1
|
Bui TA, Jickling GC, Winship IR. Neutrophil dynamics and inflammaging in acute ischemic stroke: A transcriptomic review. Front Aging Neurosci 2022; 14:1041333. [PMID: 36620775 PMCID: PMC9813499 DOI: 10.3389/fnagi.2022.1041333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Stroke is among the leading causes of death and disability worldwide. Restoring blood flow through recanalization is currently the only acute treatment for cerebral ischemia. Unfortunately, many patients that achieve a complete recanalization fail to regain functional independence. Recent studies indicate that activation of peripheral immune cells, particularly neutrophils, may contribute to microcirculatory failure and futile recanalization. Stroke primarily affects the elderly population, and mortality after endovascular therapies is associated with advanced age. Previous analyses of differential gene expression across injury status and age identify ischemic stroke as a complex age-related disease. It also suggests robust interactions between stroke injury, aging, and inflammation on a cellular and molecular level. Understanding such interactions is crucial in developing effective protective treatments. The global stroke burden will continue to increase with a rapidly aging human population. Unfortunately, the mechanisms of age-dependent vulnerability are poorly defined. In this review, we will discuss how neutrophil-specific gene expression patterns may contribute to poor treatment responses in stroke patients. We will also discuss age-related transcriptional changes that may contribute to poor clinical outcomes and greater susceptibility to cerebrovascular diseases.
Collapse
Affiliation(s)
- Truong An Bui
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen C. Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ian R. Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Abstract
The susceptibility of the brain to ischaemic injury dramatically limits its viability following interruptions in blood flow. However, data from studies of dissociated cells, tissue specimens, isolated organs and whole bodies have brought into question the temporal limits within which the brain is capable of tolerating prolonged circulatory arrest. This Review assesses cell type-specific mechanisms of global cerebral ischaemia, and examines the circumstances in which the brain exhibits heightened resilience to injury. We suggest strategies for expanding such discoveries to fuel translational research into novel cytoprotective therapies, and describe emerging technologies and experimental concepts. By doing so, we propose a new multimodal framework to investigate brain resuscitation following extended periods of circulatory arrest.
Collapse
|
3
|
Pound P, Ram R. Are researchers moving away from animal models as a result of poor clinical translation in the field of stroke? An analysis of opinion papers. BMJ OPEN SCIENCE 2020; 4:e100041. [PMID: 35047687 PMCID: PMC8749304 DOI: 10.1136/bmjos-2019-100041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/23/2019] [Accepted: 11/18/2019] [Indexed: 02/01/2023] Open
Abstract
Objectives Despite decades of research using animals to develop pharmaceutical treatments for patients who have had a stroke, few therapeutic options exist. The vast majority of interventions successful in preclinical animal studies have turned out to have no efficacy in humans or to be harmful to humans. In view of this, we explore whether there is evidence of a move away from animal models in this field. Methods We used an innovative methodology, the analysis of opinion papers. Although we took a systematic approach to literature searching and data extraction, this is not a systematic review because the study involves the synthesis of opinions, not research evidence. Data were extracted from retrieved papers in chronological order and analysed qualitatively and descriptively. Results Eighty eligible papers, published between 1979 and 2018, were identified. Most authors were from academic departments of neurology, neuroscience or stroke research. Authors agreed that translational stroke research was in crisis. They held diverse views about the causes of this crisis, most of which did not fundamentally challenge the use of animal models. Some, however, attributed the translational crisis to animal–human species differences and one to a lack of human in vitro models. Most of the proposed solutions involved fine-tuning animal models, but authors disagreed about whether such modifications would improve translation. A minority suggested using human in vitro methods alongside animal models. One proposed focusing only on human in vitro methods. Conclusion Despite recognising that animal models have been unsuccessful in the field of stroke, most researchers exhibited a strong resistance to relinquishing them. Nevertheless, there is an emerging challenge to the use of animal models, in the form of human-focused in vitro approaches. For the sake of stroke patients there is an urgent need to revitalise translational stroke research and explore the evidence for these new approaches.
Collapse
|
4
|
Vasquez CA, Moen SL, Juliano MJ, Jagadeesan BD, Pluhar GE, Chen CC, Grande AW. Development of a Novel Canine Model of Ischemic Stroke: Skull Base Approach with Transient Middle Cerebral Artery Occlusion. World Neurosurg 2019; 127:e251-e260. [PMID: 30898757 DOI: 10.1016/j.wneu.2019.03.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Although canine stroke models have several intrinsic advantages, establishing consistent and reproducible territorial stroke in these models has been challenging because of the abundance of collateral circulation. We have described a skull-base surgical approach that yields reproducible stroke volumes. METHODS Ten male beagles were studied. In all 10 dogs, a craniectomy was performed to expose the circle of Willis. Cerebral aneurysm clips were temporarily applied to the middle cerebral artery (MCA), anterior cerebral artery (ACA), posterior cerebral artery, and/or ophthalmic artery (OA) for 1 hour, followed by cauterization of the distal MCA pial collateral vessels. Indocyanine green angiography was performed to assess the local blood flow to the intended area of infarction. The dogs' neurologic examination was evaluated, and the stroke burden was quantified using magnetic resonance imaging. RESULTS High mortality was observed after 1-hour clip occlusion of the posterior cerebral artery, MCA, ACA, and OA (n = 4). Without coagulation of the MCA collateral vessels, 1-hour occlusion of the MCA and/or ACA and OA yielded inconsistent stroke volumes (n = 2). In contrast, after coagulation of the distal MCA pial collateral vessels, 1-hour occlusion of the MCA, ACA, and OA yielded consistent territorial stroke volumes (n = 4; average stroke volume, 9.13 ± 0.90 cm3; no surgical mortalities), with reproducible neurologic deficits. CONCLUSION Consistent stroke volumes can be achieved in male beagles using a skull base surgical approach with temporary occlusion of the MCA, ACA, and OA when combined with cauterization of the distal MCA pial collateral vessels.
Collapse
Affiliation(s)
- Ciro A Vasquez
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sean L Moen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mario J Juliano
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - G Elizabeth Pluhar
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew W Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA; Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA; Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
5
|
Kawabori M, Yenari MA. Inflammatory responses in brain ischemia. Curr Med Chem 2016; 22:1258-77. [PMID: 25666795 DOI: 10.2174/0929867322666150209154036] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/02/2014] [Accepted: 02/02/2015] [Indexed: 12/20/2022]
Abstract
Brain infarction causes tissue death by ischemia due to occlusion of the cerebral vessels and recent work has shown that post stroke inflammation contributes significantly to the development of ischemic pathology. Because secondary damage by brain inflammation may have a longer therapeutic time window compared to the rescue of primary damage following arterial occlusion, controlling inflammation would be an obvious therapeutic target. A substantial amount of experimentall progress in this area has been made in recent years. However, it is difficult to elucidate the precise mechanisms of the inflammatory responses following ischemic stroke because inflammation is a complex series of interactions between inflammatory cells and molecules, all of which could be either detrimental or beneficial. We review recent advances in neuroinflammation and the modulation of inflammatory signaling pathways in brain ischemia. Potential targets for treatment of ischemic stroke will also be covered. The roles of the immune system and brain damage versus repair will help to clarify how immune modulation may treat stroke.
Collapse
Affiliation(s)
| | - Midori A Yenari
- Dept. of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
6
|
McEntire CR, Choudhury GR, Torres A, Steinberg GK, Redmond DE, Daadi MM. Impaired Arm Function and Finger Dexterity in a Nonhuman Primate Model of Stroke. Stroke 2016; 47:1109-16. [DOI: 10.1161/strokeaha.115.012506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/17/2016] [Indexed: 01/30/2023]
Abstract
Background and Purpose—
Ischemic stroke is the leading cause of upper extremity motor impairments. Although several well-characterized experimental stroke models exist, modeling of upper extremity motor impairments, which are unique to primates, is not well established. Cortical representation of dexterous movements in nonhuman primates is functionally and topographically similar to that in humans. In this study, we characterize the African green monkey model of focal ischemia reperfusion with a defined syndrome, impaired dexterous movements.
Methods—
Cerebral ischemia was induced by transient occlusion of the M3 segment of the left middle cerebral artery. Motor and cognitive functions after stroke were evaluated using the object retrieval task with barrier-detour. Postmortem magnetic resonance imaging and histopathology were performed to map and characterize the infarct.
Results—
The middle cerebral artery occlusion consistently produced a necrotic infarct localized in the sensorimotor cortex in the middle cerebral artery territory. The infarction was reproducible and resulted in significant loss of fine motor function characterized by impaired dexterity. No significant cognitive impairment was detected. Magnetic resonance imaging and histopathology demonstrated consistent and significant loss of tissue on the left parietal cortex by the central sulcus covering the sensorimotor area. The results suggest that this species has less collateralization, which closely resembles humans.
Conclusions—
The reported nonhuman primate model produces a defined and reproducible syndrome relevant to our understanding of ischemic stroke, cortical representation, and sensorimotor integration controlling dexterous movements. This model will be useful in basic and translational research addressing loss of arm function and dexterity.
Collapse
Affiliation(s)
- Caleb R.S. McEntire
- From the Departments of Psychiatry and Neurosurgery, Yale University School of Medicine, New Haven, CT (C.R.S.M., D.E.R.); Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX (G.R.C., A.T., M.M.D.); Department of Neurosurgery, Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA (G.K.S.); and St Kitts Biomedical Research Foundation, St Kitts, West Indies (D.E.R.)
| | - Gourav R. Choudhury
- From the Departments of Psychiatry and Neurosurgery, Yale University School of Medicine, New Haven, CT (C.R.S.M., D.E.R.); Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX (G.R.C., A.T., M.M.D.); Department of Neurosurgery, Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA (G.K.S.); and St Kitts Biomedical Research Foundation, St Kitts, West Indies (D.E.R.)
| | - April Torres
- From the Departments of Psychiatry and Neurosurgery, Yale University School of Medicine, New Haven, CT (C.R.S.M., D.E.R.); Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX (G.R.C., A.T., M.M.D.); Department of Neurosurgery, Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA (G.K.S.); and St Kitts Biomedical Research Foundation, St Kitts, West Indies (D.E.R.)
| | - Gary K. Steinberg
- From the Departments of Psychiatry and Neurosurgery, Yale University School of Medicine, New Haven, CT (C.R.S.M., D.E.R.); Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX (G.R.C., A.T., M.M.D.); Department of Neurosurgery, Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA (G.K.S.); and St Kitts Biomedical Research Foundation, St Kitts, West Indies (D.E.R.)
| | - D. Eugene Redmond
- From the Departments of Psychiatry and Neurosurgery, Yale University School of Medicine, New Haven, CT (C.R.S.M., D.E.R.); Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX (G.R.C., A.T., M.M.D.); Department of Neurosurgery, Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA (G.K.S.); and St Kitts Biomedical Research Foundation, St Kitts, West Indies (D.E.R.)
| | - Marcel M. Daadi
- From the Departments of Psychiatry and Neurosurgery, Yale University School of Medicine, New Haven, CT (C.R.S.M., D.E.R.); Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX (G.R.C., A.T., M.M.D.); Department of Neurosurgery, Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA (G.K.S.); and St Kitts Biomedical Research Foundation, St Kitts, West Indies (D.E.R.)
| |
Collapse
|
7
|
Khacho P, Wang B, Bergeron R. The Good and Bad Sides of NAAG. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:311-49. [PMID: 27288081 DOI: 10.1016/bs.apha.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Why has such a small peptide been the source of controversy in neuroscience over the last 5 decades? Is N-acetyl-aspartyl-glutamate (NAAG) a neurotransmitter? Is NAAG located in neuronal tissue or in astrocytes? Is NAAG involved in neuropsychiatric and neurodegenerative disorders? Is NAAG therapeutically beneficial in the treatment of stroke or in initiating cascades of events leading to psychosis? After many years of intense research there is no clear consensus within the scientific community on how NAAG behaves in the brain. One of the major controversies about NAAG is its physiological action at N-methyl-d-aspartate (NMDA) receptors. While some researchers strongly argue that NAAG acts as a weak agonist at NMDA receptors, others have suggested that NAAG could behave as a potent antagonist. Published data from our laboratory demonstrate that the effect of NAAG on NMDA receptors could be influenced by a number of factors including the subcellular localization and subunit composition of NMDA receptors, as well as protons. In this chapter, we will summarize the knowledge of the literature on NAAG, however, we will place emphasis on our recently published data. More specifically, we have reported interesting findings on the effects of NAAG on NMDA receptors at synaptic and extrasynaptic sites using a pharmacological paradigm to distinguish the two populations of NMDA receptors. Additionally, we have evaluated the role of NAAG on GluN2A- and GluN2B-containing NMDA receptors using a HEK293 cell recombinant system. Finally, we have studied the effects of NAAG on GluN2A- and GluN2B-containing NMDA receptors in different extracellular pH conditions. We believe that our findings could potentially resolve some aspects of the debate regarding the role of NAAG at NMDA receptors.
Collapse
Affiliation(s)
- P Khacho
- University of Ottawa, Ottawa, ON, Canada
| | - B Wang
- University of Ottawa, Ottawa, ON, Canada
| | - R Bergeron
- University of Ottawa, Ottawa, ON, Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Del Bigio MR, Di Curzio DL. Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 2016; 13:3. [PMID: 26846184 PMCID: PMC4743412 DOI: 10.1186/s12987-016-0025-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/15/2016] [Indexed: 12/13/2022] Open
Abstract
Pharmacological interventions have been tested experimentally and clinically to prevent hydrocephalus and avoid the need for shunting beginning in the 1950s. Clinical trials of varied quality have not demonstrated lasting and convincing protective effects through manipulation of cerebrospinal fluid production, diuresis, blood clot fibrinolysis, or manipulation of fibrosis in the subarachnoid compartment, although there remains some promise in the latter areas. Acetazolamide bolus seems to be useful for predicting shunt response in adults with hydrocephalus. Neuroprotection in the situation of established hydrocephalus has been tested experimentally beginning more recently. Therapies designed to modify blood flow or pulsation, reduce inflammation, reduce oxidative damage, or protect neurons are so far of limited success; more experimental work is needed in these areas. As has been recommended for preclinical studies in stroke and brain trauma, stringent conditions should be met for preclinical studies in hydrocephalus.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba; Children's Hospital Research Institute of Manitoba, Diagnostic Services Manitoba, 401 Brodie Centre, 715 McDermot Avenue, Winnipeg, MB, R3E 3P5, Canada.
| | - Domenico L Di Curzio
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
9
|
Baltan S. Excitotoxicity and mitochondrial dysfunction underlie age-dependent ischemic white matter injury. ADVANCES IN NEUROBIOLOGY 2014; 11:151-70. [PMID: 25236728 PMCID: PMC8937575 DOI: 10.1007/978-3-319-08894-5_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The central nervous system white matter is damaged during an ischemic stroke and therapeutic strategies derived from experimental studies focused exclusively on young adults and gray matter have been unsuccessful in the more clinically relevant aging population. The risk for stroke increases with age and the white matter inherently becomes more susceptible to injury as a function of age. Age-related changes in the molecular architecture of white matter determine the principal injury mechanisms and the functional outcome. A prominent increase in the main plasma membrane Na(+)-dependent glutamate transporter, GLT-1/EAAT2, together with increased extracellular glutamate levels may reflect an increased need for glutamate signaling in the aging white matter to maintain its function. Mitochondria exhibit intricate dynamics to efficiently buffer Ca(2+), to produce sufficient ATP, and to effectively scavenge reactive oxygen species (ROS) in response to excitotoxicity to sustain axon function. Aging exacerbates mitochondrial fusion, leading to progressive alterations in mitochondrial dynamics and function, presumably to effectively buffer increased Ca(2+) load and ROS production. Interestingly, these adaptive adjustments become detrimental under ischemic conditions, leading to increased and early glutamate release and a rapid exhaustion of mitochondrial capacity to sustain energy status of axons. Consequently, protective interventions in young white matter become injurious or ineffective to promote recovery in aging white matter after an ischemic episode. An age-specific understanding of the mechanisms of injury processes in white matter is vital in order to design dynamic therapeutic approaches for stroke victims.
Collapse
Affiliation(s)
- Selva Baltan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC30, Cleveland, OH, 44195, USA,
| |
Collapse
|
10
|
Baltan S, Morrison RS, Murphy SP. Novel protective effects of histone deacetylase inhibition on stroke and white matter ischemic injury. Neurotherapeutics 2013; 10:798-807. [PMID: 23881453 PMCID: PMC3805855 DOI: 10.1007/s13311-013-0201-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Understanding how epigenetics influences the process and progress of a stroke could yield new targets and therapeutics for use in the clinic. Experimental evidence suggests that inhibitors of zinc-dependent histone deacetylases can protect neurons, axons, and associated glia from the devastating effects of oxygen and glucose deprivation. While the specific enzymes involved have yet to be clearly identified, there are hints from somewhat selective chemical inhibitors and also from the use of specific small hairpin RNAs to transiently knockdown protein expression. Neuroprotective mechanisms implicated thus far include the upregulation of extracellular glutamate clearance, inhibition of p53-mediated cell death, and maintenance of mitochondrial integrity. The histone deacetylases have distinct cellular and subcellular localizations, and discrete substrates. As a number of chemical inhibitors are already in clinical use for the treatment of cancer, repurposing for the stroke clinic should be expedited.
Collapse
Affiliation(s)
- Selva Baltan
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, 44195, USA,
| | | | | |
Collapse
|
11
|
Frostig RD, Lay CC, Davis MF. A rat's whiskers point the way toward a novel stimulus-dependent, protective stroke therapy. Neuroscientist 2013; 19:313-28. [PMID: 23047156 PMCID: PMC3710106 DOI: 10.1177/1073858412462607] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stroke is the fourth leading cause of death in the United States and the leading cause of long-term disability. Ischemic stroke, due to an interruption in blood supply, is particularly prevalent; 87% of all strokes are ischemic. Unfortunately, current options for acute treatment are extremely limited and there is a great need for new treatment strategies. This review will discuss evidence that mild sensory stimulation can completely protect the jeopardized brain from an impending stroke in a rodent model. When delivered within the first 2 hours following ischemic onset, this stimulation results in complete protection, including a full reestablishment of cortical function, sensorimotor capabilities, and blood flow. Identical stimulation, however, initiated 3 hours following ischemic onset, results in an increase in damage compared with untreated animals. The protective effect is not specific to a single sensory modality, anesthesia, or age, and increasing evoked cortical activity by increasing stimulation accelerates recovery. Taken together, these findings demonstrate that cortical activity is a critical factor for protection and suggest a new, exciting potential avenue for the development of acute stroke treatment strategies that may produce a noninvasive, drug-free, equipment-free, and side effect-free means of protecting from ischemic stroke.
Collapse
Affiliation(s)
- Ron D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
12
|
Tai KK, Truong DD. Amiloride but not memantine reduces neurodegeneration, seizures and myoclonic jerks in rats with cardiac arrest-induced global cerebral hypoxia and reperfusion. PLoS One 2013; 8:e60309. [PMID: 23593189 PMCID: PMC3620224 DOI: 10.1371/journal.pone.0060309] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 02/26/2013] [Indexed: 01/02/2023] Open
Abstract
It has been reported that both activation of N-methyl-D-aspartate receptors and acid-sensing ion channels during cerebral ischemic insult contributed to brain injury. But which of these two molecular targets plays a more pivotal role in hypoxia-induced brain injury during ischemia is not known. In this study, the neuroprotective effects of an acid-sensing cation channel blocker and an N-methyl-D-aspartate receptor blocker were evaluated in a rat model of cardiac arrest-induced cerebral hypoxia. We found that intracisternal injection of amiloride, an acid-sensing ion channel blocker, dose-dependently reduced cerebral hypoxia-induced neurodegeneration, seizures, and audiogenic myoclonic jerks. In contrast, intracisternal injection of memantine, a selective uncompetitive N-methyl-D-aspartate receptor blocker, had no significant effect on cerebral hypoxia-induced neurodegeneration, seizure and audiogenic myoclonic jerks. Intracisternal injection of zoniporide, a specific sodium-hydrogen exchanger inhibitor, before cardiac arrest-induced cerebral hypoxia, also did not reduce cerebral hypoxia-induced neurodegeneration, seizures and myoclonic jerks. These results suggest that acid-sensing ion channels play a more pivotal role than N-methyl-D-aspartate receptors in mediating cerebral hypoxia-induced brain injury during ischemic insult.
Collapse
Affiliation(s)
- Kwok Keung Tai
- The Parkinson's and Movement Disorder Research Laboratory, Long Beach Memorial Medical Center, Long Beach, California, United States of America.
| | | |
Collapse
|
13
|
Bråtane BT, Cui H, Cook DJ, Bouley J, Tymianski M, Fisher M. Neuroprotection by Freezing Ischemic Penumbra Evolution Without Cerebral Blood Flow Augmentation With a Postsynaptic Density-95 Protein Inhibitor. Stroke 2011; 42:3265-70. [DOI: 10.1161/strokeaha.111.618801] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
The purpose of this study was to determine whether neuroprotection is feasible without cerebral blood flow augmentation in experimental permanent middle cerebral artery occlusion.
Methods—
Rats were subjected to permanent middle cerebral artery occlusion by the suture occlusion method and were treated 1 hour thereafter with a single 5-minute intravenous infusion of the postsynaptic density-95 protein inhibitor Tat-NR2B9c (7.5 mg/kg) or saline (n=8/group). Arterial spin-labeled perfusion-weighted MRI and diffusion weighted MRI were obtained with a 4.7-T Bruker system at 30, 45, 70, 90, 120, 150, and 180 minutes postmiddle cerebral artery occlusion to determine cerebral blood flow and apparent diffusion coefficient maps, respectively. At 24 hours, animals were neurologically scored (0 to 5), euthanized, and the brains stained with 2–3-5-triphenyl tetrazolium chloride to ascertain infarct volumes corrected for edema. Additionally, the effects of Tat-NR2B9c on adenosine 5′-triphosphate levels were measured in vitro in neurons subjected to oxygen–glucose deprivation.
Results—
Final infarct volume was decreased by 30.3% in the Tat-NR2B9c-treated animals compared with controls (
P
=0.028). There was a significant improvement in 24 hours neurological scores in the Tat-NR2B9c group compared with controls, 1.8±0.5 and 2.8±1.0, respectively (
P
=0.021). Relative to controls, Tat-NR2B9c significantly attenuated diffusion-weighted imaging lesion growth and preserved the diffusion-weighted imaging/perfusion-weighted imaging mismatch (ischemic penumbra) without affecting cerebral blood flow in the ischemic core or penumbra. Tat-NR2B9c treatment of primary neuronal cultures resulted in 26% increase in cell viability and 34% greater adenosine 5′-triphosphate levels after oxygen–glucose deprivation.
Conclusions—
Preservation of adenosine 5′-triphosphate levels in vitro and neuroprotection in permanent middle cerebral artery occlusion in rats is achievable without cerebral blood flow augmentation using a postsynaptic density-95 protein inhibitor.
Collapse
Affiliation(s)
- Bernt T. Bråtane
- From the Department of Neurology (B.T.B., J.B., M.F.), University of Massachusetts Medical School, Worcester, MA; and Toronto Western Research Institute (H.C., D.J.C., M.T.), University Health Network, Toronto, Ontario, Canada
| | - Hong Cui
- From the Department of Neurology (B.T.B., J.B., M.F.), University of Massachusetts Medical School, Worcester, MA; and Toronto Western Research Institute (H.C., D.J.C., M.T.), University Health Network, Toronto, Ontario, Canada
| | - Douglas J. Cook
- From the Department of Neurology (B.T.B., J.B., M.F.), University of Massachusetts Medical School, Worcester, MA; and Toronto Western Research Institute (H.C., D.J.C., M.T.), University Health Network, Toronto, Ontario, Canada
| | - James Bouley
- From the Department of Neurology (B.T.B., J.B., M.F.), University of Massachusetts Medical School, Worcester, MA; and Toronto Western Research Institute (H.C., D.J.C., M.T.), University Health Network, Toronto, Ontario, Canada
| | - Michael Tymianski
- From the Department of Neurology (B.T.B., J.B., M.F.), University of Massachusetts Medical School, Worcester, MA; and Toronto Western Research Institute (H.C., D.J.C., M.T.), University Health Network, Toronto, Ontario, Canada
| | - Marc Fisher
- From the Department of Neurology (B.T.B., J.B., M.F.), University of Massachusetts Medical School, Worcester, MA; and Toronto Western Research Institute (H.C., D.J.C., M.T.), University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Kunz A, Dirnagl U, Mergenthaler P. Acute pathophysiological processes after ischaemic and traumatic brain injury. Best Pract Res Clin Anaesthesiol 2010; 24:495-509. [DOI: 10.1016/j.bpa.2010.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/11/2010] [Indexed: 12/23/2022]
|
15
|
Karlsson KE, Wilkins JJ, Jonsson F, Zingmark PH, Karlsson MO, Jonsson EN. Modeling disease progression in acute stroke using clinical assessment scales. AAPS JOURNAL 2010; 12:683-91. [PMID: 20857252 DOI: 10.1208/s12248-010-9230-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/09/2010] [Indexed: 11/30/2022]
Abstract
This article demonstrates techniques for describing and predicting disease progression in acute stroke by modeling scores measured using clinical assessment scales, accommodating dropout as an additional source of information. Scores assessed using the National Institutes of Health Stroke Scale and the Barthel Index in acute stroke patients were used to model the time course of disease progression. Simultaneous continuous and probabilistic models for describing the nature and magnitude of score changes were developed, and used to model the trajectory of disease progression using scale scores. The models described the observed data well, and exhibited good simulation properties. Applications include longitudinal analysis of stroke scale data, clinical trial simulation, and prognostic forecasting. Based upon experience in other areas, it is likely that application of this modeling methodology will enable reductions in the number of patients needed to carry out clinical studies of treatments for acute stroke.
Collapse
|
16
|
Joshi S, Agarwal S. The proposed role of optical sensing in translational stroke research. Ann N Y Acad Sci 2010; 1199:149-57. [PMID: 20633120 DOI: 10.1111/j.1749-6632.2009.05381.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The past three decades of clinical disappointments in treating stroke must compel us to rethink our strategy. Given the enormous complexity of the clinical disease, the "one size fits all" approach to stroke treatment is unlikely to succeed. The effective treatment of stroke aimed at reversing ischemic injury will require monitoring of tissue injury and response to therapeutic interventions, perhaps the use of multiple drugs, sequentially administered in a timely manner. The proposed sequential intra-arterial therapy for stroke (SITS) relies on the development of novel intra-arterial treatments of ischemic brain injury in the magnetic resonance imaging environment. However, translating SITS protocol from bench to bedside could greatly benefit from the advances in optical technologies. Compared to magnetic resonance imaging, optical sensing technology promises to be quicker, cheaper, simpler, and more versatile, and thus is ideally suited for investigating the fast kinetics and monitoring the pharmacological effects of intra-arterial drugs.
Collapse
|
17
|
Abstract
Microvessels and neurons respond rapidly and simultaneously in focal regions of ischaemic injury in such a way as to suggest that the responses could be coordinated. The ability of neurons to modulate cerebral blood flow in regions of activation results from neurovascular coupling. But little is known about the microvessel-to-neuron direction of the relationship. The presence and participation of intervening glial cells implies the association of microvessels, glia, and neurons in a 'neurovascular unit'. The interdependent functions of the cellular and matrix components of this theoretical unit have not been rigorously explored, except under conditions of injury where, for the most part, only single components or tissue samples have been studied. Whereas maintenance or timely re-establishment of flow reduces tissue and neuron injury in both humans and animal models, protection of neuron function in humans has not prevented the evolution of injury despite the inherent mechanisms of neurovascular coupling. However, occlusion of flow to the brain rapidly identifies regions of neuron-vascular vulnerability within the vascular territory-at-risk. These coalesce to become the mature ischaemic lesion. The failure, so far, of clinical trials of neuron protectant agents to achieve detectable tissue salvage could be explained by the vulnerability (and lack of protection) of essential components of the 'unit'. This presentation summarizes evidence and thoughts on this topic. These support the need to understand component interactions within the neurovascular unit.
Collapse
Affiliation(s)
- G J del Zoppo
- Department of Medicine, University of Washington, Seattle, WA 98104, USA.
| |
Collapse
|
18
|
|
19
|
Mastroiacovo F, Busceti CL, Biagioni F, Moyanova SG, Meisler MH, Battaglia G, Caricasole A, Bruno V, Nicoletti F. Induction of the Wnt antagonist, Dickkopf-1, contributes to the development of neuronal death in models of brain focal ischemia. J Cereb Blood Flow Metab 2009; 29:264-76. [PMID: 18827832 DOI: 10.1038/jcbfm.2008.111] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inhibition of the canonical Wnt pathway has been implicated in the pathophysiology of neuronal death. Here, we report that the secreted Wnt antagonist, Dickkopf-1 (Dkk-1) is rapidly induced in neurons after induction of focal brain ischemia. In rats undergoing transient focal ischemia in response to brain infusion of endothelin-1, Dkk-1 was induced in neurons of the ischemic core and the penumbra region. Induction of Dkk-1 was associated with a reduced expression of beta-catenin (a downstream signaling molecule of the canonical Wnt pathway), and was not observed in neurons expressing the protective protein, heat shock protein-70. Treatment with lithium ions, which, inter alia, rescue the canonical Wnt pathway, was highly protective against ischemic damage. Dkk-1 was also induced in cortical neurons of mice undergoing permanent middle cerebral artery (MCA) occlusion. This model allowed us to compare wild-type mice with doubleridge mice, which are characterized by a reduced expression of Dkk-1. Doubleridge mice showed an attenuated reduction of beta-catenin and a reduced infarct volume in response to MCA occlusion, providing a direct demonstration that Dkk-1 contributes to the pathophysiology of ischemic neuronal damage. These data rise the interesting possibility that Dkk-1 antagonists or drugs that rescue the Wnt pathway might be neuroprotective in stroke.
Collapse
|
20
|
Boltze J, Förschler A, Nitzsche B, Waldmin D, Hoffmann A, Boltze CM, Dreyer AY, Goldammer A, Reischauer A, Härtig W, Geiger KD, Barthel H, Emmrich F, Gille U. Permanent middle cerebral artery occlusion in sheep: a novel large animal model of focal cerebral ischemia. J Cereb Blood Flow Metab 2008; 28:1951-64. [PMID: 18698332 DOI: 10.1038/jcbfm.2008.89] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As effective stroke treatment by thrombolysis is bound to a narrow time window excluding most patients, numerous experimental treatment strategies have been developed to gain new options for stroke treatment. However, all approaches using neuroprotective agents that have been successfully evaluated in rodents have subsequently failed in clinical trials. Existing large animal models are of significant scientific value, but sometimes limited by ethical drawbacks and mostly do not allow for long-term observation. In this study, we are introducing a simple, but reliable stroke model using permanent middle cerebral artery occlusion in sheep. This model allows for control of ischemic lesion size and subsequent neurofunctional impact, and it is monitored by behavioral phenotyping, magnetic resonance imaging, and positron emission tomography. Neuropathologic and (immuno)histologic investigations showed typical ischemic lesion patterns whereas commercially available antibodies against vascular, neuronal, astroglial, and microglial antigens were feasible for ovine brain specimens. Based on absent mortality in this study and uncomplicated species-appropriate housing, long-term studies can be realized with comparatively low expenditures. This model could be used as an alternative to existing large animal models, especially for longitudinal analyses of the safety and therapeutic impact of novel therapies in the field of translational stroke research.
Collapse
Affiliation(s)
- Johannes Boltze
- Fraunhofer Institute of Cell Therapy and Immunology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The major efforts to selectively deliver drugs to the brain in the past decade have relied on smart molecular techniques to penetrate the blood-brain barrier, whereas intraarterial drug delivery has drawn relatively little attention. Meanwhile, rapid progress has been made in the field of endovascular surgery. Modern endovascular procedures can permit highly targeted drug delivery by the intracarotid route. Intracarotid drug delivery can be the primary route of drug delivery or it could be used to facilitate the delivery of smart neuropharmaceuticals. There have been few attempts to systematically understand the kinetics of intracarotid drugs. Anecdotal data suggest that intracarotid drug delivery is effective in the treatment of cerebral vasospasm, thromboembolic strokes, and neoplasms. Neuroanesthesiologists are frequently involved in the care of such high-risk patients. Therefore, it is necessary to understand the applications of intracarotid drug delivery and the unusual kinetics of intracarotid drugs.
Collapse
Affiliation(s)
- Shailendra Joshi
- Department of Anesthesiology, PH 505, College of Physicians and Surgeons of Columbia University, 630 West 168th Street, New York, New York 10032, USA.
| | | | | |
Collapse
|
22
|
White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J Neurosci 2008; 28:1479-89. [PMID: 18256269 DOI: 10.1523/jneurosci.5137-07.2008] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stroke incidence increases with age and this has been attributed to vascular factors. We show here that CNS white matter (WM) is intrinsically more vulnerable to ischemic injury in older animals and that the mechanisms of WM injury change as a function of age. The mouse optic nerve was used to study WM function. WM function in older animals (12 months) was not protected from ischemic injury by removal of extracellular Ca2+ or by blockade of reverse Na+/Ca2+ exchange, as is the case with young adults. Ischemic WM injury in older mice is predominately mediated by glutamate release and activation of AMPA/kainate-type glutamate receptors. Glutamate release, attributable to reverse glutamate transport, occurs earlier and is more robust in older mice that show greater expression of the glutamate transporter. The observation that WM vulnerability to ischemic injury is age dependent has possible implications for the pathogenesis of other age-related CNS conditions.
Collapse
|
23
|
|
24
|
Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 2007; 87:179-97. [PMID: 17521716 DOI: 10.1016/j.pbb.2007.04.015] [Citation(s) in RCA: 526] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 04/16/2007] [Accepted: 04/19/2007] [Indexed: 12/22/2022]
Abstract
Ischemic stroke is a devastating disease with a complex pathophysiology. Animal modeling of ischemic stroke serves as an indispensable tool first to investigate mechanisms of ischemic cerebral injury, secondly to develop novel antiischemic regimens. Most of the stroke models are carried on rodents. Each model has its particular strengths and weaknesses. Mimicking all aspects of human stroke in one animal model is not possible since ischemic stroke is itself a very heterogeneous disorder. Experimental ischemic stroke models contribute to our understanding of the events occurring in ischemic and reperfused brain. Major approaches developed to treat acute ischemic stroke fall into two categories, thrombolysis and neuroprotection. Trials aimed to evaluate effectiveness of recombinant tissue-type plasminogen activator in longer time windows with finer selection of patients based on magnetic resonance imaging tools and trials of novel recanalization methods are ongoing. Despite the failure of most neuroprotective drugs during the last two decades, there are good chances to soon have effective neuroprotectives with the help of improved preclinical testing and clinical trial design. In this article, we focus on various rodent animal models, pathogenic mechanisms, and promising therapeutic approaches of ischemic stroke.
Collapse
Affiliation(s)
- Aysan Durukan
- Department of Neurology, Helsinki University Central Hospital, Biomedicum Helsinki, POB 700, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | | |
Collapse
|
25
|
Abstract
The therapeutic potential of intra-arterial (IA) drug delivery to the brain has received limited attention in the last decade. In the 1980s, efforts to treat brain tumors with IA chemotherapy, the leading application of this technology, yielded modest results. Poor control of tissue drug concentrations and the potential risk of permanent neurologic injury further prevented the wider use of IA drugs. Yet, IA drugs were anecdotally used for treating a wide spectrum of brain diseases. Recent advances in endovascular technology and the increased safety of angiographic procedures now compel us to reevaluate IA drug delivery. This review describes the pharmacologic principles, applications, and pitfalls of IA drug delivery to the brain.
Collapse
Affiliation(s)
- Shailendra Joshi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
26
|
Joshi S, Ornstein E, Bruce JN. Targeting the brain: rationalizing the novel methods of drug delivery to the central nervous system. Neurocrit Care 2007; 6:200-12. [PMID: 17572864 DOI: 10.1007/s12028-007-0034-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drug delivery to the brain has remained one of the most vexing problems in translational neuroscience research. This review rationalizes the strategies to target drugs to the brain. Factors such as the speed of intervention, the scale of intervention, the state of BBB, and the permissible risks, will all be critical in deciding how best to deliver drugs to a target site in the brain for a specific clinical situation.
Collapse
Affiliation(s)
- Shailendra Joshi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, 630 West 168th Street, P&S Box 46, New York, NY 10032, USA.
| | | | | |
Collapse
|
27
|
O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol 2006; 59:467-77. [PMID: 16453316 DOI: 10.1002/ana.20741] [Citation(s) in RCA: 1041] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Preclinical evaluation of neuroprotectants fostered high expectations of clinical efficacy. When not matched, the question arises whether experiments are poor indicators of clinical outcome or whether the best drugs were not taken forward to clinical trial. Therefore, we endeavored to contrast experimental efficacy and scope of testing of drugs used clinically and those tested only experimentally. METHODS We identified neuroprotectants and reports of experimental efficacy via a systematic search. Controlled in vivo and in vitro experiments using functional or histological end points were selected for analysis. Relationships between outcome, drug mechanism, scope of testing, and clinical trial status were assessed statistically. RESULTS There was no evidence that drugs used clinically (114 drugs) were more effective experimentally than those tested only in animal models (912 drugs), for example, improvement in focal models averaged 31.3 +/- 16.7% versus 24.4 +/- 32.9%, p > 0.05, respectively. Scope of testing using Stroke Therapy Academic Industry Roundtable (STAIR) criteria was highly variable, and no relationship was found between mechanism and efficacy. INTERPRETATION The results question whether the most efficacious drugs are being selected for stroke clinical trials. This may partially explain the slow progress in developing treatments. Greater rigor in the conduct, reporting, and analysis of animal data will improve the transition of scientific advances from bench to bedside.
Collapse
Affiliation(s)
- Victoria E O'Collins
- Neuroscience Lab, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC 3084, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Burnett MG, Shimazu T, Szabados T, Muramatsu H, Detre JA, Greenberg JH. Electrical forepaw stimulation during reversible forebrain ischemia decreases infarct volume. Stroke 2006; 37:1327-31. [PMID: 16556880 DOI: 10.1161/01.str.0000217305.82123.d8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND PURPOSE Functional stimulation is accompanied by increases in regional cerebral blood flow which exceed metabolic demands under normal circumstances, but it is unknown whether functional stimulation is beneficial or detrimental in the setting of acute ischemia. The aim of this study was to determine the effect of forepaw stimulation during temporary focal ischemia on neurological and tissue outcome in a rat model of reversible focal forebrain ischemia. METHODS Sprague-Dawley rats were prepared for temporary occlusion of the right middle cerebral artery (MCA) using the filament model. Cerebral blood flow in the MCA territory was continuously monitored with a laser-Doppler flowmeter. Subdermal electrodes were inserted into the dorsal forepaw to stimulate either the forepaw ipsilateral or contralateral to the occlusion starting 1 minute into ischemia and continuing throughout the ischemic period. A neurological evaluation was undertaken after 24 hours of reperfusion, and animals were then euthanized and brain slices stained with 2,3,5-triphenyltetrazolium chloride. Cortical and striatal damage was measured separately. RESULTS The cortical and striatal infarct volumes were both significantly reduced in the contralateral stimulated group compared with the ipsilateral stimulated group (48% total reduction). There were no statistically significant differences in the neurobehavioral scores between the 2 groups, or in the laser-Doppler flow measurements from the MCA core. CONCLUSIONS Functional stimulation of ischemic tissue may decrease tissue damage and improve outcome from stroke. Although the precise mechanism of this effect remains to be determined, functional stimulation could readily be translated to clinical practice.
Collapse
Affiliation(s)
- Mark G Burnett
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
29
|
Koch S, Concha M, Wazzan T, Romano JG, Forteza A. High dose human serum albumin for the treatment of acute ischemic stroke: a safety study. Neurocrit Care 2006; 1:335-41. [PMID: 16174931 DOI: 10.1385/ncc:1:3:335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION In animal models of focal cerebral ischemia, albumin infusions at doses ranging from 0.6 to 2.5 g/kg are neuroprotective. It is not known whether patients with stroke, often elderly and with underlying cardiovascular disease, can safely tolerate such degrees of volume expansion. Therefore, we retrospectively reviewed the safety of high-dose albumin treatment in patients with acute ischemic stroke. MATERIALS AND METHODS Within 24 hours of ischemic stroke onset, patients who received at least 0.7 g/kg albumin were identified by a review of medical records. Each albumin recipient was assigned two control patients, who received standard fluid management. Controls were matched by age, number of stroke risk factors, stroke severity, and stroke subtype. Medical records were reviewed for treatment-related adverse events, defined as cardiopulmonary complications and mortality. RESULTS Thirty cases (mean age 62.9+/-11.4 years) and 60 controls (mean age 62.5+/-11.8 years) were identified between July 1999 and November 2001. The two groups were evenly matched. The mean dose of albumin infusion was 171 g (2.4 g/kg). Cardiopulmonary complications or death developed in 37% of cases and 18% of controls (p=0.056). Mortality was 7% in both groups. Multivariate regression analysis showed that a history of congestive heart failure and higher total albumin dose were independently associated with the occurrence of adverse events. CONCLUSION Albumin treatment was associated with a nonsignificant trend toward increased cardiopulmonary adverse events. However, these adverse events did not result in excess mortality.
Collapse
Affiliation(s)
- Sebastian Koch
- Division of Cerebrovascular Disease, Department of Neurology, University of Miami, FL 33136, USA.
| | | | | | | | | |
Collapse
|
30
|
Abstract
The current pathophysiological understanding of stroke is substantially based on experimental studies. Brain injury after cerebral ischemia develops from a complex signaling cascade that evolves in an at least partially unraveled spatiotemporal pattern. Early excitotoxicity can lead to fast necrotic cell death, which produces the core of the infarction. The ischemic penumbra that surrounds the infarct core suffers milder insults. In this area, both mild excitotoxic and inflammatory mechanisms lead to delayed cell death, which shows biochemical characteristics of apoptosis. While brain cells are challenged by these deleterious mechanisms, they activate innate protective programs of the brain, which can be studied by means of experimentally inducing ischemic tolerance (i.e., ischemic preconditioning). Importantly, cerebral ischemia not only affects the brain parenchyma, but also impacts extracranial systems. For example, stroke induces a dramatic immunosuppression via an overactivation of the sympathetic nervous system. As a result, severe bacterial infections such as pneumonia occur. Complex signaling cascades not only decide about cell survival, but also about the neurological deficit and the mortality after stroke. These mechanisms of damage and endogenous protection present distinct molecular targets that are the rational basis for the development of neuroprotective drugs.
Collapse
Affiliation(s)
- Philipp Mergenthaler
- Department of Experimental Neurology Charité, Humboldt University, Berlin, Germany.
| | | | | |
Collapse
|
31
|
Weaver CS, Leonardi-Bee J, Bath-Hextall FJ, Bath PMW. Sample Size Calculations in Acute Stroke Trials: A Systematic Review of Their Reporting, Characteristics, and Relationship With Outcome. Stroke 2004; 35:1216-24. [PMID: 15031455 DOI: 10.1161/01.str.0000125010.70652.93] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Only a few randomized controlled trials in acute stroke have shown a treatment-related benefit. Inadequate trial design, especially low sample size, may partly explain this failure. We investigated sample size calculations (SSCs) in a systematic review of acute stroke trials. METHODS Full reports of nonconfounded randomized controlled trials that recruited patients within 1 week of stroke onset and were published before the end of 2001 were identified from the Cochrane Library and other bibliographic databases. Information on the SSC and outcome event rates was collected for each trial. RESULTS Of 189 identified trial reports, 57 (30%) reported > or =1 components of the SSC, phase II 14/129 (11%) versus phase III 43/60 (72%) (P<0.001), with 32 (56%) giving all the required parameters. Significance (alpha) was mentioned in 54 (96%) reports; 53 used a significance level of alpha=0.05. And 55 (98%) reports gave the power (1-beta) of the study (median [25th and 75th percentile] 0.80 [0.80, 0.90]). The anticipated percentage of control subjects having a primary outcome event was given in 24 (42%) articles: case fatality 21.8% (11.8%, 23.5%, n=4) and combined death or disability/dependency 55.5% (44.5%, 66.3%, n=20); 25 studies used other outcomes and 8 studies gave insufficient information. Four of the 22 trials achieved a control rate within 5% of their prediction. 49 (86%) reports gave the anticipated treatment effect; case fatality: anticipated 9.5% (1.1%, 12.5%, n=6), achieved -0.3% (-4.1%, +2.4%); combined death or disability/dependency: anticipated 13.0% (10.0%, 16.0%, n=25), achieved 1.8% (-0.5%, +5.4%). The median calculated sample size was 600 (198, 995, n=54). CONCLUSIONS Too few trial publications report the assumptions underlying their SSC. Most trials were underpowered, ie, power <0.90, used inappropriate assumptions for event rates, and were grossly overoptimistic in their expectation of treatment effect. These deficiencies will together have resulted in trials being far too small and reduced their chance of being able to detect real treatment effects.
Collapse
|
32
|
Mocco J, Choudhri T, Huang J, Harfeldt E, Efros L, Klingbeil C, Vexler V, Hall W, Zhang Y, Mack W, Popilskis S, Pinsky DJ, Connolly ES. HuEP5C7 as a humanized monoclonal anti-E/P-selectin neurovascular protective strategy in a blinded placebo-controlled trial of nonhuman primate stroke. Circ Res 2002; 91:907-14. [PMID: 12433835 DOI: 10.1161/01.res.0000042063.15901.20] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although inhibiting interaction of beta(2) integrins with cognate immunoglobulin class adhesion receptor ligands is an effective neuroprotective strategy in small mammal models of stroke, the strategy has failed in human trials. A completely different antiadhesion receptor strategy was therefore rigorously tested in a model that may more closely approximate human reperfused stroke. Early leukoadhesive events in postischemic cerebral microvessels are mediated by upregulated selectin-class adhesion receptors on endothelial cells. Therefore, a blocking antibody prepared against common P- and E-selectin epitopes was humanized to suppress complement activation and tested in a reperfused hemispheric stroke model in Papio anubis (baboon). Histological examination of postischemic cerebral microvessels revealed a strong upregulation of E-and P-selectin expression. Placebo-blinded administration of the humanized anti-human E- and P-selectin monoclonal antibody (HuEP5C7, 20 mg/kg IV, n=9; placebo, n=9) immediately after the onset of 1 hour of temporary ischemia resulted in trends showing reduced polymorphonuclear leukocyte (PMN) infiltration into ischemic cortex, reduced infarct volumes (by 41%), improved neurological score (by 35%), and improved ability to self-care (by 39%). Importantly, there was no evidence of systemic complement activation, immune suppression, or pathological coagulopathy associated with this therapy. These data suggest that a humanized anti-E/P-selectin antibody approach is safe and may be effective as a clinical treatment for human stroke.
Collapse
Affiliation(s)
- J Mocco
- Department of Neurological Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mocco J, Hoh DJ, Nair MN, Choudhri TF, Mack WJ, Laufer I, Connolly ES. The baboon (Papio anubis) extracranial carotid artery: an anatomical guide for endovascular experimentation. BMC Cardiovasc Disord 2001; 1:4. [PMID: 11747471 PMCID: PMC61038 DOI: 10.1186/1471-2261-1-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Accepted: 12/07/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As novel endovascular strategies are developed for treating neurological disease, there is an increasing need to evaluate these techniques in relevant preclinical models. The use of non-human primates is especially critical given their structural and physiological homology with humans. In order to conduct primate endovascular studies, a comprehensive understanding of the carotid anatomy is necessary. We therefore performed a detailed examination of the vessel lengths, lumen diameters and angles of origin of the baboon extracranial carotid system. METHODS We characterized the extracranial carotid system often male baboons (Papio anubis, range 15.1-28.4 kg) by early post-mortem dissection. Photographic documentation of vessel lengths, lumen diameters, and angles of origin were measured for each segment of the carotid bilaterally. RESULTS The common carotid arteries averaged 94.7 +/- 1.7 mm (left) and 87.1 +/- 1.6 mm (right) in length. The average minimal common carotid lumen diameters were 3.0 +/- 0.3 mm (left) and 2.9 +/- 0.2 mm (right). Each animal had a common brachiocephalic artery arising from the aorta which bifurcated into the left common carotid artery and right braciocephalic artery after 21.5 +/- 1.6 mm. The vascular anatomy was found to be consistent among animals despite a wide range of animal weights. CONCLUSIONS The consistency in the Papio anubis extracranial carotid system may promote the use of this species in the preclinical investigation of neuro-interventional therapies.
Collapse
Affiliation(s)
- J Mocco
- Departments of Neurosurgery and Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Daniel J Hoh
- Departments of Neurosurgery and Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
| | - M Nathan Nair
- Departments of Neurosurgery and Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Tanvir F Choudhri
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, USA
| | - William J Mack
- Departments of Neurosurgery and Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Ilya Laufer
- Departments of Neurosurgery and Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
| | - E Sander Connolly
- Departments of Neurosurgery and Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
| |
Collapse
|
34
|
Abstract
Clinical trials for ischemic stroke have been characterized by a disappointing series of negative results, using a panoply of pharmacologic agents. This paper emphasizes five physiologic measures that can be taken to mitigate ischemic brain damage. These are (1) hypothermia, (2) insulin, (3) arterial hyperoxemia, (4) blood pressure control and (5) magnesium. Hypothermia is protective in both focal and global ischemia, even postischemically protecting against selective neuronal necrosis and infarction. The total equation for protection includes the (i) postischemic delay, (ii) depth, and (iii) duration of hypothermia. Insulin operates by lowering glucose levels to the normal range in focal ischemia. It is possible that very low glucose levels are detrimental in focal ischemia with paradoxical augmentation of the infarct size, and that spreading depression plays a role in this. Controlled arterial hyperoxemia seems effective experimentally in reducing infarct size, operating mechanistically by either a direct effect of oxygen, or vasoconstriction causing shunting of blood into the infarct, or both. Blood pressure is a critical determinant of infarct size, and raising blood pressure improves collateral blood flow and reduces stroke size. To be used clinically, however, hemorrhage must be ruled out. The most dramatic clinical effects of blood pressure are seen in aneurysm patients with vasospasm, where minor increases in blood pressure reverse temporary hemiparesis by reducing ischemia. Magnesium is likely the safest NMDA antagonist, with a long history of safe administration to pregnant women with eclampsia. There is potential interaction with insulin, in that magnesium causes hyperglycemia, which requires insulin to counteract it. Magnesium and insulin together have been shown effective in experimental brain ischemia. In the absence of safe and effective pharmacologic neuroprotection agents, clinical trials should be designed and launched to test these physiologic measures, singly and in combination, to reduce brain damage after ischemia.
Collapse
Affiliation(s)
- R N Auer
- Departments of Pathology & Clinical Neurosciences, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1.
| |
Collapse
|
35
|
Uchino K, Billheimer D, Cramer SC. Entry criteria and baseline characteristics predict outcome in acute stroke trials. Stroke 2001; 32:909-16. [PMID: 11283391 DOI: 10.1161/01.str.32.4.909] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Background and Purpose-We sought to study the range of entry criteria and baseline characteristics in acute stroke trials and to understand their effects on patient outcomes. METHODS -Randomized, placebo-controlled therapeutic trials in patients with acute ischemic stroke were identified. Entry criteria, baseline clinical characteristics, and outcome were extracted for the placebo group of each trial. The relationship between key variables was then determined. RESULTS -Across 90 placebo groups identified, there was great variation in entry criteria and outcome measures. This was associated with divergent outcomes; for example, in some studies most placebo group patients died, while in other studies nearly all had no disability. Entry criteria were significantly correlated with outcome; for example, higher age cutoff for study entry correlated with 3-month mortality. Entry criteria also predicted baseline clinical characteristics; for example, wider time window for study entry correlated directly with time to treatment and inversely with stroke severity (initial National Institutes of Health Stroke Scale score). Baseline characteristics predicted outcome. Greater stroke severity predicted higher 3-month mortality rate; despite this, successful thrombolytic trials have enrolled more severe strokes than most trials. The mean age of enrollees also predicted 3-month mortality and was inversely related to percentage of patients with 3-month Barthel Index score >/=95. The strongest predictors of 3-month mortality were obtained with multivariate models. CONCLUSIONS -Acute stroke studies vary widely in entry criteria and outcome measures. Across multiple studies, differences in entry criteria, and the baseline clinical characteristics they predict, influence patient outcomes along a continuum. In some studies, enrolling a specific subset of patients may have improved the chances of identifying a treatment-related effect, while in others, such chances may have been reduced. These findings may be useful in the design of future stroke therapeutic trials.
Collapse
Affiliation(s)
- K Uchino
- Department of Neurology and Statistics, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|
36
|
Barber PA, Auer RN, Buchan AM, Sutherland GR. Understanding and managing ischemic stroke. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y00-125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transient or permanent focal brain injury following acute thromboembolic occlusion develops from a complex cascade of pathophysiological events. The processes of excitotoxicity, peri-infarct depolarisation, inflammation, and apoptosis within the ischemic penumbra are proposed. While the translation of therapeutic agents from the animal models to human clinical trials have been disappointing, there remains an atmosphere of optimism as a result of the development of new diagnostic and therapeutic approaches, which include physiological, as opposed to pharmacological, intervention. This article provides an insight into the understanding of cerebral ischemia, together with current and future treatment strategies.Key words: cerebral ischemia, stroke, pathophysiology.
Collapse
|
37
|
Abstract
BACKGROUND Tirilazad mesylate is neuroprotective in experimental models of ischaemic stroke suggesting it might be of benefit clinically. OBJECTIVES To assess whether tirilazad mesylate is safe and effective at improving outcome in patients with acute ischaemic stroke. SEARCH STRATEGY Trials of tirilazad were identified from searches of the Cochrane Stroke Group Specialised Trials Register (last searched: May 2001) and the Cochrane Controlled Trials Register (CENTRAL/CCTR). In addition, we contacted the Pharmacia & Upjohn company, the manufacturer of tirilazad, to identify unpublished studies and further information. SELECTION CRITERIA Truly and quasi-randomised unconfounded placebo or open controlled trials of tirilazad administered within 24 hours onset of suspected or proven acute ischaemic stroke. DATA COLLECTION AND ANALYSIS Data relating to early and end-of-trial case fatality, disability (Barthel Index and Glasgow Outcome Scale), phlebitis, and QTc were extracted by treatment group from published data and company reports. MAIN RESULTS Six trials (four published, two unpublished) assessing tirilazad in 1757 patients with presumed acute ischaemic stroke were identified; all were double-blind and placebo-controlled in design. Tirilazad did not alter early case fatality (odds ratio, OR 1.11, 95% confidence intervals, 95% CI 0.79 to 1.56) or end-of-trial case fatality (OR 1.12, 95% CI 0.88 to 1.44). Tirilazad increased the odds of being dead or disabled by about one fifth, though the result was only just statistically significant; the odds ratios were similar whether the expanded Barthel Index or Glasgow Outcome Scale were used to assess outcome (OR 1.23, 95% CI 1.01 to 1.51; OR 1.23, 95% CI 1.01 to 1.50 respectively). Tirilazad significantly increased the rate of infusion site phlebitis (OR 2.81, 95% CI 2.14 to 3.69). Functional outcome (EBI) was significantly worse in prespecified subgroups of patients: females (OR 1.46, 95% CI 1.08 to 1.98) and subjects receiving low dose tirilazad (OR 1.31, 95% CI 1.03 to 1.67); a non-significant worse outcome was also seen in patients with mild-moderate stroke (OR 1.40, 95% CI 0.99 to 1.98). REVIEWER'S CONCLUSIONS Tirilazad mesylate increased the combined end-point of 'death or disability' by about one-fifth, but did not alter case fatality, when given to patients with acute ischaemic stroke. Although further trials of tirilazad are now not warranted, analysis of individual patient data from the trials may help elucidate why tirilazad appears to worsen outcome in acute ischaemic stroke.
Collapse
Affiliation(s)
- P M Bath
- Division of Stroke Medicine, University of Nottingham, City Hospital Campus, Hucknall Road, Nottingham, Nottinghamshire, UK, NG5 1PB.
| | | | | | | |
Collapse
|
38
|
Tirilazad mesylate in acute ischemic stroke: A systematic review. Tirilazad International Steering Committee. Stroke 2000; 31:2257-65. [PMID: 10978061 DOI: 10.1161/01.str.31.9.2257] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Tirilazad is a nonglucocorticoid, 21-aminosteroid that inhibits lipid peroxidation. Studies in experimental models of ischemic stroke had suggested that tirilazad had neuroprotective properties. As a result, clinical studies were undertaken to assess the safety and efficacy of tirilazad in the treatment of acute ischemic stroke. We performed a systematic review of randomized, controlled trials that assessed the safety and efficacy of tirilazad in patients with acute ischemic stroke. METHODS Trials of tirilazad were identified from searches of the Cochrane Library and communication with the Pharmacia & Upjohn company, the manufacturer of tirilazad. Data relating to early and end-of-trial case fatality, disability (Barthel Index and Glasgow Outcome Scale), phlebitis, and corrected QT interval were extracted by treatment group from published data and company reports and analyzed by using the Cochrane Collaboration meta-analysis software REVMAN. RESULTS Six trials (4 published, 2 unpublished) assessing tirilazad in 1757 patients with presumed acute ischemic stroke were identified; all were double-blind and placebo controlled in design. Tirilazad did not alter early case fatality (odds ratio [OR] 1.11, 95% confidence interval [CI] 0.79 to 1.56) or end-of-trial case fatality (OR 1.12, 95% CI 0.88 to 1.44). A just-significant increase in death and disability, assessed as either the expanded Barthel Index (OR 1.23, 95% CI 1.01 to 1.51) or Glasgow Outcome Scale (OR 1. 23, 95% CI 1.01 to 1.50) was observed. Tirilazad significantly increased the rate of infusion site phlebitis (OR 2.81, 95% CI 2.14 to 3.69). Functional outcome (expanded Barthel Index) was significantly worse in prespecified subgroups of patients: females (OR 1.46, 95% CI 1.08 to 1.98) and subjects receiving low-dose tirilazad (OR 1.31, 95% CI 1.03 to 1.67); a nonsignificant worse outcome was also seen in patients with mild to moderate stroke (OR 1. 40, 95% CI 0.99 to 1.98). CONCLUSIONS Tirilazad mesylate increases death and disability by about one fifth when given to patients with acute ischemic stroke. Although further trials of tirilazad are now unwarranted, analysis of individual patient data from the trials may help elucidate why tirilazad appears to worsen outcome in acute ischemic stroke.
Collapse
|
39
|
Abstract
In the 4 years since our first article, there has been considerable progress in our understanding of the pathophysiology of acute ischaemic stroke, and the results of well-conducted trials have at last begun to change everyday clinical practice. The timing of the various processes of the ischaemic cascade and the potential time windows for different interventions are better understood. Furthermore, the importance of maintaining cerebral perfusion and optimizing systemic physiological and biochemical factors in order to prevent neurological deterioration ('progressing stroke') is increasingly being realized. Numerous antithrombotic and neuroprotective drugs have been evaluated in clinical trials, and while none has shown unequivocal benefits on its own, prospects for successful intervention are still good. This will probably involve different combinations of treatments targeted on different pathophysiological stroke types, so that the management of acute stroke will offer a considerable challenge to the stroke physicians of the future.
Collapse
Affiliation(s)
- M Davis
- Stroke Research Team, Queen Elizabeth Hospital, Gateshead, UK
| | | |
Collapse
|
40
|
Abstract
Numerous studies have consistently shown that agonist stimulation of adenosine A1 receptors results in a significant reduction of morbidity and mortality associated with global and focal brain ischemia in animals. Based on these observations, several authors have suggested utilization of adenosine A1 receptors as targets for the development of clinically viable drugs against ischemic brain disorders. Recent advent of adenosine A1 receptor agonists characterized by lowered cardiovascular effects added additional strength to this argument. On the other hand, although cardioprotective, adenosine A3 receptor agonists proved severely cerebrodestructive when administered prior to global ischemia in gerbils. Moreover, stimulation of adenosine A3 receptors appears to reduce the efficacy of some of the neuroprotective actions mediated by adenosine A1 receptors. The review discusses the possible role of adenosine receptor subtypes (A1, A2, and A3) in the context of their involvement in the pathology of cerebral ischemia, and analyzes putative strategies for the development of clinically useful strategies based on adenosine and its receptors. It also stresses the need for further experimental studies before definitive conclusions on the usefulness of the adenosine concept in the treatment of brain ischemia can be made.
Collapse
Affiliation(s)
- D K von Lubitz
- Department of Emergency Medicine, University of Michigan Medical Center, Ann Arbor 48109-0303, USA.
| |
Collapse
|
41
|
Abstract
Numerous studies have consistently shown that agonist stimulation of adenosine A1 receptors results in a significant reduction of morbidity and mortality associated with global and focal brain ischemia in animals. Based on these observations, several authors have suggested utilization of adenosine A1 receptors as targets for the development of clinically viable drugs against ischemic brain disorders. Recent advent of adenosine A1 receptor agonists characterized by lowered cardiovascular effects added additional strength to this argument. On the other hand, although cardioprotective, adenosine A3 receptor agonists proved severely cerebrodestructive when administered prior to global ischemia in gerbils. Moreover, stimulation of adenosine A3 receptors appears to reduce the efficacy of some of the neuroprotective actions mediated by adenosine A receptors. The review discusses the possible role of adenosine receptor subtypes (A1, A2, and A3) in the context of their involvement in the pathology of cerebral ischemia, and analyzes putative strategies for the development of clinically useful strategies based on adenosine and its receptors. It also stresses the need for further experimental studies before definitive conclusions on the usefulness of the adenosine concept in the treatment of brain ischemia can be made.
Collapse
Affiliation(s)
- D K Von Lubitz
- Department of Emergency Medicine, University of Michigan Medical Center, Ann Arbor 48109-0303, USA.
| |
Collapse
|
42
|
Abstract
Strategies for the treatment of thromboembolic stroke are based on restoring the blood flow as soon as possible and protecting the neurons from the deleterious consequences of cerebral ischaemia. Interest has focused on blockers of voltage-dependent Na+ channels as potential neuroprotective agents because they prevent neuronal death in various experimental models of cerebral ischaemia and act cytoprotectively in models of white matter damage. Although several Na+ blockers are currently being tested in various phases of clinical development, most of these agents are relatively weak and unspecific. I therefore consider it worthwhile to search for molecules which specifically block voltage-dependent Na+ channels for the treatment of cerebral ischaemia.
Collapse
Affiliation(s)
- A J Carter
- Department of Central Nervous System Research, Ingelheim am Rhein, Federal Republic of Germany
| |
Collapse
|
43
|
Hoehn-Berlage M, Hossmann KA, Busch E, Eis M, Schmitz B, Gyngell ML. Inhibition of nonselective cation channels reduces focal ischemic injury of rat brain. J Cereb Blood Flow Metab 1997; 17:534-42. [PMID: 9183291 DOI: 10.1097/00004647-199705000-00007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of the novel inhibitor of receptor-activated and calcium store-operated nonselective cation channels, (RS)-(3,4-dihydro-6,7-dimethoxyisoquinoline-1-gamma 1)-2-phenyl-N, N-di-[2(2,3,4-trimethoxyphenyl) ethyl]acetamide (LOE 908 MS), on focal cerebral ischemia was studied in halothane-anesthetized rats submitted to permanent suture occlusion of the right middle cerebral artery (MCA). The treated group (n = 7) received subcutaneous injections of 30 mg/kg LOE 908 MS (in 1 ml saline) 10 min after vascular occlusion and again after 3 h. The untreated group (n = 11) was injected subcutaneously with 1 ml saline at the same times. Evolution of infarct was monitored by electrophysiological recording of EEG and cortical steady potential and by diffusion-weighted magnetic resonance imaging during the initial 6 h of vascular occlusion. The hemodynamic, biochemical, and morphological changes were studied after 6 h by combining autoradiographic measurement of blood flow with histological stainings and pictorial measurements of ATP, glucose, and tissue pH. In the untreated animals, the ischemic lesion volume [defined as the region in which the apparent diffusion coefficient (ADC) of water declined to below 80% of control] steadily increased by approximately 50% during the initial 6 h of vascular occlusion relative to the first set of data 10 min postocclusion. In the treated animals, in contrast, the ADC lesion volume declined by approximately 20% during the same interval. Treatment also led to a significant reduction in the number of periinfarct depolarizations. After 6 h of vascular occlusion, blood flow was significantly higher in the treated animals, and the volume of ATP-depleted and morphologically injured tissue representing the infarct core was 60-70% smaller. The volume of severely acidic tissue, in contrast, did not differ, indicating that LOE 908 MS does not reduce the size of ischemic penumbra. These findings demonstrate that postocclusion treatment of permanent focal ischemia with LOE 908 MS delays the expansion of the infarct core into the penumbra for a duration of at least 6 h and therefore substantially prolongs the window of opportunity for the reversal of the ischemic impact in the peripheral parts of the evolving infarct.
Collapse
Affiliation(s)
- M Hoehn-Berlage
- Department of Experimental Neurology, Max Planck Institute for Neurological Research, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Haljamäe H, Dahlqvist M, Walentin F. 3 Artificial colloids in clinical practice: pros and cons. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0950-3501(97)80005-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
|
46
|
Abstract
Overall, stroke is a common disease that can have devastating results. Treatment of stoke has been, for the most part, supportive in nature. Recently, more aggressive intervention has been used, particularly thrombolysis. Although such intervention can have devastating consequences, it has shown some promise, particularly in the arena of intraarterial administration. Although much work is needed to find the ideal agents and methods of administration, screening of patients may hold the key to success and the limitations of complications. Determination of exactly which patients will benefit and which will not and which will have complications and which will not, remains for the most part an enigma. Only through further investigation in a controlled, collaborative manner can such information be obtained.
Collapse
Affiliation(s)
- T P Smith
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|