1
|
Zhu D, Zhang S, Wang X, Xiao C, Cui G, Yang X. Secretory Clusterin Inhibits Dopamine Neuron Apoptosis in MPTP Mice by Preserving Autophagy Activity. Neuroscience 2024; 540:38-47. [PMID: 38242280 DOI: 10.1016/j.neuroscience.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Secretory clusterin (sCLU) plays an important role in the research progress of nervous system diseases. However, the physiological function of sCLU in Parkinson's disease (PD) are unclear. The purpose of this study was to examine the effects of sCLU-mediated autophagy on cell survival and apoptosis inhibition in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We found that MPTP administration induced prolonged pole-climbing time, shortened traction time and rotarod time, significantly decreased TH protein expression in the SN tissue of mice. In contrast, sCLU -treated mice took less time to climb the pole and had an extended traction time and rotating rod time. Meanwhile, sCLU intervention induced increased expression of the TH protein in the SN of mice. These results indicated that sCLU intervention could reduce the loss of dopamine neurons in the SN area and alleviate dyskinesia in mice. Furthermore, MPTP led to suppressed viability, enhanced apoptosis, an increased Bax/Bcl-2 ratio, and cleaved caspase-3 in the SN of mice, and these effects were abrogated by sCLU intervention. In addition, MPTP increased the levels of P62 protein, decreased Beclin1 protein, decreased the ratio of LC3B-II/LC3B-I, and decreased the numbers of autophagosomes and autophagolysosomes in the SN tissues of mice. These effects were also abrogated by sCLU intervention. Activation of PI3K/AKT/mTOR signaling with MPTP inhibited autophagy in the SN of MPTP mice; however, sCLU treatment activated autophagy in MPTP-induced PD mice by inhibiting PI3K/AKT/mTOR signaling. These data indicated that sCLU treatment had a neuroprotective effect in an MPTP-induced model of PD.
Collapse
Affiliation(s)
- Dongxue Zhu
- Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shenyang Zhang
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiaoying Wang
- Department of Ultrasound, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Chenghua Xiao
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Guiyun Cui
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xinxin Yang
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
2
|
Romejko K, Markowska M, Niemczyk S. The Review of Current Knowledge on Neutrophil Gelatinase-Associated Lipocalin (NGAL). Int J Mol Sci 2023; 24:10470. [PMID: 37445650 DOI: 10.3390/ijms241310470] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a 25-kDa protein that is secreted mostly by immune cells such as neutrophils, macrophages, and dendritic cells. Its production is stimulated in response to inflammation. The concentrations of NGAL can be measured in plasma, urine, and biological fluids such as peritoneal effluent. NGAL is known mainly as a biomarker of acute kidney injury and is released after tubular damage and during renal regeneration processes. NGAL is also elevated in chronic kidney disease and dialysis patients. It may play a role as a predictor of the progression of renal function decreases with complications and mortality due to kidney failure. NGAL is also useful in the diagnostic processes of cardiovascular diseases. It is highly expressed in injured heart tissue and atherosclerostic plaque; its serum concentrations correlate with the severity of heart failure and coronary artery disease. NGAL increases inflammatory states and its levels rise in arterial hypertension, obesity, diabetes, and metabolic complications such as insulin resistance, and is also involved in carcinogenesis. In this review, we present the current knowledge on NGAL and its involvement in different pathologies, especially its role in renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Katarzyna Romejko
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| | - Magdalena Markowska
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| | - Stanisław Niemczyk
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| |
Collapse
|
3
|
Impaired Extracellular Proteostasis in Patients with Heart Failure. Arch Med Res 2023; 54:211-222. [PMID: 36797157 DOI: 10.1016/j.arcmed.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Proteostasis impairment and the consequent increase of amyloid burden in the myocardium have been associated with heart failure (HF) development and poor prognosis. A better knowledge of the protein aggregation process in biofluids could assist the development and monitoring of tailored interventions. AIM To compare the proteostasis status and protein's secondary structures in plasma samples of patients with HF with preserved ejection fraction (HFpEF), patients with HF with reduced ejection fraction (HFrEF), and age-matched individuals. METHODS A total of 42 participants were enrolled in 3 groups: 14 patients with HFpEF, 14 patients with HFrEF, and 14 age-matched individuals. Proteostasis-related markers were analyzed by immunoblotting techniques. Fourier Transform Infrared (FTIR) Spectroscopy in Attenuated Total Reflectance (ATR) was applied to assess changes in the protein's conformational profile. RESULTS Patients with HFrEF showed an elevated concentration of oligomeric proteic species and reduced clusterin levels. ATR-FTIR spectroscopy coupled with multivariate analysis allowed the discrimination of HF patients from age-matched individuals in the protein amide I absorption region (1700-1600 cm-1), reflecting changes in protein conformation, with a sensitivity of 73 and a specificity of 81%. Further analysis of FTIR spectra showed significantly reduced random coils levels in both HF phenotypes. Also, compared to the age-matched group, the levels of structures related to fibril formation were significantly increased in patients with HFrEF, whereas the β-turns were significantly increased in patients with HFpEF. CONCLUSION Both HF phenotypes showed a compromised extracellular proteostasis and different protein conformational changes, suggesting a less efficient protein quality control system.
Collapse
|
4
|
Li D, Wang M, Fan R, Song Z, Li Z, Gan H, Fan H. Clusterin regulates TRPM2 to protect against myocardial injury induced by acute myocardial infarction injury. Tissue Cell 2023; 82:102038. [PMID: 36870313 DOI: 10.1016/j.tice.2023.102038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Clusterin and transient receptor potential melastatin 2 (TRPM2) play significant roles in acute myocardial infarction (AMI), but their interactions in AMI are unclear. METHODS Myocardial infarction was induced by ligation of the left anterior descending coronary artery in wild-type C57BL/6J male mice. Infarct size and myocardium pathology were evaluated after 6, 12, and 24 h of ischemia. The expression levels of clusterin and TRPM2 were measured in the myocardium. Furthermore, myocardial infarction was induced in TRPM2 knockout (TRPM2-/-) C57BL/6J male mice to evaluate the expression of clusterin. H9C2 cells with various levels of TRPM2 expression were used to analyze the effects of clusterin under hypoxic conditions. RESULTS Following AMI, myocardial hypertrophy and TRPM2 expression increased in a time-dependent manner. In contrast, the expression of clusterin decreased in an infarct time-dependent manner. Knockout of TRPM2 protected against myocardial injury and resulted in upregulation of clusterin. In the H9C2 cells, cultured under hypoxic conditions treatment with clusterin or silencing of TRPM2 significantly increased cell viability and decreased TRPM2 expression. Treatment with clusterin protected against TRPM2 overexpression-induced damage in hypoxia-treated H9C2 cells. CONCLUSION This study characterized the effects of clusterin on TRPM2 in AMI, which may guide development of new treatment strategies for AMI.
Collapse
Affiliation(s)
- Dalei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Mengying Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Rong Fan
- Yantai Raphael Biotechnology Co., Ltd, Yantai 264005, PR China
| | - Zeyu Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhenyuan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Hailin Gan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
5
|
Zhang N, Aiyasiding X, Li WJ, Liao HH, Tang QZ. Neutrophil degranulation and myocardial infarction. Cell Commun Signal 2022; 20:50. [PMID: 35410418 PMCID: PMC8996539 DOI: 10.1186/s12964-022-00824-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Myocardial infarction (MI) is one of the most common cardiac emergencies with high morbidity and is a leading cause of death worldwide. Since MI could develop into a life-threatening emergency and could also seriously affect the life quality of patients, continuous efforts have been made to create an effective strategy to prevent the occurrence of MI and reduce MI-related mortality. Numerous studies have confirmed that neutrophils play important roles in inflammation and innate immunity, which provide the first line of defense against microorganisms by producing inflammatory cytokines and chemokines, releasing reactive oxygen species, and degranulating components of neutrophil cytoplasmic granules to kill pathogens. Recently, researchers reported that neutrophils are closely related to the severity and prognosis of patients with MI, and neutrophil to lymphocyte ratio in post-MI patients had predictive value for major adverse cardiac events. Neutrophils have been increasingly recognized to exert important functions in MI. Especially, granule proteins released by neutrophil degranulation after neutrophil activation have been suggested to involve in the process of MI. This article reviewed the current research progress of neutrophil granules in MI and discusses neutrophil degranulation associated diagnosis and treatment strategies. Video abstract
Collapse
Affiliation(s)
- Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
6
|
Zhou N, Liu L, Zou R, Zou M, Zhang M, Cao F, Liu W, Yuan H, Huang G, Ma L, Chen X. Circular Network of Coregulated Sphingolipids Dictates Chronic Hypoxia Damage in Patients With Tetralogy of Fallot. Front Cardiovasc Med 2022; 8:780123. [PMID: 35097000 PMCID: PMC8792512 DOI: 10.3389/fcvm.2021.780123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Tetralogy of Fallot (TOF) is the most common cyanotic heart disease. However, the association of cardiac metabolic reprogramming changes and underlying molecular mechanisms in TOF-related chronic myocardial hypoxia damage are still unclear. Methods: In this study, we combined microarray transcriptomics analysis with liquid chromatography tandem-mass spectrometry (LC–MS/MS) spectrum metabolomics analysis to establish the metabolic reprogramming that occurs in response to chronic hypoxia damage. Two Gene Expression Omnibus (GEO) datasets, GSE132176 and GSE141955, were downloaded to analyze the metabolic pathway in TOF. Then, a metabolomics analysis of the clinical samples (right atrial tissue and plasma) was performed. Additionally, an association analysis between differential metabolites and clinical phenotypes was performed. Next, four key genes related to sphingomyelin metabolism were screened and their expression was validated by real-time quantitative PCR (QT-PCR). Results: The gene set enrichment analysis (GSEA) showed that sphingolipid metabolism was downregulated in TOF and the metabolomics analysis showed that multiple sphingolipids were dysregulated. Additionally, genes related to sphingomyelin metabolism were identified. We found that four core genes, UDP-Glucose Ceramide Glucosyltransferase (UGCG), Sphingosine-1-Phosphate Phosphatase 2 (SGPP2), Fatty Acid 2-Hydroxylase (FA2H), and Sphingosine-1-Phosphate Phosphatase 1 (SGPP1), were downregulated in TOF. Conclusion: Sphingolipid metabolism was downregulated in TOF; however, the detailed mechanism needs further investigation.
Collapse
Affiliation(s)
- Na Zhou
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Extracorporeal Circulation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Libao Liu
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rongjun Zou
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Minghui Zou
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mingxia Zhang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Extracorporeal Circulation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fan Cao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Extracorporeal Circulation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Extracorporeal Circulation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huili Yuan
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Extracorporeal Circulation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guodong Huang
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Department of Extracorporeal Circulation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Guodong Huang
| | - Li Ma
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Li Ma
| | - Xinxin Chen
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Xinxin Chen
| |
Collapse
|
7
|
Li Y, Song YQ, Zhang Y, Liu T, Qin Q. Over-expression of Apolipoprotein J Inhibits Cholesterol Crystal-Induced Inflammatory Responses via Suppressing NLRP3 Inflammasome Activation in THP-1 Macrophages. Folia Biol (Praha) 2021; 67:183-190. [PMID: 35439851 DOI: 10.14712/fb2021067050183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Apolipoprotein J (clusterin) is a component of high-density lipoproteins, the high level of which is reversely correlated with the risk of coronary heart disease. In addition, it exerts anti-inflammatory and anti-apoptotic effects on endothelial cells and inhibits smooth muscle cell migration and proliferation, indicating that it may play a protective role in cardiovascular disease. However, the exact mechanisms by which this occurs remain unclear. This study aimed to clarify these underlying protective mechanisms by researching the inhibitory effects of apolipoprotein J via the NOD-like receptor protein 3 pathway on the inflammation induced by cholesterol crystals in THP‑1 macrophages. In culture, THP-1 macrophages were infected with adenoviral vectors containing apolipoprotein J genes and subsequently treated with cholesterol crystals. The inflammatory cytokines interleukin‑1β, interleukin 18 and tumour necrosis factor α were quantitatively measured with ELISA kits. NOD-like receptor protein 3, cysteinyl aspartate specific proteinase 1 and interleukin 1β were evaluated by Western blot and PCR analysis. As a result, apolipoprotein J expression was found to remarkably decrease the levels of inflammatory cytokines, including tumour necrosis factor α, interleukin 18 and interleukin 1β, secreted by THP‑1 macrophages. It was also found capable of inhibiting the levels of NOD-like receptor protein 3, cysteinyl aspartate-specific proteinase 1 and interleukin 1β both at the protein and mRNA levels. In the current study, we revealed that over-expression of apolipoprotein J attenuated the inflammation induced by cholesterol crystals through inhibition of the NOD-like receptor protein 3 inflammasome pathway.
Collapse
Affiliation(s)
- Y Li
- Department of Cardiology, Tianjin Chest Hospital, Jinnan City, Tianjin Province, China
| | - Y-Q Song
- Cardiovascular Institute, Tianjin Chest Hospital, Jinnan City, Tianjin Province, China
| | - Y Zhang
- Cardiovascular Institute, Tianjin Chest Hospital, Jinnan City, Tianjin Province, China
| | - T Liu
- Cardiovascular Institute, Tianjin Chest Hospital, Jinnan City, Tianjin Province, China
| | - Q Qin
- Department of Cardiology, Tianjin Chest Hospital, Jinnan City, Tianjin Province, China
| |
Collapse
|
8
|
Aghamollaei H, Parvin S, Shahriary A. Review of proteomics approach to eye diseases affecting the anterior segment. J Proteomics 2020; 225:103881. [PMID: 32565161 DOI: 10.1016/j.jprot.2020.103881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 01/12/2023]
Abstract
Visual impairment and blindness is a major health burden worldwide, and major ocular diseases causing visual impairment pertain to the anterior segment of the eye. Anterior segment ocular diseases are common, yet complex entities. Although many treatment options and surgical techniques are available for these ailments, the underlying cause and pathogenesis is still unclear. Finding ways to fundamentally treat these patients and rectify the underlying dysregulations leading to the disease may help cure patients completely without major complications. Proteomics approaches are a novel way to distinguish dysregulated proteins in a variety of biological tissues in a hypothesis-free manner, thus helping to find the responsible pathways leading to a certain disease. The aim of the current study is to review the available knowledge in scientific literature regarding the proteomics studies done on anterior segment eye diseases and suggest potential clinical implications to exploit the results of these studies. SIGNIFICANCE: Anterior segment ocular diseases are responsible for a major proportion of visual impairment and blindness worldwide. Although ophthalmologists have several treatment options that can alleviate or control the progression of these diseases, no definite cure is available for most of them. Moreover, because these diseases are progressive, prompt diagnosis is of utmost important. Proteomics studies enable us to identify and quantify the dysregulated proteins in a biological specimen in a hypothesis-free manner. Understanding the dysregulated protein pathways shines a light on the pathogenesis of the disease. Moreover, these dysregulated proteins may act as biomarkers to help in diagnosis and treatment follow-up. Hence, in this article we sought out to review the available scientific literature regarding the proteomics studies of anterior segment ocular diseases and to identify potential applications of proteomic studies in clinic.
Collapse
Affiliation(s)
- Hossein Aghamollaei
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Parvin
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Soppert J, Lehrke M, Marx N, Jankowski J, Noels H. Lipoproteins and lipids in cardiovascular disease: from mechanistic insights to therapeutic targeting. Adv Drug Deliv Rev 2020; 159:4-33. [PMID: 32730849 DOI: 10.1016/j.addr.2020.07.019] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
With cardiovascular disease being the leading cause of morbidity and mortality worldwide, effective and cost-efficient therapies to reduce cardiovascular risk are highly needed. Lipids and lipoprotein particles crucially contribute to atherosclerosis as underlying pathology of cardiovascular disease and influence inflammatory processes as well as function of leukocytes, vascular and cardiac cells, thereby impacting on vessels and heart. Statins form the first-line therapy with the aim to block cholesterol synthesis, but additional lipid-lowering drugs are sometimes needed to achieve low-density lipoprotein (LDL) cholesterol target values. Furthermore, beyond LDL cholesterol, also other lipid mediators contribute to cardiovascular risk. This review comprehensively discusses low- and high-density lipoprotein cholesterol, lipoprotein (a), triglycerides as well as fatty acids and derivatives in the context of cardiovascular disease, providing mechanistic insights into their role in pathological processes impacting on cardiovascular disease. Also, an overview of applied as well as emerging therapeutic strategies to reduce lipid-induced cardiovascular burden is provided.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany
| | - Michael Lehrke
- Medical Clinic I, University Hospital Aachen, Aachen, Germany
| | - Nikolaus Marx
- Medical Clinic I, University Hospital Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht University, the Netherlands
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands.
| |
Collapse
|
10
|
Early Elevation of Systemic Plasma Clusterin after Reperfused Acute Myocardial Infarction in a Preclinical Porcine Model of Ischemic Heart Disease. Int J Mol Sci 2020; 21:ijms21134591. [PMID: 32605184 PMCID: PMC7369988 DOI: 10.3390/ijms21134591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023] Open
Abstract
Clusterin exerts anti-inflammatory, cytoprotective and anti-apoptotic effects. Both an increase and decrease of clusterin in acute myocardial infarction (AMI) has been reported. We aimed to clarify the role of clusterin as a systemic biomarker in AMI. AMI was induced by percutaneous left anterior artery (LAD) occlusion for 90 min followed by reperfusion in 24 pigs. Contrast ventriculography was performed after reperfusion to assess left ventricular ejection fraction (LVEF), left ventricular end diastolic volume (LVEDV) and left ventricular end systolic volume (LVESV) and additional cMRI + late enhancement to measure infarct size and LV functions at day 3 and week 6 post-MI. Blood samples were collected at prespecified timepoints. Plasma clusterin and other biomarkers (cTnT, NT-proBNP, neprilysin, NGAL, ET-1, osteopontin, miR21, miR29) were measured by ELISA and qPCR. Gene expression profiles of infarcted and remote region 3 h (n = 5) and 3 days (n = 5) after AMI onset were analysed by RNA-sequencing. AMI led to an increase in LVEDV and LVESV during 6-week, with concomitant elevation of NT-proBNP 3-weeks after AMI. Plasma clusterin levels were increased immediately after AMI and returned to normal levels until 3-weeks. Plasma NGAL, ET-1 and miR29 was significantly elevated at 3 weeks follow-up, miR21 increased after reperfusion and at 3 weeks post-AMI, while circulating neprilysin levels did not change. Elevated plasma clusterin levels 120 min after AMI onset suggest that clusterin might be an additional early biomarker of myocardial ischemia.
Collapse
|
11
|
Kang M, Seong Y, Mahmud J, Nguyen BT. Obscurin and Clusterin Elevation in Serum of Acute Myocardial Infarction Patients. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Min‐Jung Kang
- Molecular Recognition Research CenterKorea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology Seoul 02792 Republic of Korea
| | - Yunseo Seong
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology Seoul 02792 Republic of Korea
| | - Joyeta Mahmud
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology Seoul 02792 Republic of Korea
| | - Binh Thanh Nguyen
- Division of Bio‐Medical Science & Technology, KIST SchoolKorea University of Science and Technology Seoul 02792 Republic of Korea
| |
Collapse
|
12
|
Ren L, Han F, Xuan L, Lv Y, Gong L, Yan Y, Wan Z, Guo L, Liu H, Xu B, Sun Y, Yang S, Liu L. Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation. Free Radic Biol Med 2019; 145:357-373. [PMID: 31614179 DOI: 10.1016/j.freeradbiomed.2019.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Clusterin (CLU) is a stress-responding protein associated with cytoprotection in a broad range of pathological processes. However, clusterin's function in diabetes-induced endothelial dysfunction has not been defined. Herein, using two diabetes models, we investigated the role of clusterin in endothelial dysfunction triggered by diabetes and the molecular mechanisms involved. The results revealed that clusterin overexpression inhibited ICAM-1/VCAM-1 expression in aortas and improved endothelium-dependent vasodilatation in db/db diabetic mice and streptozotocin (STZ)-induced diabetes models. Consistently, in vitro, adenoviral clusterin overexpression reduced the expression of a range of pro-inflammatory cytokines and suppressed monocyte adhesion to endothelial cells subjected to high glucose and high palmitate. Further study indicated that clusterin overexpression mitigated mitochondrial excessive fission and reduced mitochondrial ROS production. Conversely, silencing clusterin aggravated mitochondrial fission and endothelial inflammatory activation in high glucose-exposed endothelial cells. Accumulating evidence indicates that impaired mitochondrial dynamics plays a considerable role in promoting endothelial dysfunction in diabetic subjects. Therefore, treatments targeting mitochondrial undue fission may be promising measures to prevent vascular complications of diabetes. Furthermore, AMP-activated protein kinase (AMPK) activation contributed to the modulation of mitochondrial dynamics executed by clusterin. Mechanistically, clusterin promoted the phosphorylation of AMPKα and its downstream target acetyl-CoA carboxylase (ACC), while the inhibition of AMPKα negated the improvement in mitochondrial dynamics provided by clusterin overexpression. Over all, these findings suggest that clusterin exerts beneficial effects in endothelial cells under diabetic conditions via inhibiting mitochondrial fragmentation mediated by AMPK.
Collapse
Affiliation(s)
- Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Feifei Han
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yali Lv
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lili Gong
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yan Yan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zirui Wan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lifang Guo
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - He Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Benshan Xu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuan Sun
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Song Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lihong Liu
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
13
|
Sposito AC, de Lima-Junior JC, Moura FA, Barreto J, Bonilha I, Santana M, Virginio VW, Sun L, Carvalho LSF, Soares AA, Nadruz W, Feinstein SB, Nofer JR, Zanotti I, Kontush A, Remaley AT. Reciprocal Multifaceted Interaction Between HDL (High-Density Lipoprotein) and Myocardial Infarction. Arterioscler Thromb Vasc Biol 2019; 39:1550-1564. [DOI: 10.1161/atvbaha.119.312880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite decades of therapeutic advances, myocardial infarction remains a leading cause of death worldwide. Recent studies have identified HDLs (high-density lipoproteins) as a potential candidate for mitigating coronary ischemia/reperfusion injury via a broad spectrum of signaling pathways. HDL ligands, such as S1P (sphingosine-1-phosphate), Apo (apolipoprotein) A-I, clusterin, and miRNA, may influence the opening of the mitochondrial channel, insulin sensitivity, and production of vascular autacoids, such as NO, prostacyclin, and endothelin-1. In parallel, antioxidant activity and sequestration of oxidized molecules provided by HDL can attenuate the oxidative stress that triggers ischemia/reperfusion. Nevertheless, during myocardial infarction, oxidation and the capture of oxidized and proinflammatory molecules generate large phenotypic and functional changes in HDL, potentially limiting its beneficial properties. In this review, new findings from cellular and animal models, as well as from clinical studies, will be discussed to describe the cardioprotective benefits of HDL on myocardial infarction. Furthermore, mechanisms by which HDL modulates cardiac function and potential strategies to mitigate postmyocardial infarction risk damage by HDL will be detailed throughout the review.
Collapse
Affiliation(s)
- Andrei C. Sposito
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - José Carlos de Lima-Junior
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Filipe A. Moura
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
- Department of Medicine, Weill-Cornell Medical College, New York, NY (F.A.M.)
| | - Joaquim Barreto
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Isabella Bonilha
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Michele Santana
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Vitor W. Virginio
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Lufan Sun
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (L.S., A.T.R.)
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China (L.S.)
| | - Luiz Sergio F. Carvalho
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Alexandre A.S. Soares
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Wilson Nadruz
- From the Atherosclerosis and Vascular Biology Laboratory, Cardiology Department, State University of Campinas, Brazil (A.C.S., J.C.d.L.-J., F.A.M., J.B., I.B., M.S., V.W.V., L.S.F.C., A.A.S.S., W.N.)
| | - Steve B. Feinstein
- Division of Cardiology, Rush University Medical Center, Chicago, IL (S.B.F.)
| | - Jerzy-Roch Nofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (J.-R.N.)
| | - Ilaria Zanotti
- Department of Food and Drugs, University of Parma, Italy (I.Z.)
| | - Anatol Kontush
- UMR-ICAN 1166, National Institute for Health and Medical Research (INSERM), Sorbonne University, Paris, France (A.K.)
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (L.S., A.T.R.)
| |
Collapse
|
14
|
Zhu H, Liu M, Zhai T, Pan H, Wang L, Yang H, Yan K, Gong F, Zeng Y. High serum clusterin levels are associated with premature coronary artery disease in a Chinese population. Diabetes Metab Res Rev 2019; 35:e3128. [PMID: 30659732 DOI: 10.1002/dmrr.3128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND Clusterin plays an important role in the cardiovascular system, and serum levels of clusterin are higher in coronary artery disease patients. Here, we measured serum clusterin levels in premature coronary artery disease (PCAD) patients and explored the association of these levels with PCAD risk. METHODS Serum samples and general clinical information were obtained from 672 subjects including 364 PCAD subjects, 126 non-PCAD subjects, and 182 controls. RESULTS Serum clusterin levels were higher in PCAD patients than in controls, particularly in males with body mass index (BMI) < 25 kg/m2 (P < 0.0001). Compared with the lowest tertile of clusterin, the odds ratio of PCAD in the highest tertile was higher in both a univariate and three adjustment models, and it was 3.146-fold higher in Model 3. This association was especially significant in subgroups with BMI < 25 kg/m2 , total cholesterol < 5.7 mmol/L, high-density lipoprotein cholesterol ≥ 1.0 mmol/L, Urea < 7.14 mmol/L, and estimated glomerular filtration rate < 90 mL/min/1.73 m2 . Serum clusterin may be a potential diagnostic biomarker for PCAD (sensitivity 60.7%, specificity 51.6%, area under the curve 0.595 [95% CI, 0.544-0.647], P < 0.0001), and a combination of clusterin with clinical variables in Model 3 resulted in improved diagnostic accuracy (sensitivity 86.3%, specificity 64.2%, area under the curve 0.829 [95% CI, 0.782-0.877], P < 0.0001). CONCLUSIONS Serum clusterin levels were increased in PCAD patients, especially for males with BMI < 25 kg/m2 . Higher clusterin levels were independently associated with the presence of PCAD, particularly in subjects with normal BMI, lower total cholesterol, urea, estimated glomerular filtration rate, and higher high-density lipoprotein cholesterol. Clusterin might be a potential diagnostic biomarker for PCAD patients, especially in combination with clinical variables.
Collapse
Affiliation(s)
- Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meijuan Liu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Tianshu Zhai
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Kemin Yan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yong Zeng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Soares AA, Carvalho LSF, Bonilha I, Virginio VW, Nadruz Junior W, Coelho-Filho OR, Quinaglia e Silva JC, Petrucci Junior O, Sposito AC. Adverse interaction between HDL and the mass of myocardial infarction. Atherosclerosis 2019; 281:9-16. [DOI: 10.1016/j.atherosclerosis.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 01/20/2023]
|
16
|
Pereira RM, Mekary RA, da Cruz Rodrigues KC, Anaruma CP, Ropelle ER, da Silva ASR, Cintra DE, Pauli JR, de Moura LP. Protective molecular mechanisms of clusterin against apoptosis in cardiomyocytes. Heart Fail Rev 2019; 23:123-129. [PMID: 28948410 DOI: 10.1007/s10741-017-9654-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Loss of cardiomyocytes occurs with aging and contributes to cardiovascular complications. In the present study, we highlighted the role of clusterin, a protein that has recently been associated with the protection of cardiomyocytes from apoptosis. Clusterin protects cardiac cells against damage from myocardial infarction, transplant, or myocarditis. Clusterin can act directly or indirectly on apoptosis by regulating several intracellular pathways. These pathways include (1) the oxidant and inflammatory program, (2) insulin growth factor 1 (IGF-1) pathway, (3) KU70 / BCL-2-associated X protein (BAX) pathway, (4) tumor necrosis factor alpha (TNF-α) pathway, (5) BCL-2 antagonist of cell death (BAD) pathway, and (6) mitogen-activated protein kinase (MAPK) pathway. Given the key role of clusterin in preventing loss of cardiac tissue, modulating the expression and function of this protein carries the potential of improving cardiovascular care in the future.
Collapse
Affiliation(s)
- Rodrigo Martins Pereira
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Rania A Mekary
- Department of Pharmaceutical Business and Administrative Sciences, MCPHS University, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kellen Cristina da Cruz Rodrigues
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Chadi Pellegrini Anaruma
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Dennys Esper Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil.,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Science, University of Campinas, 1300 Pedro Zaccaria St, Limeira, São Paulo, Brazil. .,CEPECE-Center of Research in Sport Sciences, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil.
| |
Collapse
|
17
|
Yang N, Dong B, Yang J, Li Y, Kou L, Liu Y, Qin Q. Effects of Rosuvastatin on Apolipoprotein J in Balloon-Injured Carotid Artery in Rats. Arq Bras Cardiol 2018; 111:562-568. [PMID: 30281685 PMCID: PMC6199510 DOI: 10.5935/abc.20180163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/09/2018] [Indexed: 12/04/2022] Open
Abstract
Background Restenosis after percutaneous coronary intervention in coronary heart disease
remains an unsolved problem. Clusterin (CLU) (or Apolipoprotein [Apo] J)
levels have been reported to be elevated during the progression of
postangioplasty restenosis and atherosclerosis. However, its role in
neointimal hyperplasia is still controversial. Objective To elucidate the role Apo J in neointimal hyperplasia in a rat carotid artery
model in vivo with or without rosuvastatin
administration. Methods Male Wistar rats were randomly divided into three groups: the control group
(n = 20), the model group (n = 20) and the statin intervention group (n =
32). The rats in the intervention group were given 10mg /kg dose of
rosuvastatin. A 2F Fogarty catheter was introduced to induce vascular
injury. Neointima formation was analyzed 1, 2, 3 and 4 weeks after balloon
injury. The level of Apo J was measured by real-time PCR,
immunohistochemistry and western blotting. Results Intimal/medial area ratio (intimal/medial, I/M) was increased after
balloon-injury and reached the maximum value at 4weeks in the model group;
I/M was slightly increased at 2 weeks and stopped increasing after
rosuvastatin administration. The mRNA and protein levels of Apo J in carotid
arteries were significantly upregulated after rosuvastatin administration as
compared with the model group, and reached maximum values at 2 weeks, which
was earlier than in the model group (3 weeks). Conclusion Apo J served as an acute phase reactant after balloon injury in rat carotid
arteries. Rosuvastatin may reduce the neointima formation through
up-regulation of Apo J. Our results suggest that Apo J exerts a protective
role in the restenosis after balloon-injury in rats.
Collapse
Affiliation(s)
- Ning Yang
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| | - Bo Dong
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| | - Jinyu Yang
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| | - Yang Li
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| | - Lu Kou
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| | - Yue Liu
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| | - Qin Qin
- Department of Cardiovascular, Tianjin Chest Hospital, Tianjin - China
| |
Collapse
|
18
|
Turkieh A, Fertin M, Bouvet M, Mulder P, Drobecq H, Lemesle G, Lamblin N, de Groote P, Porouchani S, Chwastyniak M, Beseme O, Amouyel P, Mouquet F, Balligand JL, Richard V, Bauters C, Pinet F. Expression and Implication of Clusterin in Left Ventricular Remodeling After Myocardial Infarction. Circ Heart Fail 2018; 11:e004838. [DOI: 10.1161/circheartfailure.117.004838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/16/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Annie Turkieh
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| | - Marie Fertin
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| | - Marion Bouvet
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| | - Paul Mulder
- Institut Pasteur de Lille, Université de Lille, France. Inserm U1096, FHU-REMOD-VHF, Normandie University, University of Rouen, France (P.M., V.R.)
| | - Hervé Drobecq
- UMR 8161-M3T-Mechanisms of Tumorigenesis and Target Therapies, CNRS (H.D.)
| | - Gilles Lemesle
- USIC et Centre Hémodynamique, Institut Coeur Poumon, Centre Hospitalier Régional et Universitaire de Lille, France (G.L., N.L., P.d.G., F.M., C.B.)
- Faculté de Médecine de l’Université de Lille, France (G.L., N.L., P.A., C.B.)
- FACT, French Alliance for Cardiovascular Trials, Paris, France (G.L., N.L., C.B.)
| | - Nicolas Lamblin
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
- USIC et Centre Hémodynamique, Institut Coeur Poumon, Centre Hospitalier Régional et Universitaire de Lille, France (G.L., N.L., P.d.G., F.M., C.B.)
- Faculté de Médecine de l’Université de Lille, France (G.L., N.L., P.A., C.B.)
- FACT, French Alliance for Cardiovascular Trials, Paris, France (G.L., N.L., C.B.)
| | - Pascal de Groote
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
- USIC et Centre Hémodynamique, Institut Coeur Poumon, Centre Hospitalier Régional et Universitaire de Lille, France (G.L., N.L., P.d.G., F.M., C.B.)
| | - Sina Porouchani
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| | - Maggy Chwastyniak
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| | - Olivia Beseme
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| | - Philippe Amouyel
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
- Faculté de Médecine de l’Université de Lille, France (G.L., N.L., P.A., C.B.)
- CHU Lille, Service de Santé Publique, Épidémiologie, Économie de la Santé et Prévention, France (P.A.)
| | - Frédéric Mouquet
- USIC et Centre Hémodynamique, Institut Coeur Poumon, Centre Hospitalier Régional et Universitaire de Lille, France (G.L., N.L., P.d.G., F.M., C.B.)
| | - Jean-Luc Balligand
- Institut de Recherche Experimentale et Clinique, Pole of Pharmacology and Therapeutics and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium (J.-L.B.)
| | - Vincent Richard
- Institut Pasteur de Lille, Université de Lille, France. Inserm U1096, FHU-REMOD-VHF, Normandie University, University of Rouen, France (P.M., V.R.)
| | - Christophe Bauters
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
- USIC et Centre Hémodynamique, Institut Coeur Poumon, Centre Hospitalier Régional et Universitaire de Lille, France (G.L., N.L., P.d.G., F.M., C.B.)
- Faculté de Médecine de l’Université de Lille, France (G.L., N.L., P.A., C.B.)
- FACT, French Alliance for Cardiovascular Trials, Paris, France (G.L., N.L., C.B.)
| | - Florence Pinet
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| |
Collapse
|
19
|
More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. Clin Sci (Lond) 2018; 132:909-923. [PMID: 29739822 DOI: 10.1042/cs20171592] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a small circulating protein that is highly modulated in a wide variety of pathological situations, making it a useful biomarker of various disease states. It is one of the best markers of acute kidney injury, as it is rapidly released after tubular damage. However, a growing body of evidence highlights an important role for NGAL beyond that of a biomarker of renal dysfunction. Indeed, numerous studies have demonstrated a role for NGAL in both cardiovascular and renal diseases. In the present review, we summarize current knowledge concerning the involvement of NGAL in cardiovascular and renal diseases and discuss the various mechanisms underlying its pathological implications.
Collapse
|
20
|
Bostanci N, Selevsek N, Wolski W, Grossmann J, Bao K, Wahlander A, Trachsel C, Schlapbach R, Öztürk VÖ, Afacan B, Emingil G, Belibasakis GN. Targeted Proteomics Guided by Label-free Quantitative Proteome Analysis in Saliva Reveal Transition Signatures from Health to Periodontal Disease. Mol Cell Proteomics 2018; 17:1392-1409. [PMID: 29610270 DOI: 10.1074/mcp.ra118.000718] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Periodontal diseases are among the most prevalent worldwide, but largely silent, chronic diseases. They affect the tooth-supporting tissues with multiple ramifications on life quality. Their early diagnosis is still challenging, due to lack of appropriate molecular diagnostic methods. Saliva offers a non-invasively collectable reservoir of clinically relevant biomarkers, which, if utilized efficiently, could facilitate early diagnosis and monitoring of ongoing disease. Despite several novel protein markers being recently enlisted by discovery proteomics, their routine diagnostic application is hampered by the lack of validation platforms that allow for rapid, accurate and simultaneous quantification of multiple proteins in large cohorts. Here we carried out a pipeline of two proteomic platforms; firstly, we applied open ended label-free quantitative (LFQ) proteomics for discovery in saliva (n = 67, including individuals with health, gingivitis, and periodontitis), followed by selected-reaction monitoring (SRM)-targeted proteomics for validation in an independent cohort (n = 82). The LFQ platform led to the discovery of 119 proteins with at least 2-fold significant difference between health and disease. The 65 proteins chosen for the subsequent SRM platform included 50 functionally related proteins derived from the significantly enriched processes of the LFQ data, 11 from literature-mining, and four house-keeping ones. Among those, 60 were reproducibly quantifiable proteins (92% success rate), represented by a total of 143 peptides. Machine-learning modeling led to a narrowed-down panel of five proteins of high predictive value for periodontal diseases with maximum area under the receiver operating curve >0.97 (higher in disease: Matrix metalloproteinase-9, Ras-related protein-1, Actin-related protein 2/3 complex subunit 5; lower in disease: Clusterin, Deleted in Malignant Brain Tumors 1). This panel enriches the pool of credible clinical biomarker candidates for diagnostic assay development. Yet, the quantum leap brought into the field of periodontal diagnostics by this study is the application of the biomarker discovery-through-verification pipeline, which can be used for validation in further cohorts.
Collapse
Affiliation(s)
- Nagihan Bostanci
- From the ‡Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden;
| | - Nathalie Selevsek
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Witold Wolski
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Jonas Grossmann
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Kai Bao
- From the ‡Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Asa Wahlander
- ¶AstraZeneca Translational Biomarkers and Bioanalysis, Drug Safety and Metabolism, Innovative Medicines, Mölndal, Sweden
| | - Christian Trachsel
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Ralph Schlapbach
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Veli Özgen Öztürk
- ‖Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydin, Turkey
| | - Beral Afacan
- ‖Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydin, Turkey
| | - Gulnur Emingil
- **Department of Periodontology, School of Dentistry, Ege University, Izmir, Turkey
| | - Georgios N Belibasakis
- From the ‡Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Ter Horst EN, Krijnen PAJ, Flecknell P, Meyer KW, Kramer K, van der Laan AM, Piek JJ, Niessen HWM. Sufentanil-medetomidine anaesthesia compared with fentanyl/fluanisone-midazolam is associated with fewer ventricular arrhythmias and death during experimental myocardial infarction in rats and limits infarct size following reperfusion. Lab Anim 2017; 52:271-279. [PMID: 28776458 PMCID: PMC5967036 DOI: 10.1177/0023677217724485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
To improve infarct healing following myocardial infarction in humans, therapeutic interventions can be applied during the inflammatory response. Animal models are widely used to study this process. However, induction of MI in rodents is associated with high mortality due to ventricular fibrillation (VF) during coronary artery ligation. The anaesthetic agent used during the procedure appears to influence the frequency of this complication. In this retrospective study, the effect on ventricular arrhythmia incidence during ligation and infarct size following in vivo reperfusion of two anaesthetic regimens, sufentanil–medetomidine (SM) and fentanyl/fluanisone–midazolam (FFM) was evaluated in rats. Anaesthetics were administered subcutaneously using fentanyl/fluanisone (0.5 mL/kg) with midazolam (5 mg/kg) (FFM group, n = 48) or sufentanil (0.05 mg/kg) with medetomidine (0.15 mg/kg) (SM group, n = 47). The coronary artery was ligated for 40 min to induce MI. Heart rate and ventricular arrhythmias were recorded during ligation, and infarct size was measured via histochemistry after three days of reperfusion. In the SM group, heart rate and VF incidence were lower throughout the experiment compared with the FFM group (6% versus 30%) (P < 0.01). Fatal VF did not occur in the SM group whereas this occurred in 25% of the animals in the FFM group. Additionally, after three days of reperfusion, the infarcted area following SM anaesthesia was less than half as large as that following FFM anaesthesia (8.5 ± 6.4% versus 20.7 ± 5.6%) (P < 0.01). Therefore, to minimize the possibility of complications related to VF and acute death arising during ligation, SM anaesthesia is recommended for experimental MI in rats.
Collapse
Affiliation(s)
- Ellis N Ter Horst
- 1 Department of Cardiology, Academic Medical Centre, Amsterdam, The Netherlands.,2 Netherlands Heart Institute, Utrecht, The Netherlands.,3 Institute for Cardiovascular Research (ICaR-VU), VU University Medical Centre, Amsterdam, The Netherlands.,4 Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Paul A J Krijnen
- 3 Institute for Cardiovascular Research (ICaR-VU), VU University Medical Centre, Amsterdam, The Netherlands.,4 Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Paul Flecknell
- 5 Comparative Biology Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Klaas W Meyer
- 6 Amsterdam Animal Research Centre, VU University, Amsterdam, The Netherlands
| | - Klaas Kramer
- 6 Amsterdam Animal Research Centre, VU University, Amsterdam, The Netherlands
| | - Anja M van der Laan
- 1 Department of Cardiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Jan J Piek
- 1 Department of Cardiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Hans W M Niessen
- 3 Institute for Cardiovascular Research (ICaR-VU), VU University Medical Centre, Amsterdam, The Netherlands.,4 Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands.,7 Department of Cardiac Surgery, VU University, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Xu JY, Chen GH, Yang YJ. Exosomes: A Rising Star in Falling Hearts. Front Physiol 2017; 8:494. [PMID: 28751864 PMCID: PMC5508217 DOI: 10.3389/fphys.2017.00494] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
Although exosomes were previously recognized as a mechanism for discharging useless cellular components, growing evidence has elucidated their roles in conveying information between cells. They contribute to cell-cell communication by carrying nucleic acids, proteins and lipids that can, in turn, regulate behavior of the target cells. Recent research suggested that exosomes extensively participate in progression of diverse cardiovascular diseases (CVDs), such as myocardial infarction, cardiomyopathy, pulmonary arterial hypertension and others. Here, we summarize effects of exosome-derived molecules (mainly microRNAs and proteins) on cardiac function, to examine their potential applications as biomarkers or therapeutics in CVDs.
Collapse
Affiliation(s)
- Jun-Yan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing, China
| | - Gui-Hao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
23
|
On the value of therapeutic interventions targeting the complement system in acute myocardial infarction. Transl Res 2017; 182:103-122. [PMID: 27810412 DOI: 10.1016/j.trsl.2016.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/12/2023]
Abstract
The complement system plays an important role in the inflammatory response subsequent to acute myocardial infarction (AMI). The aim of this study is to create a systematic overview of studies that have investigated therapeutic administration of complement inhibitors in both AMI animal models and human clinical trials. To enable extrapolation of observations from included animal studies toward post-AMI clinical trials, ex vivo studies on isolated hearts and proof-of-principle studies on inhibitor administration before experimental AMI induction were excluded. Positive therapeutic effects in AMI animal models have been described for cobra venom factor, soluble complement receptor 1, C1-esterase inhibitor (C1-inh), FUT-175, C1s-inhibitor, anti-C5, ADC-1004, clusterin, and glycosaminoglycans. Two types of complement inhibitors have been tested in clinical trials, being C1-inh and anti-C5. Pexelizumab (anti-C5) did not result in reproducible beneficial effects for AMI patients. Beneficial effects were reported in AMI patients for C1-inhibitor, albeit in small patient groups. In general, despite the absence of consistent positive effects in clinical trials thus far, the complement system remains a potentially interesting target for therapy in AMI patients. Based on the study designs of previous animal studies and clinical trials, we discuss several issues which require attention in the design of future studies: adjustment of clinical trial design to precise mechanism of action of administered inhibitor, optimizing the duration of therapy, and optimization of time point(s) on which therapeutic effects will be evaluated.
Collapse
|
24
|
The Local and Systemic Inflammatory Response in a Pig Burn Wound Model With a Pivotal Role for Complement. J Burn Care Res 2017; 38:e796-e806. [DOI: 10.1097/bcr.0000000000000486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Clusterin/apolipoprotein J is independently associated with survival in patients with chronic heart failure. J Clin Lipidol 2017; 11:178-184. [DOI: 10.1016/j.jacl.2016.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/26/2016] [Indexed: 12/20/2022]
|
26
|
Rohne P, Prochnow H, Koch-Brandt C. The CLU-files: disentanglement of a mystery. Biomol Concepts 2016; 7:1-15. [PMID: 26673020 DOI: 10.1515/bmc-2015-0026] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/05/2015] [Indexed: 01/03/2023] Open
Abstract
The multifaceted protein clusterin (CLU) has been challenging researchers for more than 35 years. The characterization of CLU as a molecular chaperone was one of the major breakthroughs in CLU research. Today, secretory clusterin (sCLU), also known as apolipoprotein J (apoJ), is considered one of the most important extracellular chaperones ever found. It is involved in a broad range of physiological and pathophysiological functions, where it exerts a cytoprotective role. Descriptions of various forms of intracellular CLU have led to further and even contradictory functions. To untangle the current state of knowledge of CLU, this review will combine old views in the field, with new discoveries to highlight the nature and function of this fascinating protein(s). In this review, we further describe the expression and subcellular location of various CLU forms. Moreover, we discuss recent insights into the structure of CLU and assess how structural properties as well as the redox environment determine the chaperone activity of CLU. Eventually, the review connects the biochemistry and molecular cell biology of CLU with medical aspects, to formulate a hypothesis of a CLU function in health and disease.
Collapse
|
27
|
Begieneman MP, Emmens RW, Rijvers L, Woudstra L, Paulus WJ, Kubat B, Vonk AB, van Rossum AC, Wouters D, Zeerleder S, van Ham M, Schalkwijk CG, Niessen HW, Krijnen PA. Myocardial infarction induces atrial inflammation that can be prevented by C1-esterase inhibitor. J Clin Pathol 2016; 69:1093-1099. [PMID: 27153875 DOI: 10.1136/jclinpath-2016-203639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 11/03/2022]
Abstract
AIMS Inflammation plays an important role in the pathogenesis of myocardial infarction (MI). Whether MI induces atrial inflammation is unknown however. Here, we analysed atrial inflammation in patients with MI and in rats with experimentally induced MI. The effect of the anti-inflammatory agent C1-esterase inhibitor (C1inh) on atrial inflammation in rats was also analysed. METHODS In the hearts of patients who died at different time points after MI (total n=24, mean age=60), neutrophils (myeloperoxidase-positive cells), lymphocytes (CD45-positive cells) and macrophages (CD68-positive cells) were quantified in the myocardium of the left and right atria and the infarcted left and non-infarcted right ventricles and compared with control patients (n=5, mean age=59). For the left and right atria, inflammatory cells were also quantified in the atrial adipose tissue. MI was induced in 17 rats, of which 10 were subsequently treated with C1inh for 6 days. Forty-two days post-MI, lymphocytes, macrophages and the endothelial inflammation marker Nε-(carboxymethyl)lysine (CML) were analysed in the myocardium of both the atria and ventricles. RESULTS In all investigated areas of the human hearts increased lymphocytes and macrophages were observed to a varying extent, especially between 6 h and 5 days following MI. Similarly, in rats MI resulted in an increase of inflammatory cells and CML in the atria. C1inh treatment decreased atrial inflammation. CONCLUSIONS MI induces atrial inflammation in patients and in rats. C1inh treatment could counteract this MI-induced atrial inflammation in rats.
Collapse
Affiliation(s)
- Mark Pv Begieneman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,ICaR-VU, Amsterdam, The Netherlands.,Netherlands Forensic Institute (NFI), The Hague, The Netherlands
| | - Reindert W Emmens
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,ICaR-VU, Amsterdam, The Netherlands.,Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Liza Rijvers
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Linde Woudstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,ICaR-VU, Amsterdam, The Netherlands
| | - Walter J Paulus
- ICaR-VU, Amsterdam, The Netherlands.,Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bela Kubat
- Netherlands Forensic Institute (NFI), The Hague, The Netherlands
| | - Alexander Ba Vonk
- ICaR-VU, Amsterdam, The Netherlands.,Department of Cardiac Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert C van Rossum
- ICaR-VU, Amsterdam, The Netherlands.,Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands.,Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Hans Wm Niessen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,ICaR-VU, Amsterdam, The Netherlands.,Department of Cardiac Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul Aj Krijnen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,ICaR-VU, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Yu B, Yang Y, Liu H, Gong M, Millard RW, Wang YG, Ashraf M, Xu M. Clusterin/Akt Up-Regulation Is Critical for GATA-4 Mediated Cytoprotection of Mesenchymal Stem Cells against Ischemia Injury. PLoS One 2016; 11:e0151542. [PMID: 26962868 PMCID: PMC4786134 DOI: 10.1371/journal.pone.0151542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/29/2016] [Indexed: 01/12/2023] Open
Abstract
Background Clusterin (Clu) is a stress-responding protein with multiple biological functions. Our preliminary microarray studies show that clusterin was prominently upregulated in mesenchymal stem cells (MSCs) overexpressing GATA-4 (MSCGATA-4). We hypothesized that the upregulation of clusterin is involved in overexpression of GATA-4 mediated cytoprotection. Methods MSCs harvested from bone marrow of rats were transduced with GATA-4. The expression of clusterin in MSCs was further confirmed by real-time PCR and western blotting. Simulation of ischemia was achieved by exposure of MSCs to a hypoxic environment. Lactate dehydrogenase (LDH) released from MSCs was served as a biomarker of cell injury and MTs uptake was used to estimate cell viability. Mitochondrial function was evaluated by measuring mitochondrial membrane potential (ΔΨm) and caspase 3/7 activity. Results (1) Clusterin expression was up-regulated in MSCGATA-4 compared to control MSCs transfected with empty-vector (MSCNull). MSCGATA-4 were tolerant to 72 h hypoxia exposure as shown by reduced LDH release and higher MTs uptake. This protection was abrogated by transfecting Clu-siRNA into MSCGATA-4. (2) Exogenous clusterin significantly decreased LDH release and increased MSC survival in hypoxic environment. Moreover, ΔΨm was maintained and caspase 3/7 activity was reduced by clusterin in a concentration-dependent manner. (3) p-Akt expression in MSCs was upregulated following pre-treatment with clusterin, with no change in total Akt. Moreover, cytoprotection mediated by clusterin was partially abrogated by Akt inhibitor LY294002. Conclusions Clusterin/Akt signaling pathway is involved in GATA-4 mediated cytoprotection against hypoxia stress. It is suggested that clusterin may be therapeutically exploited in MSC based therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Bin Yu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Yueting Yang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Huan Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Min Gong
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Ronald W. Millard
- Department of Pharmacology & Cell Biophysics, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Yi-Gang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Muhammad Ashraf
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
29
|
Melander O, Modrego J, Zamorano-León JJ, Santos-Sancho JM, Lahera V, López-Farré AJ. New circulating biomarkers for predicting cardiovascular death in healthy population. J Cell Mol Med 2015; 19:2489-99. [PMID: 26258425 PMCID: PMC4594690 DOI: 10.1111/jcmm.12652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023] Open
Abstract
There is interest to analyse newer biomarkers to identify healthy individuals at risk to develop cardiovascular disease (CVD) incidents and death. To determine in healthy individuals new circulating protein biomarkers, whose systemic levels may be associated with the risk of future development of CVD incidents and death. The study was performed in 82 individuals from the Malmö Diet and Cancer study cohort, free from CVD of whom 41 developed CVD and 41 did not. Plasma proteins related to inflammation and thrombo-coagulating processes were analysed. α1-antitrypsin isotype 3 plasma levels were significantly higher while apolipoprotein J plasma levels were lower in participants that developed CVD incidents than those that did not develop acute cardiovascular episode. Of 82 participants, 17 died by CVD causes. There were proteins whose expression in plasma was significantly higher in participants suffering CVD death as compared with those that did not die by CVD. These proteins included: fibrinogen β-chain isotypes 1 and 3, fibrinogen-γ-chain isotype 2, vitamin D-binding protein isotypes 1, 2 and 3, α1-antitrypsin isotypes 3 and 6, haptoglobin isotypes 3,4,5 and 5, haemopexin isotypes 1 and 2, and Rho/Rac guanine nucleotide exchange factor 2. Moreover, apolipoprotein J plasma levels were found lower in participants that died by cardiovascular cause. Association between plasma levels of proteins and CVD death was independent of age, gender, conventional risk factors and plasma C-reactive protein levels. Several protein plasma levels and protein isotypes related to inflammation and thrombo-coagulating phenomena were independently associated with the risk of future CVD death.
Collapse
Affiliation(s)
- Olle Melander
- Department of Clinical Sciences, Lund UniversityMalmö, Sweden
| | - Javier Modrego
- Instituto de Investigacion Sanitaria del Hospital Clínico San Carlos (IdISSC)Madrid, Spain
| | - Jose J Zamorano-León
- Instituto de Investigacion Sanitaria del Hospital Clínico San Carlos (IdISSC)Madrid, Spain
| | - Juana M Santos-Sancho
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad ComplutenseMadrid, Spain
| | - Vicente Lahera
- Instituto de Investigacion Sanitaria del Hospital Clínico San Carlos (IdISSC)Madrid, Spain
- Department of Physiology, School of Medicine, Universidad ComplutenseMadrid, Spain
| | - Antonio J López-Farré
- Instituto de Investigacion Sanitaria del Hospital Clínico San Carlos (IdISSC)Madrid, Spain
- Department of Medicine, School of Medicine, Universidad ComplutenseMadrid, Spain
| |
Collapse
|
30
|
Foglio E, Puddighinu G, Fasanaro P, D'Arcangelo D, Perrone GA, Mocini D, Campanella C, Coppola L, Logozzi M, Azzarito T, Marzoli F, Fais S, Pieroni L, Marzano V, Germani A, Capogrossi MC, Russo MA, Limana F. Exosomal clusterin, identified in the pericardial fluid, improves myocardial performance following MI through epicardial activation, enhanced arteriogenesis and reduced apoptosis. Int J Cardiol 2015; 197:333-47. [PMID: 26159041 DOI: 10.1016/j.ijcard.2015.06.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/13/2015] [Accepted: 06/12/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND We recently demonstrated that epicardial progenitor cells participate in the regenerative response to myocardial infarction (MI) and factors released in the pericardial fluid (PF) may play a key role in this process. Exosomes are secreted nanovesicles of endocytic origin, identified in most body fluids, which may contain molecules able to modulate a variety of cell functions. Here, we investigated whether exosomes are present in the PF and their potential role in cardiac repair. METHODS AND RESULTS Early gene expression studies in 3day-infarcted mouse hearts showed that PF induces epithelial-to-mesenchymal transition (EMT) in epicardial cells. Exosomes were identified in PFs from non-infarcted patients (PFC) and patients with acute MI (PFMI). A shotgun proteomics analysis identified clusterin in exosomes isolated from PFMI but not from PFC. Notably, clusterin has a protective effect on cardiomyocytes after acute MI in vivo and is an important mediator of TGFβ-induced. Clusterin addition to the pericardial sac determined an increase in epicardial cells expressing the EMT marker α-SMA and, interestingly, an increase in the number of epicardial cells ckit(+)/α-SMA(+), 7days following MI. Importantly, clusterin treatment enhanced arteriolar length density and lowered apoptotic rates in the peri-infarct area. Hemodynamic studies demonstrated an improvement in cardiac function in clusterin-treated compared to untreated infarcted hearts. CONCLUSIONS Exosomes are present and detectable in the PFs. Clusterin was identified in PFMI-exosomes and might account for an improvement in myocardial performance following MI through a framework including EMT-mediated epicardial activation, arteriogenesis and reduced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Eleonora Foglio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanni Puddighinu
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Pasquale Fasanaro
- Epigenetics & Regenerative Pharmacology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniela D'Arcangelo
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | | | | | | | | | - Mariantonia Logozzi
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Italy
| | - Tommaso Azzarito
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Italy
| | - Francesca Marzoli
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Italy
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Italy
| | - Luisa Pieroni
- Dipartimento di Medicina Sperimentale e Chirurgia, Facoltà di Medicina e Chirurgia, Università' di Roma "Tor Vergata", Italy
| | - Valeria Marzano
- Institute of Chemistry of Molecular Recognition, Italian National Research Council (CNR), Rome, Italy
| | - Antonia Germani
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | - Maurizio C Capogrossi
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy
| | - Matteo A Russo
- Laboratorio di Patologia Cellulare e Molecolare, San Raffaele Pisana, Istituto di Ricovero e Cura a Carattere Scientifico - IRCCS, Rome, Italy
| | - Federica Limana
- Laboratorio di Patologia Cellulare e Molecolare, San Raffaele Pisana, Istituto di Ricovero e Cura a Carattere Scientifico - IRCCS, Rome, Italy.
| |
Collapse
|
31
|
Impact of Virgin Olive Oil and Phenol-Enriched Virgin Olive Oils on the HDL Proteome in Hypercholesterolemic Subjects: A Double Blind, Randomized, Controlled, Cross-Over Clinical Trial (VOHF Study). PLoS One 2015; 10:e0129160. [PMID: 26061039 PMCID: PMC4465699 DOI: 10.1371/journal.pone.0129160] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/03/2015] [Indexed: 12/21/2022] Open
Abstract
The effects of olive oil phenolic compounds (PCs) on HDL proteome, with respect to new aspects of cardioprotective properties, are still unknown. The aim of this study was to assess the impact on the HDL protein cargo of the intake of virgin olive oil (VOO) and two functional VOOs, enriched with their own PCs (FVOO) or complemented with thyme PCs (FVOOT), in hypercholesterolemic subjects. Eligible volunteers were recruited from the IMIM-Hospital del Mar Medical Research Institute (Spain) from April 2012 to September 2012. Thirty-three hypercholesterolemic participants (total cholesterol >200mg/dL; 19 men and 14 women; aged 35 to 80 years) were randomized in the double-blind, controlled, cross-over VOHF clinical trial. The subjects received for 3 weeks 25 mL/day of: VOO, FVOO, or FVOOT. Using a quantitative proteomics approach, 127 HDL-associated proteins were identified. Among these, 15 were commonly differently expressed after the three VOO interventions compared to baseline, with specific changes observed for each intervention. The 15 common proteins were mainly involved in the following pathways: LXR/RXR activation, acute phase response, and atherosclerosis. The three VOOs were well tolerated by all participants. Consumption of VOO, or phenol-enriched VOOs, has an impact on the HDL proteome in a cardioprotective mode by up-regulating proteins related to cholesterol homeostasis, protection against oxidation and blood coagulation while down-regulating proteins implicated in acute-phase response, lipid transport, and immune response. The common observed protein expression modifications after the three VOOs indicate a major matrix effect.
Collapse
|
32
|
Gouweleeuw L, Naudé PJW, Rots M, DeJongste MJL, Eisel ULM, Schoemaker RG. The role of neutrophil gelatinase associated lipocalin (NGAL) as biological constituent linking depression and cardiovascular disease. Brain Behav Immun 2015; 46:23-32. [PMID: 25576802 DOI: 10.1016/j.bbi.2014.12.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Depression is more common in patients with cardiovascular disease than in the general population. Conversely, depression is a risk factor for developing cardiovascular disease. Comorbidity of these two pathologies worsens prognosis. Several mechanisms have been indicated in the link between cardiovascular disease and depression, including inflammation. Systemic inflammation can have long-lasting effects on the central nervous system, which could be associated with depression. NGAL is an inflammatory marker and elevated plasma levels are associated with both cardiovascular disease and depression. While patients with depression show elevated NGAL levels, in patients with comorbid heart failure, NGAL levels are significantly higher and associated with depression scores. Systemic inflammation evokes NGAL expression in the brain. This is considered a proinflammatory effect as it is involved in microglia activation and reactive astrocytosis. Animal studies support a direct link between NGAL and depression/anxiety associated behavior. In this review we focus on the role of NGAL in linking depression and cardiovascular disease.
Collapse
Affiliation(s)
- L Gouweleeuw
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | - P J W Naudé
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands; Department of Neurology and Alzheimer Research Center, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - M Rots
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | - M J L DeJongste
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - U L M Eisel
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | - R G Schoemaker
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands; Department of Cardiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Proteomic analysis allows for early detection of potential markers of metabolic impairment in very young obese children. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2014; 2014:9. [PMID: 24949022 PMCID: PMC4063220 DOI: 10.1186/1687-9856-2014-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022]
Abstract
Background Early diagnosis of initial metabolic derangements in young obese children could influence their management; however, this impairment is frequently not overt, but subtle and undetectable by routinely used clinical assays. Our aim was to evaluate the ability of serum proteomic analysis to detect these incipient metabolic alterations in comparison to standard clinical methods and to identify new candidate biomarkers. Methods A cross-sectional study of fasting serum samples from twenty-two prepubertal, Caucasian obese (OB; 9.22 ± 1.93 years; 3.43 ± 1.08 BMI-SDS) and twenty-one lean controls (C; 8.50 ± 1.98 years; -0.48 ± 0.81 BMI-SDS) and a prospective study of fasting serum samples from twenty prepubertal, Caucasian obese children (11 insulin resistant [IR]) before (4.77 ± 1.30 BMI-SDS) and after weight reduction (2.57 ± 1.29 BMI-SDS) by conservative treatment in a reference hospital (Pros-OB) was performed. Proteomic analysis (two-dimension-eletrophoresis + mass spectrometry analysis) of serum and comparative evaluation of the sensitivity of routinely used assays in the clinics to detect the observed differences in protein expression level, as well as their relationship with anthropometric features, insulin resistance indexes, lipid profile and adipokine levels were carried out. Results Study of the intensity data from proteomic analysis showed a decrease of several isoforms of apolipoprotein-A1, apo-J/clusterin, vitamin D binding protein, transthyretin in OBvs. C, with some changes in these proteins being enhanced by IR and partially reversed after weight loss. Expression of low molecular weight isoforms of haptoglobin was increased in OB, enhanced in IR and again decreased after weight loss, being positively correlated with serum interleukin-6 and NAMPT/visfatin levels. After statistical correction for multiple comparisons, significance remained for a single isoform of low MW haptoglobin (OB vs. C and IR vs. non-IR) and Apo A1 (IR vs. non-IR). Assays routinely used in the clinical setting (ELISA/kinetic nephelometry), only partially confirmed the changes observed by proteomic analysis (ApoA1 and haptoglobin). Conclusion Proteomic analysis can allow for the identification of potential new candidate biomarkers as a complement to routinely used assays to detect initial changes in serum markers of inflammation and lipid metabolism impairment in young obese children.
Collapse
|
34
|
Park S, Mathis KW, Lee IK. The physiological roles of apolipoprotein J/clusterin in metabolic and cardiovascular diseases. Rev Endocr Metab Disord 2014; 15:45-53. [PMID: 24097125 DOI: 10.1007/s11154-013-9275-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several isoforms of apolipoprotein J/clusterin (CLU) are encoded from a single gene located on chromosome 8 in humans. These isoforms are ubiquitously expressed in the tissues, and have been implicated in aging, neurodegenerative disorders, cancer progression, and metabolic/cardiovascular diseases including dyslipidemia, diabetes, atherosclerosis and myocardial infarction. The conventional secreted form of CLU (sCLU) is thought to be a component of high density lipoprotein-cholesterol. sCLU functions as a chaperone for misfolded proteins and it is thought to promote survival by reducing oxidative stress. Nuclear CLU, a truncated CLU formed by alternative splicing, is responsible for promoting apoptosis via a Bax-dependent pathway. There are putative regulatory sites in the promoter regions of CLU, which are occupied by transcription factors such as transforming growth factor (TGF)-β inhibitory element, activator protein-1, CLU-specific elements, and carbohydrate response element. However, the molecular mechanisms underlying the distinct roles of CLU in a variety of conditions remain unclear. Although the function of CLU in cancer or neurological disease has been studied intensively for three decades, physiological roles of CLU seem unexplored in the cardiovascular system and metabolic diseases. In this review, we will discuss general characteristics and regulations of CLU based on previous literature and assess the recent findings associated with its physiological roles in different tissues including the vasculature, heart, liver, kidney, adipose tissue, and brain.
Collapse
Affiliation(s)
- S Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | | | | |
Collapse
|
35
|
Kang BH, Shim YJ, Tae YK, Song JA, Choi BK, Park IS, Min BH. Clusterin stimulates the chemotactic migration of macrophages through a pertussis toxin sensitive G-protein-coupled receptor and Gβγ-dependent pathways. Biochem Biophys Res Commun 2014; 445:645-50. [PMID: 24569077 DOI: 10.1016/j.bbrc.2014.02.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
Abstract
Clusterin induces the expression of various chemotactic cytokines including tumor necrosis factor-α (TNF-α) in macrophages and is involved in the cell migration. According to the results of this study, clusterin induced the directional migration (chemotaxis) of macrophages based on a checkerboard analysis. The chemotactic activity of clusterin was prevented by pretreatment with pertussis toxin (PTX), indicating that the Gαi/o-protein coupled receptor (GPCR) was involved in the chemotactic response of clusterin. Clusterin-stimulated chemotaxis was abrogated in a dose-dependent manner by pretreatment with gallein (a Gβγ inhibitor), indicating the involvement of Gβγ released from the GPCR. In addition, inhibitors of phospholipase C (PLC, U73122) and phosphoinositide 3-kinase (PI3K, LY294002), the key targets of Gβγ binding and activation, suppressed chemotactic migration by clusterin. The phosphorylation of Akt induced by clusterin was blocked by pretreatment with gallein or LY294002 but not with U73122, indicating that Gβγ released from the PTX-sensitive Gi protein complex activated PLC and PI3K/Akt signaling pathways separately. The activation of cellular MAP kinases was essential in that their inhibitors blocked clusterin-induced chemotaxis, and Gβγ was required for the activation of MAP kinases because gallein reduced their phosphorylations induced by clusterin. In addition, the inflammation-induced migration of macrophages was greatly reduced in clusterin-deficient mice based on a thioglycollate-induced peritonitis model system. These results suggest that clusterin stimulates the chemotactic migration of macrophages through a PTX-sensitive GPCR and Gβγ-dependent pathways and describe a novel role of clusterin as a chemoattractant of monocytes/macrophages, suggesting that clusterin may serve as a molecular bridge between inflammation and its remodeling of related tissue by recruiting immune cells.
Collapse
Affiliation(s)
- Byeong-Ho Kang
- Department of Pharmacology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Young-Jun Shim
- Department of Pharmacology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yoo-Keung Tae
- Department of Pharmacology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jin-A Song
- Department of Pharmacology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Byong-Kwan Choi
- Department of Internal Medicine, College of Medicine, Dongguk University Ilsan Hospital, Republic of Korea
| | - In-Sun Park
- Department of Anatomy, College of Medicine, Inha University, Republic of Korea
| | - Bon-Hong Min
- Department of Pharmacology, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Cubedo J, Padró T, Badimon L. Coordinated proteomic signature changes in immune response and complement proteins in acute myocardial infarction: The implication of serum amyloid P-component. Int J Cardiol 2013; 168:5196-204. [DOI: 10.1016/j.ijcard.2013.07.181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/20/2013] [Indexed: 12/18/2022]
|
37
|
Non-secreted clusterin isoforms are translated in rare amounts from distinct human mRNA variants and do not affect Bax-mediated apoptosis or the NF-κB signaling pathway. PLoS One 2013; 8:e75303. [PMID: 24073260 PMCID: PMC3779157 DOI: 10.1371/journal.pone.0075303] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/14/2013] [Indexed: 01/08/2023] Open
Abstract
Clusterin, also known as apolipoprotein J, is expressed from a variety of tissues and implicated in pathological disorders such as neurodegenerative diseases, ischemia and cancer. In contrast to secretory clusterin (sCLU), which acts as an extracellular chaperone, the synthesis, subcellular localization and function(s) of intracellular CLU isoforms is currently a matter of intense discussion. By investigating human CLU mRNAs we here unravel mechanisms leading to the synthesis of distinct CLU protein isoforms and analyze their subcellular localization and their impact on apoptosis and on NF-κB-activity. Quantitative PCR-analyses revealed the expression of four different stress-inducible CLU mRNA variants in non-cancer and cancer cell lines. In all cell lines variant 1 represents the most abundant mRNA, whereas all other variants collectively account for no more than 0.34% of total CLU mRNA, even under stressed conditions. Overexpression of CLU cDNAs combined with in vitro mutagenesis revealed distinct translational start sites including a so far uncharacterized non-canonical CUG start codon. We show that all exon 2-containing mRNAs encode sCLU and at least three non-glycosylated intracellular isoforms, CLU1‑449, CLU21‑449 and CLU34‑449, which all reside in the cytosol of unstressed and stressed HEK‑293 cells. The latter is the only form expressed from an alternatively spliced mRNA variant lacking exon 2. Functional analysis revealed that none of these cytosolic CLU forms modulate caspase-mediated intrinsic apoptosis or significantly affects TNF-α-induced NF-κB-activity. Therefore our data challenge some of the current ideas regarding the physiological functions of CLU isoforms in pathologies.
Collapse
|
38
|
Plasma clusterin concentrations may predict resistance to intravenous immunoglobulin in patients with Kawasaki disease. ScientificWorldJournal 2013; 2013:382523. [PMID: 23956692 PMCID: PMC3727184 DOI: 10.1155/2013/382523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/05/2013] [Indexed: 12/04/2022] Open
Abstract
Kawasaki disease (KD) is an acute febrile vasculitic syndrome of early childhood often complicated by coronary artery lesion that drastically reduces the quality of life. The study aimed to identify a reliable marker for predicting nonresponsiveness to the first course of intravenous immunoglobulin (IVIG) in KD patients. A total of 63 patients with KD were enrolled in the study (IVIG response, 58; IVIG resistance, 5). Plasma samples were collected before and after IVIG infusion for measurement of biomarkers. Patients' clinical characteristics and laboratory data were also analyzed. A receiver operating characteristic curve was generated to identify a cut-off value for predicting IVIG resistance. Among the biomarkers, the difference in plasma clusterin concentrations before and after IVIG infusion (CLUSTER 12) was significantly related to IVIG resistance (P = 0.040; 95% confidence interval (CI): −25.8% to −6.0%). Using a CLUSTER 12 cut-off value of <8.52 mg/L, the odds ratio for IVIG resistance was 11.467 (95% CI: 1.186 to 110.853). Patients with plasma CLUSTER 12 concentrations >8.52 mg/L had a much higher risk of IVIG resistance than those with CLUSTER 12 concentrations <8.52 mg/L. Plasma clusterin concentration shows promise as a candidate biomarker for predicting IVIG resistance in patients with KD.
Collapse
|
39
|
Trougakos IP. The molecular chaperone apolipoprotein J/clusterin as a sensor of oxidative stress: implications in therapeutic approaches - a mini-review. Gerontology 2013; 59:514-23. [PMID: 23689375 DOI: 10.1159/000351207] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/03/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Organisms are constantly exposed to physiological and environmental stresses and therefore require an efficient surveillance of genome and proteome quality in order to prevent disruption of homeostasis. Central to the intra- and extracellular proteome surveillance system are the molecular chaperones that contribute to both proteome maintenance and clearance. The conventional protein product of the apolipoprotein J/clusterin (CLU) gene is a heterodimeric secreted glycoprotein (also termed as sCLU) with a ubiquitous expression in human tissues. CLU exerts a small heat shock protein-like stress-induced chaperone activity and has been functionally implicated in numerous physiological processes as well as in ageing and most age-related diseases including tumorigenesis, neurodegeneration, and cardiovascular and metabolic syndromes. OBJECTIVE The CLU gene is differentially regulated by a wide variety of stimuli due to the combined presence of many distinct regulatory elements in its promoter that make it an extremely sensitive cellular biosensor of environmental and/or oxidative stress. Downstream to CLU gene induction, the CLU protein seems to actively intervene in pathological states of increased oxidative injury due to its chaperone-related property to inhibit protein aggregation and precipitation (a main feature of oxidant injury), as well as due to its reported distribution in both extra- and, most likely, intracellular compartments. CONCLUSION On the basis of these findings, CLU has emerged as a unique regulator of cellular proteostasis. Nevertheless, it seemingly exerts a dual function in pathology. For instance, in normal cells and during early phases of carcinogenesis, CLU may inhibit tumor progression as it contributes to suppression of proteotoxic stress. In advanced neoplasia, however, it may offer a significant survival advantage in the tumor by suppressing many therapeutic stressors and enhancing metastasis. This review will critically present a synopsis of recent novel findings that relate to the function of this amazing molecule and support the notion that CLU is a biosensor of oxidative injury; a common link between ageing and all pathologies where CLU has been implicated. Potential future perspectives, implications and opportunities for translational research and the development of new therapies will be discussed.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Athens, Greece
| |
Collapse
|
40
|
Seo HY, Kim MK, Jung YA, Jang BK, Yoo EK, Park KG, Lee IK. Clusterin decreases hepatic SREBP-1c expression and lipid accumulation. Endocrinology 2013; 154:1722-30. [PMID: 23515283 DOI: 10.1210/en.2012-2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hepatic steatosis is emerging as the most important cause of chronic liver disease and is associated with the increasing incidence of obesity with insulin resistance. Sterol regulatory binding protein-1c (SREBP-1c) is a master regulator of lipogenic gene expression in the liver. Hyperinsulinemia induces SREBP-1c transcription through liver X receptor (LXR), specificity protein 1, and SREBP-1c itself. Clusterin, an 80-kDa disulfide-linked heterodimeric protein, has been functionally implicated in several physiological processes including lipid transport; however, little is known about its effect on hepatic lipogenesis. The present study examined whether clusterin regulates SREBP-1c expression and lipid accumulation in the liver. Adenovirus-mediated overexpression of clusterin inhibited insulin- or LXR agonist-stimulated SREBP-1c expression in cultured liver cells. In reporter assays, clusterin inhibited SREBP-1c promoter activity. Moreover, adenovirus-mediated overexpression of clusterin in the livers of mice fed a high-fat diet inhibited hepatic steatosis through the inhibition of SREBP-1c expression. Reporter and gel shift assays showed that clusterin inhibits SREBP-1c expression via the repression of LXR and specificity protein 1 activity. This study shows that clusterin inhibits hepatic lipid accumulation through the inhibition of SREBP-1c expression and suggests that clusterin is a negative regulator of SREBP-1c expression and hepatic lipogenesis.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, Kyungpook National University School of Medicine, 50 Samduk-2ga, Jung-gu, Daegu 700-721, South Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Xia Y, Hong H, Ye L, Wang Y, Chen H, Liu J. Label-free quantitative proteomic analysis of right ventricular remodeling in infant Tetralogy of Fallot patients. J Proteomics 2013; 84:78-91. [PMID: 23571024 DOI: 10.1016/j.jprot.2013.03.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/04/2013] [Accepted: 03/30/2013] [Indexed: 12/14/2022]
Abstract
Tetralogy of Fallot (TOF) results in chronic progressive right ventricular (RV) pressure overload and shunt hypoxemia. We investigated the global changes in the proteome of RV among infant patients with and without TOF to gain an insight into early RV remodeling. One hundred and thirty-six differentially expressed proteins were identified using label-free LC-ESI-MS/MS analysis. Western blot results revealed that the expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2) increased significantly in TOF patients; and levels of lysocardiolipin acyltransferase 1 (LCLAT1), lumican (LUM), and versican (VCAN) decreased significantly. QRT-PCR analysis showed that levels of PFKFB2 mRNA were markedly increased, but those of LCLAT1 and LUM were significantly decreased. VCAN mRNA showed no significant change in response to pathophysiology of TOF. The results of immunohistochemical staining were similar to those of Western blot analysis. Results of the proteomic analysis indicated that the level of glycolysis-related proteins had increased and levels of lipid-metabolism-related proteins had decreased. ECM proteins were found to be more down-regulated in TOF in the present study than in previous reports. Taken together, our findings may provide clues to both the metabolic inflexibility and ECM remodeling during the early RV remodeling, which occur in response to chronic hypoxia and long-term pressure overload in TOF patients.
Collapse
Affiliation(s)
- Yu Xia
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Henderson B, Pockley AG. Proteotoxic stress and circulating cell stress proteins in the cardiovascular diseases. Cell Stress Chaperones 2012; 17:303-11. [PMID: 22215517 PMCID: PMC3312955 DOI: 10.1007/s12192-011-0318-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 12/28/2022] Open
Abstract
The cardiovasculature is one of the major body systems and probably the one most exposed to stress. There is clear evidence that increasing levels of cell stress proteins within the heart is cardioprotective. In addition, there is rapidly emerging evidence that secreted cell stress proteins play a role in the function of the cardiovascular tissues. Those secreted proteins have three potential functions: (1) as normal homeostatic cardiovascular signals (e.g. protein disulphide isomerase); (2) as anti-inflammatory molecules, which are able to inhibit cardiovascular pathology (e.g. Hsp27); and (iii) as pro-inflammatory signals that can induce and promote cardiovascular pathology (e.g. Hsp60). As all of these various proteins may be released-at different rates-and in different cardiovascular diseases-we need to consider the cohort of potential secreted cell stress proteins as a dynamic system (network) that can aid and/or damage the equally dynamic cardiovascular system.
Collapse
Affiliation(s)
- Brian Henderson
- Department of Microbial Diseases, UCL-Eastman Dental Institute, University College London, London, UK.
| | | |
Collapse
|
44
|
Guan Q, Li S, Yip G, Gleave ME, Nguan CY, Du C. Decrease in donor heart injury by recombinant clusterin protein in cold preservation with University of Wisconsin solution. Surgery 2012; 151:364-71. [DOI: 10.1016/j.surg.2011.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/22/2011] [Indexed: 10/15/2022]
|
45
|
Yanaba K, Asano Y, Tada Y, Sugaya M, Kadono T, Sato S. A possible contribution of elevated serum clusterin levels to the inhibition of digital ulcers and pulmonary arterial hypertension in systemic sclerosis. Arch Dermatol Res 2012; 304:459-63. [DOI: 10.1007/s00403-012-1219-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/22/2012] [Accepted: 01/26/2012] [Indexed: 11/30/2022]
|
46
|
Prolonged C1 Inhibitor Administration Improves Local Healing of Burn Wounds and Reduces Myocardial Inflammation in a Rat Burn Wound Model. J Burn Care Res 2012; 33:544-51. [DOI: 10.1097/bcr.0b013e31823bc2fc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
|
48
|
Jun HO, Kim DH, Lee SW, Lee HS, Seo JH, Kim JH, Kim JH, Yu YS, Min BH, Kim KW. Clusterin protects H9c2 cardiomyocytes from oxidative stress-induced apoptosis via Akt/GSK-3β signaling pathway. Exp Mol Med 2011; 43:53-61. [PMID: 21270507 DOI: 10.3858/emm.2011.43.1.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Clusterin is a secretory glycoprotein, which is highly up-regulated in a variety of normal and injury tissues undergoing apoptosis including infarct region of the myocardium. Here, we report that clusterin protects H9c2 cardiomyocytes from H2O2-induced apoptosis by triggering the activation of Akt and GSK-3β. Treatment with H2O2 induces apoptosis of H9c2 cells by promoting caspase cleavage and cytochrome c release from mitochondria. However, co-treatment with clusterin reverses the induction of apoptotic signaling by H2O2, thereby recovers cell viability. The protective effect of clusterin on H2O2-induced apoptosis is impaired by PI3K inhibitor LY294002, which effectively suppresses clusterin-induced activation of Akt and GSK-3β. In addition, the protective effect of clusterin is independent on its receptor megalin, because inhibition of megalin has no effect on clusterin-mediated Akt/GSK-3β phosphoylation and H9c2 cell viability. Collectively, these results suggest that clusterin has a role protecting cardiomyocytes from oxidative stress and the Akt/GSK-3β signaling mediates anti-apoptotic effect of clusterin.
Collapse
Affiliation(s)
- Hyoung-Oh Jun
- NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gamberi T, Puglia M, Guidi F, Magherini F, Bini L, Marzocchini R, Modesti A, Modesti PA. A proteomic approach to identify plasma proteins in patients with abdominal aortic aneurysm. MOLECULAR BIOSYSTEMS 2011; 7:2855-62. [DOI: 10.1039/c1mb05107e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|