1
|
Mafune KK, Kasson MT, Winkler MKH. Building blocks toward sustainable biofertilizers: variation in arbuscular mycorrhizal spore germination when immobilized with diazotrophic bacteria in biodegradable hydrogel beads. J Appl Microbiol 2024; 135:lxae167. [PMID: 38960411 DOI: 10.1093/jambio/lxae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
AIM We investigated whether there was interspecies and intraspecies variation in spore germination of 12 strains of arbuscular mycorrhizal fungi when co-entrapped with the diazotrophic plant growth-promoting bacteria, Azospirillum brasilense Sp7 in alginate hydrogel beads. METHODS AND RESULTS Twelve Rhizophagus irregularis, Rhizophagus intraradices, and Funneliformis mosseae strains were separately combined with a live culture of Azospirillum brasilense Sp7. Each fungal-bacterial consortia was supplemented with sodium alginate to a 2% concentration (v/v) and cross-linked in calcium chloride (2% w/v) to form biodegradable hydrogel beads. One hundred beads from each combination (total of 1200) were fixed in solidified modified Strullu and Romand media. Beads were observed for successful spore germination and bacterial growth over 14 days. In all cases, successful growth of A. brasilense was observed. For arbuscular mycorrhizal fungi, interspecies variation in spore germination was observed, with R. intraradices having the highest germination rate (64.3%), followed by R. irregularis (45.5%) and F. mosseae (40.3%). However, a difference in intraspecies germination was only observed among strains of R. irregularis and F. mosseae. Despite having varying levels of germination, even the strains with the lowest potential were still able to establish with the plant host Brachypodium distachyon in a model system. CONCLUSIONS Arbuscular mycorrhizal spore germination varied across strains when co-entrapped with a diazotrophic plant growth-promoting bacteria. This demonstrates that hydrogel beads containing a mixed consortium hold potential as a sustainable biofertilizer and that compatibility tests remain an important building block when aiming to create a hydrogel biofertilizer that encases a diversity of bacteria and fungi. Moving forward, further studies should be conducted to test the efficacy of these hydrogel biofertilizers on different crops across varying climatic conditions in order to optimize their potential.
Collapse
Affiliation(s)
- Korena K Mafune
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, United States
| | - Matt T Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Mari-Karoliina H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, United States
| |
Collapse
|
2
|
Rimkus A, Namina A, Dzierkale MT, Grigs O, Senkovs M, Larsson S. Impact of Growth Conditions on the Viability of Trichoderma asperellum during Storage. Microorganisms 2023; 11:microorganisms11041084. [PMID: 37110507 PMCID: PMC10143629 DOI: 10.3390/microorganisms11041084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
As excellent biocontrol agents and plant growth promoters, Trichoderma species are agriculturally important. Trichoderma spp. cultures can be produced using solid-state or submerged cultivation, the latter being much less labor intensive and easier to control and automate. The aim of the study was to investigate the ability to increase the shelf-life of T. asperellum cells by optimizing cultivation media and upscaling the submerged cultivation process. Four different cultivation media were used with or without the addition of Tween 80 and stored with or without incorporation into peat, and viability, expressed as CFU/g, was assessed during one year of storage in an industrial warehouse. The addition of Tween 80 had a positive effect on the biomass yield. The culture medium played a major role in the ability of the mycelium to produce spores, which in turn influenced the amount of CFU. This effect was less pronounced when the biomass was mixed with peat prior to storage. A procedure that increases the number of CFU in a peat-based product formulation is recommended, namely, incubation of the mixture at 30 °C for 10 days prior to storage at 15 °C over an extended period of time.
Collapse
Affiliation(s)
- Alina Rimkus
- Bioefekts Ltd., 30 Livzemes Street, LV-2169 Salaspils, Latvia
| | - Agne Namina
- Bioefekts Ltd., 30 Livzemes Street, LV-2169 Salaspils, Latvia
| | | | - Oskars Grigs
- Laboratory of Bioengineering, Latvian State Institute of Wood Chemistry, Dzerbenes Street 27, LV-1006 Riga, Latvia
| | - Maris Senkovs
- Bioefekts Ltd., 30 Livzemes Street, LV-2169 Salaspils, Latvia
- Microbial Strain Collection of Latvia, Faculty of Biology, University of Latvia, 1 Jelgavas Street, LV-1004 Riga, Latvia
| | - Simona Larsson
- Bioefekts Ltd., 30 Livzemes Street, LV-2169 Salaspils, Latvia
| |
Collapse
|
3
|
Jurić S, Šegota S, Vinceković M. Influence of surface morphology and structure of alginate microparticles on the bioactive agents release behavior. Carbohydr Polym 2019; 218:234-242. [PMID: 31221326 DOI: 10.1016/j.carbpol.2019.04.096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
The structure-property relationship in alginate microparticles (microspheres and microcapsules prepared with or without Trichoderma viride spores (Tv) was investigated. Surface morphology, structure and release behavior from alginate microparticles strongly depend on calcium concentration and presence of Tv and chitosan layer. All microparticles exhibited a granular surface structure with substructures consisting of abundant smaller particles. In vitro active agents release study revealed that the increase in calcium cation concentration reduced the release rate of Tv (˜84% for microspheres; ˜57% for microcapsules) and calcium cations (˜20% for microspheres; ˜23% for microcapsules). The average decrease in k values due to chitosan layer addition is 41% for Tv and 93% for calcium ions, respectively. The underlying Tv release mechanism from microspheres is anomalous transport kinetics, whereas from microcapsules is controlled by Type II transport. The differences in microparticle surface properties did not affect the mechanism controlling calcium ions release detected as diffusion through microparticles.
Collapse
Affiliation(s)
- Slaven Jurić
- Department of Chemistry, University of Zagreb Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia.
| | - Suzana Šegota
- Ruđer Bošković Institute, Laboratory for Biocolloids and Surface Chemistry, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Marko Vinceković
- Department of Chemistry, University of Zagreb Faculty of Agriculture, Svetošimunska 25, 10000 Zagreb, Croatia.
| |
Collapse
|
4
|
Rouphael Y, Colla G. Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2018; 9:1655. [PMID: 30483300 PMCID: PMC6243119 DOI: 10.3389/fpls.2018.01655] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/25/2018] [Indexed: 05/18/2023]
Abstract
Over the past 10 years, interest in plant biostimulants (PBs) has been on the rise compelled by the growing interest of scientists, extension specialists, private industry, and growers in integrating these products in the array of environmentally friendly tools that secure improved crop performance and yield stability. Based on the new EU regulation PBs are defined through claimed agronomic effects, such as improvement of nutrient use efficiency, tolerance to abiotic stressors and crop quality. This definition entails diverse organic and inorganic substances and/or microorganisms such as humic acids, protein hydrolysates, seaweed extracts, mycorrhizal fungi, and N-fixing bacteria. The current mini-review provides an overview of the direct (stimulatory on C and N metabolism) and indirect (enhancing nutrient uptake and modulating root morphology) mechanisms by which microbial and non-microbial PBs improve nutrient efficiency, plant performance, and physiological status, resilience to environmental stressors and stimulate plant microbiomes. The scientific advances underlying synergistic and additive effects of microbial and non-microbial PBs are compiled and discussed for the first time. The review identifies several perspectives for future research between the scientific community and private industry to design and develop a second generation of PBs products (biostimulant 2.0) with specific biostimulatory action to render agriculture more sustainable and resilient.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- *Correspondence: Youssef Rouphael, ;
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
5
|
Loján P, Demortier M, Velivelli SLS, Pfeiffer S, Suárez JP, de Vos P, Prestwich BD, Sessitsch A, Declerck S. Impact of plant growth-promoting rhizobacteria on root colonization potential and life cycle of Rhizophagus irregularis following co-entrapment into alginate beads. J Appl Microbiol 2016; 122:429-440. [PMID: 27864849 DOI: 10.1111/jam.13355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/03/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
AIMS This study aimed at evaluating the impact of seven plant growth-promoting rhizobacteria (PGPR) on root colonization and life cycle of Rhizophagus irregularis MUCL 41833 when co-entrapped in alginate beads. METHODS AND RESULTS Two in vitro experiments were conducted. The first consisted of the immobilization of R. irregularis and seven PGPR isolates into alginate beads to assess the effect of the bacteria on the pre-symbiotic growth of the fungus. In the second experiment, the best performing PGPR from experiment 1 was tested for its ability to promote the symbiotic development of the AMF in potato plantlets from three cultivars. Results showed that only one isolate identified as Pseudomonas plecoglossicida (R-67094) promoted germ tube elongation and hyphal branching of germinated spores during the pre-symbiotic phase of the fungus. This PGPR further promoted the symbiotic development of the AMF in potato plants. CONCLUSIONS The co-entrapment of Ps. plecoglossicida R-67094 and R. irregularis MUCL 41833 in alginate beads improved root colonization by the AMF and its further life cycle under the experimental conditions. SIGNIFICANCE AND IMPACT OF THE STUDY Co-entrapment of suitable AMF-PGPR combinations within alginate beads may represent an innovative technology that can be fine-tuned for the development of efficient consortia-based bioformulations.
Collapse
Affiliation(s)
- P Loján
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain Croix du Sud, Louvain-la-Neuve, Belgium.,Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - M Demortier
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain Croix du Sud, Louvain-la-Neuve, Belgium
| | - S L S Velivelli
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - S Pfeiffer
- Bioresources Unit, Department of Health and Environment, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - J P Suárez
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - P de Vos
- Laboratory for Microbiology, University of Gent, Gent, Belgium
| | - B D Prestwich
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - A Sessitsch
- Bioresources Unit, Department of Health and Environment, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - S Declerck
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain Croix du Sud, Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Colla G, Rouphael Y, Di Mattia E, El-Nakhel C, Cardarelli M. Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:1706-15. [PMID: 25123953 DOI: 10.1002/jsfa.6875] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/05/2014] [Accepted: 08/11/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND The application of beneficial microorganisms at transplanting can promote rapid transplant establishment (starter effect) for achieving early and high yields. The aim of this study was to evaluate the biostimulant effects of Glomus intraradices BEG72 (G) and Trichoderma atroviride MUCL 45632 (T) alone or in combination on plant growth parameters, yield, chlorophyll index (SPAD), chlorophyll fluorescence and mineral composition of several vegetable crops. RESULTS The T. atroviride strain was capable of producing siderophores and auxin-like compounds under a wide range of substrate pH conditions (5.5-8.0). The highest shoot, root dry weight, SPAD and chlorophyll fluorescence in lettuce, tomato and zucchini was observed in the G + T combination, followed by a single inoculation of G or T, whereas the lowest values were recorded in the uninoculated plants. Under greenhouse conditions, the shoot dry weight was significantly increased by 167%, 56%, 115%, 68% and 58% in lettuce, melon, pepper, tomato and zucchini, respectively, when supplied with both beneficial microorganisms in comparison with the control. This increase in root and shoot weight was associated with an increased level of nutrient uptake (e.g. P, Mg, Fe, Zn and B). Under open field conditions, the lettuce shoot and root dry weight increased by 61% and 57%, respectively, with biostimulant microorganism application in field conditions. For zucchini, early and total yields were significantly increased by 59% and 15%, respectively, when plants were inoculated with both microorganisms. CONCLUSION The application of the biostimulant tablet containing both G and T can promote transplant establishment and vegetable crop productivity in a sustainable way.
Collapse
Affiliation(s)
- Giuseppe Colla
- Department of Agriculture, Forestry, Nature and Energy, University of Tuscia, 01100, Viterbo, Italy
| | | | | | | | | |
Collapse
|
7
|
Vassilev N, Vassileva M, Lopez A, Martos V, Reyes A, Maksimovic I, Eichler-Löbermann B, Malusà E. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol 2015; 99:4983-96. [DOI: 10.1007/s00253-015-6656-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 11/24/2022]
|
8
|
Lace B, Genre A, Woo S, Faccio A, Lorito M, Bonfante P. Gate crashing arbuscular mycorrhizas: in vivo imaging shows the extensive colonization of both symbionts by Trichoderma atroviride. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:64-77. [PMID: 25346536 DOI: 10.1111/1758-2229.12221] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/05/2014] [Indexed: 05/03/2023]
Abstract
Plant growth-promoting fungi include strains of Trichoderma species that are used in biocontrol, and arbuscular mycorrhizal (AM) fungi, that enhance plant nutrition and stress resistance. The concurrent interaction of plants with these two groups of fungi affects crop performance but has only been occasionally studied so far. Using in vivo imaging of green fluorescent protein-tagged lines, we investigated the cellular interactions occurring between Trichoderma atroviride PKI1, Medicago truncatula and two Gigaspora species under in vitro culture conditions. Trichoderma atroviride did not activate symbiotic-like responses in the plant cells, such as nuclear calcium spiking or cytoplasmic aggregations at hyphal contact sites. Furthermore, T. atroviride parasitized G. gigantea and G. margarita hyphae through localized wall breaking and degradation - although this was not associated with significant chitin lysis nor the upregulation of two major chitinase genes. Trichoderma atroviride colonized broad areas of the root epidermis, in association with localized cell death. The infection of both symbionts was also observed when T. atroviride was applied to a pre-established AM symbiosis. We conclude that - although this triple interaction is known to improve plant growth in agricultural environments - in vitro culture demonstrate a particularly aggressive mycoparasitic and plant-colonizing behaviour of a biocontrol strain of Trichoderma.
Collapse
Affiliation(s)
- Beatrice Lace
- Department of Life Science and Systems Biology, Università degli Studi di Torino, Viale Mattioli 25, Torino, 10125, Italy
| | | | | | | | | | | |
Collapse
|