1
|
Yang HY, Zhu KC, Guo HY, Zhang N, Liu BS, Xian L, Zhu TF, Guo R, Zhang DC. Establishment and identification of the head kidney cell line of yellowfin seabream (Acanthopagrus latus) and its application in a virus susceptibility study. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105243. [PMID: 39147080 DOI: 10.1016/j.dci.2024.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The yellowfin seabream (Acanthopagrus latus) is a crucial marine resource owing to its economic significance. Acanthopagrus latus aquaculture faces numerous challenges from viral diseases, but a robust in-vitro research model to understand and address these threats is lacking. Therefore, we developed a novel A. latus cell line from head kidney cells called ALHK1. This study details the development, characterisation, and viral susceptibility properties of ALHK cells. This cell line primarily comprises fibroblast-like cells and has robust proliferative capacity when cultured at 28 °C in Leibovitz's L-15 medium supplemented with 10-20% foetal bovine serum. It exhibited remarkable stability after more than 60 consecutive passages and validation through cryopreservation techniques. The specificity of the ALHK cell line's origin from A. latus was confirmed via polymerase chain reaction (PCR) amplification of the cytochrome B gene, and a chromosomal karyotype analysis revealed a diploid count of 48 (2n = 48). Furthermore, the lipofection-mediated transfection efficiency using the pEGFP-N3 plasmid was high, at nearly 40%, suggesting that ALHK cells could be used for studies involving exogenous gene manipulation. In addition, ALHK cells displayed heightened sensitivity to the large mouth bass virus (LMBV), substantiated through observations of cytopathic effects, quantitative real-time PCR, and viral titration assays. Finally, the response of ALHK cells to LMBV infection resulted in differentially expressed antiviral genes associated with innate immunity. In conclusion, the ALHK cell line is a dependable in-vitro platform for elucidating the mechanisms of viral diseases in yellowfin seabream. Moreover, this cell line could be valuable for immunology, vaccine development, and host-pathogen interaction studies.
Collapse
Affiliation(s)
- Hui-Yuan Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Ocean College, Hebei Agricultural University, Qinhuangdao, 066000, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Teng-Fei Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Ran Guo
- Ocean College, Hebei Agricultural University, Qinhuangdao, 066000, China.
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, dong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Deng H, Zheng S, Li Y, Mo X, Zhao J, Yin J, Shi C, Wang Q, Wang Y. Establishment and characterization of a kidney cell line from hybrid snakehead (male Channa argus × female Channa maculata) and its susceptibility to hybrid snakehead rhabdovirus (HSHRV). Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110971. [PMID: 38621626 DOI: 10.1016/j.cbpb.2024.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
Hybrid snakehead (male Channa argus × female Channa maculata) is an emerging fish breed with increasing production levels. However, infection with hybrid snakehead rhabdovirus (HSHRV) critically affects hybrid snakehead farming. In this study, a fish cell line called CAMK, derived from the kidneys of hybrid snakehead, was established and characterized. CAMK cells exhibited the maximum growth rate at 28 °C in Leibovitz's-15 medium supplemented with 10% fetal bovine serum(FBS). Karyotyping revealed diploid chromosomes in 54% of the cells at the 50th passage (2n = 66), and 16S rRNA sequencing validated that CAMK cells originated fromhybrid snakehead, and the detection of kidney-specific antibodies suggested that it originated from kidney. .The culture was free from mycoplasma contamination, and the green fluorescent protein gene was effectively transfected into CAMK cells, indicating their potential use for in vitro gene expression investigations. Furthermore, qRT-PCR and immunofluorescence analysis revealed that HSHRV could replicate in CAMK cells, indicating that the cells were susceptible to the virus. Transmission electron microscopy revealed that the viral particles had bullet-like morphology. The replication efficiency of HSHRV was 107.33 TCID50/mL. Altogether, we successfully established and characterized a kidney cell line susceptible to the virus. These findings provide a valuable reference for further genetic and virological studies.
Collapse
Affiliation(s)
- Huiling Deng
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380; College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China.
| | - Shucheng Zheng
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380; Key Laboratory of Marine Pollution, Department of Infectious Diseases and Public Health, Jockey Club School of Animal Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Yingying Li
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| | - Xubing Mo
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| | - Jian Zhao
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| | - Qing Wang
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development,Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China 510380.
| |
Collapse
|
3
|
Ho TH, Tran HTQ, Liu CH, Lee MC, Wangkahart E, Wu YC, Lin YL, Lee PT. Establishment of a cobia (Rachycentron canadum) gill cell line: A valuable tool for immune response studies. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109514. [PMID: 38493986 DOI: 10.1016/j.fsi.2024.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Cobia (Rachycentron canadum), a commercially important marine fish, has been used to develop a novel gill cell line, designated CG, for the first time. The CG cell line was cultured in Leibovitz's-15 medium with 5% fetal bovine serum (FBS) and successfully sub-cultured more than 110 passages. It underwent verification through sequencing of the mitochondrial cytochrome C oxidase subunit I (COI) gene. Optimal growth rate was achieved when the CG cell line was cultured in a medium supplemented with 5% FBS, 1% Penicillin-Streptomycin (P/S), and 5 parts per thousand (ppt) of coral sea salt water, maintained at a temperature of 27 °C. The addition of 5 ppt of salt in the growth medium suggests that this cell line could be a viable in vitro tool for marine ecosystem toxicological studies or for culturing marine parasitic microorganisms. The CG cell line was also successfully transfected using the pTurbo-GFP plasmids, showing an 18% efficiency, with observable GFP expression. Furthermore, the cell line has been effectively cryopreserved. Gene expression analysis indicated that the CG cell line exhibits responsive regulation of immune gene expression when exposured to various stimulants, highlighting its potential as an in vitro platform for immune response studies. This makes it suitable for exploring dynamic immune signaling pathways and host-pathogen interactions, thereby offering valuable insights for therapeutic development.
Collapse
Affiliation(s)
- Thi Hang Ho
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | | | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, Thailand
| | - Yu-Ching Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei City, Taiwan
| | - Yu-Lin Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan.
| |
Collapse
|
4
|
eIF2α Phosphorylation in Response to Nutritional Deficiency and Stressors in the Aquaculture Fish, Rachycentron canadum. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study investigates the response of the marine fish cobia, Rachycentron canadum, to stressors as measured by phosphorylation of the α-subunit of the translational initiation factor, eIF2. eIF2α is the target of phosphorylation by a family of kinases that respond to a range of physiological stressors. Phosphorylation of eIF2α inhibits overall protein synthesis, but also facilitates the reprogramming of gene expression to adapt to, and recover from, stress. The deduced coding sequence of cobia eIF2α has 94% identity to both zebrafish (Danio rerio) and human eIF2α sequences with identical phosphorylation and kinase docking sites. Here we use cobia larvae and a cobia cell line derived from muscle (Cm cells) to investigate the response of cobia eIF2α to various stressors. In Cm cells, phosphorylation of eIF2α is increased by nutrient deficiency and endoplasmic reticulum stress (ER stress), consistent with the activation of the eIF2 kinases, GCN2, and PERK. In cobia juveniles, diet and water temperature affect the phosphorylation state of eIF2α. We conclude that evaluation of eIF2α phosphorylation could function as an early marker to evaluate diet, environmental stressors, and disease in cobia and may be of particular use in optimizing conditions for rearing cobia larvae and juveniles.
Collapse
|
5
|
Susceptibilities of ten fish cell lines to infection with Tilapia lake virus. Microb Pathog 2022; 166:105510. [DOI: 10.1016/j.micpath.2022.105510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
|
6
|
Abdul NA, Seepoo AM, Gani T, Sugumar V, Selvam S, Allahbagash B, Abdul Kuthoos AN, Palsamy RK, Kishore M P, M Rajwade J, Azeez SSH. Development and characterization of five novel cell lines from snubnose pompano, Trachinotus blochii (Lacepede, 1801), and their application in gene expression and virological studies. JOURNAL OF FISH DISEASES 2022; 45:121-139. [PMID: 34609743 DOI: 10.1111/jfd.13542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Five novel permanent cell lines have been established from gill, heart, kidney, eye and fin of snubnose pompano, Trachinotus blochii. They were designated as snubnose pompano gill (SPG), snubnose pompano heart (SPH), snubnose pompano kidney (SPK), snubnose pompano eye (SPE) and snubnose pompano fin (SPF), respectively. All these cell lines were characterized and cryopreserved successfully at different passage levels. Cell lines were passaged every alternate day; SPG, SPH, SPK, SPE and SPF cell lines attained passage levels of 68, 74, 82, 79 and 106, respectively, since the initiation of their development in 2019. The cell lines grew well in Leibovitz's 15 medium containing 15% foetal bovine serum at 28°C. Immunophenotyping of the cell lines revealed the presence of fibronectin and pancytokeratin. No mycoplasma contamination was found. The transfection study revealed the gene expression efficiency of these cell lines by expressing the green fluorescent protein (GFP). The authentication on origin of cell lines from T. blochii was confirmed by amplification of species-specific mitochondrial cytochrome oxidase I gene. The results showed the susceptibility of these cell lines to fish nodavirus (FNV) and tilapia lake virus (TiLV) and resistance to cyprinid herpesvirus 2 (CyHV-2). The FNV infection in the cell lines was confirmed by RT-PCR, Western blot, ELISA and immunocytochemistry, while TiLV infection was confirmed by RT-PCR assay. These results revealed that these cell lines are suitable for virological and foreign gene expression studies.
Collapse
Affiliation(s)
- Nafeez Ahmed Abdul
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated Thiruvalluvar University), Melvisharam, India
| | - Abdul Majeed Seepoo
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated Thiruvalluvar University), Melvisharam, India
| | - Taju Gani
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated Thiruvalluvar University), Melvisharam, India
| | - Vimal Sugumar
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated Thiruvalluvar University), Melvisharam, India
| | - Suryakodi Selvam
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated Thiruvalluvar University), Melvisharam, India
| | - Badhusha Allahbagash
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated Thiruvalluvar University), Melvisharam, India
| | | | - Ramesh Kumar Palsamy
- Mandapam Regional Centre, Central Marine Fisheries Research Institute, Mandapam, India
| | | | | | - Sait Sahul Hameed Azeez
- Aquatic Animal Health Laboratory, C. Abdul Hakeem College (Affiliated Thiruvalluvar University), Melvisharam, India
| |
Collapse
|
7
|
Establishment of a testis cell line from Clarias magur: a potential resource for in-vitro applications. THE NUCLEUS 2021. [DOI: 10.1007/s13237-020-00345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Wang L, Cao Z, Liu Y, Xiang Y, Sun Y, Zhou Y, Wang S, Guo W. Establishment and characterization of a new cell line from the muscle of humpback grouper (Cromileptes altivelis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1897-1907. [PMID: 32588157 DOI: 10.1007/s10695-020-00841-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/16/2020] [Indexed: 05/27/2023]
Abstract
The humpback grouper (Cromileptes altivelis) is a commercially important species of the family Epinephelidae. With the development in aquaculture industry, C. altivelis breeding has gradually increased in volumetric production, leading to the occurrence of various diseases. In this study, we established a new cell line (CAM) derived from the muscle tissue of C. altivelis. Our results showed that the optimal growth temperature and working concentration of fetal bovine serum (FBS) of CAM cells were 28 °C and 15%, respectively. DNA sequencing and comparative analysis of 18S rRNA gene sequence showed that CAM cell line was originated from C. altivelis. Chromosome analysis showed that the modal chromosome number of CAM cells was 48. After transfection using pEGFP-N3 plasmid, CAM cells exhibited high transfection efficiency, indicating that CAM cells could be used in foreign gene expression studies. Further, cytotoxicity analysis revealed that CAM cells were sensitive to Vibrio harveyi and Edwardsiella tarda. Moreover, the cytotoxicity of heavy metals (Hg, Cd, and Cu) to CAM cells was dose-dependent. This CAM cell line might be used as an ideal tool in vitro for analyzing and understanding the mechanisms of pathogenesis, host-pathogen interactions, and toxicity assay of heavy metals.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, Hainan, People's Republic of China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan, People's Republic of China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, Hainan, People's Republic of China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan, People's Republic of China
| | - Yixuan Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, Hainan, People's Republic of China
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yajing Xiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, Hainan, People's Republic of China.
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan, People's Republic of China.
- College of Marine Sciences, Hainan University, 58 Renmin Avenue, Haikou, 570228, People's Republic of China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, Hainan, People's Republic of China.
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan, People's Republic of China.
- College of Marine Sciences, Hainan University, 58 Renmin Avenue, Haikou, 570228, People's Republic of China.
| | - Shifeng Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, Hainan, People's Republic of China
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan, People's Republic of China
| | - Weiliang Guo
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, 570228, Hainan, People's Republic of China
| |
Collapse
|
9
|
Soni P, Pradhan PK, Swaminathan TR, Sood N. Development, characterization and application of a new epithelial cell line from caudal fin of Pangasianodon hypophthalmus (Sauvage 1878). Acta Trop 2018; 182:215-222. [PMID: 29545155 DOI: 10.1016/j.actatropica.2018.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/21/2018] [Accepted: 03/10/2018] [Indexed: 12/21/2022]
Abstract
A cell line, designated as PHF, has been established from caudal fin of Pangasianodon hypophthalmus. The cell line was developed using explant method and PHF cells have been subcultured for more than 72 passages over a period of 14 months. The cells were able to grow at temperatures between 24 and 32° C, with an optimum temperature of 28° C. The growth rate of PHF cells was directly proportional to FBS concentration, with optimum growth observed at 20% FBS concentration. On the basis of immunophenotyping assay, PHF cells were confirmed to be of epithelial type. Karyotyping of PHF cells revealed diploid number of chromosomes (2n = 60) at 39th and 65th passage, which indicated that the developed cell line is chromosomally stable. The origin of the cell line was confirmed by amplification and sequencing of cytochrome oxidase c subunit I and 16S rRNA genes. The cell line was tested for Mycoplasma contamination and found to be negative. The cells were successfully transfected with GFP reporter gene suggesting that the developed cell line could be utilized for gene expression studies in future. The cell line could be successfully employed for evaluating the cytotoxicity of heavy metals, namely mercuric chloride and sodium arsenite suggesting that PHF cell line can be potential surrogate for whole fish for studying the cytotoxicity of water soluble compounds. The result of virus susceptibility to tilapia lake virus (TiLV) revealed that PHF cells were refractory to TiLV virus. The newly established cell line would be a useful tool for investigating disease outbreaks particularly of viral etiology, transgenic as well as cytotoxicity studies.
Collapse
Affiliation(s)
- Pankaj Soni
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India
| | - Pravata K Pradhan
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India.
| | - T R Swaminathan
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-NBFGR, CMFRI Campus, Kochi, 682 018, Kerala, India
| | - Neeraj Sood
- ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
10
|
Li P, Zhou L, Wei S, Yang M, Ni S, Yu Y, Cai J, Qin Q. Establishment and characterization of a cell line from the head kidney of golden pompano Trachinotus ovatus and its application in toxicology and virus susceptibility. JOURNAL OF FISH BIOLOGY 2017; 90:1944-1959. [PMID: 28271507 DOI: 10.1111/jfb.13277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/26/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
A cell line derived from the head kidney of golden pompano Trachinotus ovatus (TOHK) was established and characterized in this study. The TOHK cells grew most rapidly at 28° C and the optimum foetal bovine serum concentration in L-15 medium was 10%. The TOHK cells have a diploid chromosome number of 2N = 54. The transfection efficiency of TOHK cells was 7·5% at the 15th passage and 72% at the 40th passage. The transfection efficiency in TOHK cells was high, so these cells are suitable for foreign gene expression. The cytotoxic effects of heavy metals and extracellular products from Vibrio anguillarum and Vibrio alginolyticus were demonstrated in TOHK cells, so this TOHK cell line could also be applied in environmental monitoring of heavy metals and pathogenic bacteria. TOHK cell line showed high virus susceptibility, such as grouper nervous necrosis virus (GNNV) and Singapore grouper iridovirus (SGIV). Then, TOHK cell line could be used for the study of viral pathogenesis and the development of antiviral strategies.
Collapse
Affiliation(s)
- P Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, 530007, China
| | - L Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - S Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - M Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - S Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Y Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - J Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Q Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Wen CM, Chen MM, Nan FH, Wang CS. Immunocytochemical characterisation of neural stem-progenitor cells from green terror cichlid Aequidens rivulatus. JOURNAL OF FISH BIOLOGY 2017; 90:201-221. [PMID: 27730642 DOI: 10.1111/jfb.13170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
In this study, cultures of neural stem-progenitor cells (NSPC) from the brain of green terror cichlid Aequidens rivulatus were established and various NSPCs were demonstrated using immunocytochemistry. All of the NSPCs expressed brain lipid-binding protein, dopamine- and cAMP-regulated neuronal phosphoprotein 32 (DARPP-32), oligodendrocyte transcription factor 2, paired box 6 and sex determining region Y-box 2. The intensity and localisation of these proteins, however, varied among the different NSPCs. Despite being intermediate cells, NSPCs can be divided into radial glial cells, oligodendrocyte progenitor cells (OPC) and neuroblasts by expressing the astrocyte marker glial fibrillary acidic protein (GFAP), OPC marker A2B5 and neuronal markers, including acetyl-tubulin, βIII-tubulin, microtubule-associated protein 2 and neurofilament protein. Nevertheless, astrocytes were polymorphic and were the most dominant cells in the NSPC cultures. By using Matrigel, radial glia exhibiting a long GFAP+ or DARPP-32+ fibre and neurons exhibiting a significant acetyl-tubulin+ process were obtained. The results confirmed that NSPCs obtained from A. rivulatus brains can proliferate and differentiate into neurons in vitro. Clonal culture can be useful for further studying the distinct NSPCs.
Collapse
Affiliation(s)
- C M Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - M M Chen
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - F H Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - C S Wang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| |
Collapse
|
12
|
Li P, Zhou L, Ni S, Xu M, Yu Y, Cai J, Wei S, Qin Q. Establishment and characterization of a novel cell line from the brain of golden pompano (Trachinotus ovatus). In Vitro Cell Dev Biol Anim 2016; 52:410-8. [DOI: 10.1007/s11626-015-9988-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/04/2015] [Indexed: 01/15/2023]
|
13
|
Development of a cell line from the American eel brain expressing endothelial cell properties. In Vitro Cell Dev Biol Anim 2015; 52:395-409. [DOI: 10.1007/s11626-015-9986-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022]
|
14
|
Sood N, Chaudhary DK, Pradhan PK, Verma DK, Raja Swaminathan T, Kushwaha B, Punia P, Jena JK. Establishment and characterization of a continuous cell line from thymus of striped snakehead, Channa striatus (Bloch 1793). In Vitro Cell Dev Biol Anim 2015; 51:787-96. [DOI: 10.1007/s11626-015-9891-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/09/2015] [Indexed: 12/31/2022]
|
15
|
Goswami M, Sharma BS, Yadav K, Bahuguna SN, Lakra WS. Establishment and characterization of a piscean PCF cell line for toxicity and gene expression studies as in vitro model. Tissue Cell 2014; 46:206-12. [PMID: 24852132 DOI: 10.1016/j.tice.2014.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 11/26/2022]
Abstract
A new piscean fibroblastic cell line termed as PCF derived from the caudal fin tissue of dark mahseer, Puntius (Tor) chelynoides was established and characterized in the present study which was found to be suitable for toxicity and gene expression studies as in vitro model. The cell line grew well in Leibovitz's L-15 medium supplemented with 10% fetal bovine serum (FBS). The cells were able to grow at a temperature ranging from 20 to 28 °C with an optimal growth at 24 °C and the cell line have been expanded in culture for more than 70 passages. Authentication of the cell line was carried out using mitochondrial DNA markers (Cytochrome Oxidase subunit I and 16S ribosomal RNA). Presence of vimentin in the cells confirmed the fibroblastic origin of cell line. Significant cytopathic effects were observed upon exposure of PCF cell line to bacterial extracellular products and the study also validated the suitability of cell line in transgenic applications as well as in genotoxicity assessment as an in vitro model.
Collapse
Affiliation(s)
- M Goswami
- National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, PO Dilkusha, Lucknow 226002, India.
| | - B S Sharma
- National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, PO Dilkusha, Lucknow 226002, India
| | - Kamalendra Yadav
- National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, PO Dilkusha, Lucknow 226002, India
| | - S N Bahuguna
- HNB Garhwal University, PO Box 70, Srinagar/Garhwal, Uttarakhand, India
| | - W S Lakra
- Central Institute of Fisheries Education (CIFE), Versova, Andheri (W), Mumbai 400061, India
| |
Collapse
|
16
|
Establishment and characterization of a fibroblast-like cell line from Anabarilius grahami (Cypriniformes: Cyprinidae). DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2013; 33:E89-97. [PMID: 23266987 DOI: 10.3724/sp.j.1141.2012.e05-06e89] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Though Yunnan province contains some 562 known species of fish, no cell lines from any of these have been made available to date. To protect germplasm resources and provide an effective tool in solving problems at cellular level of Anabarilius grahami, a fish endemic to Fuxian Lake, Yunnan, China, we established and characterized the major features of a continuous cell line (AGF II) from the caudal fin tissue of A. grahami. This AGF II cell line consists of fibroblast-like cells and has been subcultured more than 60 times over the course of a year. The cell line was maintained in DMEM/F12 supplemented with 10% FBS, with a cellular doubling time of 51.1 h. We continued with more experiments to optimize the culture and storage conditions, and found a variety of interesting results: cells could grow at temperature between 24 Degrees Celsius and 28 Degrees Celsius, with the optimal temperature of 28 Degrees Celsius. Likewise, the growth rate of A. grahami fin cells increased when the FBS proportion increased from 5% to 20%, with the optimal growth at the concentrations of 20% FBS; cells were able to grow in L-15 and DMEM/F12 with optimal growth at L-15; DMSO is a better cryoprotectant than Glycerol, EG and MeOH for AGFII cells with optimal concentration of 5% DMSO. Chromosome analysis also showed that the distribution of chromosome number varies from 38 to 52, with a modal peak at 48 chromosomes, accounting for 39.8% of all cells. Using the same primer pairs specific to mtDNA, the AGF II cell sequences obtained by PCR were identical to those from muscle tissues of A. grahami. Both chromosome analysis and PCR amplification confirmed the AGF II cells were from A. grahami, also indicating that that current long-term artificial propagation of A. grahami has been successful. Finally, we noted that when cells were transfected with pEYFP-N1 and pECFP-N1 plasmid, bright fluorescent signals were observed, suggesting that this cell line may be suitable for use in transfection and future gene expression studies.
Collapse
|
17
|
Wen CM, Ku CC, Wang CS. Viral susceptibility, transfection and growth of SPB--a fish neural progenitor cell line from the brain of snubnose pompano, Trachinotus blochii (Lacépède). JOURNAL OF FISH DISEASES 2013; 36:657-667. [PMID: 23305502 DOI: 10.1111/jfd.12067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/08/2012] [Accepted: 11/11/2012] [Indexed: 06/01/2023]
Abstract
This study investigates the susceptibilities of the SPB cell line to fish viruses including giant seaperch iridovirus (GSIV-K1), red sea bream iridovirus (RSIV-Ku), grouper nervous necrosis virus (GNNV-K1), chum salmon reovirus (CSV) and eel herpesvirus (HVA). GSIV-K1, RSIV-Ku and CSV replicated well in SPB cells, with a significant cytopathic effect and virus production. However, the cells were HVA and GNNV refractory. To examine the ability of SPB cells to stably express foreign protein, expression vectors encoding GNNV B1 and B2 fused to enhanced green fluorescent protein (EGFP) and GSIV ORF35L fused to DsRed were constructed and introduced by transfection into SPB cells. Stable transfectants displayed different morphologies compared with SPB and with each other. EGFP-B1 was predominantly localized in the nuclei, EFPF-B2 was distributed throughout the cytoplasm and nucleus, and granular 35L-DsRed was localized with secreted vesicles. The expression of EFPF-B2 in SPB cells produced blebs on the surface, but the cells showing stable expression of EGFP, EGFP-B1 or 35L-DsRed showed normal morphologies. Results show the SPB cells and the transfected cells grow well at temperatures between 20 and 35 °C and with serum-dependent growth. SPB cells are suitable for studies on foreign protein expression and virology.
Collapse
Affiliation(s)
- C-M Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Nan-Tzu District, Taiwan.
| | | | | |
Collapse
|
18
|
A SRCF cell line from snowtrout, Schizothorax richardsonii: Development and characterization. Tissue Cell 2013; 45:219-26. [DOI: 10.1016/j.tice.2013.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 01/15/2013] [Accepted: 02/18/2013] [Indexed: 11/19/2022]
|
19
|
Sarath Babu V, Abdul Majeed S, Nambi KSN, Taju G, Madan N, Sundar Raj N, Sahul Hameed AS. Comparison of betanodavirus replication efficiency in ten Indian fish cell lines. Arch Virol 2013; 158:1367-75. [DOI: 10.1007/s00705-013-1617-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/12/2012] [Indexed: 11/29/2022]
|