was 0.15. Insulin resistance was confirmed by a hyperinsulinemic euglycemic clamp test – M-index was 2.85 mg/kg/min. This observation is a rare case of one of the clinical variants of diabetes, which should be taken into account by a vigilant endocrinologist due to the need for nonstandard diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
| | - Elena Sechko
- Endocrinology Research Centre, Moscow, Russian Federation
| | | | - Igor Sklyanik
- Endocrinology Research Centre, Moscow, Russian Federation
| | - Tamara Kuraeva
- Endocrinology Research Centre, Moscow, Russian Federation; I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexander Mayorov
- Endocrinology Research Centre, Moscow, Russian Federation; I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Valentina Peterkova
- Endocrinology Research Centre, Moscow, Russian Federation; I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Ivan Dedov
- Endocrinology Research Centre, Moscow, Russian Federation
| |
Collapse
|
20
|
Urrutia I, Martínez R, López-Euba T, Velayos T, Martínez de LaPiscina I, Bilbao JR, Rica I, Castaño L. Lower Frequency of HLA-DRB1 Type 1 Diabetes Risk Alleles in Pediatric Patients with MODY. PLoS One 2017; 12:e0169389. [PMID: 28052112 PMCID: PMC5214860 DOI: 10.1371/journal.pone.0169389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 12/15/2016] [Indexed: 12/04/2022] Open
Abstract
Objective The aim of this study was to determine the frequency of susceptible HLA-DRB1 alleles for type 1 diabetes in a cohort of pediatric patients with a confirmed genetic diagnosis of MODY. Materials and Methods 160 families with a proband diagnosed with type 1 diabetes and 74 families with a molecular diagnosis of MODY (61 GCK-MODY and 13 HNF1A-MODY) were categorized at high definition for HLA-DRB1 locus. According to the presence or absence of the susceptible HLA-DRB1 alleles for type 1 diabetes, we considered three different HLA-DRB1 genotypes: 0 risk alleles (no DR3 no DR4); 1 risk allele (DR3 or DR4); 2 risk alleles (DR3 and/or DR4). Results Compared with type 1 diabetes, patients with MODY carried higher frequency of 0 risk alleles, OR 22.7 (95% CI: 10.7–48.6) and lower frequency of 1 or 2 risk alleles, OR 0.53 (95% CI: 0.29–0.96) and OR 0.06 (95% CI: 0.02–0.18), respectively. Conclusions The frequency of HLA-DRB1 risk alleles for type 1 diabetes is significantly lower in patients with MODY. In children and adolescents with diabetes, the presence of 2 risk alleles (DR3 and/or DR4) reduces the probability of MODY diagnosis, whereas the lack of risk alleles increases it. Therefore, we might consider that HLA-DRB1 provides additional information for the selection of patients with high probability of monogenic diabetes.
Collapse
Affiliation(s)
- Inés Urrutia
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Rosa Martínez
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Tamara López-Euba
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Teresa Velayos
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Idoia Martínez de LaPiscina
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - José Ramón Bilbao
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Itxaso Rica
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
| | - Luis Castaño
- BioCruces Health Research Institute, Cruces University Hospital, UPV-EHU, CIBERDEM, CIBERER, Barakaldo, Spain
- * E-mail:
| | | |
Collapse
|
21
|
Carmody D, Naylor RN, Bell CD, Berry S, Montgomery JT, Tadie EC, Hwang JL, Greeley SAW, Philipson LH. GCK-MODY in the US National Monogenic Diabetes Registry: frequently misdiagnosed and unnecessarily treated. Acta Diabetol 2016; 53:703-8. [PMID: 27106716 PMCID: PMC5016218 DOI: 10.1007/s00592-016-0859-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/19/2016] [Indexed: 12/29/2022]
Abstract
AIMS GCK-MODY leads to mildly elevated blood glucose typically not requiring therapy. It has been described in all ethnicities, but mainly in Caucasian Europeans. Here we describe our US cohort of GCK-MODY. METHODS We examined the rates of detection of heterozygous mutations in the GCK gene in individuals referred to the US Monogenic Diabetes Registry with a phenotype consistent with GCK-MODY. We also assessed referral patterns, treatment and demography, including ethnicity, of the cohort. RESULTS Deleterious heterozygous GCK mutations were found in 54.7 % of Registry probands selected for GCK sequencing for this study. Forty-nine percent were previously unnecessarily treated with glucose-lowering agents, causing hypoglycemia and other adverse effects in some of the subjects. The proportion of probands found to have a GCK mutation through research-based testing was similar across each ethnic group. However, together African-American, Latino and Asian subjects represented only 20.5 % of screened probands and 17.2 % of those with GCK-MODY, despite higher overall diabetes prevalence in these groups. CONCLUSIONS Our data show that a high detection rate of GCK-MODY is possible based on clinical phenotype and that prior to genetic diagnosis, a large percentage are inappropriately treated with glucose-lowering therapies. We also find low minority representation in our Registry, which may be due to disparities in diagnostic diabetes genetic testing and is an area needing further investigation.
Collapse
Affiliation(s)
- David Carmody
- Address correspondence to: Rochelle Naylor MD, Department of Pediatrics, The University of Chicago, 5841 S Maryland Ave, MC 5053, Chicago, Illinois 60637, , 773-702-6309
| | - Rochelle N Naylor
- Address correspondence to: Rochelle Naylor MD, Department of Pediatrics, The University of Chicago, 5841 S Maryland Ave, MC 5053, Chicago, Illinois 60637, , 773-702-6309
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Haliloglu B, Hysenaj G, Atay Z, Guran T, Abalı S, Turan S, Bereket A, Ellard S. GCK gene mutations are a common cause of childhood-onset MODY (maturity-onset diabetes of the young) in Turkey. Clin Endocrinol (Oxf) 2016; 85:393-9. [PMID: 27256595 PMCID: PMC4988380 DOI: 10.1111/cen.13121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/03/2016] [Accepted: 05/31/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Inactivating heterozygous mutations in the GCK gene are a common cause of MODY and result in mild fasting hyperglycaemia, which does not require treatment. We aimed to identify the frequency, clinical and molecular features of GCK mutations in a Turkish paediatric cohort. DESIGN AND PATIENTS Fifty-four unrelated probands were selected based on the following criteria: age of diagnosis ≤17 years, family history of diabetes in at least two generations, anti-GAD/ICA negative, BMI<95.p and follow-up with diet, oral antidiabetic drug or low-dose insulin treatment (≤0·5U/kg/d). A MODY probability score (www.diabetesgenes.org) was calculated and 21 patients with a score ≥75%, HbA1c levels ≤7·5% (58·5 mmol/mol) and fasting blood glucose (FBG) levels 99-145 mg/dl (5·5-8·0 mmol/l) were selected for Sanger sequencing of the GCK gene. Targeted next-generation sequencing for all known monogenic diabetes genes was undertaken for any patient without a GCK gene mutation. RESULTS GCK gene mutations (pathogenic or likely pathogenic variants) and a novel intronic variant of uncertain significance (c.208 + 3A>T) were identified in 13/54 probands (24%). Twelve of these patients had a MODY probability score ≥75%. FBG level and 2-h glucose level in OGTT were 123 ± 14 mg/dl (6·8 ± 0·7 mmol/l) (107-157 mg/dl) and 181 ± 30 mg/dl (10·1 ± 1·6 mmol/l) (136-247 mg/dl), respectively. Average of glucose increment in OGTT was 58 ± 27 mg/dl (3·2 ± 1·5 mmol/l) (19-120 mg/dl), and mean HbA1c level was 6·5 ± 0·5% (47·5 ± 5·5 mmol/mol) (5·9-7·6%). Five novel missense mutations were identified (p.F123S, p.L58P, p.G246A, p.F419C, and p.S151C). Two patients treated with low-dose insulin before the molecular analysis were able to stop treatment. CONCLUSIONS Approximately 1 in 4 MODY cases in this Turkish paediatric cohort have a GCK mutation. Selection of patients for GCK gene analysis using the MODY probability score was an effective way of identifying most (11/12) patients with a GCK mutation.
Collapse
Affiliation(s)
- Belma Haliloglu
- Department of Pediatric EndocrinologyMarmara University Medical SchoolIstanbulTurkey
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| | - Gerald Hysenaj
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| | - Zeynep Atay
- Department of Pediatric EndocrinologyMarmara University Medical SchoolIstanbulTurkey
| | - Tulay Guran
- Department of Pediatric EndocrinologyMarmara University Medical SchoolIstanbulTurkey
| | - Saygın Abalı
- Department of Pediatric EndocrinologyMarmara University Medical SchoolIstanbulTurkey
| | - Serap Turan
- Department of Pediatric EndocrinologyMarmara University Medical SchoolIstanbulTurkey
| | - Abdullah Bereket
- Department of Pediatric EndocrinologyMarmara University Medical SchoolIstanbulTurkey
| | - Sian Ellard
- Institute of Biomedical and Clinical ScienceUniversity of Exeter Medical SchoolExeterUK
| |
Collapse
|
23
|
Baz B, Riveline JP, Gautier JF. ENDOCRINOLOGY OF PREGNANCY: Gestational diabetes mellitus: definition, aetiological and clinical aspects. Eur J Endocrinol 2016; 174:R43-51. [PMID: 26431552 DOI: 10.1530/eje-15-0378] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/24/2015] [Indexed: 12/12/2022]
Abstract
Gestational diabetes (GDM) is defined as a glucose intolerance resulting in hyperglycaemia of variable severity with onset during pregnancy. This review aims to revisit the pathogenesis and aetiology of GDM in order to better understand its clinical presentation and outcomes. During normal pregnancy, insulin sensitivity declines with advancing gestation. These modifications are due to placental factors, progesterone and estrogen. In a physiological situation, a compensatory increase in insulin secretion maintains a normal glucose homeostasis. GDM occurs if pancreatic β-cells are unable to face the increased insulin demand during pregnancy. GDM is most commonly a forerunner of type 2 diabetes (T2D) - the most prevalent form of diabetes. These women share similar characteristics with predisposed subjects to T2D: insulin resistance before and after pregnancy, and carry more T2D risk alleles. Auto-immune and monogenic diabetes are more rare aetiologies of GDM. Adverse pregnancy outcomes of GDM are mainly related to macrosomia caused by fetal hyperinsulinism in response to high glucose levels coming from maternal hyperglycaemia. Screening recommendations and diagnosis criteria of GDM have been recently updated. High risk patients should be screened as early as possible using fasting plasma glucose, and if normal, at 24-28 weeks of gestation using 75 g oral glucose tolerance test. The treatment of GDM is based on education with trained nurses and dieticians, and if necessary insulin therapy.
Collapse
Affiliation(s)
- Baz Baz
- Department of Diabetes and EndocrinologyAssistance Publique - Hôpitaux de Paris, DHU FIRE, Lariboisière Hospital, Paris-Diderot University - Paris 7, 2, Rue Ambroise Paré, 75010 Paris, France
| | - Jean-Pierre Riveline
- Department of Diabetes and EndocrinologyAssistance Publique - Hôpitaux de Paris, DHU FIRE, Lariboisière Hospital, Paris-Diderot University - Paris 7, 2, Rue Ambroise Paré, 75010 Paris, France
| | - Jean-François Gautier
- Department of Diabetes and EndocrinologyAssistance Publique - Hôpitaux de Paris, DHU FIRE, Lariboisière Hospital, Paris-Diderot University - Paris 7, 2, Rue Ambroise Paré, 75010 Paris, France
| |
Collapse
|
24
|
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes that accounts for at least 1 % of all cases of diabetes mellitus. MODY classically presents as non-insulin-requiring diabetes in lean individuals typically younger than 25 with evidence of autosomal dominant inheritance, but these criteria do not capture all cases and can also overlap with other diabetes types. Genetic diagnosis of MODY is important for selecting the right treatment, yet ~95 % of MODY cases in the USA are misdiagnosed. MODY prevalence and characteristics have been well-studied in some populations, such as the UK and Norway, while other ethnicities, like African and Latino, need much more study. Emerging next-generation sequencing methods are making more widespread study and clinical diagnosis increasingly feasible; at the same time, they are detecting other mutations in the same genes of unknown clinical significance. This review will cover the current epidemiological studies of MODY and barriers and opportunities for moving toward a goal of access to an appropriate diagnosis for all affected individuals.
Collapse
Affiliation(s)
- Jeffrey W Kleinberger
- Division of Endocrinology, Diabetes, and Nutrition and Program in Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 660 West Redwood Street, Room 445C, Baltimore, MD, 21201, USA.
| | - Toni I Pollin
- Division of Endocrinology, Diabetes, and Nutrition and Program in Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, 660 West Redwood Street, Room 445C, Baltimore, MD, 21201, USA.
- University of Maryland School of Medicine, 660 West Redwood Street, Room 464, Baltimore, MD, 21201, USA.
| |
Collapse
|
25
|
Sewell MF, Presley LH, Holland SH, Catalano PM. Genetic causes of maturity onset diabetes of the young may be less prevalent in American pregnant women recently diagnosed with diabetes mellitus than in previously studied European populations. J Matern Fetal Neonatal Med 2014; 28:1113-5. [PMID: 25012807 DOI: 10.3109/14767058.2014.944157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT There are many causes of impaired glucose tolerance in pregnant women. It is unclear whether genetic etiologies are a source of impaired glucose tolerance in pregnant women. OBJECTIVE To prospectively determine the prevalence of maturity onset diabetes of the young (MODY) due to glucokinase (GCK) mutations in an American population of women with recent onset diabetes mellitus and gestational diabetes. We hypothesized that based on America's higher prevalence of gestational diabetes mellitus (GDM) and Type 2 diabetes, there may be an increased prevalence of GK mutations in our population than in previously reported studies from European studies. DESIGN Over a three-year period, 72 pregnant women with recently diagnosed diabetes mellitus were prospectively assessed for presence of the most common pathogenic GCK mutations. SETTING This study was performed in a gestational diabetes clinic in Urban America and a high-risk pregnancy clinic that served the military and their families on an American military base in Germany. PATIENTS Seventy-two women; 65 with diagnosis of diabetes mellitus in this pregnancy (GDM/overt diabetes) and 7 with diagnosis in the last nine years prior to pregnancy were recruited during pregnancy and blood samples were obtained. INTERVENTIONS None. MAIN OUTCOME MEASURES Each study participant's blood sample was analyzed with restriction fragment length polymorphism to assess for mutations in the GCK gene. RESULTS There were 38 female and 34 male neonates born at 38 weeks gestation ± 1.2 weeks. Mean birth weight was 3351 g ± 450 g. There were no patients with GCK mutations found in our population 0/72. This prevalence is not greater than that seen in previous a similar study in European women with gestational diabetes, but in fact significantly less (p = 0.03). CONCLUSION American women with recently diagnosed diabetes mellitus likely have no higher prevalence of MODY than in previously studied European women with diabetes mellitus and may have a lower prevalence.
Collapse
Affiliation(s)
- M F Sewell
- a MetroHealth Medical Center, Case Western Reserve University , Cleveland , OH , USA and
| | | | | | | |
Collapse
|
26
|
A decade of molecular genetic testing for MODY: a retrospective study of utilization in The Netherlands. Eur J Hum Genet 2014; 23:29-33. [PMID: 24736738 DOI: 10.1038/ejhg.2014.59] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 11/09/2022] Open
Abstract
Genetic testing for maturity-onset diabetes of the young (MODY) may be relevant for treatment and prognosis in patients with usually early-onset, non-ketotic, insulin-sensitive diabetes and for monitoring strategies in non-diabetic mutation carriers. This study describes the first 10 years of genetic testing for MODY in The Netherlands in terms of volume and test positive rate, medical setting, purpose of the test and age of patients tested. Some analyses focus on the most prevalent subtype, HNF1A MODY. Data were retrospectively extracted from a laboratory database. In total, 502 individuals were identified with a pathogenic mutation in HNF4A, GCK or HNF1A between 2001 and 2010. Although mutation scanning for MODY was used at an increasing rate, cascade testing was only used for one relative, on average, per positive index patient. Testing for HNF1A MODY was mostly requested by internists and paediatricians, often from regional hospitals. Primary care physicians and clinical geneticists rarely requested genetic testing for HNF1A MODY. Clinical geneticists requested cascade testing relatively more often than other health professionals. A substantial proportion (currently 29%) of HNF1A MODY probands was at least 40 years old at the time of testing. In conclusion, the number of individuals genetically tested for MODY so far in The Netherlands is low compared with previously predicted numbers of patients. Doctors' valuation of the test and patients' and family members' response to (an offer of) genetic testing on the other hand need to be investigated. Efforts may be needed to develop and implement translational guidelines.
Collapse
|
27
|
Irgens HU, Molnes J, Johansson BB, Ringdal M, Skrivarhaug T, Undlien DE, Søvik O, Joner G, Molven A, Njølstad PR. Prevalence of monogenic diabetes in the population-based Norwegian Childhood Diabetes Registry. Diabetologia 2013; 56:1512-9. [PMID: 23624530 DOI: 10.1007/s00125-013-2916-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/26/2013] [Indexed: 01/25/2023]
Abstract
AIMS/HYPOTHESIS Monogenic diabetes (MD) might be misdiagnosed as type 1 diabetes. The prevalence of MD among children with apparent type 1 diabetes has not been established. Our aim was to estimate the prevalence of common forms of MD in childhood diabetes. METHODS We investigated 2,756 children aged 0-14 years with newly diagnosed diabetes who had been recruited to the nationwide population-based Norwegian Childhood Diabetes Registry (NCDR), from July 2002 to March 2012. Completeness of ascertainment was 91%. Children diagnosed with diabetes who were under12 months of age were screened for mutations in KCNJ11, ABCC8 and INS. Children without GAD and protein tyrosine phosphatase-like protein antibodies were screened in two ways. Those who had a parent with diabetes were screened for mutations in HNF1A, HNF4A, INS and MT-TL1. Children with HbA1c <7.5% (<58 mmol/mol) and no insulin requirement were screened for mutations in GCK. Finally, we searched the Norwegian MODY Registry for children with genetically verified MD. RESULTS We identified 15 children harbouring a mutation in HNF1A, nine with one in GCK, four with one in KCNJ11, one child with a mutation in INS and none with a mutation in MT-TL1. The minimum prevalence of MD in the NCDR was therefore 1.1%. By searching the Norwegian MODY Registry, we found 24 children with glucokinase-MODY, 15 of whom were not present in the NCDR. We estimated the minimum prevalence of MD among Norwegian children to be 3.1/100,000. CONCLUSIONS/INTERPRETATION This is the first prevalence study of the common forms of MD in a nationwide, population-based registry of childhood diabetes. We found that 1.1% of patients in the Norwegian Childhood Diabetes Registry had MD.
Collapse
Affiliation(s)
- H U Irgens
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hua H, Shang L, Martinez H, Freeby M, Gallagher MP, Ludwig T, Deng L, Greenberg E, Leduc C, Chung WK, Goland R, Leibel RL, Egli D. iPSC-derived β cells model diabetes due to glucokinase deficiency. J Clin Invest 2013; 123:3146-53. [PMID: 23778137 DOI: 10.1172/jci67638] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 04/16/2013] [Indexed: 12/30/2022] Open
Abstract
Diabetes is a disorder characterized by loss of β cell mass and/or β cell function, leading to deficiency of insulin relative to metabolic need. To determine whether stem cell-derived β cells recapitulate molecular-physiological phenotypes of a diabetic subject, we generated induced pluripotent stem cells (iPSCs) from subjects with maturity-onset diabetes of the young type 2 (MODY2), which is characterized by heterozygous loss of function of the gene encoding glucokinase (GCK). These stem cells differentiated into β cells with efficiency comparable to that of controls and expressed markers of mature β cells, including urocortin-3 and zinc transporter 8, upon transplantation into mice. While insulin secretion in response to arginine or other secretagogues was identical to that in cells from healthy controls, GCK mutant β cells required higher glucose levels to stimulate insulin secretion. Importantly, this glucose-specific phenotype was fully reverted upon gene sequence correction by homologous recombination. Our results demonstrate that iPSC-derived β cells reflect β cell-autonomous phenotypes of MODY2 subjects, providing a platform for mechanistic analysis of specific genotypes on β cell function.
Collapse
Affiliation(s)
- Haiqing Hua
- The New York Stem Cell Foundation Laboratory, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nair VV, Chapla A, Arulappan N, Thomas N. Molecular diagnosis of maturity onset diabetes of the young in India. Indian J Endocrinol Metab 2013; 17:430-441. [PMID: 23869298 PMCID: PMC3712372 DOI: 10.4103/2230-8210.111636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Diabetes is highly prevalent in India and the proportion of younger patients developing diabetes is on the increase. Apart from the more universally known type 1 diabetes and obesity related type 2 diabetes, monogenic forms of diabetes are also suspected to be prevalent in many young diabetic patients. The identification of the genetic basis of the disease not only guides in therapeutic decision making, but also aids in genetic counselling and prognostication. Genetic testing may establish the occurrence and frequency of early diabetes in our population. This review attempts to explore the utilities and horizons of molecular genetics in the field of maturity onset diabetes of the young (MODY), which include the commoner forms of monogenic diabetes.
Collapse
Affiliation(s)
- Veena V. Nair
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College Hospital, Vellore, India
| | - Aaron Chapla
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College Hospital, Vellore, India
| | - Nishanth Arulappan
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College Hospital, Vellore, India
| | - Nihal Thomas
- Department of Endocrinology, Diabetes and Metabolism, Christian Medical College Hospital, Vellore, India
| |
Collapse
|
30
|
Affiliation(s)
- Shivani Misra
- From the Department of Metabolic Medicine, Imperial Healthcare NHS Trust, London, U.K.; and the
| | - Anne Dornhorst
- Department of Medicine, Imperial College Healthcare NHS Trust, London, U.K
| |
Collapse
|
31
|
Capuano M, Garcia-Herrero CM, Tinto N, Carluccio C, Capobianco V, Coto I, Cola A, Iafusco D, Franzese A, Zagari A, Navas MA, Sacchetti L. Glucokinase (GCK) mutations and their characterization in MODY2 children of southern Italy. PLoS One 2012; 7:e38906. [PMID: 22761713 PMCID: PMC3385652 DOI: 10.1371/journal.pone.0038906] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/14/2012] [Indexed: 01/24/2023] Open
Abstract
Type 2 Maturity Onset Diabetes of the Young (MODY2) is a monogenic autosomal disease characterized by a primary defect in insulin secretion and hyperglycemia. It results from GCK gene mutations that impair enzyme activity. Between 2006 and 2010, we investigated GCK mutations in 66 diabetic children from southern Italy with suspected MODY2. Denaturing High Performance Liquid Chromatography (DHPLC) and sequence analysis revealed 19 GCK mutations in 28 children, six of which were novel: p.Glu40Asp, p.Val154Leu, p.Arg447Glyfs, p.Lys458_Cys461del, p.Glu395_Arg397del and c.580-2A>T. We evaluated the effect of these 19 mutations using bioinformatic tools such as Polymorphism Phenotyping (Polyphen), Sorting Intolerant From Tolerant (SIFT) and in silico modelling. We also conducted a functional study to evaluate the pathogenic significance of seven mutations that are among the most severe mutations found in our population, and have never been characterized: p.Glu70Asp, p.His137Asp, p.Phe150Tyr, p.Val154Leu, p.Gly162Asp, p.Arg303Trp and p.Arg392Ser. These seven mutations, by altering one or more kinetic parameters, reduced enzyme catalytic activity by >40%. All mutations except p.Glu70Asp displayed thermal-instability, indeed >50% of enzyme activity was lost at 50°C/30 min. Thus, these seven mutations play a pathogenic role in MODY2 insurgence. In conclusion, this report revealed six novel GCK mutations and sheds some light on the structure-function relationship of human GCK mutations and MODY2.
Collapse
Affiliation(s)
- Marina Capuano
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Carmen Maria Garcia-Herrero
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Nadia Tinto
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Carla Carluccio
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
- Department of Biological Science, University of Naples “Federico II”, Naples, Italy
| | - Valentina Capobianco
- Fondazione SDN-IRCSS (Istituto di Diagnostica Nucleare-Istituto di Ricerca e Cura a Carattere Scientifico), Naples, Italy
| | - Iolanda Coto
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Arturo Cola
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| | - Dario Iafusco
- Department of Pediatrics, Second University of Naples, Naples, Italy
| | - Adriana Franzese
- Department of Pediatrics, University of Naples “Federico II”, Naples, Italy
| | - Adriana Zagari
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
- Department of Biological Science, University of Naples “Federico II”, Naples, Italy
| | - Maria Angeles Navas
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Lucia Sacchetti
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- Centro di Ingegneria Genetica (CEINGE) Advanced Biotechnology, s. c. a r. l., Naples, Italy
| |
Collapse
|
32
|
Identification and functional characterisation of novel glucokinase mutations causing maturity-onset diabetes of the young in Slovakia. PLoS One 2012; 7:e34541. [PMID: 22493702 PMCID: PMC3321013 DOI: 10.1371/journal.pone.0034541] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/01/2012] [Indexed: 11/19/2022] Open
Abstract
Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ∼65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations. The aim of this study was to determine the minimum prevalence of GCK-MODY amongst diabetic subjects in Slovakia by sequencing GCK in 100 Slovakian probands with a phenotype consistent with GCK-MODY and to explore the pathogenicity of identified variants through family and functional studies. Twenty-two mutations were identified in 36 families (17 missense) of which 7 (I110N, V200A, N204D, G258R, F419S, c.580-2A>C, c.1113-1114delGC) were novel. Parental DNA was available for 22 probands (covering 14/22 mutations) and co-segregation established in all cases. Bioinformatic analysis predicted all missense mutations to be damaging. Nine (I110N, V200A, N204D, G223S, G258R, F419S, V244G, L315H, I436N) mutations were functionally evaluated. Basic kinetic analysis explained pathogenicity for 7 mutants which showed reduced glucokinase activity with relative activity indices (RAI) between 0.6 to <0.001 compared to wild-type GCK (1.0). For the remaining 2 mutants additional molecular mechanisms were investigated. Differences in glucokinase regulatory protein (GKRP) -mediated-inhibition of GCK were observed for both L315H & I436N when compared to wild type (IC(50) 14.6±0.1 mM & 20.3±1.6 mM vs.13.3±0.1 mM respectively [p<0.03]). Protein instability as assessed by thermal lability studies demonstrated that both L315H and I436N show marked thermal instability compared to wild-type GCK (RAI at 55°C 8.8±0.8% & 3.1±0.4% vs. 42.5±3.9% respectively [p<0.001]). The minimum prevalence of GCK-MODY amongst Slovakian patients with diabetes was 0.03%. In conclusion, we have identified 22 GCK mutations in 36 Slovakian probands and demonstrate that combining family, bioinformatic and functional studies can aid the interpretation of variants identified by molecular diagnostic screening.
Collapse
|
33
|
Gardner DSL, Tai ES. Clinical features and treatment of maturity onset diabetes of the young (MODY). Diabetes Metab Syndr Obes 2012; 5:101-8. [PMID: 22654519 PMCID: PMC3363133 DOI: 10.2147/dmso.s23353] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Maturity onset diabetes of the young (MODY) is a heterogeneous group of disorders that result in β-cell dysfunction. It is rare, accounting for just 1%-2% of all diabetes. It is often misdiagnosed as type 1 or type 2 diabetes, as it is often difficult to distinguish MODY from these two forms. However, diagnosis allows appropriate individualized care, depending on the genetic etiology, and allows prognostication in family members. In this review, we discuss features of the common causes of MODY, as well as the treatment and diagnosis of MODY.
Collapse
Affiliation(s)
- Daphne SL Gardner
- Department of Endocrinology, Singapore General Hospital, Singapore
- Correspondence: Daphne SL Gardner, Department of Endocrinology, Singapore General Hospital, Block 6, Level 6, Outram Road, Singapore 169608, Tel +65 6321 4523, Email
| | - E Shyong Tai
- Department of Endocrinology, National University Hospital, Singapore
| |
Collapse
|
34
|
Bonfig W, Hermanns S, Warncke K, Eder G, Engelsberger I, Burdach S, Ziegler AG, Lohse P. GCK-MODY (MODY 2) Caused by a Novel p.Phe330Ser Mutation. ISRN PEDIATRICS 2011; 2011:676549. [PMID: 22389783 PMCID: PMC3263572 DOI: 10.5402/2011/676549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/13/2011] [Indexed: 11/23/2022]
Abstract
Maturity onset diabetes of the young (MODY) is a monogenic form of diabetes inherited as an autosomal dominant trait. The second most common cause is GCK-MODY due to heterozygous mutations in the GCK gene which impair the glucokinase function through different mechanisms such as enzymatic activity, protein stability, and increased interaction with its receptor. The enzyme normally acts as a glucose sensor in the pancreatic beta cell and regulates insulin secretion. We report here a three-generation nonobese family diagnosed with diabetes. All affected family members presented with mild hyperglycemia and mostly slightly elevated hemoglobin A1c values. Genetic testing revealed a novel heterozygous T → C exchange in exon 8 of the GCK gene which resulted in a phenylalanine330 TTC → serine (TCC)/p.Phe330Ser/F330S substitution.
Collapse
Affiliation(s)
- Walter Bonfig
- Division of Pediatric Endocrinology, Department of Pediatrics, Technische Universität München Kölner Platz 1, 80804 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Garin I, Rica I, Estalella I, Oyarzabal M, Rodríguez-Rigual M, San Pedro JI, Pérez-Nanclares G, Fernández-Rebollo E, Busturia MA, Castaño L, Pérez de Nanclares G. Haploinsufficiency at GCK gene is not a frequent event in MODY2 patients. Clin Endocrinol (Oxf) 2008; 68:873-8. [PMID: 18248649 DOI: 10.1111/j.1365-2265.2008.03214.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to characterize glucokinase (GCK) alterations in maturity-onset diabetes of the young 2 (MODY2)-suspected patients and to investigate their clinical characteristics in relation to the parental origin of the mutation. PATIENTS AND METHODS We studied a group of 57 unrelated Spanish patients presenting with MODY2 phenotype. Patients without mutation in the coding region of the GCK gene were screened for rearrangements by Multiplex Ligation-dependent Probe Amplification (MLPA). After classification according to the parental origin of the mutation, clinical characteristics were compared between the groups. RESULTS We detected a point mutation or small deletion or insertion of the GCK gene in 47 patients (82.5%); 19 mutations were novel. In addition, we found a whole-gene deletion by MLPA. Patients carrying a GCK gene defect and those with MODY of unknown genetic origin shows similar phenotypes. Comparison of clinical parameters according to the origin of the mutation did not show any differences in the birth weight (BW) nor in age at diagnosis. Patients who inherited the mutation from the father had higher fasting glucose levels at diagnosis. CONCLUSION Although the presence of haploinsufficiency of GCK is not a common cause of MODY2, gene dose analysis should be performed when no mutation is found. Strict maternal euglycaemia can contribute to intrauterine growth restriction and low BW when the foetus has inherited the GCK mutation from the mother. As foetal genotype in generally is not known, serial foetal abdominal scans may act as a surrogate for this.
Collapse
Affiliation(s)
- Intza Garin
- Endocrinology and Diabetes Research Group, Hospital de Cruces, Barakaldo, Basque Country, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|