1
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
2
|
Lysophosphatidylcholine in phospholipase A 2-modified LDL triggers secretion of angiopoietin 2. Atherosclerosis 2021; 327:87-99. [PMID: 34020784 DOI: 10.1016/j.atherosclerosis.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Secretory phospholipase A2 (PLA2) hydrolyzes LDL phospholipids generating modified LDL particles (PLA2-LDL) with increased atherogenic properties. Exocytosis of Weibel-Palade bodies (WPB) releases angiopoietin 2 (Ang2) and externalizes P-selectin, which both play important roles in vascular inflammation. Here, we investigated the effects of PLA2-LDL on exocytosis of WPBs. METHODS Human coronary artery endothelial cells (HCAECs) were stimulated with PLA2- LDL, and its uptake and effect on Ang2 release, leukocyte adhesion, and intracellular calcium levels were measured. The effects of PLA2-LDL on Ang2 release and WPB exocytosis were measured in and ex vivo in mice. RESULTS Exposure of HCAECs to PLA2-LDL triggered Ang2 secretion and promoted leukocyte-HCAEC interaction. Lysophosphatidylcholine was identified as a critical component of PLA2-LDL regulating the WPB exocytosis, which was mediated by cell-surface proteoglycans, phospholipase C, intracellular calcium, and cytoskeletal remodeling. PLA2-LDL also induced murine endothelial WPB exocytosis in blood vessels in and ex vivo, as evidenced by secretion of Ang2 in vivo, P-selectin translocation to plasma membrane in intact endothelial cells in thoracic artery and tracheal vessels, and reduced Ang2 staining in tracheal endothelial cells. Finally, in contrast to normal human coronary arteries, in which Ang2 was present only in the endothelial layer, at sites of advanced atherosclerotic lesions, Ang2 was detected also in the intima, media, and adventitia. CONCLUSIONS Our studies reveal PLA2-LDL as a potent agonist of endothelial WPB exocytosis, resulting in increased secretion of Ang2 and translocation of P-selectin. The results provide mechanistic insight into PLA2-LDL-dependent promotion of vascular inflammation and atherosclerosis.
Collapse
|
3
|
Ruuth M, Äikäs L, Tigistu-Sahle F, Käkelä R, Lindholm H, Simonen P, Kovanen PT, Gylling H, Öörni K. Plant Stanol Esters Reduce LDL (Low-Density Lipoprotein) Aggregation by Altering LDL Surface Lipids. Arterioscler Thromb Vasc Biol 2020; 40:2310-2321. [DOI: 10.1161/atvbaha.120.314329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective:
Plant stanol ester supplementation (2–3 g plant stanols/d) reduces plasma LDL (low-density lipoprotein) cholesterol concentration by 9% to 12% and is, therefore, recommended as part of prevention and treatment of atherosclerotic cardiovascular disease. In addition to plasma LDL-cholesterol concentration, also qualitative properties of LDL particles can influence atherogenesis. However, the effect of plant stanol ester consumption on the proatherogenic properties of LDL has not been studied.
Approach and Results:
Study subjects (n=90) were randomized to consume either a plant stanol ester-enriched spread (3.0 g plant stanols/d) or the same spread without added plant stanol esters for 6 months. Blood samples were taken at baseline and after the intervention. The aggregation susceptibility of LDL particles was analyzed by inducing aggregation of isolated LDL and following aggregate formation. LDL lipidome was determined by mass spectrometry. Binding of serum lipoproteins to proteoglycans was measured using a microtiter well-based assay. LDL aggregation susceptibility was decreased in the plant stanol ester group, and the median aggregate size after incubation for 2 hours decreased from 1490 to 620 nm,
P
=0.001. Plant stanol ester-induced decrease in LDL aggregation was more extensive in participants having body mass index<25 kg/m
2
. Decreased LDL aggregation susceptibility was associated with decreased proportion of LDL-sphingomyelins and increased proportion of LDL-triacylglycerols. LDL binding to proteoglycans was decreased in the plant stanol ester group, the decrease depending on decreased serum LDL-cholesterol concentration.
Conclusions:
Consumption of plant stanol esters decreases the aggregation susceptibility of LDL particles by modifying LDL lipidome. The resulting improvement of LDL quality may be beneficial for cardiovascular health.
Registration:
URL:
https://www.clinicaltrials.gov
. Unique identifier: NCT01315964.
Collapse
Affiliation(s)
- Maija Ruuth
- From the Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland (M.R., L.Ä., F.T.-S., P.T.K., K.Ö.)
- Research Programs Unit, Faculty of Medicine (M.R.), University of Helsinki, Finland
| | - Lauri Äikäs
- From the Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland (M.R., L.Ä., F.T.-S., P.T.K., K.Ö.)
| | - Feven Tigistu-Sahle
- From the Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland (M.R., L.Ä., F.T.-S., P.T.K., K.Ö.)
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences (F.T.-S., R.K., K.Ö.), University of Helsinki, Finland
- Ethiopian Biotechnology Institute, Addis Ababa (F.T.-S.)
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences (F.T.-S., R.K., K.Ö.), University of Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Sciences (HiLIFE) and Biocenter Finland (R.K.)
| | - Harri Lindholm
- Finnish Institute of Occupational Health, Helsinki, Finland (H.L.)
| | - Piia Simonen
- Helsinki University Central Hospital, Heart and Lung Center, Cardiology (P.S., H.G.), University of Helsinki, Finland
| | - Petri T. Kovanen
- From the Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland (M.R., L.Ä., F.T.-S., P.T.K., K.Ö.)
| | - Helena Gylling
- Helsinki University Central Hospital, Heart and Lung Center, Cardiology (P.S., H.G.), University of Helsinki, Finland
| | - Katariina Öörni
- From the Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland (M.R., L.Ä., F.T.-S., P.T.K., K.Ö.)
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences (F.T.-S., R.K., K.Ö.), University of Helsinki, Finland
| |
Collapse
|
4
|
Alasmary FAS, Alnahdi FS, Ben Bacha A, El-Araby AM, Moubayed N, Alafeefy AM, El-Araby ME. New quinoxalinone inhibitors targeting secreted phospholipase A2 and α-glucosidase. J Enzyme Inhib Med Chem 2017; 32:1143-1151. [PMID: 28856929 PMCID: PMC6009887 DOI: 10.1080/14756366.2017.1363743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 11/05/2022] Open
Abstract
Elevated blood glucose and increased activities of secreted phospholipase A2 (sPLA2) are strongly linked to coronary heart disease. In this report, our goal was to develop small heterocyclic compound that inhibit sPLA2. The title compounds were also tested against α-glucosidase and α-amylase. This array of enzymes was selected due to their implication in blood glucose regulation and diabetic cardiovascular complications. Therefore, two distinct series of quinoxalinone derivatives were synthesised; 3-[N'-(substituted-benzylidene)-hydrazino]-1H-quinoxalin-2-ones 3a-f and 1-(substituted-phenyl)-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-ones 4a-f. Four compounds showed promising enzyme inhibitory effect, compounds 3f and 4b-d potently inhibited the catalytic activities of all of the studied proinflammatory sPLA2. Compound 3e inhibited α-glucosidase (IC50 = 9.99 ± 0.18 µM); which is comparable to quercetin (IC50 = 9.93 ± 0.66 µM), a known inhibitor of this enzyme. Unfortunately, all compounds showed weak activity against α-amylase (IC50 > 200 µM). Structure-based molecular modelling tools were utilised to rationalise the SAR compared to co-crystal structures with sPLA2-GX as well as α-glucosidase. This report introduces novel compounds with dual activities on biochemically unrelated enzymes mutually involved in diabetes and its complications.
Collapse
Affiliation(s)
- Fatmah A. S. Alasmary
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatima S. Alnahdi
- Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Nadine Moubayed
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M. Alafeefy
- Department of Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Moustafa E. El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
5
|
Sato H, Taketomi Y, Murakami M. Metabolic regulation by secreted phospholipase A 2. Inflamm Regen 2016; 36:7. [PMID: 29259680 PMCID: PMC5725825 DOI: 10.1186/s41232-016-0012-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/10/2016] [Indexed: 12/18/2022] Open
Abstract
Within the phospholipase A2 (PLA2) superfamily that hydrolyzes phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2) enzymes comprise the largest family that contains 11 isoforms in mammals. Individual sPLA2s exhibit unique distributions and specific enzymatic properties, suggesting their distinct biological roles. While sPLA2s have long been implicated in inflammation and atherosclerosis, it has become evident that they are involved in diverse biological events through lipid mediator-dependent or mediator-independent processes in a given microenvironment. In recent years, new biological aspects of sPLA2s have been revealed using their transgenic and knockout mouse models in combination with mass spectrometric lipidomics to unveil their target substrates and products in vivo. In this review, we summarize our current knowledge of the roles of sPLA2s in metabolic disorders including obesity, hepatic steatosis, diabetes, insulin resistance, and adipose tissue inflammation.
Collapse
Affiliation(s)
- Hiroyasu Sato
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan
| | - Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506 Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004 Japan
| |
Collapse
|
6
|
Onat A, Karadeniz Y, Tusun E, Yüksel H, Kaya A. Advances in understanding gender difference in cardiometabolic disease risk. Expert Rev Cardiovasc Ther 2016; 14:513-23. [PMID: 26849352 DOI: 10.1586/14779072.2016.1150782] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gender differences exist in cardiovascular or metabolic disease risk, beyond the protective effect of estrogens, mostly burdening the postmenopausal female. We aimed to review herein sex differences in pro-inflammatory states, the independence of inflammation from insulin resistance, differences in high-density lipoprotein dysfunction, in gene-environment interactions, and in the influence of current and former smoking on cardiometabolic risk. Sex differences in absorption of long-chain fatty acids are highlighted. Differences exist in the first manifestation of cardiovascular disease, men being more likely to develop coronary heart disease as a first event, compared to women who have cerebrovascular disease or heart failure as a first event. Autoimmune activation resulting from pro-inflammatory states, a fundamental mechanism for numerous chronic diseases in people prone to metabolic syndrome, is much more common in women, and these constitute major determinants. Therapeutic approaches to aspects related to sex difference are briefly reviewed.
Collapse
Affiliation(s)
- Altan Onat
- a Department of Cardiology, Cerrahpaşa Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Yusuf Karadeniz
- b Department of Endocrinology and Metabolism, Medical Faculty , Atatürk University , Erzurum , Turkey
| | - Eyyup Tusun
- c Mehmet Akif İnan Training Hospital, Şanlıurfa, Department of Cardiology, Cerrahpaşa Medical Faculty , Istanbul University
| | - Hüsniye Yüksel
- a Department of Cardiology, Cerrahpaşa Medical Faculty , Istanbul University , Istanbul , Turkey
| | - Ayşem Kaya
- d Institute of Cardiology , Istanbul University , Istanbul , Turkey
| |
Collapse
|
7
|
Murakami M, Sato H, Miki Y, Yamamoto K, Taketomi Y. A new era of secreted phospholipase A₂. J Lipid Res 2015; 56:1248-61. [PMID: 25805806 DOI: 10.1194/jlr.r058123] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Among more than 30 members of the phospholipase A2 (PLA2) superfamily, secreted PLA2 (sPLA2) enzymes represent the largest family, being Ca(2+)-dependent low-molecular-weight enzymes with a His-Asp catalytic dyad. Individual sPLA2s exhibit unique tissue and cellular distributions and enzymatic properties, suggesting their distinct biological roles. Recent studies using transgenic and knockout mice for nearly a full set of sPLA2 subtypes, in combination with sophisticated lipidomics as well as biochemical and cell biological studies, have revealed distinct contributions of individual sPLA2s to various pathophysiological events, including production of pro- and anti-inflammatory lipid mediators, regulation of membrane remodeling, degradation of foreign phospholipids in microbes or food, or modification of extracellular noncellular lipid components. In this review, we highlight the current understanding of the in vivo functions of sPLA2s and the underlying lipid pathways as revealed by a series of studies over the last decade.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Hiroyasu Sato
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kei Yamamoto
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
8
|
The adipocyte-inducible secreted phospholipases PLA2G5 and PLA2G2E play distinct roles in obesity. Cell Metab 2014; 20:119-32. [PMID: 24910243 PMCID: PMC4079757 DOI: 10.1016/j.cmet.2014.05.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 02/19/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022]
Abstract
Metabolic disorders, including obesity and insulin resistance, have their basis in dysregulated lipid metabolism and low-grade inflammation. In a microarray search of unique lipase-related genes whose expressions are associated with obesity, we found that two secreted phospholipase A2s (sPLA2s), PLA2G5 and PLA2G2E, were robustly induced in adipocytes of obese mice. Analyses of Pla2g5(-/-) and Pla2g2e(-/-) mice revealed distinct roles of these sPLA2s in diet-induced obesity. PLA2G5 hydrolyzed phosphatidylcholine in fat-overladen low-density lipoprotein to release unsaturated fatty acids, which prevented palmitate-induced M1 macrophage polarization. As such, PLA2G5 tipped the immune balance toward an M2 state, thereby counteracting adipose tissue inflammation, insulin resistance, hyperlipidemia, and obesity. PLA2G2E altered minor lipoprotein phospholipids, phosphatidylserine and phosphatidylethanolamine, and moderately facilitated lipid accumulation in adipose tissue and liver. Collectively, the identification of "metabolic sPLA2s" adds this gene family to a growing list of lipolytic enzymes that act as metabolic coordinators.
Collapse
|
9
|
Ståhlman M, Pham HT, Adiels M, Mitchell TW, Blanksby SJ, Fagerberg B, Ekroos K, Borén J. Clinical dyslipidaemia is associated with changes in the lipid composition and inflammatory properties of apolipoprotein-B-containing lipoproteins from women with type 2 diabetes. Diabetologia 2012; 55:1156-66. [PMID: 22252473 DOI: 10.1007/s00125-011-2444-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/12/2011] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to use lipidomics to determine if the lipid composition of apolipoprotein-B-containing lipoproteins is modified by dyslipidaemia in type 2 diabetes and if any of the identified changes potentially have biological relevance in the pathophysiology of type 2 diabetes. METHODS VLDL and LDL from normolipidaemic and dyslipidaemic type 2 diabetic women and controls were isolated and quantified with HPLC and mass spectrometry. A detailed molecular characterisation of VLDL triacylglycerols (TAG) was also performed using the novel ozone-induced dissociation method, which allowed us to distinguish vaccenic acid (C18:1 n-7) from oleic acid (C18:1 n-9) in specific TAG species. RESULTS Lipid class composition was very similar in VLDL and LDL from normolipidaemic type 2 diabetic and control participants. By contrast, dyslipidaemia was associated with significant changes in both lipid classes (e.g. increased diacylglycerols) and lipid species (e.g. increased C16:1 and C20:3 in phosphatidylcholine and cholesteryl ester and increased C16:0 [palmitic acid] and vaccenic acid in TAG). Levels of palmitic acid in VLDL and LDL TAG correlated with insulin resistance, and VLDL TAG enriched in palmitic acid promoted increased secretion of proinflammatory mediators from human smooth muscle cells. CONCLUSIONS We showed that dyslipidaemia is associated with major changes in both lipid class and lipid species composition in VLDL and LDL from women with type 2 diabetes. In addition, we identified specific molecular lipid species that both correlate with clinical variables and are proinflammatory. Our study thus shows the potential of advanced lipidomic methods to further understand the pathophysiology of type 2 diabetes.
Collapse
Affiliation(s)
- M Ståhlman
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Morgantini C, Natali A, Boldrini B, Imaizumi S, Navab M, Fogelman AM, Ferrannini E, Reddy ST. Anti-inflammatory and antioxidant properties of HDLs are impaired in type 2 diabetes. Diabetes 2011; 60:2617-23. [PMID: 21852676 PMCID: PMC3178289 DOI: 10.2337/db11-0378] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE In mice, 4F, an apolipoprotein A-I mimetic peptide that restores HDL function, prevents diabetes-induced atherosclerosis. We sought to determine whether HDL function is impaired in type 2 diabetic (T2D) patients and whether 4F treatment improves HDL function in T2D patient plasma in vitro. RESEARCH DESIGN AND METHODS HDL anti-inflammatory function was determined in 93 T2D patients and 31 control subjects as the ability of test HDLs to inhibit LDL-induced monocyte chemotactic activity in human aortic endothelial cell monolayers. The HDL antioxidant properties were measured using a cell-free assay that uses dichlorofluorescein diacetate. Oxidized fatty acids in HDLs were measured by liquid chromatography-tandem mass spectrometry. In subgroups of patients and control subjects, the HDL inflammatory index was repeated after incubation with L-4F. RESULTS The HDL inflammatory index was 1.42 ± 0.29 in T2D patients and 0.70 ± 0.19 in control subjects (P < 0.001). The cell-free assay was impaired in T2D patients compared with control subjects (2.03 ± 1.35 vs. 1.60 ± 0.80, P < 0.05), and also HDL intrinsic oxidation (cell-free assay without LDL) was higher in T2D patients (1,708 ± 739 vs. 1,233 ± 601 relative fluorescence units, P < 0.001). All measured oxidized fatty acids were significantly higher in the HDLs of T2D patients. There was a significant correlation between the cell-free assay values and the content of oxidized fatty acids in HDL fractions. L-4F treatment restored the HDL inflammatory index in diabetic plasma samples (from 1.26 ± 0.17 to 0.71 ± 0.11, P < 0.001) and marginally affected it in healthy subjects (from 0.81 ± 0.16 to 0.66 ± 0.10, P < 0.05). CONCLUSIONS In patients with T2D, the content of oxidized fatty acids is increased and the anti-inflammatory and antioxidant activities of HDLs are impaired.
Collapse
Affiliation(s)
- Cecilia Morgantini
- Department of Internal Medicine, University of Pisa, Pisa, Italy
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Andrea Natali
- Department of Internal Medicine, University of Pisa, Pisa, Italy
| | | | - Satoshi Imaizumi
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Mohamad Navab
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Alan M. Fogelman
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Ele Ferrannini
- Department of Internal Medicine, University of Pisa, Pisa, Italy
| | - Srinivasa T. Reddy
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Corresponding author: Srinivasa T. Reddy,
| |
Collapse
|
11
|
Murakami M, Taketomi Y, Sato H, Yamamoto K. Secreted phospholipase A2 revisited. J Biochem 2011; 150:233-55. [PMID: 21746768 DOI: 10.1093/jb/mvr088] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phospholipase A(2) (PLA(2)) catalyses the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. So far, more than 30 enzymes that possess PLA(2) or related activity have been identified in mammals. About one third of these enzymes belong to the secreted PLA(2) (sPLA(2)) family, which comprises low molecular weight, Ca(2+) requiring, secreted enzymes with a His/Asp catalytic dyad. Individual sPLA(2)s display distinct localizations and enzymatic properties, suggesting their specialized biological roles. However, in contrast to intracellular PLA(2)s, whose roles in signal transduction and membrane homoeostasis have been well documented, the biological roles of sPLA(2)s in vivo have remained obscure until recently. Over the past decade, information fuelled by studies employing knockout and transgenic mice as well as specific inhibitors, in combination with lipidomics, has clarified when and where the different sPLA(2) isoforms are expressed, which isoforms are involved in what types of pathophysiology, and how they exhibit their specific functions. In this review, we highlight recent advances in PLA(2) research, focusing mainly on the physiological functions of sPLA(2)s and their modes of action on 'extracellular' phospholipid targets versus lipid mediator production.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | |
Collapse
|
12
|
Onat A, Hergenç G. Low-grade inflammation, and dysfunction of high-density lipoprotein and its apolipoproteins as a major driver of cardiometabolic risk. Metabolism 2011; 60:499-512. [PMID: 20580781 DOI: 10.1016/j.metabol.2010.04.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/12/2010] [Accepted: 04/19/2010] [Indexed: 12/30/2022]
Abstract
Dysfunction of high-density lipoprotein (HDL) particles that even become proinflammatory or lose atheroprotective properties is known through analyses of HDL isolated from diabetic subjects. Recently, high concentrations of HDL or apolipoprotein (apo) A-I in individuals with diabetes or coronary heart disease were found to reveal dysfunction in some population-based studies. Such dysfunction of HDL and its apos A-I, A-II, and C-III has been observed in a general population for the first time among Turkish adults. Functional defectiveness manifested itself by unexpected correlations with inflammatory biomarkers and, in long-term follow-up, by lack of protection against diabetes and coronary heart disease, accounting for the excess incidences in Turks. Female sex was more pronouncedly affected by this process that presumably exists in other ethnicities in South Asia, East Europe, and the Middle East. In contradistinction, in Western and East Asian population, only individuals with glucose intolerance or those at risk for cardiometabolic disease are considered to be or were documented in a review of clinical trials to have been affected by impaired function of HDL. High-density lipoprotein dysfunctionality is closely linked to obesity and low-grade inflammation yet seems to act partly independently of them. Cigarette smoking in overweight women with low-grade inflammation appears to offer limited protection against cardiometabolic risk. The great impact in public health of the dysfunction of protective serum proteins requires individual clinical recognition, appropriate preventive measures, and delineation of management, including with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Altan Onat
- Turkish Society of Cardiology, Istanbul University, Istanbul 34098, Turkey.
| | | |
Collapse
|
13
|
Yamamoto K, Isogai Y, Sato H, Taketomi Y, Murakami M. Secreted phospholipase A2, lipoprotein hydrolysis, and atherosclerosis: integration with lipidomics. Anal Bioanal Chem 2011; 400:1829-42. [PMID: 21445663 PMCID: PMC3098357 DOI: 10.1007/s00216-011-4864-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 02/14/2011] [Accepted: 03/01/2011] [Indexed: 01/22/2023]
Abstract
Phospholipase A2 (PLA2) is a group of enzymes that hydrolyze the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. Of many PLA2s or related enzymes identified to date, secreted PLA2s (sPLA2s) comprise the largest family that contains 10 catalytically active isozymes. Besides arachidonic acid released from cellular membranes for eicosanoid synthesis, several if not all sPLA2s have recently been implicated in hydrolysis of phospholipids in lipoprotein particles. The sPLA2-processed low-density lipoprotein (LDL) particles contain a large amount of lysophospholipids and exhibit the property of “small-dense” or “modified” LDL, which facilitates foam cell formation from macrophages. Transgenic overexpression of these sPLA2s leads to development of atherosclerosis in mice. More importantly, genetic deletion or pharmacological inhibition of particular sPLA2s significantly attenuates atherosclerosis and aneurysm. In this article, we will give an overview of current understanding of the role of sPLA2s in atherosclerosis, with recent lipidomics data showing the action of a subset of sPLA2s on lipoprotein phospholipids.
Collapse
Affiliation(s)
- Kei Yamamoto
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | | | | | | | | |
Collapse
|
14
|
Pettersson C, Karlsson H, Ståhlman M, Larsson T, Fagerberg B, Lindahl M, Wiklund O, Borén J, Fogelstrand L. LDL-associated apolipoprotein J and lysozyme are associated with atherogenic properties of LDL found in type 2 diabetes and the metabolic syndrome. J Intern Med 2011; 269:306-21. [PMID: 21205019 DOI: 10.1111/j.1365-2796.2010.02292.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Exchangeable low-density lipoprotein (LDL)-associated proteins can affect the atherogenic properties of LDL. Our aim was to analyse the protein composition of LDL from individuals with or without type 2 diabetes and the metabolic syndrome (T2DM) in relation to other LDL particle characteristics, to assess whether certain proteins associate more with certain subclasses of LDL typical for T2DM, such as small, apoCIII-rich LDL. DESIGN Low-density lipoprotein from two cohorts of 61-year-old men (n = 19 and 64) with or without T2DM was isolated using size-exclusion chromatography or deuterium oxide-based ultracentrifugation. LDL-associated proteins were identified using mass spectrometry and quantified using two-dimensional gel electrophoresis or enzyme-linked immunosorbent assay. Differently expressed LDL-associated proteins apolipoprotein (apo)J and lysozyme were also measured in serum from a third cohort of women (n = 71) with or without T2DM. Lysozyme binding to advanced glycation end product (AGE)-LDL was examined in vitro. RESULTS ApoJ and lysozyme were increased in LDL particles with increased apoCIII content and decreased cholesterol content. When isolated with size-exclusion chromatography, LDL from individuals with T2DM contained more apoJ and lysozyme and less apoA1 than LDL from control individuals. LDL content of apoJ correlated with a smaller LDL particle size. Serum levels of lysozyme, but not apoJ, were increased in individuals with T2DM. In vitro, lysozyme associated more with AGE-LDL than with unmodified LDL. CONCLUSIONS Our results indicate that apoJ and lysozyme are increased in LDL with characteristics of small dense LDL in T2DM. Small dense LDL is easily glycated, and the increased affinity of lysozyme for AGE-LDL provides a possible partial explanation for an increase lysozyme in LDL from those with type 2 diabetes.
Collapse
Affiliation(s)
- C Pettersson
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Suckling K. Phospholipase A2s: Developing drug targets for atherosclerosis. Atherosclerosis 2010; 212:357-66. [DOI: 10.1016/j.atherosclerosis.2010.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 03/08/2010] [Accepted: 03/08/2010] [Indexed: 12/24/2022]
|
17
|
Residual Risk Reduction Initiative: výzva ke snížení reziduálního vaskulárního rizika u pacientů s dyslipidemií. COR ET VASA 2010. [DOI: 10.33678/cor.2010.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Murakami M, Taketomi Y, Girard C, Yamamoto K, Lambeau G. Emerging roles of secreted phospholipase A2 enzymes: Lessons from transgenic and knockout mice. Biochimie 2010; 92:561-82. [PMID: 20347923 DOI: 10.1016/j.biochi.2010.03.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/18/2010] [Indexed: 11/15/2022]
Abstract
Among the emerging phospholipase A(2) (PLA(2)) superfamily, the secreted PLA(2) (sPLA(2)) family consists of low-molecular-mass, Ca(2+)-requiring extracellular enzymes with a His-Asp catalytic dyad. To date, more than 10 sPLA(2) enzymes have been identified in mammals. Individual sPLA(2)s exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Despite numerous enzymatic and cell biological studies on this enzyme family in the past two decades, their precise in vivo functions still remain largely obscure. Recent studies using transgenic and knockout mice for several sPLA(2) enzymes, in combination with lipidomics approaches, have opened new insights into their distinct contributions to various biological events such as food digestion, host defense, inflammation, asthma and atherosclerosis. In this article, we overview the latest understanding of the pathophysiological functions of individual sPLA(2) isoforms fueled by studies employing transgenic and knockout mice for several sPLA(2)s.
Collapse
Affiliation(s)
- Makoto Murakami
- Biomembrane Signaling Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
19
|
Karakas M, Koenig W. Phospholipase A2 as a therapeutic target for atherosclerosis. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.09.74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Fruchart JC, Sacks F, Hermans MP, Assmann G, Brown WV, Ceska R, Chapman MJ, Dodson PM, Fioretto P, Ginsberg HN, Kadowaki T, Lablanche JM, Marx N, Plutzky J, Reiner Ž, Rosenson RS, Staels B, Stock JK, Sy R, Wanner C, Zambon A, Zimmet P. The Residual Risk Reduction Initiative: A Call to Action to Reduce Residual Vascular Risk in Patients with Dyslipidemia. Am J Cardiol 2008. [DOI: 10.1016/j.amjcard.2008.10.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Fruchart JC, Sacks FM, Hermans MP, Assmann G, Brown WV, Ceska R, Chapman MJ, Dodson PM, Fioretto P, Ginsberg HN, Kadowaki T, Lablanche JM, Marx N, Plutzky J, Reiner Z, Rosenson RS, Staels B, Stock JK, Sy R, Wanner C, Zambon A, Zimmet P. The Residual Risk Reduction Initiative: a call to action to reduce residual vascular risk in dyslipidaemic patient. Diab Vasc Dis Res 2008; 5:319-35. [PMID: 18958843 DOI: 10.3132/dvdr.2008.046] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite current standards of care aimed at achieving targets for low-density lipoprotein (LDL) cholesterol, blood pressure and glycaemia, dyslipidaemic patients remain at high residual risk of vascular events. Atherogenic dyslipidaemia, specifically elevated triglycerides and low levels of high-density lipoprotein (HDL) cholesterol, often with elevated apolipoprotein B and non-HDL cholesterol, is common in patients with established cardiovascular disease, type 2 diabetes, obesity or metabolic syndrome and is associated with macrovascular and microvascular residual risk. The Residual Risk Reduction Initiative (R3I) was established to address this important issue. This position paper aims to highlight evidence that atherogenic dyslipidaemia contributes to residual macrovascular risk and microvascular complications despite current standards of care for dyslipidaemia and diabetes, and to recommend therapeutic intervention for reducing this, supported by evidence and expert consensus. Lifestyle modification is an important first step. Additionally, pharmacotherapy is often required. Adding niacin, a fibrate or omega-3 fatty acids to statin therapy improves achievement of all lipid risk factors. Outcomes studies are evaluating whether these strategies translate to greater clinical benefit than statin therapy alone. In conclusion, the R3I highlights the need to address with lifestyle and/or pharmacotherapy the high level of residual vascular risk among dyslipidaemic patients who are treated in accordance with current standards of care.
Collapse
|